Writing Excel Macros with VBA, 2nd Edition

By Steven Roman, Ph.D.

Publisher : O'Reilly

Pub Date : June 2002
ISBN : 0-596-00359-5
Pages : 560

Table of
Contents

To achieve the maximum control and flexibility from Microsoft Excel often requires
careful custom programming using the VBA (Visual Basic for Applications)
language. Writing Excel Macros with VBA, 2nd Edition offers a solid introduction to
writing VBA macros and programs, and will show you how to get more power at the
programming level: focusing on programming languages, the Visual Basic Editor,
handling code, and the Excel object model.

http://www.oreillynet.com/cs/catalog/view/au/254?x-t=book.view

Table of Content

Table Of CONIENL ... e e I
e =] = Lol SRR viii
Preface to the Second EditioN..........cccooiriiiininineseee s viii
The BOOK'S AUdIENCEcoiiiiieesteneee et X
Organization of ThiS BOOK..........ccoiiiiiiiie e X
The Book's Text and Sample COde.........ccoveriiiineriice e Xi
ADOUL the COOE.......oiiiieiee et Xi
Conventions iN thiS BOOKcccuiiiiiiiiiieseee et Xil
Obtaining the Sample Programs........ccccoeeereneenenesee e Xiii
HOW 10 CONTACT US ...t st Xiii
ACKNOWIEAGMENLS ...ttt b e ere e Xiii
Chapter 1. INtrOUCTIONcoiiieriiseeie et s ne s 1
1.1 Selecting Special CellSooeiiiiiieeeee e 1
1.2 Setting a Chart's Data Point Labels..........cccccovvveveeiencesiecsece e 2
1.3 Topics in Learning Excel Programmingcccoceveereneneenenieeseeseesee e 4
Part I: The VBA ENVIFONMENT ..ottt s 6
Chapter 2. PrelimiNari@s. seeeae e ste e s sneeaesneenaeas 7
2.1 What Is a Programming LanQUagE?.......ccceecuereereereeseereseesreensesessseesseseeses 7
2.2 Programming SEYIEcoiiiiiiiiiieieeeree et 8
Chapter 3. The Visual Basic Editor, Part ... 13
3.1 The ProjeCt WINAOWccoeeeiieiececsecie et ee et e et se e 13
3.2 The PropertieS WINAOWcceeiiiiiiieie et 17
3.3 The COdE WINUOWccueeiiiiiieeieeie ettt ee e 18
3.4 The Immediate WINAOW..........ccceiririirierene s 20
3.5 Arranging WINGOWScccueeeeieeiieseeseesiesee e eaesseesseeaesseessessssssesssesssssseesenns 21
Chapter 4. The Visual Basic Editor, Part Il ... 23
4.1 Navigating the IDE ... e 23
4.2 GettiNg HElP ..ot ne s 25
4.3 Creating @ PrOCERAUIEcoieeeee ettt ne s 25
4.4 Run Time, Design Time, and Break Modecccceveriiieninneenenieseeens 26
ST = 0] = TP 27
B G 1= 010 T T |1 o RSSO 30
A\ = Tod 0 1 SRS P RSP PTRRN 35
Part Il: The VBA Programming LANQUAGE.........ceoereererriereenieerie et see s see e ses 38
Chapter 5. Variables, Data Types, and CONStantsccccceveeeverieereereseeseennenns 39
5.1 COMMENTES....ceieiie ettt ettt e e sae e et e e s ae e e aneesaeesareesneennnas 39
5.2 LINE CONLINUALIONeiuiiitieieiie ettt sttt st ee e 39
5.3 CONSIANTS ..o 39
5.4 Variables and Data TYPES......cccccvieieeieriereee et esae e sse e e sae e ene s 42
5.5 VBA OPEIALOISeeiiueieieeieeeitee sttt ettt et te e s e e seesaeesbeesaeesneesseesnneesneesnnas 57
Chapter 6. Functions and SUBIOULINES ..o 59
(0 RO | T To TN U o 1o 1SS 59
6.2 Calling SUDIOULINES ..o e 60
6.3 Parameters and ArgUmENTS.........ccceiriererieniesee et 61
6.4 EXItING @ PrOCEAUIEcoiveeeeee ettt 65
6.5 Public and Private ProCEAUIEScceviierine e 65

6.6 ProjeCt REEIENCES......ccee ettt 65

Chapter 7. Built-in Functions and Statements.........ccoveveveenenieneeneece e 67
7.1 The MSGBOX FUNCHONc.coiiiiiieeeie et 68
7.2 The INPUtBOX FUNCLION.......cccooieieecece ettt 69
7.3 VBA StriNg FUNCHONSoivieece ettt st 70
7.4 Miscellaneous Functions and Statements.........ccoccveveeienieneere e 74
7.5 Handling Errors in COUEooiiieiiee ettt 77

Chapter 8. Control StatEMENLScccceeieiereere e 81
8.1 The If..Then StatemMeNnt ... 81
ST L= o] I T o SRR 81
L TRC I I U= o gl = Vo] 1 o Yo o S 83
LS A I U= To 1o o o S 84
8.5 The Select Case StatemeNnt.........cccooieieieereriesee e 85
8.6 A FINAl NOtE ON VBA ...t 86

Part Ill: Excel Applications and the Excel Object Model.........ccccccevvevvecnciecncnenne. 88

Chapter 9. ObJeCt MOAEIScoeieeeee e 89
9.1 Objects, Properties, and Methodscccoveriiieiinin s 89
(S I OTo] | [=Tox 10T 0 IO] o] =T ox £SO 90
9.3 Object Model HIerarChi€s.........ccccuceieeieieese et 92
RN ®] o][=Tod M1 [oT0 (=T IS} V]] €= VSRR 93
9.5 ODBJECt VArIADIESoeeeiieeeeee et e e 94

(@ gF=T o) (=1 g O =T(oT=T WY o] o] | [0F= 11 (0] o SRR 100
10.1 Providing Access to an Application's Features..........ccccceoovvereeieneennnns 100
10.2 Where to Store an APPlCALIONccooeeiiriiiieneeeee e 103
10.3 AN EXamMPIe AG-IN ..o 110

Chapter 11. EXCEI EVENLSocvoiceceee ettt 113
11.1 The EnableEVeNntS ProPerty ... 113
11.2 Events and the Excel Object Model ... 113
11.3 Accessing an EVent ProCeAUIEcvcveveeieveese e 113
11.4 WOrKSNEEet EVENLS ..ot 114
11.5 WOrKBOOK EVENTS.......ooiiiiieiieie ettt 115
11.6 Chart EVENTSooiiiieee sttt 116
AN o] o] [Tox= 11 o] o I AV =T o | USSP 116
11.8 QueryTable Refresh EVENtS ... 118

Chapter 12. Custom Menus and TOOIDArSccceviriieeiene e 119
12.1 Menus and Toolbars: AN OVEIVIEWc.coererererieeieeniesee e 119
12.2 The CommandBars COlECHONcoceeieeiirereeeeeee e 121
12.3 Creating a New Menu Bar or TOOIDArcccoveeieniinieieee e 123
12.4 Command-Bar CONIIOIS.........ccceriririierese e 124
12.5 Built-in Command-Bar-Control IDS.........c.ccoevireneriieieresese e 125
12.6 Example: Creating @ MENUcooeeiiiieiieie e 128
12.7 Example: Creating @ TooIDar ... 129
12.8 Example: Adding an Item to an EXisting Menu.........ccccceecevieevvecieseenens 131
12.9 Augmenting the SRXULilS AppliCationcccooeeviriinienene e 131

Chapter 13. Built-In Dialog BOXESccoieiieriiiiiirieeiie e 139
13.1 The SNOW Methodccoiiiiiiieee e 141

Chapter 14. Custom Dialog BOXEScccueveeieeiecieiie e seese e se e s sse e nneas 143
14.1 What Is a USerForm ODJECE? ... 143
14.2 Creating a USerForm ODJECT.......ccooouiiiiieiiee et 143
14.3 ACHVEX CONMIOIS ...t 144

14.4 AAdiNg USEIrFOrM COUE......cccviieciereeeeeceeste et ste et neeaesnee e 145

14.5 Excel's Standard CONtrolS........coeoieiiriienice e 146
14.6 Example: The ActivateSheet ULIlity ... 147
14.7 ActiveX Controls on WOrkSheetsccoverinininiiiiienee e 152
Chapter 15. The Excel Object Modelcccoveieiieie e 157
15.1 A Perspective on the Excel Object Model ... 157
15.2 EXCEI ENUMS ..ot s 159
15.3 The VBA ODJECt BIOWSETccceeieeeieeeieeteesieeiesieesieseesreesseseesseesseesesseessens 161
Chapter 16. The Application OBJECTcoceiiiiiirieie e 163
16.1 Properties and Methods of the Application Object..........cccoceveriineenen. 165
16.2 Children of the Application OBJeCtccccveeeveieeecer e 189
Chapter 17. The WorkbooK ODJECT.........ccovieieeeeceee e 194
17.1 The WOorkbooKsS CoOlleCHIONcoveeereeeeeee e 194
17.2 The WOrkbOOK ODJECT........coiiiiiiieieeeeee e 199
17.3 Children of the Workbook Object..........ccccveeieeieeeceese e 206
17.4 Example: Sorting Sheets in @ WorkbooK..........cccoovieeiiniininneeiieseeee 208
Chapter 18. The Worksheet ODJECE..........coceirenieiereeee e 211
18.1 Properties and Methods of the Worksheet Object..........cccccevveciveeennen. 211
18.2 Children of the Worksheet Object..........cccceovvieviece s 219
18.3 Protection in EXCEl XP ..o 222
18.4 Example: Printing SNEetS........ccooiiiinienie e 224
Chapter 19. The Range ODJECT........cccvieerieie et 229
19.1 The Range Object as a ColleCtioN.........cccceecereeieriinieneee e 230
19.2 Defining @ RanNge ODJECT ... 231
19.3 Additional Members of the Range ODbject........cccccevvivevierievierecce e 237
19.4 Children of the Range ObJECtcccccvveieeie e 266
19.5 Example: Getting the Used RaNQge........cccceeiieininiinieneee e 279
19.6 Example: Selecting Special CellSccoiriiiiiiniieeeeeeee e 280
Chapter 20. PiVOt TADIEScceoieeeceee e 291
20.1 PIVOL TADIES... .ottt 291
20.2 The PivotTable WIzard ... s 293
20.3 The PivotTableWizard Method............ccooveiinininieeeee e 296
20.4 The PivotTable ODJECT.......cc e 298
20.5 Properties and Methods of the PivotTable Objectcccococvviienenee. 303
20.6 Children of the PivotTable ODJecCt.........cccveieriinieneee e 317
20.7 The PIVOtFIield ODBJECTcce e 317
20.8 The PivotCache ODJECt ... s 333
20.9 The PivOtitem ODJECT ..ot 334
20.10 PivotCell and PivotltemList ObJECESccevvecereeii e 338
20.11 Calculated Items and Calculated Fields..........ccccoverinininencncneneenns 342
20.12 Example: Printing Pivot Tables ... 345
Chapter 21. The Chart ODJECE ..o 349
21.1 Chart Objects and ChartObject ODjJecCtSccceveveevevceerecce e 349
21.2 Creating @ Chartcoceoeee e e s 350
P2 G B O ¢ = L A 1Y = USSP 356
21.4 Children of the Chart ObJECTcccccevvececeeseeesere e 359
21.5 The AXES COlECTIONoviiiiieieiee e 360
21.6 The AXIS ODJECT ..cuviieiieieieee et et 363
21.7 The ChartArea ODJECT........ccu e 373
21.8 The ChartGroup ODJECT ... 374

21.9 The ChartTitle ODJECT........cco i 378

21.10 The DataTable ODJECE ... 378
21,11 The FIOOT OBJECT......iiiiieeie ettt e 379
Y220 0 220 I 1= =T =T 0 To @ o] [T o U 379
21.13 The PageSetup ODJECT ... e 381
21.14 The PIOtArea ODJECTccci e 381
21.15 The SerieS ODJECTc.coiiei et 382
21.16 Properties and Methods of the Chart Objectccccvcveveecvicecreceenee. 388
21.17 Example: Scrolling Through Chart TYPesccccceverivveeneniineereeeeee 392
21.18 Example: Printing Embedded Charts.........cccocoienininnenenieseeeeee 395
21.19 Example: Setting Data Series Labelsccccccevevvecnvceveecececre e 399
(O gF=T o1 (=] g2 S 1 1 = A 1= T £ SRS 407
22. 1 What Are SMArt TAGS?ccciieererieree st see sttt see s 407
22.2 SmartTagRecognizer ODJECT ..o 408
22.3 SMartTag ODJECT ..o 408
22.4 SmartTagACtion ODJECT ..o s 409
22.5 SMartTagOptioNS ODJECT.......ccoiiriieeieee e 410
o T B A] 0 1= o [(LS 411
Appendix A. The Shape ODJECT.......cccccviieiiie e 412
A.1 What Is the Shape ODJECt?......c.ooeieieeeee e 412

F A O] o [SRR R 412
A.3 Creating ShAPES......c.ccieiiieeieee e s ettt e sre e 413
A.4 Diagram, DiagramNode, and DiagramNodeChildren Objects............... 420
Appendix B. Getting the Installed Printersccooienieneeneneseeeeee e 423
Appendix C. Command Bar CONtrolS.........ccccveevieieniereee e 426
C.1 Built-in Command-Bar CONLIOIS.........ccooiiirinerenerieeeeeeese s 426
APPENAIX D. FACE IDS.....oiieiiieeiesieeieee ettt 444
Appendix E. Programming Excelfrom Another Application............ccccceeerennee. 450
E.1 Setting a Reference to the Excel Object Modelcccoveeevieveeiieceenen. 450
E.2 Getting a Reference to the Excel Application Object..........ccccerivreenen. 450
Appendix F. High-Level and Low-Level Languages........cccocceverveneriereeniennne 454
FLL BASIC ... bbbt bbb 455
F.2 VISUAI BASIC ..ottt sttt sttt 456
G T G- 1o O USRI 457
FL4 ViISUAI CA oottt e re s 458
F.B5 PASCAL...cuiiiiiciee e 459
F.B FORTRAN ..ottt sttt ste e sreeneeneenennens 460
1@] =T | PSS 460
FLB LISP . bbb b 461
Appendix G. New ODbjJects iN EXCElI XP ...ccociieeiieeceeece e 463
AlOWEdItRANGE ODJECTcceeeiececeee ettt 463
AULORECOVEN ODJECL.....cueiieeiiiiesieeie sttt e e ae e 463
CalculatedMember ODJECLccoieereeeere e ee e 464
CellFOrmMat ODJECL.......ceeieeieieie e e sre s 464
CUStOMPrOperty ODJECL........ccceieeice e 465
Diagram, DiagramNode and DiagramNodeChildren Objects...........c.ccoeeeivrennnen. 465
[T 0 o] = o USSP 466
ErrorCheckingOptionS OBJECEccoiiriiiieieie e 468
(=10 0T ol @ o] =t S 468
IRTDServer and IRTDUpdateEvent ODJeCtS..........ccoovreeieniinieeseseee e 469

ProteCtion ODJECLcceeiiieeeeee et re e reenre s 470
DO oL v SO 470
SmartTag Related ODJECESccveiieeeceee e 471
SPEECN ODJECT ...ttt b e e 471
SPelliNQOPLIONS ODJECTeecieiecee et enas 473
LI <] o = o SRS 473
(U150 (0 o)1= oi 151 @ o] 1= ox AR 473
UserAccessList andUSErACCESS ODJECES.......ccoueiueerieririierie e 474
LAY (0 a1 o= PSS 474
(@10] (o] 0] [o 1RSSR 476

Vi

Copyright © 2002, 1999 O'Reilly & Associates, Inc. All rights reserved.
Originally published under the title Writing Excel Macros.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Rellly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are a so available for most titles (http://safari.oreilly.com). For more information
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks
of O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellersto
distinguish their products are claimed as trademarks. Where those designations appear in this book,
and O'Reilly & Associates, Inc. was aware of atrademark claim, the designations have been
printed in caps or initia caps. The association between the image of ablue jay and the topic of
Excel macrosis atrademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and the author
assume no responsihility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Vii

http://safari.oreilly.com/
mailto:corporate@oreilly.com

Preface

As the title suggests, this book is for those who want to learn how to program Microsoft Excel
Version 8 (for Office 97) and Version 9 (for Office 2000).

We should begin by addressing the question, "Why would anyone want to program Microsoft
Excel?" The answer is simple: to get more power out of this formidable application. As you will
see, there are many things that you can do at the programming level that you cannot do at the user-
interface level—that is, with the menus and dialog boxes of Excel. Chapter 1 provides some
concrete examples of this.

This book provides an introduction to programming the Excel object model using Visual Basic for
Applications (VBA). However, it is not intended to be an encyclopedia of Excel programming.
The goal here isto acquaint you with the main points of Excel programming—enough so that you
can continue your education (as we al do) on your own. The godl is that after reading this book
you should not need to rely on any source other than the Excel VBA Help file or agood Excel
VBA reference book and a nice object browser (such as my Enhanced Object Browser, a coupon
for which isincluded in the back of this book).

It has been my experience that introductory programming books (and, sadly, most trade computer
books) tend to do agreat deal of handholding. They cover concepts at a very slow pace by
padding them heavily with overblown examples and irrelevant anecdotes that only the author
could conceivably find amusing, making it difficult to ferret out the facts. Frankly, | find such
unprofessionalism incredibly infuriating. In my opinion, it does the reader a great disserviceto
take perhaps 400 pages of information and pad it with another 600 pages of junk.

There is no doubt in my mind that we need more professionalism from our authors, but it is not
easy to find writers who have both the knowledge to write about a subject and the training (or
talent) to do so in a pedagogical manner. (1 should hasten to add that there are a number of
excellent authors in this area—it's just that there are not nearly enough of them.) Moreover,
publishers tend to encourage the creation of 1000-plus page tomes because of the general feeling
among the publishers that a book must be physically wide enough to stand out on the bookshelf! |
shudder to think that this might, in fact, be true. (I am happy to say that O'Reilly has not
succumbed to this opinion.)

By contrast, Writing Excel Macroswith VBA is not a book in which you will find much
handholding (nor will you find much handholding in any of my books). The book proceeds at a
relatively rapid pace from a general introduction to programming through an examination of the
Visual Basic for Applications programming language to an overview of the Excel object model.
Given the enormity of the subject, not everything is covered, nor should it be. Nevertheless, the
essentials of both the VBA language and the Excel object model are covered so that, when you
have finished the book, you will know enough about Excel VBA to begin creating effective
working programs.

| have tried to put my experience as a professor (about 20 years) and my experience writing books
(about 30 of them) to work here to create atrue learning tool for my readers. Hopefully, thisisa
book that can be read, perhaps more than once, and can aso serve as a useful reference.

Preface to the Second Edition

viii

With the recent release of Excel 10 (also called Excel XP), it was necessary to update my book.
Excel XP ismostly an evolutionary step forward from Excel 2000, but does have some interesting
new features worth specia attention, such as support for text-to-speed and smart tags.

The Excel object model has 37 new objects, containing 266 new members. There are also 180 new
members of preexisting objects. In this book, | cover most of the central objects. Figure P-1 shows
most of the new objectsin the Excel XP object hierarchy and where these objects occur in the
Excel XP object model. (Thisfigureis taken from my program Object Model Browser. For more
information on this program, please visit my web site at http://www.romanpress.com.)

Figure P-1. New objects in the Excel XP object hierarchy

- 70 Application

To
o
- 7o Chan
— 7L Shapes
= 70 Shepe
- To
= TH
o
-
g
70
o
-7l Range
e |
7o
=70
u
- 70 FwotTable
-7
To
= TEl
=}--30
7
T Fenge
-7
To
To
-7
7o
T
T
T
——
To
— 7T Warkhook
To
= 7 wWarksheests
= 7o Workshaet
ey S |
o
--7o
ST
=70
7L Range
-y
70
U
=]

http://www.romanpress.com/

The Book's Audience

As an introduction to programming in Excel VBA, the book is primarily addressed to two groups
of readers:

e Excel userswho are not programmers but who would like to be. If you fal into this
category, it is probably because you have begun to appreciate the power of Excel and
want to take advantage of its more advanced features or just accomplish certain tasks
more easily.

e Exce userswho are programmers (in virtually any language—Visual Basic, Visua Basic
for Applications, BASIC, C, C++, and so on) but who are not familiar with the Excel
object model. In this case, you can use Writing Excel Macros to brush up on some of the
details of the VBA language and learn about the Excel object model and how to program
it.

Organization of This Book

Wkiting Excel Macros consists of 21 chapters that can informally be divided into four parts
(excluding the introductory chapter). In addition, there are five appendixes.

Chapter 1 examines why you might want to learn programming and provides a few examples of
the kinds of problems that can best be solved through programming. Chapter 2 introduces
programming and the Visual Basic for Applications language.

Chapter 2 through Chapter 4 form the first part of the book. Chapter 3 and Chapter 4 examine the
Visual Basic Integrated Development Environment (IDE), which is the programming environment
used to develop Excel VBA applications.

The second part of the book consists of Chapter 5 through Chapter 8, which form an introduction
to the VBA language, the language component that is common to Microsoft Visual Basic and to
many of Microsoft's major applications, including Word, Excel, PowerPoint, and Access, as well
as to software from some other publishers. Individual chapters survey VBA's variables, data types,
and constants (Chapter 5), functions and subroutines (Chapter 6), intrinsic functions and
statements (Chapter 7), and control statements (Chapter 8).

Thethird part of the book is devoted to some general topics that are needed to create usable
examples of Excel applications and to the Excel object model itself. We begin with a discussion of
object modelsin general (Chapter 9). The succeeding chapters discuss what constitutes an Excel
application (Chapter 10), Excel events (Chapter 11), Excel menus and toolbars (Chapter 12), and
Excel dialog boxes, both built-in and custom (Chapter 13 and Chapter 14). (Those who have read
my book Learning Word Programming might notice that these topics came at the end of that book.
While | would have preferred this organization here as well, | could not construct meaningful

Excel examples without covering this material before discussing the Excel object model.)

The last chapters of the book are devoted to the Excel object model itself. This model determines
which elements of Excel (workbooks, worksheets, charts, cells, and so on) are accessible through
code and how they can be controlled programmatically. Chapter 15 gives an overview of the Excel
object model. Subsequent chapters are devoted to taking a closer look at some of the main objects
in the Excel object model, such as the Application object (Chapter 16), which represents the Excel
application itself; the Workbook object (Chapter 17), which represents an Excel workbook; the

Worksheet object (Chapter 18), which represents an Excel worksheet; the Range object (Chapter
19), which represent a collection of cellsin aworkbook; the PivotTable object (Chapter 20); and
the Chart object (Chapter 21). Chapter 22 covers Smart Tags. | have tried to include useful
examples at the end of most of these chapters.

The appendixes provide a diverse collection of supplementary material, including a discussion of
the Shape object, which can be used to add some interesting artwork to Excel sheets, determining
what printers are available on a user's system (this is not quite as easy as you might think), and
how to program Excel from other applications (such as Word, Access, or PowerPoint). Thereis
also an appendix containing avery brief overview of programming languages that is designed to
give you a perspective on where VBA fitsinto the great scheme of things.

The Book's Text and Sample Code

When reading this book, you will encounter many small programming examples to illustrate the
concepts. | prefer to use small coding examples, hopefully, just afew lines, to illustrate a point.

Personally, | seem to learn much more quickly and easily by tinkering with and tracing through
short program segments than by studying along, detailed example. The difficulty in tinkering with
along program is that changing afew lines can affect other portions of the code, to the point
where the program will no longer run. Then you have to waste time trying to figure out why it
won't run.

| encourage you to follow aong with the code examples by typing them in yourself. (Nevertheless,
if you'd rather save yourself the typing, sample programs are available online; see Section P.7 later
in this Preface.) Also, | encourage you to experiment -- it is definitely the best way to learn.
However, to protect yourself, | strongly suggest that you use a throw-away workbook for your
experimenting.

One fina comment about the sample code is worth making, particularly since this book and its
coding examples are intended to teach you how to write VBA programs for Microsoft Excel.
Generally speaking, there is somewhat of a horse-before-the-cart problem in trying to write about

a complicated object model, since it is amost impossible to give examples of one object and its
properties and methods without referring to other objects that may not yet have been discussed.
Frankly, | don't see any way to avoid this problem completely, so rather than try to rearrange the
material in an unnatural way, it seems better to simply proceed in an orderly fashion. Occasionally,
we will need to refer to objects that we have not yet discussed, but this should not cause any
serious problems, since most of these forward references are fairly obvious.

About the Code

The code in this book has been carefully tested by at least three individuals—myself, my editor
Ron Petrusha, and the technical reviewer, Matt Childs. Indeed, | have tested the code on more than
one machine (with different operating systems) and at more than one time (at least during the
writing of the book and during the final preparation for book production).

Unfortunately, all three of us have run into some deviations from expected behavior (that is, the
code doesn't seem to work as advertised, or work at al) as well as some inconsistencies in code

behavior (that is, it works differently on different systems or at different times). Indeed, there have
been occasions when one of us did not get the same results as the others with the same code and
the same data. Moreover, | have personally had trouble on occasion duplicating my own results
after asignificant span of time!

| suppose that this shouldn't be entirely surprising considering the complexity of a program like
Excel and the falibility of us all, but the number of such peccadilloes has prompted me to add this
caveat.

Offhand, | can think of two reasons for this behavior—whether it be real or just apparent—neither
of which is by any means an excuse:

e The state of documentation being what it is, there may be additional unmentioned
requirements or restrictions for some code to work properly, or even at all. As an example,
nowhere in the vast documentation—at least that | could find—does it say that we cannot
use the HasAxis method to put an axis on a chart before we have set the location of the
datafor that axis! (This seemsto me to be putting the cart before the horse, but that is not
theissue.) If wetry to do so, the resulting error message simply says "Method 'HasAxis
of object'_Chart' has failed." Thisis not much help in pinpointing the problem. Of course,
without being privy to thiskind of information from the source, we must resort to
experimentation and guesswork. If this does not reveal the situation, it will appear that
the code simply does not work.

e Computers are not static. Whenever we install a new application, whether it be related to
Excel or not, thereis achance that aDLL or other system file will be replaced by a newer
file. Sadly, newer files are not always better. This could be the cause, but certainly not the
excuse, for inconsistent behavior over time.

Thereason that | am bringing this up isto let you know that you may run into some
inconsistencies or deviations from expected behavior aswell. | have tried to point out some of
these problems when they occur, but you may encounter others. Of course, one of our biggest
challenges (yours and mine) isto determine whether it is we who are making the mistake and not
the program. | will hasten to add that when | encounter a problem with code behavior, | am
usually (but not always) the one who is at fault. In fact, sometimes | must remind myself of my
students, who constantly say to me, "There is an error in the answersin the back of the textbook."
| have learned over 20 years of teaching that 99% of the time (but not 100% of the time), the error
is not in the book! Would that the software industry had this good a record!

I hope you enjoy this book. Please feel free to check out my web site at
http://www.romanpress.com.

Conventions in this Book

Throughout this book, we have used the following typographic conventions:

Constant width

indicates a language construct such as a language statement, a constant, or an expression.
Lines of code aso appear in constant width, as do functions and method prototypes.

Italic

Xii

http://www.romanpress.com/

represents intrinsic and application-defined functions, the names of system elements such
as directories and files, and Internet resources such as web documents and email
addresses. New terms are also italicized when they are first introduced.

Constant width italic

in prototypes or command syntax indicates replaceable parameter names, and in body text
indicates variable and parameter names.

Obtaining the Sample Programs

The sample programs presented in the book are available online from the Internet and can be
freely downloaded from our web site at http://www.oreilly.com/catal og/exImacro?.

How to Contact Us

We have tested and verified all the information in this book to the best of our ability, but you may
find that features have changed (or even that we have made mistakes!). Please let us know about
any errors you find, as well as your suggestions for future editions, by writing to:

ORellly & Associates

1005 Gravenstein Highway North
Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is aweb page for this book, where we list any errata, examples, and additional information.
Y ou can access this page at:

http://www.oreilly.com/catal og/exl macro2

To ask technical questions or comment on the book, send email to:

bookguestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the O'Rellly
Network, see our web site at:

http://www.oreilly.com

Acknowledgments

Xiii

http://www.oreilly.com/catalog/exlmacro2
http://www.oreilly.com/catalog/exlmacro2
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

| would like to express my sincerest thanks to Ron Petrusha, my editor at O'Reilly. Aswith my
other books, Ron has been of considerable help. He is one of the best editors that | have worked

with over the last 17 years of book writing.

Also, | would like to thank Matt Childs for doing an all-important technical review of the book.

Xiv

Chapter 1. Introduction

Microsoft Excel is an application of enormous power and flexibility. But despite its powerful
feature set, there isa great deal that Excel either does not alow you to do or does not alow you to
do easily through its user interface. In these cases, we must turn to Excel programming.

Let me give you two examples that have come up in my consulting practice.

1.1 Selecting Special Cells

The Excel user interface does not have a built-in method for selecting worksheet cells based on
various criteria. For instance, there is no way to select all cells whose value is between 0 and 100
or al cellsthat contain adate later than January 1, 1998. Thereis also no way to select only those
cellsin agiven column that are different from their immediate predecessors. This can be very
useful when you have a sorted column and want to extract a set of unique values, as shown in

Figure 1-1.

Figure 1-1. Selecting unique values

12 [Derver |
12 Dernver

14 Derver
15 Dernver

17 Los Angales
REY o vork
19 Mew rork
200 Mews York
21 Mew York
22 |\ Mew Yoarl

23 |

24 Portland

26 | Seattle

| have been asked many times by clients if Excel provides away to make such selections. After a
few such questions, | decided to write an Excel utility for this purpose. The dialog for this utility is
shown in Figure 1-2. With this utility, the user can select a match type (such as number, date, or
text) and amatch criterion. If required, the user supplies one or two values for the match. This has
proven to be an extremely useful utility.

Figure 1-2. The Select Special utility

t Spacial

Match Cell Tvpe Match Criteria
Hurrier Egusle
Date Mot egual 1o
Text Greater than
All cells (a5 t2ut) Greater than or egual 1
Lass than
Less than or equal o
Beatween
r Mot Behween
I Wildeard pattern match
If different
M If same
Yallie

Search Range: A1:GE

riginal | Select | Close

Undol | Complete Bows | Complete Columns

In this book, we will develop asimpler version of this utility, whose dialog is shown in Figure 1-3.
This book will aso supply you with the necessary knowledge to enhance this utility to something
similar to the utility shown in Figure 1-2.

Figure 1-3. Select Special dialog

Complete Pows | Complete Columns

Lindo [Select | Close

1.2 Setting a Chart's Data Point Labels

Asyou may know, data labels can be edited individually by clicking twice (pausing in between
clicks) on adatalabel. This places the label in edit mode, as shown in Figure 1-4. Once in edit
mode, we can change the text of a datalabel (which breaks any links) or set anew link to a
worksheet cell. Accomplishing the same thing programmatically is also very easy. For instance,
the code:

ActiveChart.SeriesCollection(l).DataLabels(2).Text =
""=MyChartSheet!R12C2"

sets the data label for the second data point to the value of cell B12. Note that the formula must be
in R1C1 notation. (We will explain the code in Chapter 21, so don't worry about the details now.)

Figure 1-4. A data label in edit mode

35
3
3
25
=dit this labal
2
15
1
1
05
la]
1 2 3

Unfortunately, however, Excel does not provide a simple way to link all of the data labels for a
data series with aworksheet range, beyond doing this one data label at atime. In Chapter 21, we
will create such a utility, the dialog for which is shown in Figure 1-5. This dialog provides alist of
all the data series for the selected chart. The user can select a data series and then define arange to
which the data labels will be linked or from which the values will be copied. If the cell values are
copied, no link is established, and so changes made to the range are not reflected in the chart.
There is also an option to control whether formatting is linked or copied.

Figure 1-5. Set Data Labels dialog

et Data Labels

Choose a Series:

Soeries])
Secondseries

Choose a Bange for the Labels

| =]

Chooss ane
i~ Link ® Copy
ot Labels
[~ Copy Eormatting Cancel

| hope that these illustrations have convinced you that Excel programming can at times be very
useful. Of course, you can do much more mundane things with Excel programs, such as
automating the printing of charts, sorting worksheets al phabetically, and so on.

1.3 Topics in Learning Excel Programming

In general, the education of an Excel programmer breaks down into afew main categories, as
follows.

The Visual Basic Editor

First, you need to learn a bit about the environment in which Excel programming is done.
Thisisthe so-called Visual Basic Editor or Excel VBA Integrated Devel opment
Environment (IDE for short). We take care of thisin Chapter 3 and Chapter 4.

The Basics of Programming in VBA

Next, you need to learn a bit about the basics of the programming language that Excel
uses. Thislanguageis called Visual Basic for Applications (VBA). Actualy, VBA isused
not only by Microsoft Excel, but also by the other major components in the Microsoft
Office application suite: Access, Word, and PowerPoint. Any application that uses VBA
inthisway is called a host application for VBA. (There are also a number of non-
Microsoft products that use VBA as their underlying programming language. Among the
most notableis Visio, avector-based drawing program.) It is also used by the standalone
programming environment called Visual Basic (VB).

We will discuss the basics of the VBA programming language in Chapter 5 through
Chapter 8.

Object Models and the Excel Object Model

Each VBA host application (Word, Access, Excel, PowerPoint, Visual Basic)
supplements the basic VBA language by providing an object model to deal with the
objects that are particular to that application.

For instance, Excel VBA includes the Excel object model, which deals with such objects
as workbooks, worksheets, cells, rows, columns, ranges, charts, pivot tables, and so on.
On the other hand, the Word object model deals with such objects as documents,
templates, paragraphs, fonts, headers, tables, and so on. Access VBA includes two object
models, the Access object model and the DAO object model, that allow the programmer to
deal with such objects as database tables, queries, forms, and reports. (To learn more
about the Word, Access, and DAO object models, see my books Learning Word
Programming and Access Database Design and Programming, also published by
O'Reilly.)

Thus, an Excel programmer must be familiar with the general notion of an object model
and with the Excel object model in particular. We discuss object modelsin general in
Chapter 9, and our discussion of the Excel object model takes up most of the remainder of
the book.

Incidentally, the Excel object model is quite extensive—a close second to the Word object model
in size and complexity, with almost 200 different objects.

Lest you be too discouraged by the size of the Excel object model, | should point out that you only
need to be familiar with a handful of objects to program meaningfully in Excel VBA. Infact, as
we will see, the vast mgjority of the "action" isrelated to just seven objects: Application, Range,
WorksheetFunction, Workbook, Worksheet, PivotTable, and Chart.

To help you get an overall two-dimensional picture of the Excel object model, as well as detailed
local views, | have written special object browser software. (The object browser comes with over
a dozen other object models as well.) For more information, please visit
http://www.romanpress.com.

Whether you are interested in Excel programming to be more efficient in your own work or to
make money writing Excel programs for othersto use, | think you will enjoy the increased sense
of power that you get by knowing how to manipulate Excel at the programming level. And
because Excel programming involves accessing the Excel object model by using the Visual Basic
for Applications programming language—the same programming language used in Microsoft
Word, Access, and PowerPoint—after reading this book, you will be half-way to being a Word,
Access, and PowerPoint programmer as well!

http://www.romanpress.com/

Part I: The VBA Environment

Chapter 2
Chapter 3

Chapter 4

Chapter 2. Preliminaries

We begin with some general facts related to programming and programming languages that will
help to give the main subject matter of this book some perspective. After al, VBA isjust one of
many programming languages, and anyone who wants to be aVVBA programmer should have
some perspective on where VBA fitsinto the greater scheme of things. Rest assured, however, that
we will not dwell on side issues. The purpose of this chapter isto give avery brief overview of
programming and programming languages that will be of interest to readers who have not had any
programming experience, as well as to those who have.

2.1 What Is a Programming Language?

Simply put, a programming language is a very specia and very restricted language that is
understood by the computer at some level. We can roughly divide programming languages into
three groups, based on the purpose of the language:

e Languages designed to manipulate the computer at alow level, that is, to manipulate the
operating system (Windows or DOS) or even the hardware itself, are called low-level
languages. An example is assembly language.

e Languages designed to create standal one applications, such as Microsoft Excel, are high-
level languages. Examples are BASIC, COBOL., FORTRAN, Pascal, C, C++, and Visud
Basic.

e Languagesthat are designed to manipulate an application program, such as Microsoft
Excel, are application-level languages. Examples are Excel VBA, Word VBA, and
PowerPoint VBA.

Those terms are not set in concrete and may be used differently by others. However, no one would
disagree that some languages are intended to be used at alower level than others.

The computer world is full of programming languages—hundreds of them. In some cases,
languages are devel oped for specific computers. In other cases, languages are developed for
specific types of applications. Table 2-1 gives some examples of programming languages and their
general purposes.

Table 2-1. Some Programming Languages

Language General Purpose

ALGOL An attempt to design a universal language

BASIC A simple, easy-to-learn language designed for beginners

\C, C++ \A very powerful languages with excellent speed and control over the computer

COBOL A language for business programming

FORTRAN |A language for scientific programming and number crunching

Lisp A language for list processing (used in artificial intelligence)
Pascal A language to teach students how to program "correctly"

'SIMULA |A language for simulating (or modeling) physical phenomena

'Smalltalk |A language for object-oriented programming

Visual Basic |A version of BASIC designed for creating Windows applications

Visual C++ |A version of C++ designed for creating Windows applications

Programming languages vary quite a bit in their syntax. Some languages are much easier to read
than others (as are spoken languages). As avery simple example, Table 2-2 shows some ways that
different programming languages assign a value (in this case, 5) to avariable named X. Notice the
variation even in this simple task.

Table 2-2. Assignment in Various Languages

Language Assignment Statement

APL X <=5

BASIC LET X =5 0r X =5
BETA 5 > X

C, C++ X = 5;

COBOL MOVE 5 TO X
FORTRAN X =5

J X =. 5

LisP ((SETQ X 5)

Pascal X =5

Visual Basic X =5

If you're interested in how Visual Basic compares with some of the other major programming
languages, Appendix F contains a short description of several languages, along with some
programming exampl es.

2.2 Programming Style

The issue of what constitutes good programming style is, of course, subjective, just asisthe issue
of what constitutes good writing style. Probably the best way to learn good programming styleis
to learn by example and to always keep the issue somewhere in the front of your mind while
programming.

Thisis not the place to enter into a detailed discussion of programming style. However, in my
opinion, the two most important maxims for good programming are:

e When in doubt, favor readability over cleverness or elegance.
e Fill your programs with lots of meaningful comments.

2.2.1 Comments

Let ustake the second point first. It is not possible to overestimate the importance of adding
meaningful comments to your programs—at least any program with more than afew lines.

The problem isthis: good programs are generally used many times during a reasonably long
lifetime, which may be measured in months or even years. Inevitably, a programmer will want to
return to his or her code to make changes (such as adding additional features) or to fix bugs.
However, despite all efforts, programming languages are not as easy to read as spoken languages.
It isjust inevitable that a programmer will not understand (or perhaps not even recognize!) code
that was written several months or years earlier, and must rely on carefully written comments to
help reacquaint himself with the code. (This has happened to me more times that | would careto
recall.)

Let me emphasize that commenting code is almost as much of an art as writing the code itself. |
have often seen comments similar to the following:

" Set x equal to 5
X =5

This comment is pretty useless, since the actual code is self-explanatory. It simply wastes time and
space. (In ateaching tool, such as this book, you may find some comments that would otherwise
be l€eft out of a professionally written program.)

A good test of the quality of your commentsisto read just the comments (not the code) to seeif
you get agood sense not only of what the program is designed to do, but also of the steps that are
used to accomplish the program's goal. For example, here are the comments from a short BASIC

program that appears in Appendix F:

BASIC program to compute the average
of a set of at most 100 numbers

Ask for the number of numbers

IT Num is between 1 and 100 then proceed
" Loop to collect the numbers to average
" Ask for next number
" Add the number to the running sum
" Compute the average
" Display the average

2.2.2 Readability

Readability is also a subjective matter. What is readable to one person may not be readable to
another. In fact, it is probably fair to say that what is readable to the author of a program islikely
to be less readabl e to everyone el sg, at |east to some degree. It is wise to keep thisin mind when
you start programming (that is, assuming you want others to be able to read your programs).

One of the greatest offenders to code readability is the infamous GOTO statement, of which many
languages (including VBA) have some variety or other. It is not my intention to dwell upon the
GOTO statement, but it will help illustrate the issue of good programming style.

The GOTO statement is very simple—it just redirects program execution to another location. For
instance, the following BASIC code asks the user for a positive number. If the user entersa
nonpositive number, the GOTO portion of the code redirects execution to the first line of the
program (the label TryAgain). This causes the entire program to be executed again. In short, the
program will repeat until the user enters a positive number:

TryAgain:
INPUT "Enter a positive number: ", X
IF x <= 0 THEN GOTO TryAgain

While the previous example may not be good programming style, it is at least readable. However,
the following code is much more difficult to read:

TryAgain:

INPUT "Enter a number between 1 and 100: ', X
IF x > 100 THEN GOTO ToolLarge

IF X <= 0 THEN GOTO TooSmall

PRINT "Your number is: ', X

GOTO Done

ToolLarge:

PRINT "Your number is too large"
GOTO TryAgain

TooSmall:

PRINT *"Your number is too small”
GOTO TryAgain

Done:

END

Because we need to jump around in the program in order to follow the possible flows of execution,
this type of programming is sometimes referred to as spaghetti code. Imagine this style of
programming in a program that was thousands of lineslong! The following version is much more
readable, although it is still not the best possible style:

TryAgain:

INPUT "Enter a number between 1 and 100: ", X

IF x > 100 THEN
PRINT *"Your number is too large"
GOTO TryAgain

ELSEIF x <= 0 THEN
PRINT *"Your number is too small”
GOTO TryAgain

END IF

PRINT *"Your number is: ", X

END

The following code does the same job, but avoids the use of the GOTO statement altogether, and
would no doubt be considered better programming style by most programmers:;

DO
INPUT "Enter a number between 1 and 100: ', X
IF x > 100 THEN
PRINT "Your number is too large"
ELSEIF x <= 0 THEN
PRINT "Your number is too small™
END 1F
LOOP UNTIL x >= 1 AND x <= 100
PRINT "Your number is: ", X
END

Readability can also suffer at the hands of programmers who like to think that their codeis
especially clever or elegant but, in reality, just turns out to be hard to read and error-prone. Thisis
especially easy to do when programming in the C language. For instance, asavery simple
example, consider the following three linesin C:

X + 1;
X + i;
i

m X X
I

Thefirst lineadds 1 to x , the second lineadds i to x , and thethird line subtracts 1 from i. This
code is certainly readable (if not terribly meaningful). However, it can also be written as:

X = ++x+i--;

This may be some programmer's idea of clever programming, but to meit isjust obnoxious. This
iswhy a sagacious programmer always favors readability over cleverness or elegance.

10

2.2.3 Modularity

Anocther mgjor issue that relates to readability is that of modular programming. In the early days
of PC programming (in BASIC), most programs were written as a single code unit, sometimes
with many hundreds or even thousands of lines of code. It is not easy to follow such aprogram,
especially six months after it was written. Also, these programs tended to contain the same code
segments over and over, which is awaste of time and space.

The following BASIC example will illustrate the point. Line numbers have been added for
reference. (Don't worry too much about following each line of code. Y ou can still follow the
discussion in any case.)

10 " Program to reverse the letters in your name

20 " Do first name

30 INPUT "Enter your first name: ", name$
40 reverse$ = "

50 FOR i = LEN(name$) TO 1 STEP -1

60 reverse$ = reverse$ + MID$(name$, i, 1)
70 NEXT i
80 PRINT "First name reversed: " + reverse$

90 " Do middle name

100 INPUT "Enter your middle name: ", name$
110 reverse$ = "

120 FOR i = LEN(name$) TO 1 STEP -1

130 reverse$ = reverse$ + MID$(name$, i, 1)
140 NEXT i
150 PRINT "Middle name reversed: " + reverse$

160 " Do last name

170 INPUT "Enter your last name: ', name$
180 reverse$ = "

190 FOR i1 = LEN(name$) TO 1 STEP -1

200 reverse$ = reverse$ + MID$(name$, i, 1)
210 NEXT i
220 PRINT "Last name reversed: " + reverse$

Now, observe that lines 40-70, 110-140, and 180-210 (in bold) are identical. Thisis awaste of
space. A better approach would be to separate the code that does the reversing of a string name
into a separate code module and call upon that module thrice, asin the following example:

" Program to reverse your name

DECLARE FUNCTION Reverse$ (name$)

" Do First name

INPUT "Enter your first name: ', name$

PRINT "First name reversed: " + Reverse$(name$)
* Do middle name

INPUT "Enter your middle name: "', name$

PRINT ""Middle name reversed: " + Reverse$(name$)
" Do last name

INPUT "Enter your last name: ", name$
PRINT "Last name reversed: " + Reverse$(name$)

The separate code module to reverse astring is:

11

" Reverses a string
FUNCTION Reverse$ (aname$)
Temp$ = "
FOR i = LEN(aname$) TO 1 STEP -1
Temp$ = Temp$ + MID$S(aname$, i, 1)
NEXT i
Reverse$ = Temp$

END FUNCTION

Of course, the saving in spaceis not great in this example, but you can imagine what would
happen if we replace the reversing procedure by one that requires several hundred lines of code
and if we want to perform this procedure a few hundred times in the main program. This
modularization could save thousands of lines of code.

There is another very important advantage to modular programming. If we decide to write another
program that requires reversing some strings, we can simply add our string-reversing code module
to the new program, without having to write any new code. Indeed, professional programmers
often compile custom code libraries containing useful code modules that can be slipped into new
applications when necessary.

It is hard to overestimate the importance of modular programming. Fortunately, as we will see,
VBA makesit easy to create modular programs.

Generally speaking, there are two main groups of code modules: functions and subroutines. The
difference between them is that functions return a value whereas subroutines do not. (Of course,
we may choose not to use the value returned from afunction.) For instance, the Reverse function
described in the previous example returns the reversed string. On the other hand, the following
code module performs a service but does not return a value—it simply pauses a certain number of
seconds (given by sec):

SUB delay (sec)
" Get the current time
StartTime = TIMER
" Enter a do-nothing loop for sec seconds
DO
LOOP UNTIL TIMER - StartTime > sec
END SUB

Functions and subroutines are extremely common in modern coding. Together, they are referred to
as procedures.

12

Chapter 3. The Visual Basic Editor, Part |

Thefirst step in becoming an Excel VBA programmer is to become familiar with the environment
in which Excel VBA programming is done. Each of the main Office applications has a
programming environment referred to asits Integrated Devel opment Environment (IDE).
Microsoft aso refers to this programming environment as the Visual Basic Editor.

Our plan in this chapter and Chapter 4 is to describe the major components of the Excel IDE. We
realize that you are probably anxious to get to some actual programming, but it is necessary to
gain some familiarity with the IDE before you can use it. Nevertheless, you may want to read
quickly through this chapter and the next and then refer back to them as needed.

In Office 97, the Word, Excel, and PowerPoint IDEs have the same appearance, shown in Figure
3-1. (Beginning with Office 2000, Microsoft Access aso usesthisIDE.) To start the Excel IDE,
simply choose Visual Basic Editor from the Macros submenu of the Tools menu, or hit Alt-F11.

Figure 3-1. The Excel VBA IDE

ol Pl B e et Porat (ebug fun Tooh Wrdow Ha ol x|
Baa-e Cowon wi | M EW T @] ns o
rimal- bl [1Gararan =] [PilmChamCarasilag Exes 1 =]
| [m =
. =1 & [= =
] Thisiorizznck = fublic dub PeintChacsContrallist E=eel L)
Farrve [- -
A Modhikes
Jrop— - J Oin charControl As CornandBarContool
+ rradPurd i Dim i R= Inbeger
Jr—— 1 lngRowdndax ks Lo
i oLt ThesaiForonal Dim engHeadings ka §
o modSubroating Iim ateCEarName An
kil in atebefault Aa %
—I """ Leboomp
3 Ik —HOLRS im stCTitle 15
[t ke Din stcType AS]
- h!||:.uanm=|| strTitle = "Bxcelinnoy Compsnd Bsr Oombrol Lister
o1 IO stebefault = "3tandacd”
STEREORET = "Plaaas enter the nape of the command Dae " &
Py Tpe Antecested in:? - J
SLCCEAEMAme = INpuLBoE (StcPoompt, SLETitle, atcpefaglt
-
ol E L S '
-
il | ¥

Let ustake alook at some of the components of this IDE.

3.1 The Project Window

The window in the upper-l€eft corner of the client area (below the toolbar) is called the Project
Explorer. Figure 3-2 shows a close-up of thiswindow.

Figure 3-2. The Project Explorer

13

ElEE O

- B SRXUtils (SRXUtils.xls)
- 4 Microsoft Excel Objects
& Sheetl (DataShest)
B8] ThisWuarkbaak
' Foris
EE digactivateShaat
[H dighatalabels
EE digSelectSpecial
[H digSelectSpeciaFull
8 digShowInfo
s MWiodules
sy basDatalabels
#% basMain
2 basMerus
< hassortshests
s Modulel
v Class Modules
&% Classl
- B vBAProject (Book2)
= 4 Microsoft Excel Objects
) Chartl (Chartl)
B Sheetl (Sheetl)
@ Thisvorkbook

Note that the Project Explorer has a treelike structure, similar to the Windows Explorer's folders
pane (the left-hand pane). Each entry in the Project Explorer is called anode. The top nodes, of
which there are two in Figure 3-2, represent the currently open Excel VBA projects (hence the
name Project Explorer). The view of each project can be expanded or contracted by clicking on
the small boxes (just as with Windows Explorer). Note that there is one project for each currently
open Excel workbook.

3.1.1 Project Names

Each project has a name, which the programmer can choose. The default name for aproject is
VBAProject. The top node for each project islabeled:

ProjectName (WorkbookName)

where ProjectName isthe name of the project and WorkbookName isthe name of the Excel
workbook.

3.1.2 Project Contents
At the level immediately below the top (project) level, as Figure 3-2 shows, there are nodes named:

Microsoft Excel Objects
Forms

Modules

Classes

Under the Microsoft Excel Objects node, there is a node for each worksheet and chartsheet in the
workbook, as well as a specia node called Thisworkbook, which represents the workbook itself.
These nodes provide access to the code windows for each of these objects, where we can write our
code.

14

Under the Forms node, thereis anode for each form in the project. Forms are also called
UserForms or custom dialog boxes. We will discuss UserForms later in this chapter.

Under the Modules node, thereis anode for each code module in the project. Code modules are
also called standard modules. We will discuss modules later in this chapter.

Under the Classes node, there is anode for each class module in the project. We will discuss
classes later in this chapter.

The main purpose of the Project Explorer isto allow us to navigate around the project.
Worksheets and UserForms have two components—a visible component (a worksheet or diaog)
and a code component. By right-clicking on a worksheet or UserForm node, we can choose to
view the object itself or the code component for that object. Standard modules and class modules
have only a code component, which we can view by double-clicking on the corresponding node.

Let ustake acloser look at the various components of an Excel project.
3.1.2.1 The ThisWorkbook object

Under each node in the Project Explorer 1abeled Microsoft Excel Objects is a node labeled
Thisworkbook. This node represents the project's workbook, along with the code component (also
called a code module€) that stores event code for the workbook. (We can a so place independent
procedures in the code component of a workbook module, but these are generally placed in a
standard module, discussed later in this chapter.)

Simply put, the purpose of eventsisto allow the VBA programmer to write code that will execute
whenever one of these eventsfires. Excel recognizes 19 events related to workbooks. We will
discuss these eventsin Chapter 11; you can take a quick peek at this chapter now if you are
curious. Some examples:

The Open event, which occurs when the workbook is opened.

The BeforeClose event, which occurs just before the workbook is closed.

The NewSheet event, which occurs when anew worksheet is added to the workbook.
The BeforePrint event, which occurs just before the workbook or anything in it is printed.

3.1.2.2 Sheet objects

Under each Microsoft Excel Objects node in the Project Explorer is anode for each sheet. (A
sheet isaworksheet or a chartsheet.) Each sheet node represents a worksheet or chartsheet's
visible component, along with the code component (also called a code module) that stores event
code for the sheet. We can also place independent procedures in the code component of a sheet
module, but these are generally placed in a standard module, discussed next.

Excel recognizes 7 events related to worksheets and 13 events related to chartsheets. We will
discuss these eventsin Chapter 11.

3.1.2.3 Standard modules

A module, also more clearly referred to as a standard module, is a code module that contains
general procedures (functions and subroutines). These procedures may be macros designed to be
run by the user, or they may be support programs used by other programs. (Remember our
discussion of modular programming.)

3.1.2.4 Class modules

15

Class modules are code modules that contain code related to custom objects. Aswe will see, the
Excel object model has a great many built-in objects (almost 200), such as workbook objects,
worksheet objects, chart objects, font objects, and so on. It is also possible to create custom
objects and endow them with various properties. To do so, we would place the appropriate code
within a class module.

However, since creating custom objects is beyond the scope of this book, we will not be using
class modules. (For an introduction to object-oriented programming using VB, allow me to
suggest my book, Concepts of Object-Oriented Programming with Visual Basic, published by
Springer-Verlag, New York.)

3.1.2.5 UserForm objects

As you no doubt know, Excel contains a great many built-in dialog boxes. It is also possible to
create custom dialog boxes, also called forms or UserForms. Thisis done by creating UserForm
objects. Figure 3-3 shows the design environment for the Select Special UserForm that we
mentioned in Chapter 1.

Figure 3-3. A UserForm dialog box

-'" Microsaft Visusl Dasic - SAxUNIs s - [SRMUNE o s - digSelecSpecied [Userf om)]
o File Bt e et Pormal Debug Bun Toak Window el =18 =]
- <t @
X 3~ » 0 whi MR
e ——
B sreamils (sREUts) =] OALTE : I
= Moo Exgal Chijects H " Difforont From Previous el =]
W Shean Dttt : B g : Ciomirals | |
] Thisworkback VR Garmn Ak Prewbcas Cal |
< Formss = H : kA abl —
BH clgarswateShmel L spect Emeby oo | h Ri[RHEES
[cighutalabok | : -
| : [£ =
B clgSakctipacial b i ot i 0 |
B cigaiectspacisFul : s fige T et it
[clgshawlnds H |
< hoxrhes i Complste Rows Complets Colamrm
w5 basDetslstels B | ” .
% bafain - Unnia | e |
A L = o : H F
x| | ;i Search Range ; e
| PR y—] [Fskiinkiinii f— h

Aphabatic | Categortzed |
diSekctope a |

Pkl [sieeocnoor § =
o derCaior B oo s “‘
BorderStyke 0 - Sbor e Sy
KCaprion Sakck Spacial -
e o- fmoyciaire ™ ||| 4] b

The large window on the upper-center in Figure 3-3 contains the custom dialog box (named
digSelectSpecial) in its design mode. There is a floating Toolbox window on the right that
contains icons for various Windows controls.

To place a control on the diaog box, simply click on the icon in the Toolbox and then drag and
size arectangle on the dialog box. Thisrectangle is replaced by the control of the same size as the
rectangle. The properties of the UserForm object or of any controls on the form can be changed by
selecting the object and making the changes in the Properties window, which we discussin the
next section.

In addition to the form itself and its controls, a UserForm object contains code that the VBA

programmer writes in support of these objects. For instance, a command button has a Click event
that fires when the user clicks on the button. If we place such a button on the form, then we must
write the code that is run when the Click event fires; otherwise, clicking the button does nothing.

16

For instance, the following is the code for the Close button's Click event in Figure 3-3. Note that
the Name property of the command button has been set to cmdClose :

Private Sub cmdClose Click()
Unload Me
End Sub

All this code does is unload the form.

Along with event code for aform and its controls, we can also include support procedures within
the UserForm object.

Don't worry if all this seems rather vague now. We will devote an entire chapter to creating
custom dialog boxes (that is, UserForm objects) later in the book and see several real-life
examples throughout the book.

3.2 The Properties Window

The Properties window (see Figure 3-1) displays the properties of an object and allows usto
change them.

When a standard module is selected in the Project window, the only property that appearsin the
Properties window is the modul€'s name. However, when aworkbook, sheet, or UserFormis
selected in the Projects window, many of the object’'s properties appear in the Properties window,
as shown in Figure 3-4.

The Properties window can be used to change some of the properties of the object while no codeis
running—that is, at design time. Note, however, that some properties are read-only and cannot be
changed. While most properties can be changed either at design time or run time, some properties
can only be changed at design time and some can only be changed at run time. Run-time
properties generally do not appear in the Properties window.

Figure 3-4. The Properties window

ix

|Thiswerkbook workbook
Alphsbetic Icateg:rmed

Hames) Thisworkbook
BooepilabeklnFormulas True
WLUpdateFraquency o

I~ hangeHistoryDuration o
iZonflictResoution 1

Dare1004 Falsa
DisplayDrawingObjects -4104 - ¥IDigplayShapes
HasRoutingslip Faka
HghlightChangesOnsSoreen Faka

[=acdin False
FeepChangeHistory Trus

ListChangesCniewsheet Fake
PersonalviewlistSattings True
PersonalVieswPrintSettings True

PracisondsDisplayed Fala
S aved Trug
SavelinkValues Trug
IShowConflictHistory Faka

TemplateRemoveExtData Faka
| pdateRemoteReferences True

3.3 The Code Window

The Code window displays the code that is associated with the selected item in the Project
window. To view this code, select the object in the Projects window and either choose Code from
the View menu or hit the F7 key. For objects with only a code component (no visual component),
you can just double-click on the item in the Projects window.

3.3.1 Procedure and Full-Module Views

Generally, a code module (standard, class, or UserForm) contains more than one procedure. The
IDE offers the choice between viewing one procedure at atime (called procedure view) or all
procedures at one time (called full-module view), with a horizontal line separating the procedures.
Each view has its advantages and disadvantages, and you will probably want to use both views at
different times. Unfortunately, Microsoft has not supplied a menu choice for selecting the view.
To change views, we need to click on the small buttons in the lower-left corner of the Code
window. (The default view can be set using the Editor tab of the Options dialog box.)

Incidentally, the default font for the module window is Courier, which has arather thin looking
appearance and may be somewhat difficult to read. Y ou may want to change the font to FixedSys
(on the Editor Format tab of the Options dialog, under the Tools menu), which is very readable.

3.3.2 The Object and Procedure List Boxes

At the top of the Code window, there are two drop-down list boxes (see Figure 3-1). The Object
box contains alist of the objects (such as forms and controls) that are associated with the current
project, and the Procedure box contains alist of all of the procedures associated with the object
selected in the Object box. The precise contents of these boxes varies depending on the type of
object selected in the Project Explorer.

18

3.3.2.1 Aworkbook or sheet object

When aworkbook or sheet object is selected in the Project window, the Object box contains only
two entries: general, for general procedures, and the object in question, either Workbook,
Worksheet, or Chart. When the object entry is selected, the Procedure box contains empty code
shells for the events that are relevant to that object. Figure 3-5 shows an example.

Figure 3-5. The events for a workbook object

|Workbook = | |BeforeClose -]

Elpi_:mn Explicit BeforePrint
Private Sub Workbook _lg.iesae

Deactivate

Mew=heat

Open

ShestActivate
ShestBeforeDoubleClick
SheetBeforeRight Click e
ShestCalculzte
ShestChange
ShestDeacivale

Delete custom menu

Dim r As Integer
Dim ws As Worksheet
Dim sName As String

Tim a=sAan i Frin Fa s

If, for example, we choose the BeforeClose event in the Procedures box, Excel will create the
following code shell for this event and place the cursor within this procedure:

Private Sub Workbook BeforeClose(Cancel As Boolean)

End Sub
3.3.2.2 A standard module

When a standard module is selected in the Project window, the Object box contains only the entry
General, and aProcedure box lists al of the procedures we have written for that module (if any).
Figure 3-6 shows the open Procedure box, with alist of the current procedures for a particular
module. The Declarations section is where we place variable declarations for modul e-level
variables—that is, for variables that we want to be available in every procedure within the
module. We will discussthisin detail in Chapter 5.

Figure 3-6. The Procedure box

[iGeneral | [Showitange -]

Sub ShowRange (rng As Bangs, rTime|ieclarstions)
X _ . HoldRange
Dim StartTime As Vaciant, Tick As
ShowSelection

If rTine <« 0.1 <r rTine > 60 Then rTime = 2

cng .Font .Emboss = True

StactTine = Timec
Tick = StactTime

3.3.2.3 A UserForm object

When a UserForm object is selected in the Project Explorer, the Object box contains alist of all of
the objects contained in the UserForm. For instance, Figure 3-7 shows the contents of the Object
box for the UserForm object in Figure 3-3. Note that there are entries for the various command
buttons (such as cmdClose), the various other controls, and even for the UserForm itself.

19

Figure 3-7. The Object box

|[Eeneral}

cimd Close
cid CompleteColuimng
cimdCompleteRows

L3R

UsarForm =t

Figure 3-8 shows the contents of the Procedure box when the cmdClose object is selected in the
Object box. Thislist contains the names of the 13 different events that are associated with a
command button.

Figure 3-8. The Procedure box

ICIn:,k LI
Click I :I

CBIClick

Enter

Errar

Exit

FoeyDown

kevFress

Feylip

Mouselown

Mlousehdone e
auzellp i

For example, if we select Click, we will be placed within the Code window between the following
two lines, where we can write event code for the Click event of the cmdClose command button :

Private Sub cmdClose Click()

End Sub

3.4 The Immediate Window

The Immediate window (see Figure 3-1) has two main functions. First, we can send output to this
window using the command Debug . Priint. For instance, the following code will print whatever
text iscurrently in cell Al of the active worksheet to the Immediate window:

Debug.Print ActiveSheet._Range(''Al'™).Text
This provides a nice way to experiment with different code snippets.

The other main function of the Immediate window isto execute commands. For instance, by
selecting some text in the active document, switching to the Immediate window, and entering the
line shown in Figure 3-9, the selected text will be boldfaced (after hitting the Enter key to execute
the code).

20

Figure 3-9. The Immediate Window

[mmediate

ActiveSheet . Cells(1,1) _Font.Bold = true

The Immediate window is an extremely valuable tool for debugging a program, and you will
probably useit often (as | do).

3.5 Arranging Windows

If you need more space for writing code, you can close the Properties window, the Project window,
and the Immediate window. On the other hand, if you are fortunate enough to have alarge monitor,
you can split your screen as shown in Figure 3-10 to see the Excel VBA IDE and an Excel
workbook at the same time. Then you can trace through each line of your code and watch the
resultsin the workbook! (Y ou can toggle between Excel and the IDE using the Alt-F11 key
combination.)

Figure 3-10. A split screen approach

BT = -lol =
B) b Bon vew e Fomer Took [wWidow Hap ===
TeElE 80T ‘Hmd RE E LI Mea e d
i ew e B FEEE Ex, M PFE A
| = - = TRLE
& B [+ (1] E E (R
1 LRIy Onfictian Prod Procedure I Workbook Kieru Kem SuibMenu kem On Whs Men
T Acthesty Rheat ATk AapaaliEied Thieswest ko Gt il Shwied TRE
3 | Lates Diln Seriss Rl bty LawCalatenss Thewiarkbook al st Dala Sares TRLE
& Frint Crats <L Lbkly FrniChoris Prntal aFnri Embedded £Charls TRLE
5 Frink Pret Tatles Runlbikly FrordFaciTebdes Frmat EFvil Tabdas THLE
& I il Shesls Rt bty Frivisesis Pripi i ASFealy TRLE
T | Solect Special ~unUbkty Zabectcpaca Thes Ao rkbook Slokiot Spaca TRLE
B Soif Shaets T LEk EaptEhestn T e Vo it oee S0t Shests THLE
-
W4 b WSt S |41 | wl[=
{24 Fie Bt e fresn Fover [ehug Ben Toow Mindow bR =|=| =
En’ E -] b Fon -ﬂ &Eﬁ"ﬂ 4 i com
[e —— — =
om e - rePeE—TPT b =
|_I T e | ptlon Explicit a
i EngBearch A= Fangs
___._.-_'»5 | D sngrarlnde ha Rangs
Eﬂrlhmm [- | .1
=[® 4 "
T |':'“|'-l'3"-“‘1| i
e M £
|:|'I HAVITYET . 11,11, . -]
crderScbr B sanmi: -
rrieThin T+ Sy u-_l i | *®

3.5.1 Docking

Many of the windows in the IDE (including the Project, Properties, and Immediate windows) can
be in one of two states: docked or floating. The state can be set using the Docking tab on the
Options dialog box, which is shown in Figure 3-11.

Figure 3-11. The Docking options

21

Options
Editar | El:l'rh'_lrF-:urmaI] General Docking |
Dodkabile
© fmmadiats Aidaw
W Locals wWindoes
b Watch Window
¥ Project Explorer
W Propertes Windowe

[T Object Browsar

Ok, Cancel Help

A docked window is one that is attached, or anchored, to an edge of another window or to one
edge of the client area of the main VBA window. When a dockable window is moved, it snapsto
an anchored position. On the other hand, a floating window can be placed anywhere on the screen.

22

Chapter 4. The Visual Basic Editor, Part Il

In this chapter, we conclude our discussion of the Visual Basic Editor. Again, let us remind the
reader that he or she may want to read quickly through this chapter and refer to it later as needed.

4.1 Navigating the IDE

If you prefer the keyboard to the mouse (as | do), then you may want to use keyboard shortcuts.
Here are some tips.

4.1.1 General Navigation
The following keyboard shortcuts are used for navigating the IDE:
F7
Go to the Code window.
F4
Go to the Properties window.
Ctrl-R
Go to the Project window.
Ctrl-G
Go to the Immediate window.
Alt-F11
Toggle between Excel and the VB IDE.
4.1.1.1 Navigating the code window at design time
Within the code window, the following keystrokes are very useful:
F1
Help on the item under the cursor.
Shift-F2

Go to the definition of the item under the cursor. (If the cursor is over acal to afunction
or subroutine, hitting Shift-F2 sends you to the definition of that procedure.)

Ctrl-Shift-F2

23

Return to the last position where editing took place.
4.1.1.2 Tracing code

The following keystrokes are useful when tracing through code (discussed in Section 4.6, later in
this chapter):

F8
Step into
Shift-F8
Step over
Ctrl-Shift-F8
Step out
Ctrl-F8
Run to cursor
F5
Run
Ctrl-Break
Break
Shift-F9
Quick watch
F9
Toggle breakpoint
Ctrl-Shift-F9
Clear all breakpoints
4.1.1.3 Bookmarks

It isalso possible to insert bookmarks within code. A bookmark marks alocation to which we can
return easily. To insert a bookmark, or to move to the next or previous bookmark, use the
Bookmarks submenu of the Edit menu. The presence of a bookmark isindicated by a small blue
square in the left margin of the code.

24

4.2 Getting Help

If you are like me, you will probably make extensive use of Microsoft's Excel VBA help files
while programming. The simplest way to get help on an item isto place the cursor on that item
and hit the F1 key. Thisworks not only for VBA language keywords but also for portions of the
VBA IDE.

Note that Microsoft provides multiple help files for Excel, the VBA language, and the Excel
object model. While this is quite reasonable, occasionally the help system gets a bit confused and
refuses to display the correct help file when we strike the F1 key. (I have not found asimple
resolution to this problem, other than shutting down Excel and the Visual Basic Editor along with

it

Note also that a standard installation of Microsoft Office does not install the VBA help files for
the various applications. Thus, you may need to run the Office setup program and install Excel
VBA help by selecting that option in the appropriate setup dialog box. (Do not confuse Excel help
with Excel VBA help.)

4.3 Creating a Procedure

There are two ways to create a new procedure (that is, a subroutine or a function) within a code
module. First, after selecting the correct project in the Project Explorer, we can select the
Procedure option from the Insert menu. This will produce the dialog box shown in Figure 4-1. Just
type in the name of the procedure and select Sub or Function (the Property choice is used with
custom objects in a class module). We will discuss the issue of public versus private procedures
and static variables later in this chapter.

Figure 4-1. The Add Procedure dialog box

Add Procedura

e
Types
s Cancel
* Sib

™ Eunction

™ Broparty

Scope
 Puplic

I~ Private

[T All Local varigbles as Statics

A simpler aternative isto simply begin typing:
Sub SubName

or:

25

Function FunctionName

in any code window (following the current End Sub or End Function statement, or in the
general declarations section). As soon as the Enter key is struck, Excel will move the line of code
to anew location and thereby create a new subroutine. (It will even add the appropriate ending—
End Sub or End Function.)

4.4 Run Time, Design Time, and Break Mode

The VBA IDE can be in any one of three modes: run mode, break mode, or design mode. When
the IDE isin design mode, we can write code or design aform.

Run mode occurs when a procedure is running. To run (or execute) a procedure, just place the
cursor anywhere within the procedure code and hit the F5 key (or select Run from the Run menu).
If arunning procedure seems to be hanging, we can usually stop the procedure by hitting Ctrl-
Break (hold down the Control key and hit the Break key).

Break mode is entered when a running procedure stops because of either an error in the code or a
deliberate act on our part (described a bit later). In particular, if an error occurs, Excel will stop
execution and display an error dialog box, an example of which is shown in Figure 4-2.

Figure 4-2. An error message

Microsoft Visual Hasic

Run-time error '424":
Cbject required

End

Error dialog boxes offer afew options: end the procedure, get help (such as it may be) with the
problem, or enter break mode to debug the code. In the latter case, Excel will stop execution of the
procedure at the offending code and highlight that code in yellow. We will discuss the process of
debugging code a bit later.

Aside from encountering an error, there are several ways we can deliberately enter break mode for
debugging purposes:

e Hitthe Ctrl-Break key and choose Debug from the resulting dialog box.

¢ Include aStop statement in the code, which causes Excel to enter break mode.

e Insert abreakpoint on an existing line of executable code. Thisis done by placing the
cursor on that line and hitting the F9 function key (or using the Toggle Breakpoint option
on the Debug menu). Excel will place ared dot in the left margin in front of that line and
will stop execution when it reaches the line. Y ou may enter more than one breakpoint in a
procedure. Thisis generally preferred over using the Stop statement, because
breakpoints are automatically removed when we close down the Visual Basic Editor, so
we don't need to remember to remove them, as we do with Stop statements.

e Set awatch statement that causes Excel to enter break mode if a certain condition
becomes true. We will discuss watch expressions a bit |ater.

26

To exit from Break mode, choose Reset from the Run menu.

Note that the caption in thetitle bar of the VBA IDE indicates which mode is currently active. The
caption contains the word "[running]” when in run mode and "[break]" when in break mode.

4.5 Errors

In computer jargon, an error is referred to as abug. In case you are interested in the origin of this
word, the story goes that when operating the first large-scale digital computer, called the Mark 1,
an error was traced to a moth that had found its way into the hardware. Incidentally, the Mark |
(circa 1944) had 750,000 parts, was 51 feet long, and weighed over five tons. How about putting
that on your desktop? It also executed about one instruction every six seconds, as compared to
over 200 million instructions per second for a Pentium!

Errors can be grouped into three types based on when they occur—design time, compile time, or
run time.

4.5.1 Design-Time Errors

Asthe nameimplies, adesign-time error occurs during the writing of code. Perhaps the nicest
feature of the Visual Basic Editor isthat it can be instructed to waich as we type code and stop us
when we make a syntax error. This automatic syntax checking can be enabled or disabled in the
Options dialog box shown in Figure 4-3, but | strongly suggest that you keep it enabled.

Figure 4-3. The Options dialog box

Editor | Editar Farmat | GE-nErnII Dl:ll:‘i-'i.im:_l]

Code Settings
W At E.yr‘dax l':_l'e'l_jg.? ¥ Auto [ndent
[+ Bequire Yarisblke Declaration

o Tab |3

¥ auo List Members
¥ Ao Quide Infio
¥ Ao Data Tips

Window Sattings

¥ Drag-and-Droo Text Editing
¥ Default o Full (Module Yiew
[¥ Brocedurs Separator

Ok | Cancel Help

Notice also that there are other settings related to the design-time environment, such has how far
to indent code in response to the Tab key. We will discuss some of these other settings a bit later.

To illustrate automatic syntax checking, Figure 4-4 shows what happens when we deliberately
enter the syntactically incorrect statement x == 5 and then attempt to move to another line. Note

that Microsoft refers to this type of error as acompile error in the dialog box and perhaps we
should as well. However, it seems more descriptive to call it adesign-time error or just a syntax
error.

Figure 4-4. A syntax error message

|['Ganauli LI |TE'91. j

Fub Test ()

I) ' Compile o
L
Expected: expression

EEIL _3J_J

4.5.2 Compile-Time Errors

Before a program can be executed, it must be compiled, or trandlated into alanguage that the
computer can understand. The compilation process occurs automatically when we request that a
program be executed. We can also specifically request compilation by choosing the Compile
Project item under the Debug menu.

If Excel encounters an error while compiling code, it displays a compile error message. For
example, the code in Figure 4-5 contains a compile-time error. In particular, the first line:

Dim wb as Workbook

defines avariable of type Workbook to represent an Excel workbook. (We will go into all of this
in Chapter 17, so don't worry about the details now.) However, the second line:

Set wb = ActiveWorkbook.Name

attempts to assign the variable wb not to the active workbook, which would be legal, but to the
name of the active workbook. This error is not caught during design time because it is not a syntax
error. It isonly at compile time, when Excel considers the statement in the context of the first
statement, that the error becomes evident.

Figure 4-5. A compilation error message

||Eeneral]

Option Explicit
Microsoft Visunl Basic

Sub Test()

. ' Compile aror.
Dim wh As Workbook .
Set wb = ActiveWorkbookELD Type mismaich
End Sub | Help

4.5.3 Run-Time Errors

28

An error that occurs while aprogram is running is called arun-time error. Figure 4-6 illustrates a
run-time error and its corresponding error message. In this example, the code:

Workbooks .Open *'d:\temp\ExistNot.xIs"

attempts to open an Excel workbook that does not exist. Notice that this error message is actually
quite friendly—not only does it describe the error in clear terms (the file could not be found), but
it also offers some suggestions for eliminating the problem.

Figure 4-6. A run-time error message

[iGeneran =1 [Tnm
Option Explicit icrosan issnl Bosie |

Sub Test() AT L

- Extot ¢k coukd not ba found. Chack e spaling of e
Horkbooks ﬂpll'l'l “d :"\tﬂp\EIiEtHDt xX1s" e rane, sl werify Euwt the Sk looation f oorest

End Sulb 1 yous are brying o open tha file Fom your st of mostrecortty used
Fikes on e Fike msarut, miskn 5urn skt e has nat been renarmad,
mowad, oF da s,

Ll | T e

4.5.4 Logical Errors

There is one more type of error that we should discuss, since it is the most insidious type of all. A
logical error can be defined as the production of an unexpected and incorrect result. Asfar as
Excel is concerned, thereis no error, because Excel has no way of knowing what we intend. (Thus,
alogical error isnot arun-time error, in the traditional sense, even though it does occur at run
time.)

Toillustrate, the following code purports to compute the average of some numbers:

Dim x(3) As Integer
Dim Ave As Single

x(0) =1

x(1) =3

x(2) = 8

x(3) =5

Ave = (x(0) + x(1) + x(2) + x(3)) 7/ 3
MsgBox ""Average is: ' & Ave

The result is the message box shown in Figure 4-7. Unfortunately, it isincorrect. The penultimate
linein the preceding program should be:

Ave = (X(0) + x(1) + x(2) + x(3)) 7/ 4

Note the 4 in the denominator, since there are 4 numbers to average. The correct average is 4.25.
Of course, Excel will not complain because it has no way of knowing whether we really want to
divide by 3.

Figure 4-7. The result of a logical error

29

Microsoft Excel

Avarage is: 5 BbbEk7

Precisely because Excel cannot warn us about logical errors, they are the most dangerous, because
we think that everything is correct.

4.6 Debugging

Invariably, you will encounter errorsin your code. Design-time and compile-time errors are
relatively easy to deal with because Excel helps us out with error messages and by indicating the
offending code. Logical errors are much more difficult to detect and to fix. Thisiswhere
debugging plays a magjor role. The Excel IDE provides some very powerful waysto find bugs.

Debugging can be quite involved, and we could include awhole chapter on the subject. There are
even special software applications designed to assist in complex debugging tasks. However, for
most purposes, afew simple techniques are sufficient. In particular, Excel makesit easy to trace
through our programs, executing one line at atime, watching the effect of each line asit is
executed.

Let ustry avery simple example, which you should follow along on your PC. If possible, you
should arrange your screen asin Figure 4-8. Thiswill make it easier to follow the effects of the
code, since you won't need to switch back and forth between the Excel window and the Excel
VBA window. The code that we will trace is shown in Example 4-1. Note that lines beginning
with an apostrophe are comments that are ignored by Excel.

Figure 4-8. Top-and-bottom windows for easy debugging

= ISE
T] e BM Y Jewt Faret Took Do Widoees dHeld _ =] =
OFH S| 26T - BF (T eI A e J
era e B AU/ EEEH R, A AR %A
I B ____________________

o ol L Y uet Pl Qemg En [eoh fece pep =[] =]
a0 [ol om e WY Cl|1ap cale

|emanrag =] [t
15 Taat|

g L3

wa.Calla(l: 1].valoe = "sampla”

wa.0ellzil, 10.Font.Bold =

wn . Onllmil, 1] Topy

30

Example 4-1. A Simple Program to Trace

Sub Test()
Dim ws As Worksheet
Set ws = ActiveSheet

Insert a value into cell Al
ws.Cells(1, 1).Value = "sample"

" Make it bold
ws.Cells(1l, 1).Font.Bold = True

" Copy cell
ws.Cells(1, 1).Copy

" Paste value only
ws.Cells(2, 1).PasteSpecial Paste:=xlValues
End Sub

Make sure that an empty worksheet is active in Excel. Switch to the VBA IDE and place the
insertion point somewhere in the code. Then hit the F8 key once, which starts the tracing process.
(Y ou can aso choose Step Into from the Debug menu.)

Continue striking the F8 key, pausing between keystrokes to view the effect of each instructionin
the Excel window. (Y ou can toggle between Excel and the IDE using Alt-F11.) As you trace
through this code, you will see the word "sampl€" entered into cell Al of the active workshest,
changed to appear in boldface, copied to the Clipboard, and pasted as normal text into the cell A2.
Then you can begin to see what Excel VBA programming is all about!

Let us discuss some of the tools that Excel provides for debugging code.

4.6.1 Tracing

The process of executing code one line at atime, as we did in the previous example, is referred to
astracing or code stepping. Excel provides three options related to tracing: stepping into, stepping
over, and stepping out of. The difference between these methods refers to handling calls to other
procedures.

To illustrate the difference, consider the code shown in Example 4-2. In ProcedureA, thefirst
line of code setsthe value of cell A1 of the active worksheet. The second line callsProcedureB
and the third line bol dfaces the contents of the cell. ProcedureB simply changes the size and
name of the font used in cell A1. Don't worry about the exact syntax of this code. The important
thing to notice isthat the second line of ProcedureA calsProcedureB.

Example 4-2. Sample Code for Tracing Methods

Sub ProcedureA(Q)
ActiveSheet.Cells(1, 1).Value = "sample”
Call ProcedureB

ActiveSheet._Cells(l, 1).Font.Bold = True
End Sub
Sub ProcedureB()
ActiveSheet.Cells(l, 1).Font.Size = 24
ActiveSheet.Cells(l, 1).Font.Name = "Arial”

End Sub

31

4.6.1.1 Stepping into

Sep Into executes code one statement (or instruction) at atime. If the statement being executed
calls another procedure, stepping into that statement simply transfers control to thefirst linein the
called procedure. For instance, with reference to the previous code, stepping into the line:

Call ProcedureB

in ProcedureA transfers control to the first line of ProcedureB :
ActiveSheet.Cells(l, 1).Font.Size = 24

Further tracing proceedsin ProcedureB. Once all of the lines of ProcedureB have been traced,
control returnsto ProcedureA at the lineimmediately following the call to ProcedureB—that
is, at theline:

ActiveSheet.Cells(1l, 1).Font.Bold = True

Step Into has another important use. If we choose Step Into while still in design mode, that is,

before any code is running, execution begins but break mode is entered before the first line of
code is actually executed. Thisisthe proper way to begin tracing a program.

4.6.1.2 Step Over (Shift-F8 or choose Step Over from the Debug menu)

Sep Over issimilar to Step Into, except that if the current statement is a call to another procedure,
the entire called procedure is executed without stopping (rather than tracing through the called
procedure). Thus, for instance, stepping over the line:

Call ProcedureB

in the previous procedure executes ProcedureB and stops at the next line;
ActiveSheet.Cells(1l, 1).Font.Bold = True

in ProcedureA. Thisisuseful if we are certain that ProcedureB is not the cause of our
problem and we don't want to trace through that procedure line by line.

4.6.1.3 Step Out (Ctrl-Shift-F8 or choose Step Out from the Debug menu)

Step Out isintended to be used within a called procedure (such as ProcedureB). Step Out
executes the remaining lines of the called procedure and returns to the calling procedure (such as
ProcedureA). Thisisuseful if we arein the middle of a called procedure and decide that we
don't need to trace any more of that procedure, but want to return to the calling procedure. (If you
trace into a called procedure by mistake, just do a Step Out to return to the calling procedure.)

4.6.1.4 Run To Cursor (Ctrl-F8 or choose Run To Cursor from the Debug menu)

If the Visual Basic Editor isin break mode, we may want to execute several lines of code at one
time. This can be done using the Run To Cursor feature. Simply place the cursor on the statement
immediately following the last line you want to execute and then execute Run To Cursor.

4.6.1.5 Set Next Statement (Ctrl-F9 or choose Set Next Statement from the Debug
menu)

32

We can a so change the flow of execution while in break mode by placing the cursor on the
statement that we want to execute next and selecting Set Next Statement. Thiswill set the selected
statement as the next statement to execute, but will not execute it until we continue tracing.

4.6.1.6 Breaking out of Debug mode

When we no longer need to trace our code, we have two choices. To return to design mode, we
can choose Reset from the Run menu (there is no hotkey for this). To have Excel finish executing
the current program, we can hit F5 or choose Run from the Run menu.

4.6.2 Watching Expressions

It is often useful to watch the values of certain expressions or variables as we trace through a
program. Excel provides several waysto do this.

4.6.2.1 Quick Watch (Shift-F9)

Thisfeatureis used to quickly check the value of avariable or expression whilein break mode.
We just place the insertion point over the variable name and hit Shift-F9 (or choose Quick Watch
from the Debug menu). For instance, Figure 4-9 shows the Quick Watch dialog box when the
expression x + 2 is selected in the code in Figure 4-10. According to Figure 4-9, at the time that
Quick Watch was invoked, the expression x + 2 had the value 8. Note that if we had just placed
the insertion point in front of the letter x, then Quick Watch would have reported the value of this
variable alone.

Figure 4-9. The Quick Watch window

Quick Waich -

Context
lemplateProject, Samp leModule. Procedures,

Ex pression aaa 5

i ﬂdd B
Cancel
Yalie
& Help

Ancther way to quickly get values for expressions or variablesis to enable Auto Data Tips on the
Editor tab of Excel VBA's Options dialog box. With this feature enabled, when we place the
mouse pointer over avariable or select an expression and place the mouse pointer over it, after a
dlight delay, asmall yellow window will appear containing the value of the variable or expression.
Thisisvery useful!

4.6.2.2 The Locals and Watches windows

There are two specia windows that aid in watching expressions. the Watches window and the
Locals window. These are shown in Figure 4-10.

Figure 4-10. The Locals and Watches windows

33

|H’m|m-|-«|l ﬂ | Prnedumn A ;I
fub Erocedursd () -~
Dim x ps Integer, i RS Integer
2o
For 1 = 1 To L0

E=®+2
of peat 1
End Zub
-
= ald | E
= x|
|‘crrnl:':f‘rm1'5-:|rrpkMJdJcnnc:~cucﬂ. 3= |F"f"*’~5-"" |"-"'“"=]TTI"" |."""1*"| -
B -]] Intager SampleMadul

Expisssim |"-'.4I._|=- | Ty .

B Ssmplivinduls SamploModulatEam

S & Irlagei

i i Immpar

- -

The Locals window shows the values of all local variables. A local variable isavariable defined
within the current procedure, and is therefore not valid in any other procedure. (We will discuss
local variablesin the next chapter.)

The Watches window shows all of the watches that we have set. A watch is avariable or
expression that we place in the Watch window. Excel automatically updates the expressionsin the
Watch window after each line of code is executed and acts according to the type of watch defined,
as described in the following list.

To add awatch, choose Add Watch from the Debug menu. This will produce the dialog box
shown in Figure 4-11. We can then enter a variable or expression, such as x > 6, in the Expression
text box. Note that there are three types of watches:

e Watch Expression simply adds the expression to the Watches window, so we can watch
its value as code is executed. In this example, the value of the expression will be either
True or False, depending upon whether x is greater than 6.

e Break When Vaue s True asks Excel to stop execution and enter break mode whenever
the expression is true. In this example, VBA will break execution when x > 6 is true,
that is, when x becomes greater than 6.

e Break When Vaue Changes asks Excel to enter break mode when the value of the
expression changes in any way. (In this case, from True to Fal se or vice-versa.)

Figure 4-11. The Add Watch dialog box

34

Add Walch

Expression: oK
|}{:=~E-
Cancel
Context
Procedure: |':'r':';E"j'""E’f'L LI Heln

Moduke: [Earrq:llel"-’l:nil =
Project: TemplaheProject

Watth Twpe
i Walch Boression

i Break When Valua Changes

Altogether, the various tracing modes and watch types provide a very powerful set of tools for
debugging code. | use them often!

4.7 Macros

In earlier days, amacro consisted of a series of keystrokes that was recorded and assigned to a hot
key. When a user invoked the hot key, the recording would play and the recorded keystrokes
would be executed.

These days, macros (at least for Microsoft Office) are much more sophisticated. In fact, an Excel
macro is just a specia type of subroutine—one that does not have any parameters. (We will
discuss subroutines and parameters in Chapter 6.)

4.7.1 Recording Macros

Excel has the capability of recording very simple macros. When we ask Excel to record a macro
by selecting Macro —* Record New Macro from Excel's (not Excel VBA's) Tools menu, it takes
note of our keystrokes and converts them into a VBA subroutine (with no parameters).

For example, suppose we record a macro that does afind and replace, replacing the word "macro”
by the word "subroutine." When we look in the Projects window under the project in which the
macro was recorded, we will find a new subroutine in a standard code module;

Sub Macrol()

Macrol Macro
Macro recorded 9/13/98 by sr

Cells_Replace What:="macro', Replacement:="subroutine", _

35

LookAt:=xlIPart, SearchOrder:=xIByRows, MatchCase:=False
End Sub

This is the same code that we might have written in order to perform thisfind and replace
operation.

In certain situations, the macro recorder can serve as a very useful learning tool. If we can't figure
out how to code a certain action, we can record it in a macro and cut and paste the resulting code
into our own program. (In fact, you might want to try recording the creation of apivot table.)

However, before you get too excited about this cut-and-paste approach to programming, we
should point out that it is not anywhere near the panacea one might hope. One problem is that the
macro recorder has atendency to use ad hoc code rather than code that will work in avariety of
situations. For instance, recorded macro code will often refer to the current selection, which may
work at the time the macro was recorded but is not of much usein agenera setting, because the
programmer cannot be sure what the current selection will be when the user invokes the code.

Anather problem is that the macro recorder is only capable of recording very simple procedures.

Most useful Excel programs are far too complicated to be recorded automatically by the macro
recorder.

Finally, since the macro recorder does such athorough job of translating our actions into code, it
tends to produce very bloated code, which often runs very slowly.

4.7.2 Running Macros

Asyou may know, to run amacro from the user interface, we just choose Macros from the Macro
submenu of the Tools menu (or hit Alt-F8). This displays the Macro dialog box shown in Figure
4-12. Thisdialog box lists all macros in the current workbook or in all workbooks. From here, we
can do severa things, including running, editing, creating, or deleting macros. (Choosing Edit or
Create places usin the VB Editor.)

Figure 4-12. Excel's Macro dialog box

e - [|

[acro Mame:
focrot ___________________________J§¥ Run

el arod Y
Mlacros — Cance|
Ml zcrod
Procedured &
Procedured P Into
SavesSettings
ScrolihartTypes Edit
ScroliShzet e
Shiestd. test
Shegts.ScroliChartTypes
SheetCMame, estShow
ShipwaCtivatESheetDialog

Delete

Lef e

Mazros in: All Cpen wiorkbooks

Dieacription
Mazro recarded 971308 by =r

Optichs. .,

36

We should also comment on what appears and does not appear in the Macro list box. All macros
that we write will appear in the Macros dialog box (aswill all recorded macros). However, there
are afew variations. If we give the macro a unigue name (within the context given in the "Macros
in" list box), then only the name of the macro will appear in the list box. If the name is not unique,
then it must be qualified by the name of the module in which the macro appears, asin:

Sheet5.ScrolIChartTypes

in Figure 4-12. Unfortunately, the first version of a macro with a nonunique name is not qualified.
(Note the presence of another ScrollChartTypes macro in Figure 4-12.)

Note that we can prevent amacro procedure from appearing in the Macros list box by making the
procedure private, using the Private keyword, asin:

Private Sub HideThisMacro()
We will discuss Private and Publ ic proceduresin Chapter 6.

Finally, if you are like me, you will collect agreat many macros over the years. Astime goes by,
you may forget the names of some of these macros and thus have trouble finding a macro when
you need it. | would advise you to give some careful thought to creating a consistent naming
convention for macros. | begin the names of all macros with aword that categorizes the macro.
For instance, al of my macros that deal with worksheets begin with the letters WKs, asin:

Wks_Sort
Wks_Compare
Wks_Print

Part Il: The VBA Programming Language

Chapter 5
Chapter 6
Chapter 7

Chapter 8

38

Chapter 5. Variables, Data Types, and Constants

In the next few chapters, we will discuss the basics of the VBA programming language, which
underlies al of the Microsoft Office programming environments. During our discussion, we will
consider many short coding examples. | hope that you will take the time to key in some of these
examples and experiment with them.

5.1 Comments

We have already discussed the fact that comments are important. Any text that follows an
apostrophe is considered a comment and isignored by Excel. For example, thefirst line in the
following code is a comment, asis everything following the apostrophe on the third line;

" Declare a string variable
Dim WksName as String
WksName = Activesheet.Name " Get name of active sheet

When debugging code, it is often useful to temporarily comment out lines of code so they will not
execute. The lines can subsequently be uncommented to restore them to active duty. The
CommentBlock and UncommentBlock buttons, which can be found on the Edit toolbar, will place
or remove comment marks from each currently selected line of code and are very useful for
commenting out severa lines of code in one step. (Unfortunately, there are no keyboard shortcuts
for these commands, but they can be added to a menu and given menu accelerator keys.)

5.2 Line Continuation

The very nature of Excel VBA syntax often leads to long lines of code, which can be difficult to
read, especially if we need to scroll horizontally to see the entire line. For this reason, Microsoft
recently introduced aline-continuation character into VBA. This character is the underscore,
which must be preceded by a space and cannot be followed by any other characters (including
comments). For example, the following code:

ActiveSheet._Range("'A1"™) .Font.Bold = _
True

istreated as one line by Excel. It isimportant to note that a line continuation character cannot be
inserted in the middle of aliteral string constant, which is enclosed in quotation marks.

5.3 Constants

The VBA language has two types of constants. A literal constant (also called a constant or literal)
is aspecific value, such as anumber, date, or text string, that does not change, and that is used
exactly as written. Note that string constants are enclosed in double quotation marks, asin

“"Donna Smith" and date constants are enclosed between number signs, asin #1/1/96#.

For instance, the following code stores a date in the variable called dt:

39

Dim dt As Date
dt = #1/2/97#

A symbolic constant (also sometimes referred to simply as a constant) is a name for alitera
constant.

To define or declare a symbolic constant in a program, we use the Const keyword, asin:

Const InvoicePath = "d:\Invoices\"

In this case, Excel will replace every instance of InvoicePath in our code with the string
“d:\Invoices\". Thus, InvoicePath isaconstant, sinceit never changes value, but it is not
alitera constant, sinceit is not used as written.

The virtue of using symbolic constantsis that, if we decide later to change **d:\Invoices\" to
"d:\OldInvoices\", we only need to change the definition of InvoicePath to:

Const InvoicePath = "d:\OldInvoices\"
rather than searching through the entire program for every occurrence of the phrase
"d:\Invoices\".

It is generally good programming practice to declare any symbolic constants at the beginning of
the procedure in which they are used (or in the Declarations section of a code module). This
improves readability and makes housekeeping simpler.

In addition to the symbolic constants that you can define using the Const statement, VBA hasa
large number of built-in symbolic constants (about 700), whose names begin with the lowercase
letters vb. Excel VBA adds additional symbolic constants (1266 of them) that begin with the
letters xI. We will encounter many of these constants throughout the book.

Among the most commonly used VBA constants are vbCrLF, which is equivalent to a carriage
return followed by aline feed, and vbTab, which is equivalent to the tab character.

5.3.1 Enums

Microsoft has recently introduced a structure into VBA to categorize the plethora of symbolic
constants. This structure is called an enum , which is short for enumeration. A list of enums can be
obtained using my Object Model Browser software. For instance, among Excel's 152 enums, there
isone for the fill type used by the AutoFill method, defined as follows:

Enum XTAutoFillType
xIFillDefault = 0O
xIFillCopy = 1
xIFillSeries = 2
xIFillFormats = 3
xIFillvalues = 4
xIFillDays = 5
xIFillWeekdays =
xIFillMonths = 7
xIFillYears =
xILinearTrend
x1GrowthTrend

End Enum

6

I 11 oo

40

(The Excel documentation incorrectly refersto thisenum as X1Fi 1 1 Type.) Note that enum
names begin with the letters Xl (with an uppercase X).

Thus, the following line of code will autofill the first seven cellsin the first row of the active sheet
with the days of the week, assuming that the first cell contains the word Monday:

ActiveSheet._Range("'A1') .AutoFill ActiveSheet.Range(""Al:G1"™),
xIFillDays

Thisis far more readable than:
ActiveSheet._Range("'A1™) .AutoFill ActiveSheet.Range(""A1:G1'™), 5

Note that thisenum is built in, so we do not need to add it to our programsin order to use these
symbolic constants. (We can create our own enums, but thisis generally not necessary in Excel
VBA programming, since Excel has done such agood job of thisfor us.)

As another example, the built-in enum for the constant values that can be returned when the user
dismisses a message box (by clicking on abutton) is:

Enum VbMsgBoxResult
vbOoK = 1
vbCancel = 2
vbAbort 3
vbRetry = 4
vblgnore = 5
vbYes = 6
vbNo = 7

End Enum

For instance, when the user hits the OK button on a dialog box (assuming it has one), VBA returns
the value vbOK. Certainly, it isalot easier to remember that VBA will return the symbolic
constant vbOK than to remember that it will return the constant 1. (We will discuss how to get and
use thisreturn value later.)

VBA also defines some symbolic constants that are used to set the types of buttons that will
appear on a message box. These are contained in the following enum (which includes some
additional constants not shown):

Enum VbMsgBoxStyle
vbOKOnly = 0
vbOKCancel = 1
vbAbortRetrylgnore = 2
vbYesNoCancel = 3

vbYesNo = 4
vbRetryCancel = 5
End Enum

Toillustrate, consider the following code:

IT MsgBox(*'Proceed?', vbOKCancel) = vbOK Then
" place code to execute when user hits OK button
Else

place code to execute when user hits any other button
End If

41

In thefirst ling, the code MsgBox ("*Proceed?", vbOKCancel) causes Excel to display a
message box with an OK button and a Cancel button and the message "Proceed?’, as shown in

Figure 5-1.

Figure 5-1. Example message box

Microsot Excel

Froceed?
?qﬁﬁw? Crncel

If the user clicks the OK button, Excel will return the constant value vbOK; otherwise it will return
thevalue vbCancel. Thus, the I ¥ statement in the first line will distinguish between the two
responses. (We will discuss the I statement in detail in Chapter 8. Here, we are interested in the
role of symbolic constants.)

In case you are not yet convinced of the value of symbolic constants, consider the following enum
for color constants:

Enum ColorConstants
vbBlack = 0
vbBlue = 16711680
vbMagenta = 16711935
vbCyan = 16776960

vbWhite = 16777215

vbRed = 255

vbGreen = 65280

vbYellow = 65535
End Enum

Consider which you'd rather type, this:

ATextBox.ForeColor vbBlue
or this;
ATextBox.ForeColor = 16711680

Need | say more?

5.4 Variables and Data Types

A variable can be thought of as a memory location that can hold values of a specific type. The
value in avariable may change during the life of the program—hence the name variable.

In VBA, each variable has a specific data type, which indicates which type of datait may hold.
For instance, avariable that holds text strings has a String data type and is called a string variable.
A variable that holds integers (whole numbers) has an Integer data type and is called an integer

42

variable. For reference, Table 5-1 shows the complete set of VBA data types, along with the
amount of memory that they consume and their range of values. We will discuss afew of the more
commonly used data types in a moment.

Table 5-1. VBA Data Types

\ Type | Sizein Memory | Range of Values
Byte 1 byte 0to 255
Boolean 2 bytes True or False
Integer 2 bytes -32,768 to 32,767
Long (long integer) |4 bytes -2,147,483,648 to 2,147,483,647
?rgglg(;]ng:l) 4 bytes Approximately -3.4E38 to 3.4E38
zz‘éit’;%(gfg;')e 8 bytes Approximately -1.8E308 to 4.9E324
_Currency(scaled 8 bytes Approximately -922,337,203,685,477.5808
integer) to 922,337,203,685,477.5807
Date 8 bytes 1/1/100 to 12/31/9999
Object 4 bytes Any Object reference.
Variable length: 10 bytes + . -
;g Snglegnrgh | RDeleHt: < 2ulion o0
string length
Variant 16 bytes for numbers22 bytes Nu_mber: same as DoubleString: same as
+ string length String
User-defined Varies

5.4.1 Variable Declaration

To declare avariable means to define its data type. Variables are declared with the Dim keyword
(or with the keywords Private and Publ ic, which wewill discuss later in this chapter). Here
are some examples:

Dim Name As String
Dim Holiday As Date
Dim Age As Integer
Dim Height As Single
Dim Money As Currency
Dim wbk As Workbook
Dim ch As Chart

The general syntax of avariable declaration is:
Dim VariableName As DataType

If aparticular variable is used without first declaring it, or if it is declared without mentioning a
datatype, asin:

Dim Age
then VBA will treat the variable as having type Variant. Aswe can see from Table 5-1, thisis

generally awaste of memory, since variants require more memory than most other types of
variables.

For instance, an integer variable requires 2 bytes, whereas a variant that holds the same integer
requires 16 bytes, which is awaste of 14 bytes. It is not uncommon to have hundreds or even
thousands of variables in a complex program, and so the memory waste could be significant. For
thisreason, it isagood ideato declare all variables.

Perhaps more importantly, much more overhead isinvolved in maintaining a Variant than its
corresponding String or Integer, for example. Thisin turn means that using Variants typically
resultsin worse performance than using an equivalent set of explicit data types.

We can place more than one declaration on aline to save space. For instance, the following line
declares three variables:

Dim Age As Integer, Name As String, Money As Currency
Note, however, that a declaration such as:
Dim Age, Height, Weight As Integer

islegal, but Age and Height are declared as Variants, not Integers. In other words, we must
specify the type for each variable explicitly.

It isalso possible to tell VBA the type of the variable by appending a special character to the
variable name. In particular, VBA alows the type-declaration suffixes shown in Table 5-2. (I
personally didlike these suffixes, but they do save space.)

Table 5-2. Type-Declaration Suffixes

Suffix Type

integer

long

single

double

currency

ANEIREES

string

For instance, the following line declares a variable called Name$ of type String:
Dim Name$

We can then write:

Name$ = "Donna"

Finally, let us note that although Excel allows variable and constant declarations to be placed
anywhere within a procedure (before the item is used, that is), it is generally good programming
practice to place all such declarations at the beginning of the procedure. Thisimproves code
readability and makes housekeeping much simpler.

5.4.2 The Importance of Explicit Variable Declaration

We have said that using the Variant data type generally wastes memory and often results in poorer
performance. There is an additional, even more important reason to declare all variables explicitly.
This has to do with making typing errors, which we all do from time to time. In particular, if we
accidentally misspell a variable name, VBA will think we mean to create a new variable!

44

To illustrate how dangerous this can be, consider the NewBook procedure in Example 5-1, whose
purposeisto take the first open workbook, change its contents, ask the user for a name under
which to save the changed workbook, and then save the workbook under the new name.

Example 5-1. A Procedure with a Typo

Sub NewBook()
Dim Wbk As Workbook
Dim WbkName As String

" Get first open workbook
Set Wbk = Workbooks(1)

" Get the workbook name
WbkName = Wbk.Name

" Code to change the contents of the workbook
" goes here .

" Ask user for new name for document
WkbName = InputBox(“'Enter name for workbook " & WbkName)

" Save the workbook

Wbk .SaveAs WbkName
End Sub

Observe that thereis atypographical error (the b and k are transposed) in the following line:

WkbName = InputBox(*'Enter name for workbook " & WbkName)

Since the variable WkbName is not declared, Excel will treat it as a new variable and giveit the
Variant datatype. Moreover, VBA will assume that we want the new filename to be assigned to
the variable WkbName, and will save the changed document under its original name, whichis
stored in WokName. Thus, we will lose the original workbook when it isinadvertently overwritten

without warning!

5.4.2.1 Option Explicit

To avoid the problem described in the previous example, we need away to make Excel refuse to
run aprogram if it contains any variables that we have not explicitly declared. Thisis done simply
by placing the line:

Option Explicit

in the Declarations section of each code module. Since it is easy to forget to do this, VBA
provides an option called "Require Variable Declaration” in its Options dialog box. When this
option is selected, VBA automatically insertsthe Option Explicit linefor us. Therefore, |
strongly recommend that you enable this option.

Now let us briefly discuss some of the datatypesin Table 5-1.
5.4.3 Numeric Data Types

The numeric data types include Integer, Long, Single, Double, and Currency. A long isaso
sometimes referred to as along integer.

45

5.4.4 Boolean Data Type

A Boolean variableis avariable that takes on one of two values: True or False. Thisisavery
useful data type that was only recently introduced into VBA. Prior to itsintroduction, VBA
recognized 0 as Fall se and any nonzero value as True, and you may still see this usage in older
code.

5.4.5 String Data Type

A string is a sequence of characters. (An empty string has no characters, however.) A string may
contain ordinary text characters (letters, digits, and punctuation) as well as special control
characters such as vbCrLT (carriage return/line feed characters) or vbTab (tab character). Aswe
have seen, a string constant is enclosed within quotation marks. The empty string is denoted by a
pair of adjacent quotation marks, asin:

EmptyString =

There are two types of string variablesin VBA: fixed-length and variable-length. A fixed-length
string variableis declared as follows:

Dim FixedStringVarName As String * StringlLen

For instance, the following statement declares a fixed-length string of length 10 characters:
Dim sName As String * 10

Observe that the following code, which concatenates two strings:

Dim s As String * 10
s = "test”
Debug.Print s & "/"

and produces the output:
test /

This shows that the content of afixed-length string is padded with spaces in order to reach the
correct length.

A variable-length string variable is a variable that can hold strings of varying lengths (at different
times, of course). Variable-length string variables are declared simply as:

Dim VariableStringVarName As String
As an example, the code:

Dim s As String

s = ""test"
Debug.Print s & "/"
s = "another test"

Debug.Print s & "'/

produces the output:

46

test/
another test/

Variable-length string variables are used much more often than fixed-length strings, although the
latter have some very specific and important uses (which we will not go into in this book).

5.4.6 Date Data Type

Variables of the Date data type require 8 bytes of storage and are actually stored as decimal
(floating-point) numbers that represent dates ranging from January 1, 100 to December 31, 9999
(no year 2000 problem here) and times from 0:00:00 to 23:59:59.

Asdiscussed earlier, literal dates are enclosed within number signs, but when assigning adate to a
date variable, we can also use valid dates in string format. For example, the following are all valid
date/time assignments:

Dim dt As Date

dt = #1/2/98#

dt = "January 12, 2001"

dt = #1/1/95#

dt = #12:50:00 PM#

dt = #1/13/76 12:50:00 PM#

VBA has many functions that can manipulate dates and times. If you need to manipulate dates or
times in your programs, you should probably spend some time with the Excel VBA help file.
(Start by looking under "Date Data Type.")

5.4.7 Variant Data Type

The Variant data type provides a catch-all datatype that is capable of holding data of any other
type except fixed-length string data and user-defined types. We have aready noted the virtues and
vices of the Variant data type and discussed why variants should generally be avoided.

5.4.8 Excel Object Data Types

Excel VBA has alarge number of additional data typesthat fall under the general category of
Object datatype. We will see a complete list in the chapter on the Excel object model. To get the
feel for the types of objects in the Excel object model, hereisa partial list of the more prominent
objects:

Chart-related objects:

Axis ChartTitle Legend Series
AxisTitle Datal_abel \LegendEntry 'SeriesCollection
Chart DataTable ILegendK ey TickLabels
ChartArea Floor PlotArea Walls
ChartColorFormat Gridlines Point

Pivot table-related objects:
PPivotCache PPivotField PivotFormula Pivotltem PivotTable

General objects:

\Comment Font IRange \Workbook
Fill Format Outline Sheets \Worksheet
Filter "PageSetup \Window \WorksheetFunction

Thus, we can declare variables such as:

Dim wb As Workbook
Dim wks As Worksheet
Dim chrt As Chart
Dim ax As axis

Dim pf As PivotField

We will devote much of this book to studying the objectsin the Excel object model, for itis
through these objects that we can manipulate Excel programmatically.

5.4.8.1 The generic As Object declaration

It isalso possible to declare any Excel object using the generic object datatype Object, asin the
following example:

Dim chrt As Object

While you may see this declaration from time to time, it is much less efficient than a specific
object declaration, such as:

Dim chrt As Chart

Thisis because Excel cannot tell what type of object the variable chrt refersto until the program
isrunning, so it must use some execution time to make this determination. Thisisreferred to as
late binding and can make programs run significantly more slowly. (For more on late versus early
binding, see Appendix E.) Thus, generic object declarations should be avoided.

We will discuss object variables in some detail in Chapter 9. However, we should briefly discuss
the Set statement now, since it will appear from time to time in upcoming code examples.

5.4.8.2 The Set statement

Declaring object variables is done in the same way as declaring nonobject variables. For instance,
here are two variable declarations:

Dim int As Integer nonobject variable declaration
Dim chrt As Chart " object variable declaration

On the other hand, when it comes to assigning a value to variables, the syntax differs for object
and nonobject variables. In particular, we must use the Set keyword when assigning avalue to an
object variable. For example, the following line assigns the currently active Excel chart to the
variable chrt:

Set chrt = ActiveChart

48

(If the currently active object is not a chart, then the variable chrt will be set to the specia value
Nothing. Wewill discussNothing later.)

5.4.9 Arrays

Anarray variableis acollection of variables that use the same name, but are distinguished by an
index value. For instance, to store the first 100 cellsin the first row of aworksheet, we could
declare an array variable as follows:

Dim Cell(1 To 100) As Range

(Thereisno Cell object in the Excel object model: acell isaspecial Range object.) The array
variableisCel l. It has size 100. The lower bound of the array is 1 and the upper bound is 100.
Each of the following variables are Range variables (that is, variables of the object type Range):
Cell(1), Cell(2),..., Cell(100)

Note that if we omit the first index in the declaration, asin:

Dim Cell(100) As Range

then VBA will automatically set the first index to 0 and so the size of the array will be 101.

The virtue of declaring array variablesis clear, since it would be very unpleasant to have to
declare 100 separate variables! In addition, as we will see, there are ways to work collectively
with al of the elementsin an array, using a few simple programming constructs. For instance, the
following code bol df aces the values in each of the 100 cells aong the diagona of the active
worksheet:

For i = 1 To 100
Set Cell (i) = Cells(i,i)
Cell(i).Font.Bold = True
Next i

5.4.9.1 The dimension of an array

The Cell array defined in the previous example has dimension one. We can aso define arrays of
more than one dimension. For instance, the array:

Dim Cell(1 To 10, 1 To 100) As Range

isatwo-dimensional array, whose first index ranges from 1 to 10 and whose second index ranges
from 1to 100. Thus, the array has size 10* 100 = 1000.

5.4.9.2 Dynamic arrays

When an array isdeclared, asin:
Dim FileName(1l To 10) As String
the upper and lower bounds are both specified and so the size of the array isfixed. However, there

are many situations in which we do not know at declaration time how large an array we may need.
For this reason, VBA provides dynamic arrays and the ReD im statement.

49

A dynamic array is declared with empty parentheses, asin:

Dim FileName() as String

Dynamic arrays can be sized (or resized) using the ReDim statement, asiin:

ReDim FileName(l to 10)

This same array can later beresized again, asin:

ReDim FileName(1l to 100)

Note that resizing an array will destroy its contents unless we use the Preserve keyword, asin:

ReDim Preserve FileName(1 to 200)

However, when Preserve is used, we can only change the upper bound of the array (and only
the last dimension in amultidimensiona array).

5.4.9.3 The UBound function

The UBound function is used to return the current upper bound of an array. Thisisvery useful in
determining when an array needs redimensioning. To illustrate, suppose we want to collect an
unknown number of filenamesin an array named Fi leName. If the next file number is
iNextFi le, the following code checks to seeif the upper bound islessthan iNextFile; if so,
it increases the upper bound of the array by 10, preserving its current contents, to make room for
the next filename:

IT UBound(FileName) < iNextFile Then
ReDim Preserve FileName(UBound(FileName) + 10)
End IF

Note that redimensioning takestime, so it is wise to add some "working room" at the top to cut
down on the number of times the array must be redimensioned. Thisiswhy we added 10 to the
upper bound in this example, rather than just 1. (There is atrade-off here between the extratime it
takes to redimension and the extra space that may be wasted if we do not use the entire
redimensioned array.)

5.4.10 Variable Naming Conventions

VBA programs can get very complicated, and we can use al the help we can get in trying to make
them as readable as possible. In addition, as time goes on, the ideas behind the program begin to
fade, and we must rely on the code itself to refresh our memory. Thisiswhy adding copious
comments to a program is so important.

Anocther way to make programs more readable is to use a consistent naming convention for
constants, variables, procedure names, and other items. In general, a name should have two
properties. Firgt, it should remind the reader of the purpose or function of the item. For instance,
suppose we want to assign Chart variables to several Excel charts. The code:

Dim chrtl As Chart, chrt2 as Chart
Set chrtl = Charts(''Sales™)
Set chrt2 = Charts("'Transactions')

50

is perfectly legal, but 1000 lines of code and six months later, will we remember which invoiceis
chrtl and whichischrt2 ? Since we went to the trouble of naming the chartsin a descriptive
manner, we should do the same with the Chart variables, asin:

Dim chrtSales As Chart, chrtTrans as Chart
Set chrtSales = Charts(*'Sales™)
Set chrtTrans = Charts("'Transactions')

Of course, there are exceptionsto all rules, but, in generdl, it is better to choose descriptive names
for variables (as well as other items that require naming, such as constants, procedures, controls,
forms, and code modules).

Second, a variable name should reflect something about the properties of the variable, such asits
data type. Many programmers use a convention in which the first few characters of avariable's

name indicate the data type of the variable. Thisis sometimes referred to as a Hungarian naming
convention, after the Hungarian programmer Charles Simonyi, who is credited with its invention.

Table 5-3 and Table 5-4 describe the naming convention that we will generally use for standard
and object variables, respectively. Of course, you are free to make changes for your own personal
use, but you should try to be reasonably consistent. These prefixes are intended to remind us of the
datatype, but it is not easy to do this perfectly using only a couple of characters, and the longer
the prefix, the lesslikely it is that we will useit! (Note the ¢ prefix for integers or longs. Thisisa
commonly used prefix when the variable is intended to count something.)

Table 5-3. Naming Convention for Standard Variables

| Variable \ Prefix
'Boolean borf
Byte b or bt
Currency cur
Date dt
Double d or dbl
lInteger i,c orint
Long I, c, orling
Single sor sng
String sor str
User-defined type uor ut
Variant v or var
Table 5-4. Naming Convention for Some Object Variables
| Variable | Prefix
(Chart ch or chrt
\Workbook \wh or whbk
Worksheet ws or wks
Pivot Table pt or pvt
Font fnt
Range rng

In addition to a data type, every variable has a scope and a lifetime. Some programmers advocate
including a hint as to the scope of avariable in the prefix, using g for global and mfor module
level. For example, the variable gi Size isaglobal variable of type Integer. We will discussthe

51

scope and lifetime of a variable next (but we will not generally include scope prefixesin variable
names).

5.4.11 Variable Scope

Variables and constants have a scope, which indicates where in the program the variable or
constant is recognized (or visible to the code). The scope of avariable or constant can be either
procedure-level (also called local), module-level private, or module-level public. The rules may
seem a bit involved at first, but they do make sense.

5.4.11.1 Procedure-level (local) variables

A local or procedure-level variable or constant is avariable or constant that is declared within a
procedure, asis the case with the variable LocalVar and the constant LocalConstant in
Figure 5-2. A local variable or constant is not visible outside of the procedure. Thus, for instance,
if wetry to run ProcedureB in Figure 5-2, we will get the error message, "V ariable not defined,”
and the name LocalVar will be highlighted.

Figure 5-2. Examples of variable scope

52

| (General) ll | Procedured

ocption Bxplicit

FPublic Publicvar A= Integer

Public constant
Public Const PublicConstant =

Private wvariable
Frivate Privatevar As Integer
Dim AlsoPrivate As Integer

'Private constant
Const PrivateConst = 7

Suk Procsdurehi)

Dim Localvar As Integer

Local constant
Const LocalConst = 9

Localvar = 0
PublicvVar = 5§
Privateyar = 0

End Sub

Sub Frocsdurspgid)
Localvar = 1
End Sub

=ERIN

One of the advantages of local variablesis that we can use the same name in different procedures

- . . .
(s = F Ty R 1 e VAT

|

&

"

without conflict, since each variable is visible only to its own procedure.

5.4.11.2 Module-level variables

A module-level variable (or constant) is one that is declared in the declarations section of a code
module (standard, class, or UserForm). Module-level variables and constants come in two flavors:

private and public.

Simply put, a module-level public variable (or constant) is available to all proceduresin al of the
modules in the project, not just the module in which it is declared, whereas a module-level private
variable (or constant) is available only to the procedures in the module in which it was declared.

Public variables and constants are declared using the Publ i c keyword, asin:

Public APublnt As Integer
Public Const APubConst = 7

53

Private variables and constants are declared using the Private keyword, asin:

Private APrivatelnt As Integer
Private Const APrivateConst = 7

The Dim keyword, when used at the module level, has the same scope as Priivate, but is not as
clear, so it should be avoided.

Public variables are also referred to as global variables, but this descriptive term is not de rigueur.

5.4.12 Variable Lifetime

Variables also have alifetime. The difference between lifetime and scopeis quite simple: lifetime
refersto how long (or when) the variableis valid (that is, retains a value) whereas scope refers to
where the variable is accessible or visible.

To illustrate the difference, consider the following procedure:

Sub ProcedureA()
Dim LocalVar As Integer
Localvar = 0O
Call ProcedureB
Localvar = 1

End Sub

Note that LocalVar isalocal variable. When the line:

Call ProcedureB

is executed, execution switchesto ProcedureB. Whilethe lines of ProcedureB are being
executed, the variable LocalVar isout of scope, sinceitislocal to ProcedureA. But it is till
valid. In other words, the variable still exists and has avalue, but it is simply not accessible to the
codein ProcedureB. Infact, ProcedureB could also have alocal variable named LocalVar,
which would have nothing to do with the variable of the same name in ProcedureA.

Once ProcedureB has completed, execution continuesin ProcedureA with the line:
Localvar = 1

Thisisavalid instruction, since the variable LocalVar is back in scope.

Thus, the lifetime of the local variable LocalVar extends from the moment that ProcedureA is
entered to the moment that it is terminated, including the period during which ProcedureB is
being executed as aresult of the call to this procedure, even though during that period, LocalVar

isout of scope.

Incidentally, you may notice that the Microsoft help files occasionally get the notions of scope and
visibility mixed up abit. The creators of the files seem to understand the difference, but they don't
always use the terms correctly.

5.4.12.1 Static variables

To repest, avariable may go in and out of scope and yet remain valid during that time—that is,
retain avalue during that time. However, once the lifetime of a variable expires, the variableis

destroyed and itsvalue islost. It is the lifetime that determines the existence of avariable; its
scope determines its visibility.

Thus, consider the following procedures:

Sub ProcedureA()
Call ProcedureB
Call ProcedureB
Call ProcedureB
Call ProcedureB
Call ProcedureB

End Sub

Sub ProcedureB()
Dim x As Integer
X =5

End Sub

When ProcedureA is executed, it simply calls ProcedureB five times. Each time
ProcedureB iscalled, thelocal variable x is created anew and destroyed at the end of that call.
Thus, x is created and destroyed five times.

Normally, thisisjust want we want. However, there are times when we would like the lifetime of
alocal variable to persist longer than the lifetime of the procedure in which it is declared. Asan
example, we may want a procedure to do something special the first timeit is called, but not
subsequent times. For instance, the following one-line macro changes the font of the selected cells
to Comic Sans:

Sub ToComic()
Selection.Font.Name = ""Comic Sans"
End Sub

Suppose, however, that we wish to warn the user that Comic Sansis a bit informal and ask if he or
she really wants to make this change. We don't want to make a pest of ourselves by asking every
time the user invokes this macro. What we need is alocal variable with a"memory" that will
allow it to keep track of whether or not a particular call to ToComic isthefirst call or not. Thisis
done with a static variable.

A static variableis alocal variable whose lifetime is the lifetime of the entire module, not just the
procedure in which it was declared. In fact, a static variable retains its value as long as the
document or template containing the code module is active (even if no code is running).

Thus, a static variable has the scope of alocal variable, but the lifetime of amodule-level variable.
Clest tout dire!

Consider now the modification of the preceding macro, which is shown in Example 5-2. The code
first declares a static Boolean variable called NotFirstTime. It may seem simpler to use a
variable called FirstTime, but there is a problem. Namely, Boolean variables are automatically
initialized as False, so the first time that the ToComic macro isrun, FirstTime would be False,
which is not want we want. (We will discuss variable initialization a bit later.)

Example 5-2. ToComic() Modified to Use a Static Variable

Sub ToComic()
" Declare static Boolean variable

55

Static NotFirstTime As Boolean
" If first time, then ask for permission
IT NotFirstTime = False Then
IT MsgBox('Comic Sans is a bit informal. Proceed?", _
vbYesNo) = vbYes Then

" Make the change
Selection.Font.Name = ""Comic Sans MS"
End If

" No longer the first time
NotFirstTime = True

Else
" IT not the first time, just make the change
Selection.Font.Name = ""Comic Sans MS"
End If
End Sub

The I T statement checksto seeif the value of NotFirstTime isFase, asit will be thefirst time
the procedureis called. In this case, a message box is displayed, as shown in Figure 5-3. If the
user chooses the Y es button, the font is changed. In either case, the static Boolean variable
NotFirstTime issetto True. Precisely because NotFirstTime isstatic, this value will be
retained even after the macro ends (but not if the document is closed).

Figure 5-3. Dialog that appears if the static NotFirstTime is false

Microsoft Excel .

Comic Sans i 2 bt informal. Frocaed

The next time the macro is executed, the variable NotFirstTime will be True, and so the I T
condition:

I NotFirstTime = False Then

will be False and the MsgBox function will not be executed. Instead, the Else code will execute.
This code just changes the font, without bothering the user with a message box.

Static variables are not used very often, but they can be quite useful at times.

It may have occurred to you that we could accomplish the same effect by using a module-level
private variable to keep arecord of whether or not the macro has been called, instead of a static
local variable. However, it is considered better programming style to use the most restrictive scope
possible which, in this case, isaloca variable with an "extended" lifetime. This helps prevent
accidental ateration of the variable in other portions of the code. (Remember that this code may
be part of a much larger code module, with alot of things going on. It is better to hide the
NotFirstTime variable from this other code.)

5.4.13 Variable Initialization

When a procedure begins execution, all of itslocal variables are automatically initialized, that is,
giveninitia values. In general, however, it is not good programming practice to rely on this

56

initialization, since it makes the program less readable and somewhat more prone to logical errors.
Thus, itisagood ideato initialize al local variables explicitly, asin the following example:

Sub Example()
Dim x As Integer
Dim s As String

Xx =0 " Initialize x to O
s ="" Initialize s to empty string
" more code here .

End Sub

Note, however, that static variables cannot be initialized, since that defeats their purpose! Thus, it
isimportant to know the following rules that VBA uses for variable initialization (note also that
they are intuitive):

e Numeric variables (Integer, Long, Single, Double, Currency) areinitiaized to zero.

o A variable-length string isinitialized to a zero-length (empty) string.

e A fixed-length string isfilled with the character represented by the ASCII character code
0, or Chr(0).

e Variant variables areinitialized to Empty.

e Object variables areinitialized to Nothing.

The Nothing keyword actually has several related usesin Excel VBA. Aswe will seein Chapter
8, itisused to release an object variable. Also, it is used as areturn value for some functions,
generally to indicate that some operation has failed. Finally, it is used to initialize object variables.

5.5 VBA Operators

VBA uses a handful of simple operators and relations, the most common of which are shown in
Table 5-5.

Table 5-5. VBA Operators and Relations

Type Name Symbol

Arithmetic Operators Addition +

| 'Subtraction -

| Multiplication I*
Division /
Division with Integer result \
Exponentiation n
Modulo Mod

String operator ‘Concatenation &

Logical operators AND AND
OR OR
NOT NOT

Comparison relations Equal =

| Less than <

Greater than

>
Less than or equal to <=
Greater than or equal to >=
Not equal to <>

The Mod operator returns the remainder after division. For example:

8 Mod 3

returns 2, since the remainder after dividing 8 by 3is2.
To illustrate string concatenation, the expression:

"To be or ™ & "not to be"

is equivalent to:

"To be or not to be"

58

Chapter 6. Functions and Subroutines

Aswe have seen, VBA allows two kinds of procedures: functions and subroutines. As areminder,
the only difference between a function and a subroutine is that a function returns a value, whereas
a subroutine does not.

6.1 Calling Functions

A function declaration has the form:

[Public or Private] Function FunctionName(Paraml As DataTypel, _
Param2 As DataType2,...) As ReturnType

Note that we must declare the data types not only of each parameter to the function, but also of the
return type. Otherwise, VBA declares these items as variants.

We will discuss the optional keywords Public and Private later in this chapter, but you can
probably guess that they are used here to indicate the scope of the function, just as they are used in
variable declarations.

For example, the AddOne function in Example 6-1 adds 1 to the original value.

Example 6-1. The AddOne Function

Public Function AddOne(Value As Integer) As Integer
AddOne = Value + 1
End Function

To use the return value of afunction, we just place the call to the function within the expression,
in the location where we want the value. For instance, the code:

MsgBox ""Adding 1 to 5 gives: " & AddOne(5)

produces the message box in Figure 6-1, where the expression AddOne (5) is replaced by the
return value of AddOne, which, in this case, is 6.

Figure 6-1. The message dialog displayed by Example 6-1

Microsoft Excel

Adding 1 10 & gives: b

Note that, in general, any parameters to a function must be enclosed in parentheses within the
function call.

59

In order to return avalue from afunction, we must assign the function's name to the return value
somewhere within the body of the function. Example 6-2 shows a slightly more complicated
example of afunction.

Example 6-2. Assigning a Function's Return Value

Function ReturnCount() As Variant
" Return count of cells in current selection

IT TypeName(Selection) = "Range' Then
ReturnCount = Selection.Count
Else
ReturnCount = "Not applicable"
End If
End Function

This function returns a count of the number of cellsin the current selection, provided that the
selection isarange of cells. If the selection is another type of object (such as a chart), the function
returns the words "Not applicable." Note that since the return value may be a number or a string,
we declare the return type as Variant. Note also that ReturnCount is assigned twice within the
body of the function. Its value, and hence the value of the function, is set differently depending
upon the value returned by the TypeName (Selection) function. Since these assignments are
mutually exclusive, only one of them will occur each time the function is called.

Because functions return values, you can't call them directly from the Macro dialog that appears
when you select Tools =—* Macro —* Macros, nor can you assign them to an Excel toolbar or
menu through Excel's user interface. If you want to be able to call afunction, you'll have to "wrap"
it in—that is, have it called by—a subroutine, the topic that well cover next.

6.2 Calling Subroutines

A subroutine declaration has the form:

[Public or Private] Sub SubroutineName(Paraml As DataTypel, _
Param2 As DataType2,...)

Thisissimilar to the function declaration, with the notable absence of the As ReturnType
portion. (Note also the word Sub in place of Function .)

Since subroutines do not return a value, they cannot be used within an expression. To call a
subroutine named SubroutineA, we can write either:

Call SubroutineA(parameters, . . .)
or simply:
SubroutineA parameters, . . .

Note that any parameters must be enclosed in parentheses when using the Call I keyword, but not
otherwise.

60

6.3 Parameters and Arguments

Consider the following very simple subroutine, which does nothing more than display a message
box declaring a person's name:

Sub DisplayName(sName As String)
MsgBox "My name is " & sName
End Sub

To call this subroutine, we would write, for example:
DisplayName "‘Wolfgang"
or:

Call DisplayName("'Wolfgang')

The variable sName in the procedure declaration:
Sub DisplayName(sName As String)

is caled a parameter of the procedure. The call to the procedure should contain a string variable
or aliteral string that is represented by the variable sName in this procedure (but see the
discussion of optional parametersin the next section). The value used in place of the parameter
when we make the procedure call is called an argument. Thus, in the previous example, the
argument is the string "Wolfgang."

Note that many programmers fail to make a distinction between parameters and arguments, using
the names interchangeably. However, since a parameter is like a variable and an argument islike a
value of that variable, failing to make this distinction is like failing to distinguish between a
variable and its value!

6.3.1 Optional Arguments

In VBA, the arguments to a procedure may be specified as optional, using the Optional
keyword. (It makes no sense to say that a parameter is optional; it isthe value that is optional.) To
illustrate, consider the procedure in Example 6-3, which simply changes the font name and font
size of the current selection:

Example 6-3. Using an Optional Argument

Sub ChangeFormatting(FontName As String, _
Optional FontSize As Variant)

" Change font name
Selection.Font.Name = FontName

" Change font size if argument is supplied
IT Not IsMissing(FontSize) Then
Selection.Font.Size = CInt(FontSize)
End If
End Sub

61

The second parameter is declared with the Optional keyword. Because of this, we may call the
procedure with or without an argument for this parameter, asin:

ChangeFormatting(*'Arial Narrow"™, 24)
and:

ChangeFormatting(*'Arial Narrow'™)

Note that the IsMissing function is used in the body of the procedure to test whether the
argument is present. If the argument is present, then the font sizeis changed. Note also that we
declared the FontSi ze parameter as type Variant because I sMissing works only with
parameters of type Variant (unfortunately). Thus, we converted the Variant to type Integer using
the CInt function.

A procedure may have any number of optional arguments, but they must all come at the end of the
parameter list. Thus, for instance, the following declaration is not legal:

Sub ChangeFormatting(Optional FontName As String, FontSize As Single)

If we omit an optional argument in the middle of alist, we must include an empty space when
calling that procedure. For instance, if a procedure is declared as follows:

Sub ChangeFormatting(Optional FontName As String, _
Optional FontSize As Single, _
Optional FontBold as Boolean)

then acall to this procedure to set the font name to Arial and the boldfacing to True would look
like:

ChangeFormat "Arial™, , True
To avoid confusion, we should point out that some built-in Excel procedures have optional

arguments and others do not. Of course, we can't leave out an argument unless the documentation
or declaration for the procedure specifically states that it's optional.

6.3.2 Named Arguments

Some VBA procedures can contain alarge number of parameters. For example, one form of the
Excel SaveAs function has the declaration:

SaveAs (Filename As string, FileFormat As VARIANT, Password As VARIANT, _
WriteResPassword As VARIANT, ReadOnlyRecommended As VARIANT, _
CreateBackup As VARIANT, AddToMru As VARIANT, TextCodepage As _
VARIANT, TextVisuallLayout As VARIANT)

where all of the parameters are optional. Here is an example of a call to this procedure:
SaveAs "'c:\temp\test.xIs", , , , , True , , , True
Not very readable, isit?

The arguments shown in the previous call are said to be positional arguments becauseit istheir
position that tells VBA which parameters they are intended to replace. Thisiswhy we need to
include space for missing arguments.

62

However, VBA can also use named arguments, in which case the previous call would be written
as.

SaveAs FileName:="c:\temp\test.xls", _
CreateBackup:=True, _
AddToMru:=True

Note the special syntax for named arguments, in particular, the colon before the equal sign.

Thisfunction call is agreat improvement over the positional argument version. In general, the
advantages of named arguments over positiona arguments are threefold:

e Named arguments can improve readability and clarity.

e Blank spaces (separated by commas) are required for missing optional arguments when
using a positional declaration, but not when using named arguments.

e Theorder in which named arguments are listed isimmaterial, which, of course, is not the
case for positional arguments.

Named arguments can improve readability quite a bit and are highly recommended. However,

they can require considerably more space, so for the short examplesin this book, we usually will
not use them.

6.3.3 ByRef Versus ByVal Parameters

Parameters come in two flavors:ByRe T and ByVal. Many programmers do not have a clear
understanding of these concepts, but they are very important and not that difficult to understand.

To explain the difference, consider the two procedures in Example 6-4. ProcedureA simply sets
the value of the module-level variable x to 5, displays that value, calls the procedure AddOne with
the argument x , and then displays the value of x again.

Example 6-4. Testing the ByVal and ByRef Keywords

Sub ProcedureA()

X =5 " Set x to 5
MsgBox X " Display x
Call AddOne(x) " Call AddOne
MsgBox X " Display x again
End Sub
Sub AddOne(ByRef i1 As Integer)
i=-i+1
End Sub

Note the presence of the ByRe T keyword in the AddOne procedure declaration. This keyword
tells VBA to pass areference to the variable x to the AddOne procedure. Therefore, the AddOne
procedure, in effect, replacesits parameter i by the variable x. Asaresult, theline:

1 =1 +1
effectively becomes:
X =x+1

So, after AddOne is cdled, the variable x has the value 6.

63

On the other hand, suppose we change the AddOne procedure, replacing the keyword ByRef with
the keyword ByVal:

Sub AddOne(ByVval i As Integer)
i=i1+1
End Sub

In this case, VBA does not pass areference to the variable x, but rather it passesits value. Hence,
the variable i in AddOne simply takes on the value 5. Adding 1 to that value gives 6. Thus, i
equals 6, but the value of the argument x is not affected! Hence, both message boxes will display
thevalue 5 for x.

ByRef and ByVal both have their uses. When we want to change the value of an argument, we
must declare the corresponding parameter as ByRe T, so that the called procedure has access to the
actual argument itself. Thisisthe case in the previous example. Otherwise, the AddOne procedure
does absolutely nothing, since the local variable i isincremented, and it is destroyed immediately
afterwards, when the procedure ends.

On the other hand, when we pass an argument for informational purposes only, and we do not
want the argument to be altered, it should be passed by value, using the ByVal keyword. In this
way, the called procedure gets only the value of the argument.

Toillustrate further, ProcedureA in Example 6-5 gets the text of the first cell and feedsit to the
CountCharacters function. The returned value (the number of charactersin the active
document) is then displayed in a message box.

Example 6-5. Passing an Argument by Value

Sub ProcedureA(Q)
Dim sText As String
sText = ActiveSheet.Cells(1,1).Text
MsgBox CountCharacters(sText)

End Sub

Function CountCharacters(ByVal sTxt As String)
CountCharacters = Len(sTxt)
End Function

Now, CountCharacters does not need to, and indeed should not, change the text. It only
counts the number of charactersin the text. Thisiswhy we pass the argument by value. In this
way, the variable sTxt gets the value of the text in sText, that is, it gets a copy of the text.

To appreciate the importance of this, imagine for amoment that CountCharacters isreplaced
by a procedure that contains hundreds or thousands of lines of code, written by someone else,
perhaps not asreliable as we are. Naturally, we do not want this procedure to change our text.
Rather than having to check the code for errors, all we need to do is notice that the sTxt
parameter is called by value, which tells us that the procedure does not even have access to our
text. Instead, it gets only a copy of the text.

There is one downside to passing arguments by value: it can take alot of memory (and time). For
instance, in the previous example, VBA needs to make a copy of the text to pass to the parameter
STXL.

Thus, we can summarize by saying that if we want the procedure to modify an argument, the
argument must be passed by reference. If not, the argument should be passed by value unless this

64

will produce an unacceptabl e decrease in performance or unless we are very sure that it will not
get changed by accident.

It isimportant to note that VBA defaultsto ByRef if we do not specify otherwise. This means that

the values of arguments are subject to change by the called procedure, unless we explicitly include
the keyword ByVal. Caveat scriptor !

6.4 Exiting a Procedure

VBA providesthe Exit Sub and Exit Function statements, should we wish to exit froma
procedure before the procedure would terminate naturally. For instance, if the value of a parameter
is not suitable, we may want to issue awarning to the user and exit, as Example 6-6 shows.
Example 6-6. Using the Exit Sub Statement

Sub DisplayName(sName As String)

IT sName = """ then
Msgbox "'Please enter a name."
Exit Sub
End If
MsgBox "‘Name entered is ' & sName
End Sub

6.5 Public and Private Procedures

Just as variables and constants have a scope, so do procedures. We can declare a procedure using
the Public or Private keyword, asin:

Public Function AddOne(i As Integer) As Integer

or:

Private Function AddOne(i As Integer) As Integer

The differenceissimple: aPrivate procedure can only be called from within the modulein
which it is defined, whereas a Pub 1 i c procedure can be called from within any module in the

project.

Note that if the Public or Private keyword is omitted from a procedure declaration, then the
procedureis considered to be Public.

6.6 Project References

In order for code in one project to call a public procedure in another project, the calling project
must have a reference to the called project.

65

Generally, aproject that is associated with aworkbook is interested only in procedures that liein
that project. In fact, generally it would be bad programming practice to require a procedure in one
project to call aprocedure in another project. Nonethel ess, there may be occasions when thisis
required. To add areference to the calling project, we use the References dialog box (under the
Tools menu), shown in Figure 6-2.

Figure 6-2. The References dialog box

References - Project

Availanle Beferences:

¥ Microsoft Ward 8.0 Object Library
¥ COLE Autormation

¥ Microsoft Forms 2.0 Object Library
¥ TamplaeProject

« Vizual Basic For Applications ﬂ Carcel

i

B \crocoft Office 8.0 Chjact Library ﬂ
Hormal
ACCESS Priarity
AP Dieclaration Loader Help
Application Performance Explorer Client ﬂ

application Performance Explarer Expedite
application Performance Explorer Instance

Applcation Performance Explorer Logger et
rinli-ating Parfinr manea Fynlarar Manansat
4 1]

|

Microsaft Office 8.0 Object Library

Location: 1NOficad?Officalmeod7.dil
Language: Standard

6.6.1 Fully Qualified Procedure Names

When we call a public procedure that lies in another module, thereis a potentia problem with
ambiguity, for there may be more than one public procedure with the same name in another
module. VBA will execute thefirst one it finds, and this may not be the one we had in mind!
The solution isto use a qualified procedure name, which has the form:

ModulleName .ProcedureName

For instance, if a public procedure named AddOne liesin a module named Utilities, then we can
call this procedure using the syntax:

Utilities.AddOne

If necessary, we can also specify the project name, using the syntax (don't forget to set the
reference first):

ProjectName.ModuleName.ProcedureName

It isimportant to note that Pro jectName isthe code name of the project, not the filename. (The
default code name is VBAProject.)

66

Chapter 7. Built-in Functions and Statements

VBA has alarge number of built-in functions and statements. For possible reference, Table 7-1
shows the VBA functions, and Table 7-2 shows the statements. We will take alook at afew of the
more commonly used functions and statements for programming Excel VBA in this chapter and

Chapter 8.

To help simplify the exposition, we will follow Microsoft's lead and use square brackets to
indicate optional parameters. Thus, for instance, the second parameter in the following procedure
isoptional:

Sub ChangeFormat(FontName [, FontSize])

Note that we have also omitted the data type declarations, which will be discussed separately.

Table 7-1. VBA Functions

\Abs IDoEvents ISEmpty Right
Array Environ IsError RightB
Asc EOF IsMissing Rnd

AscB Error ISNull Round*
AscW Exp ISNumeric RTrim
Atn FileAttr IsObject 'Second
CdlByName* FileDateTime Join* Seek
Chbool FileLen Lbound Sgn

Chyte Filter* Lcase Shell

Ccur Fix Left Sin

(Cdate [Format LeftB SLN
CDhl FormatCurrency* Len Space
Cdec FormatDateTime* LenB Spc
Choose FormatNumber* LoadPicture Split*

Chr FormatPercent* Loc Sor

chrB [FreeFile ILOF Str
\Chrw PV lLog StrComp
Cint GetAll Settings Ltrim StrConv
CLng GetAttr Mid String
Command GetAutoServerSettings MidB StrReverse*
ICos GetObject Minute Switch
(CreateObject |GetSetting IMIRR 'SYD
Csng Hex Month Tab

CStr Hour MonthName* |Tan
CurDir lif MsgBox Time
Cvar IMEStatus Now Timer
\CVDate Input INper TimeSerial
CVErr InputB NPV TimeValue
Date InputBox Oct Trim
DateAdd InStr Partition TypeName
DateDiff InStrB Pmt UBound

Tauﬁﬂﬁy“

DatePart InstrRev* \PPmt 'UCase

DateSeria Int PV va

DateValue Ipmt QBColor VarType

Day IRR Rate WeekdayWeekdayName*
DDB ISArray Replace* Y ear

Dir IsDate IRGB \

™ |tems marked with an asterisk (*) are for Office 9/10 only.

7.1 The MsgBox Function

We have been using the MsgBox function unofficially for some time now. Let usintroduce it

officially. The MsgBox function is used to display a message and wait for the user to respond by
pushing a button. The most commonly used syntax is:

MsgBox(prompt [, buttons] [, title])

Thisis not the function's complete syntax. There are some additional optional parameters related
to help contexts that you can look up in the help documentation.

prompt isa String parameter containing the message to be displayed in the dialog box. Note that
amultiline message can be created by interspersing the vbCrL T constant within the message.

buttons isalong parameter giving the sum of values that specify various properties of the
message box. These properties are the number and type of buttons to display, the icon style to use,
the identity of the default button, and the modality of the message box. (A system modal dialog
box remains on top of al currently open windows and captures the input focus systemwide,
whereas an application modal dialog box remains on top of the application's windows only and
captures the application's focus.) The various values of Buttons that we can sum are shown in
Table 7-2. (They are officialy defined in the VbMsgBoxSty le enum.)

Table 7-2. The MsgBox Buttons Argument Values

\ Purpose \ Constant | Value | Description
Button types vbOKOnly 0 Display OK button only
vbOK Cancel 1 Display OK and Cancel buttons
vbAbortRetrylgnore |2 Display Abort, Retry, and Ignore buttons
| 'vbY esNoCancel 3 IDisplay Yes, No, and Cancel buttons
| vbYesNo 4 IDisplay Yes and No buttons
vbRetryCancel 5 Display Retry and Cancel buttons
Icon types vbCritical 16 Display Critical Message icon
vbQuestion 32 Display Warning Query icon
| 'VbExclamation 148 |Display Warning Message icon
| 'vblInformation |64 |Display Information Message icon
Default button |vbDefaultButtonl 0 First button is default
vbDefaultButton2 256 |Second button is default

vbDefaultButton3 512 Third button is default

vbDefaultButton4 768 Fourth button is default

68

Modality VbApplicationModal |0 \Application modal message box

| vbSystemModal 14096 |System modal message box

For instance, the code:
MsgBox "Proceed?', vbQuestion + vbYesNo

displays the message box shown in Figure 7-1, which includes a question mark icon and two
command buttons, labeled Y es and No.

Figure 7-1. A MsgBox dialog box

Microsoft Excel

The title parameter is astring expression that is displayed in the title bar of the dialog box. If
we omit this argument, then "Microsoft Excel" will be displayed, asin Figure 7-1.

The MsgBox function returns a number indicating which button was selected. These return values
aregivenin Table 7-3. (They are officially defined in the VbMsgBoxResul t enum.)

Table 7-3. MsgBox Return Values

\ Constant \ Value | Description
vbOK 1 OK button pressed

vbCancel 2 Cancel button pressed

vbADbort 3 Abort button pressed

\VbRetry 4 IRetry button pressed

\vblgnore 5 llgnore button pressed

vbY es 6 Y es button pressed

vbNo 7 No button pressed

7.2 The InputBox Function

The InputBox function is designed to get input from the user. The most commonly used (but not
the complete) syntax is:

InputBox(prompt [, title] [, default])

where prompt isthe message in the input box, title isthetitlefor theinput box, and default
isthe default value that is displayed in the text box. For instance, the code:

sName = InputBox("'Enter your name.', "Name', "Albert')

produces the dialog box in Figure 7-2.

69

Figure 7-2. An InputBox dialog box

Mame

Entaryour name. oK.

Cancel |

The InputBox function returns the string that the user entersinto the text box. Thus, in our
example, the string variable sName will contain this string.

Note that if we want a number from the user, we can still use the InputBox function and simply

convert the returned string (such as "12.55") to a number (12.55) using the Val function,
discussed later in the chapter.

7.3 VBA String Functions

Here are a handful of useful functions that apply to strings (both constants and variables):

The Len function

The Len function returns the length of a string—that is, the number of charactersin the
string. Thus, the code:

Len(*"January Invoice')
returns the number 15.
The UCase and LCase functions

These functions return an al uppercase or all lowercase version of the string argument.
The syntax is:

UCase(string)
LCase(string)

For instance:
MsgBox UCase(''Donna'™)
will display the string DONNA.
The Left, Right, and Mid functions
These functions return a portion of a string. In particular:

Left(string, number)

70

returns the leftmost number charactersin string, and:
Right(string, number)

returns the rightmost number charactersin string. For instance:
MsgBox Right(*'‘Donna Smith", 5)

displaysthe string Smi th.

The syntax for Mid is.

Mid(string, start, length)

Thisfunction returns the first length number of characters of string, starting at
character number start. For instance:

Mid(“'Library.xIs,9,3)
returns the string xI's. If the length parameter is missing, asin:
Mid("'Library.xIs",9)
the function will return the rest of the string, starting at start.
The InStr, InStrRev functions
The syntax for the very useful InStr function is:
Instr(Start, StringToSearch, StringToFind)
Thereturn value is the position, beginning at Start, of the first occurrence of
StringToFind within StringToSearch. If Start is missing, then the function starts

searching at the beginning of StringToSearch. For instance:

MsgBox Instr(1, "Donna Smith", *"'Smith')

displays the number 7, because "Smith" begins at the seventh position in the string
"Donna Smith."

The InStrRev function is anaogous to InStr but searches backwards through the
StringToSearch string.

The Replace function

This very useful function (not available in Excel 97) is used to replace asubstring in a
string by another string. For instance, the code:

MsgBox Replace(''the car is red"”, "red"”, "blue')
displays the string "the car is blue".

The Sr and Val functions

71

The Str function converts a number to a string. For instance:

Str(123)

returns the string 123. Conversely, the Val function converts a string that represents a
number into a number (so that we can do arithmetic with it, for instance). For example:

val('4.5™)
returns the number 4.5 and:
Val (*'1234 Main Street')

returns the number 1234. Note, however, that Val does not recognize dollar signs or
commas. Thus:

Val ($12.00)
returns 0, not 12 .00.
The Trim, LTrim, and RTrim functions

The LTrim function removes leading spaces from a string. Similarly, RTr im removes
trailing spaces, and Tr im removes both leading and trailing spaces. Thus:

Trim(" extra ')
returns the string extra.
The String and Space functions

The String function provides away to quickly create a string that consists of asingle
character repeated a number of times. For instance:

sText = String(25, "B"™)

sets sText to astring consisting of 25 Bs. The Space function returns a string consisting
of agiven number of spaces. For instance:

sText = Space(25)
sets sText to astring consisting of 25 spaces.
The Like operator and SrCmp function

The Like operator is very useful for comparing two strings. Of course, we can use the
equal sign, asin:

stringl = string2

which is true when the two strings are identical. However, Like will also make a case-
insensitive comparison or alow the use of pattern matching. The expression:

72

string Like pattern

returns True if string fits pattern, and Fal se otherwise. (Actualy, the expression
can aso return Nul I.) We will describe pattern in amoment.

The type of string comparison that the L i ke operator uses depends upon the setting of the
Option Compare statement. There are two possibilities, one of which should be placed
in the Declarations section of amodule (in the same place asOption Explicit):

Option Compare Binary
Option Compare Text

Note that the default isOption Compare Binary.

Under Option Compare Binary, string comparison isin the order given by the ANS
character code, as shown here:

A<B<...<Z<a<b<...<z<A<...<@<a<...<g

Under Option Compare Text, string comparison is based on a case-insensitive sort
order (determined by your PC's locale setting). This gives a sort order as shown here:

Aza<A=a<B=b<...<Z=z<@=g

By the way, the last item in the Text sort order isthe "]" character, with ANSI value 91.
Thisisuseful to know if you want to place an item last in alphabetical order—just
surround it with square brackets.

The pattern-matching features of the Like operator allow the use of wildcard characters,
character lists, or character ranges. For example:

2

Matches any single character

*

Matches zero or more characters

#

matches any single digit (0-9)

[charlist]

Matches any single character in charlist
[!charlist]

Matches any single character not in charlist

For more details, check the VBA help file.

73

The StrCmp function also compares two strings. Its syntax is:
StrComp(stringl, string2 [, compare])

and it returns a value indicating whether stringl isequal to, greater than, or less than
string2. For more details, check the VBA help file.

7.4 Miscellaneous Functions and Statements

Of the wealth of functions offered by the VBA language, well focusonthe Is. . . functionsto
determine an attribute of avariable or object, the conversion functions, and two functions, 11F
and Swi tch, that return a conditional result.

7.4.1 The Is Functions

VBA has several s functions that return Boolean values indicating whether or not a certain
condition holds. We have already discussed the 1sMiissing function in connection with optional
arguments. Here are some additional s functions.

7.4.1.1 The IsDate function

This function indicates whether an expression can be converted to a date. It also appliesto acell,
in which case it evaluates the contents of the cell. If the contents represent avalid date, the
function returns True. For instance, the code;

IsDate(Range("'F3™))

will return True if the contents of cell F3 represent a date.

7.4.1.2 The IsEmpty function

This function indicates whether a variable has been initialized or whether aworksheet cell is
empty. For example, the code:

IT IsEmpty(Range(*'A1'™)) Then .
tests whether or not cell Al isempty.
7.4.1.3 The IsNull function

Thisfunction is used to test whether avariableisNul I (that is, contains no data). Note that code
such as:

If var = Null Then

will aways return Fal se because most expressions that involve Nul I automatically return
False. The proper way to determineif the variable var isNul I isto write:

IT IsNull(var) Then

7.4.1.4 The IsNumeric function

74

This function indicates whether an expression can be evaluated as a number or whether a cell
contains a value that can be evaluated as a number. For instance, if cell Al contains the data 123
(even if this cell isformatted as text), then the condition in:

IT IsNumeric(Range(*'A1'")) Then

will evaluateto True. On the other hand, if the cell contains the data 123 Main Street, then the
condition will evaluateto False.

7.4.2 The Immediate If Function

The Immediate If function has the syntax:

I 1F(Expression, TruePart, FalsePart)

If Expression isTrue, then the function returns TruePart. If Expression isFalse, the
function returns Fal sePart. For instance, the following code displays adialog indicating
whether or not the first row in the active worksheet is empty:

Dim rng As Range

Set rng = ActiveSheet.Rows(1)

MsgBox 11f(IsEmpty(ActiveSheet.Cells(1, 1)), _
"Cell is empty', ""Cell is not empty')

It is very important to note that the Immediate If function always evaluates both TruePart and
FalsePart, even though it returns only one of them. Hence, we must be careful about
undesirable side effects. For example, the following code will produce a division by zero error
because even though the 1 1T function returns 1/x only when x isnot equal to O, the expression
1/x isevaluated in al cases, including when x is equal to O:

0
IHHf(x =0, x~2, 1/ %)

X
y

7.4.3 The Switch Function

The syntax of the Switch functionis:

Switch(exprl, valuel, expr2, value2, ... , exprn, valuen)

where exprn and valuen are expressions. Note that there need only be one expression-value
pair, but the function is more meaningful if there are at least two such pairs.

The Swi tch function evaluates each expression exprn. When it encountersthe first True
expression, it returns the corresponding value. Aswith the 1 1¥ function, Swi tch always
evaluates all of the expressions. If none of the expressionsis True, the function returnsNull I. This
can be tested with the 1sNull I function.

The procedure in Example 7-1 displays the type of file based on its extension: Template,
Workbook, or Add-in.

Example 7-1. The Switch Function

Sub ShowFileType(FileExt As String)
Dim FileType As Variant

75

FileType = Switch(FileExt
FileExt
FileExt

"xIt'", "Template'™, _
"xIs'", "Workbook',
"xla™, "Addin')

" Display result
IT Not IsNull(FileType) Then
MsgBox FileType
Else
MsgBox "‘Unrecognized type"
End IF
End Sub

There isone subtlety in this code. Since the Swi tch function can return aNul I value, we cannot
assign the return value to a String variable, as we might first try to do:

Dim FileType As String

FileType = Switch(FileExt
FileExt
FileExt

"xIt'", "Template'™, _
"xlIs'", "Workbook", _
"xla™, "Addin')

Thiswill not produce an error unless Fi leExt isnot "xIt," "xIs," or "xla," in which case we will
get the very annoying error message, "Invalid use of Null." The solution isto declare Fi leType
as aVariant, which can hold any data type, including no data type, which isindicated by the Nul I
keyword. (Thisissue can also be avoided by using aSelect Case statement, discussed in

Chapter 8.)
7.4.4 Units Conversions

The InchesToPoints function converts a measurement given in inches to one given in points.
The reason thisisimportant is that many Excel values need to be given (or are returned) in points,
but most of us prefer to think in inches (there are 72 pointsin one inch).

This applies especially to positioning properties, such as Top and Left. For instance, the Top
property of a ChartObject specifies the location of the top of the chart object, measured in points,
from Row 1 of the worksheet. Thus, to set this value to .25 inches, we would write:

ActiveChart.ChartObject.Top = InchesToPoints(.25)

Thereisalso aPointsTolnches function that is useful for displaying the return value of a
function in inches when the function returns the value in points.

7.4.5 The Beep Statement
This simple statement, whose syntax is:
Beep

sounds a single tone through the computer's speakers. It can be useful (when used with restraint) if
we want to get the user's attention. However, there is a caveat: the results are dependent upon the
computer's hardware and so the statement may not produce a sound at all! Thus, if you use this
statement in your code, be sure to warn the user. (It is possible, and probably better in general, to
use the Excel status bar to display messages to the user that do not interfere with execution of a
program. Thisis done using the StatusBar property of the Application object.)

76

7.5 Handling Errors in Code

We discussed the various types of errorsin Chapter 3, but we have scrupulously avoided the
guestion of how to handle run-time errorsin code. Indeed, VBA provides several tools for
handling errors (On Error, Resume, the Err object, and so on), and we could include an entire
chapter on the subject in this book.

Proper error handling is extremely important. Indeed, if you are, or intend to become, a
professional application developer, you should familiarize yourself with error-handling procedures.

On the other hand, if your intention is to produce Excel VBA code for your own personal use, the
reasons for adding error-handling routines are somewhat mitigated. When an error occurs within
one of your own programs, VBA will stop execution, display an error message, and highlight the
offending code. This should enable you to debug the application and fix the problem. (It would be
unreasonable to expect another user of your program to debug your code, however.)

Let us undertake a brief discussion of the highlights of error handling. (For more details, may |
suggest my book Concepts of Object-Oriented Programming in Visual Basic, published by
Springer-Verlag. It has a detailed chapter on error handling.)

7.5.1 The On Error Goto Label Statement

The On Error statement tells VBA what to do when a run-time error occurs. The most common
form of the statement is;

On Error GoTo label

where label isalabel. For instance, consider the following code:

Sub example()
On Error GoTo ERR_EXAMPLE

MsgBox Selection.Cells.Count
Exit Sub

ERR_EXAMPLE:
MsgBox Err.Description, vbCritical
Exit Sub
End Sub

The purpose of this procedure is simply to display the number of cellsin the current selection.
When the current selection is a worksheet range, the Cells property returns the collection of cells
in the selection and the Count property then returns the number of cells.

However, if the current selection is not a worksheet range (it might be a drawing object or a chart,
for instance), then the Cells property fails. To deal with this possibility in afriendly manner, we
add some error checking. Theline:

On Error GoTo ERR_EXAMPLE

tells VBA to move execution to the label ERR_EXAMPLE if an error occurs. The code following
thislabel is caled the error-handling code. If an error should occur, the next line executed is the

MsgBox line, in which case the dialog in Figure 7-3 will be displayed. This message gives a
description of the error, obtained from the Error object, which we discussin the next section.

Figure 7-3. An error dialog

Microsoft Excel

It isimportant to note the line just before the ERR_EXAMPLE label:
Exit Sub

Without this statement, the error-handling code will always be executed, even when there is no
error! Omitting this lineis a common mistake. Note also that labels always end with a colon.

7.5.2 The Error Object

The error object, Err object, belongs to the VBA object model. The most important properties of
this object are:

Number

The VBA error number
Source

The name of the current VBA project
Description

A description of the error

Note that the Clear method of the Err object will clear all of the properties of the Err object,
setting its Number property to 0 (which indicates the absence of an error).

7.5.3 The On Error GoTo 0 Statement

The statement:

On Error GoTo O

turns off any previous On Error GoTo label statements. Any error occurring subsequently will
be handled by VBA in its own inimitable way.

7.5.4 The On Error Resume Next Statement

The syntax:

78

On Error Resume Next

tells VBA to continue executing the code immediately following the line that caused the error.
There are two important uses for thisform of On Error. Thefirst isto cause VBA toignore an
error. For instance, the code:

Sub example()

On Error Resume Next

MsgBox Selection.Cells.Count
End Sub

will report the cell count when the selection is a worksheet range and do nothing when the
selection is not a worksheet range.

Another important use for the On Error Resume Next syntax isfor in-line error checking,
where we check for errors immediately following the line that may have caused an error. For
instance, another way to handle errorsin the previous exampleis:

Sub example()
On Error Resume Next
MsgBox Selection.Cells._Count
IT Err_Number <> 0 Then
MsgBox Err.Description, vbCritical
End IF
End Sub

7.5.5 The Resume Statement

It isaso possible to include the Resume statement in the error-handling portion of the code. This
will cause VBA to resume execution at the line that follows the one that caused the error. Thus,
the previous code is equivalent to the following:

Sub example()
On Error GoTo ERR_EXAMPLE
MsgBox Selection.Cells._Count
Exit Sub

ERR_EXAMPLE:
MsgBox Err.Description, vbCritical
Resume Next
End Sub

There are three variations on the Resume statement:

e Resume
e Resume Next
e Resume ALabel

Thefirst version will cause VBA to resume with the line that caused the error. Thisisuseful if
your error-handling code actually repairs the error condition and you want the line that caused the
original error to be executed again.

Toillustrate, the procedure in Example 7-2 is designed to open a workbook named a:\test.xIs. If it
does not exist, an error will occur. The error-handling code gives the user a chance to enter anew
workbook name, in which case we want to execute the Open method again. Hence the use of the
Resume statement.

79

Example 7-2. Error Handling with the Resume Statement

Sub test()
Dim sNew As String
sNew = "a:\test.xlIs"

On Error GoTo ERR_DISK
Workbooks.Open sNew
Exit Sub

ERR_DISK:
If Err.Number = 1004 Then
sNew = InputBox(*'Cannot find file. Enter new location or
leave blank to
If sNew <> """ Then
Resume
Else
Exit Sub
End IFf
End IFf
End Sub

The third variation:

Resume ALabel

causes VBA to resume execution at the line labeled ALabel.

80

Chapter 8. Control Statements

We conclude our discussion of the VBA language with a discussion of the main VBA control
statements, which are statements that affect the flow of control (or flow of execution) in a program.

8.1 The If...Then Statement

The 1. . . Then statement is used for conditional control. The syntax is:

IT Condition Then

" statements go here . . .
Elself AnotherCondition Then

" more statements go here .
Else

more statements go here .
End If

Note that we may include more than one

Elself part and that both the Else I f part(s) and the El se part are optional. We can aso
squeeze all parts of this statement onto a single line, which is generally only a good idea when the
Elsel f and Else parts are missing. As an example, the following code deletes the current
selection in the active worksheet if it contains more than one cell:

ITf Selection.Count > 1 Then Selection.Delete

The following example changes the color of the current selection based upon its location—
selected cells in odd-numbered rows are colored red, those in even-numbered rows are colored
blue:

Dim oCell As Range
For Each oCell In Selection.Cells
IT (oCell.Row Mod 2) = 1 Then

" odd
oCell.Interior.Colorindex = 3 " red
Else
" even
oCell.Interior.Colorindex = 5 " blue
End If
Next

8.2 The For Loop

The For . . .Next statement provides a method for repeatedly looping through a block of code
(that is, one or more lines of code). Thisloop is naturally referred to asaFor loop. The basic
syntax is:

For counter = start To end
" block of code goes here .

81

Next counter

The first time that the block of code is executed, the variable counter (called the loop variable
for the For loop) is given the value start. Each subsequent time that the block of code is
executed, the loop variable counter isincremented by 1. When counter exceeds the value end,
the block of code is no longer executed. Thus, the code block is executed atotal of end - start +
1 times, each time with a different value of counter.

Note that we can omit the word counter inthelast line of aFor loop (replacing Next
counter with just Next). This may cause the For loop to execute a bit more quickly, but it also
detracts a bit from readability.

Toillustrate, the following code loops through the collection of all cellsin the current selection. If
acdl hasadateinit, then the font color is changed to red:

Dim 1 As Integer
Dim oCell As Range

For i = 1 To Selection.Count
" Get the next cell
Set oCell = Selection.Cells(i)

" Color i1t if a date
IT IsDate(oCell) Then
oCell .Font.Colorindex = 3
End If
Next i

For loops are often used to initialize an array. For instance, the following code assigns a value of
0 to each of the 11 variables iArray (0) through iArray (10):

For i = 0 To 10
iArray(i) = 0
Next i

Note that the loop variable counter will usually appear within the block of code, asit doesin
this array initialization example, but thisis not a requirement. However, if it does appear, we need
to be very careful not to change its value, since that will certainly mess up the For loop. (VBA
automatically increments the loop variable each time through the loop, so we should leave it
alone)

8.2.1 Exit For

VBA providesthe Exit For statement to exit aFor loop prematurely. For instance, the code in
Example 8-1 finds the first nonempty cell in the first row of the active worksheet. If none exists, a
message is displayed. Note the use of a Boolean variable to keep track of the existence question.

Example 8-1. Finding the First Nonempty Cell

Sub FindFirstNonEmpty()
Dim oCell As Range
Dim bNone As Boolean

bNone = True
For Each oCell In ActiveSheet_Rows(1l).Cells

82

IT Not IsEmpty(oCell) Then
oCell.Select
bNone = False
Exit For
End If
Next

IT bNone Then MsgBox ""No nonempty cells in row 1", vbInformation
End Sub

We can a'so control the step size and direction for the counter in a For loop using the Step
keyword. For instance, in the following code, the counter i isincremented by 2 each time the
block of code is executed:

For 1 = 1 to 10 Step 2
" code block goes here
Next i

The following loop counts down from 10 to 1 in increments of -1. This can be useful when we
want to examine a collection (such as the cellsin arow or column) from the bottom up:

For 1 = 10 to 1 Step -1
" code block goes here
Next i

8.3 The For Each Loop

The For Each loop is avariation on the For loop that was designed to iterate through a
collection of objects (aswell as through elementsin an array) and is generally much more efficient
than using the traditional For loop. The general syntax is:

For ObjectVar In CollectionName
" block of code goes here . .
Next ObjectVar

where ObjectVar isavariable of the same object type as the objects within the collection. The
code block will execute once for each object in the collection.

The FindFirstNonEmpty procedure shown in Example 8-1 illustrates the For Each loop.
Thus, when iterating through a collection of objects, we have two choices:

For Each object in Collection
" code block here
Next object

or:

For 1 = 1 to Collection.Count
" code block here
Next i

83

It isimportant to keep in mind that the For Each loop can be much faster than the For loop when
dealing with collections of Excel objects. Thus, except for small collections, it is the preferred
method.

8.4 The Do Loop

The Do loop has several variations. To describe these variations, we use the notation:
{While | Until}

to represent either the word Whi Ie or theword Unti I, but not both. With thisin mind, here are
the possible syntaxes for the Do loop:

Do {While | Until} condition
" code block here
Loop

or:

Do

code block here
Loop {While | Until} condition

Actually, thereis afifth possibility, because we can dispense with condition completely and
write:

Do

code block here
Loop

Some of these variations are actually quite subtle. For instance, the following code cycles through
the cellsin the first row of the active worksheet as long as the cells are nonempty:

i=1

Do While IsEmpty(ActiveSheet.Rows(1l).Cells(i))
=i +1

Loop

ActiveSheet.Rows(1).Cells(i).Select

(This code will cause some problemsif the first row has no nonempty cells, but let's not worry
about that now.) Consider also the following code, whose purpose is similar:

i =1
Do
=i +1
Loop While Not IsEmpty(ActiveSheet.Rows(1l).Cells(i))
ActiveSheet.Rows(1).Cells(i).Select

The difference between these two versionsisthat, in the first case, the 1sEmpty condition is
checked immediately, before any code within the Do loop is executed. Thus, if the first cell is
empty, the condition will fail, no code will be executed within the Do loop, and so this cell will be
selected (asit should be).

84

On the other hand, in the second case, the condition is checked at the end of each loop, so the loop
will execute the first time, even if thefirst cell is empty.

Just asthe For loop hasan Exit For statement for terminating the loop, aDo loop asan Exit
Do statement for exiting the Do loop.

8.5 The Select Case Statement

Aswehaveseen, thelf . . . Then . . . constructisused to perform different tasks based
on different possibilities. An alternative construct that is often more readable isthe Select Case
statement, whose syntax is:

Select Case testexpression
Case valuel
" statements to execute if testexpression = valuel
Case value2
" statements to execute if testexpression = value2

Case Else
" statements to execute otherwise
End Select

Note that the Case Else part isoptional. To illustrate, the following code isthe Select Case
version of Example 7-1 in Chapter 7, (see the discussion of the Swi tch function) that displays the
type of afile based on its extension. | think you will agree that thisis a bit more readable than the
previous version:

Sub ShowFileType(FileExt As String)
Dim FileType As Variant

Select Case FileExt

Case "'xIt"
FileType = "Template"
Case "'xlIs"

FileType = "Worksheet"
Case "xla™, "utl”
FileType = "Addin"
Case Else
FileType
End Select

"unknown"'

" Display result
MsgBox FileType
End Sub

Note the penultimate case statement:
Case '"xla™, "utl”

VBA allows usto place more than one condition in a case statement, separated by commas. This
is useful when more than one case produces the same resullt.

85

8.6 A Final Note on VBA

Thereisalot more to the VBA language than we have covered here. In fact, the VBA reference
manual is about 300 pages long. However, we have covered the main points needed to begin Excel
VBA programming.!

(¢ you'd like a good reference guide to the VBA language, see VB & VBA in a Nutshell: The Language,
written by Paul Lomax and published by O'Reilly & Associates.

Actually, many Excel VBA programming tasks require only a small portion of VBA's features and
you will probably find yourself wrestling much more with Excel's object model than with the
VBA language itself.

We conclude our discussion of the VBA language per se with abrief outline of topics for further
study, which you can do using the VBA help files.

8.6.1 File-Related Functions

VBA has alarge number of functions related to file and directory housekeeping. Table 8-1
contains a selection of them.

Table 8-1. Some VBA File and Directory Functions

Function Description
Dir Find afile with acertain name.
FileLen Get the length of afile.
FileTimeDate Get the date stamp of afile.
FileCopy Copy afile.
Kill Delete afile.
Name Rename afile or directory.
RmDir Delete adirectory.
MkDir 'Make anew directory.

In addition to the file-related functions in Table 8-1, there may be times when it is useful to create
new text files to store data. VBA provides a number of functions for this purpose, headed by the
Open statement, whose (simplified) syntax is:

Open pathname For mode As [#]filenumber
Once afile has been opened, we can read or write to it.
8.6.2 Date- and Time-Related Functions

VBA has alarge number of functions related to manipulating dates and times. Table 8-2 contains
aselection.

Table 8-2. Some Date- and Time-Related Functions

| Function | Description

Date, Now, Time Get the current date or time.

86

DateAdd, DateDiff, DatePart Perform date calculations.
DateSerial, DateVaue Return a date.

TimeSerial, TimeVaue Return atime.

Date, Time Set the date or time.
Timer Time a process.

8.6.3 The Format Function

The Format function is used to format strings, numbers, and dates. Table 8-3 gives afew
examples.

Table 8-3. Format Function Examples

Expression Return value
Format(Date, "Long Date") Thursday, April 30, 1998
Format(Time, "Long Time") 5:03:47 PM
Format(Date, "mm/dd/yy hh:mm:ss AMPM") 04/30/98 12:00:00 AM
Format(1234.5, " $##,##0.00") $1,234.50
Format("HELLO", "<") "hello"

TeaBTF 1}/‘“’

Part Ill: Excel Applications and the Excel Object
Model

Chapter 9

Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21

Chapter 22

88

Chapter 9. Object Models

In this chapter, we present a general overview of object models and the syntax used to manipulate
them in code.

Aswe have discussed, VBA isthe programming language that underlies several important
Windows applications, including Microsoft Excel, Word, Access, PowerPoint, Visual Basic, and,
in Office 2000, Outlook. Any application that uses VBA in thisway is called a host application.
We a so discussed the fact that each host application enhances VBA by providing an object model
(perhaps more than one) to deal with the objects that are particular to that application.

Microsoft provides over a dozen different object models for its Office application suite and related
products. These include object models for Excel, Word, Access, DAO (Data Access Objects),
Outlook, PowerPoint, Binder, Graph, Forms, VBA, VB, ASP (Active Server Pages), and more. Of
course, our interest in this book iswith the Excel object model, and we will devote most of the rest
of the book to describing the major portions of this model. (We will aso discuss a portion of the
Office object model in the chapter on customizing Excel menus and toolbars.)

9.1 Objects, Properties, and Methods

In the parlance of VBA programming, an object is something that isidentified by its properties
and its methods. For example, workbooks, worksheets, charts, and fonts are al examples of
objects in the Excel object model. Actually, the Excel object model contains 192 different objects,
including several hidden and obsol ete ones.

9.1.1 Properties

Theterm property is used in the present context in pretty much the same way that it isused in
everyday English; it isatrait or attribute or characteristic of an object. For instance, a Worksheet
object has 55 properties, among which are Cells, Name, ProtectionMode, and UsedRange. A
property's value can be any valid data type, such as Integer, Single, String, or even another object

type.

When the value of a property has type Integer, for instance, we will refer to the property as an
integer property. Integer properties are quite common, and so Microsoft has defined alarge
number of built-in enums (152, to be exact, with 1266 individual constants) to give symbolic
names to these property values. For instance, the Calculation property of the Application object
can take on any of the values in the enum defined by:

Enum XICalculation
xICalculationManual = -4135
xICalculationAutomatic = -4105
xICalculationSemiautomatic = 2

End Enum

If aproperty's valueis an object, it is referred to as an object property. For instance, a Workbook
object has an ActiveChart property that returns a Chart object. Of course, the Chart object hasits
own set of properties and methods.

89

Because a Chart object can be obtained from a Workbook object, we refer to Chart as a child
object of Workbook and Workbook as a parent of Chart. We will have more to say about this
parent-child relationship a bit later.

9.1.2 Methods

A method of an object is an action that can be performed on (or on behalf of) the object. For
instance, a Worksheet object has a Protect method that causes the worksheet to be protected.

In programming terms, the properties and methods of an object are just built-in functions or
subroutines. It isimportant to emphasize that the distinction between property and method is one
of intent and is often made somewhat arbitrarily. (In fact, the Item member is sometimes classified
as a property and sometimes as a method, depending upon the object in question; it appears that
even Microsoft has trouble making up its collective mind from time to time.)

The properties and methods of an object are collectively referred to as the object's members. This
should not be confused with an object's children.

9.2 Collection Objects

In programming with the Excel object model (or indeed any object model), it is common to have a
great many objects "alive" at the same time. For instance, each cell within the current selection is
an object (a Range object), asis each row and column in each open worksheet. Hence, at any
given time, there are thousands of objects in existence. To manage these objects, the designers of
an object model generally include a special type of object called a collection object.

Asthe name implies, collection objects represent collections of objects—generally objects of a
single type. For instance, the Excel object model has a collection object called Rows that
represents the set of all rows in the worksheet in question (as Range objects). It is customary to
say that the Rows collection object contains the rows in the sheet, so we will use this terminology
aswell. Thereis one Rows collection for each open worksheet.

Collection objects are generally just called collections, but it is very important to remember that a
collection isjust a special type of object. Aswe will see, the properties and methods of a
Collection object are specifically designed to manage the collection.

We can generally spot a collection object by the fact that its name is the plural of the name of the
objects contained within the collection. For instance, the Worksheets collection contains
Worksheet objects. However, in some cases, this naming convention is not followed. For instance,
the Rows collection contains Range objects. In the Excel object model, there are no Cell, Row, or
Column objects. These are all represented by Range objects. We will devote an entire chapter
(Chapter 19) to the important Range object.

Callections are extremely common in the Office object models. In fact, ailmost one-half of all of
the objects in the Excel object model are collections! Table 9-1 shows some of the more
commonly used collections in the Excel object model.

Table 9-1. Some Excel Collection Objects

\Areas [FormatConditions |SeriesCollection
Axes LegendEntries Sheets
Borders Names Windows

90

(ChartObjects PivotFields \Workbooks

Charts PivotTables Worksheets
Datalabels Points
Filters Range

We emphasize the fact that a collection isjust a special type of object. Indeed, the properties and
methods of a Collection object are specifically designed to manage the collection. Accordingly,
the basic requirements for a collection object are:

e A property called Count that returns the number of objectsin the collection. Thisisa
read-only property; that is, it cannot be set by the programmer. It is automatically updated
by VBA itself.

e A method called Add (or something similar, such as AddNew) that allows the
programmer to add a new object to the collection.

e A method called Remove, Close, or Delete, or something similar, that allows the
programmer to remove an object from the collection.

e A method called Item that permits the programmer to access any particular object in the
collection. The item is usually identified either by name or by an index number.

Note that these basic requirements are not hard and fast. Some collection objects may not
implement al of these members, and many implement additional members. For instance, the
Areas and Borders collections do not have an Add method, since we are not allowed to add objects
to these collections. We can only manipulate the properties of these collections.

Some Excel collections are considerably more complicated than others, since they have several
properties and methods that relate specifically to the type of object they contain. For instance, the
Sheets collection has 10 properties and 8 methods. Several of these members, such as the PrintOut
method, are included specifically so that they can operate on all of the sheetsin the collection at
the sametime. (A sheet is either aworksheet or a chartsheet.)

9.2.1 The Base of a Collection

Note that collections can be either 0-based or 1-based. In a 0-based collection, the first member
hasindex 0, and in a 1-based collection, the first member hasindex 1. Most, but not al,
collections in the Excel object model and in VBA itself are 1-based. However, some older
collections tend to be O-based. (I guess that Microsoft got a lot of complaints about O-based
collections so they decided to switch.)

It isimportant to determine the base of any collection before trying to access members by index.
This can be done by checking the help system (sometimes) or trying some sample code. For
instance, the code:

For 1 = 1 To Selection.Cells.Count
Debug.Print Selection.Cells(i).Value
Next i

is correct, since the Cells collection is 1-based. However, the UserForms collection, which
represents all currently loaded user formsin Excel, is 0-based, so the code:

For 1 = 1 To UserForms.Count
Debug.Print UserForms(i).Name
Next i

will produce an error. The correct codeis:

91

For i = O To UserForms.Count - 1
Debug.Print UserForms(i) .Name
Next 1

(Note that this reports the number of loaded formsin the project.)

9.3 Object Model Hierarchies

The fact that one object's properties and methods can return another object, thus creating the
concept of child abjects, is of paramount importance, for it adds a very useful structure to the
object model.

It seems by looking at the literature that there is not total agreement on when one object is
considered a child of another object. For our purposes, if object A has a property or method that
returns object B, then we will consider object B to be a child of object A and object A to bea
parent of object B. For example, the Range object has a Font property, which returns a Font object.
Hence, Font is a child of Range and Range is a parent of Font. The Font object is also a child of
the ChartArea object, which represents the chart area within an Excel chart. (We will discuss this
object in Chapter 21.) In fact, an object may have many parents and many children.

It isimportant not to take the parent-child analogy too literally. For instance, the object hierarchy
isfull of circular parent-child relationships. As an example, Range is a child of Worksheet and
Worksheet is achild of Range. Indeed, in most object models, most objects have a property that
returns the top object of the model. In the Excel object model, almost every object has an
Application property that returns the Application object, which is the top object in the Excel object
model. This provides a quick way to return to the top of the object hierarchy. Hence, aimost every
object in the object model is a parent of the top object!

The object hierarchy of an object model is often pictured in atree-like structure. A small portion
of the Excel object model is shown in Figure 9-1.

Figure 9-1. A small portion of the Excel object model (the tag <vX> means that the
object is new in version X of Excel)

92

- 7o Agplication
o <Evantsy
+ 71 Addins
1o AutoCorect
1o
¥--70
70 Chart
¥ -7 cCharts
7o DefaultwebOptions o3>

4

=+ 71 Dialogs

To

71 Mames

T ODECEmars

78 OLEDEEmorsevd»
T Rangea

Tl RecentFiles

To AT

7Ll Sheets

T

To

T

fy 8

o

7o Wandow

T wWindows

7o Warkbook

T Workbooks

7L WorkshestFunction
T Wiorkshests

)

-

R R

+

9.4 Object Model Syntax

It istime that we formally discuss the basic syntax that is used when programming with an object
model.

The general syntax for referring to an object's properties and methods is very ssimple. If objVar is
an object variable that refers to a particular object and AProperty isa property of this object,
then we can access this property (for reading or for changing) using the syntax:

objVar.AProperty(any required parameters)

For instance, the following code sets the font name property of the first row in the active
worksheet:

" Declare object variable
Dim rng As Range

" Set rng to refer to first row
Set rng = ActiveSheet_Rows(1l)

" Set font name
rng.Font.Name = "Arial”

Note that the last line of code actually invokes two properties; the Font property of rng returns a
Font object, whose Name property is set to Arial.

If AMethod isamethod for this object, then we can invoke that method with the syntax:

93

objVar.AMethod(any required parameters)

Note that this syntax is quite similar to the syntax used to call an ordinary VBA subroutine or
function, except that here we require qualification with the name of the variable that points to the
object whose property or method is being called.

For instance, continuing the previous code, we can apply the CheckSpelling method to the row
referred to by rng asfollows:

rng.CheckSpelling

We could include the name of a custom dictionary as a parameter to this method.

9.5 Object Variables

To access a property of an abject, or to invoke a method, we can generally take two approaches:
direct or indirect. The indirect approach uses an object variable—that is, a variable that has an
object data type—whereas the direct approach does not.

For instance, to set the Bold property of the Font object for the first row in the active worksheet,
we can take adirect approach, asin:

ActiveSheet.Rows(1l).Font.Bold = True
Alternatively, we can assign an object variable. Here are two possibilities:

Dim rng As Range
Set rng = ActiveSheet_Rows(1)
rng.Font.Bold = True

Dim fnt As Font
Set fnt = ActiveSheet_Rows(1l).Font
fnt.Bold = True

Object variables are more important than they might seem at first. The most obvious reason for
their useisthat they can improve code readability when we need to refer to the same object more
than once. For instance, instead of writing:

ActiveSheet._Rows(1).Font.Bold = True
ActiveSheet._Rows(1) .Font.ltalic = True
ActiveSheet.Rows(l).Font.Underline = False
ActiveSheet_.Rows(1l).Font.Size = 12
ActiveSheet.Rows(1l).Font.Name = "Arial”

we can use a Font variable to improve readability as follows:

Dim fnt As Font
Set fnt = ActiveSheet_Rows(1l).Font

fnt.Bold = True
fnt.ltalic = True
fnt.Underline = False
fnt.Size
fnt.Name

I
=
N

94

9.5.1 The With Statement

In fact, VBA provides aWith statement to handle just the situation in the previous example,
which could be written as follows:

Dim fnt As Font
Set fnt = ActiveSheet.Rows(1l).Font
With fnt

.Bold = True

.Italic = True

.Underline = False

.Size = 12
_Name = "Arial”
End With

The general syntax of the Wi th statement is:

With object
" statements go here
End With

where the statements generally refer to the object, but do not require qualification using the
object's name, as in the previous example.

9.5.2 Object Variables Save Execution Time

The main reason that objec t variables are important is not to improve readability, but to save
execution time. In particular, to execute each of the five lines in the first version of the previous
code, VBA needs to resolve the references to the various Excel objects ActiveSheet, Rows(1), and
Font. That is, VBA needsto "climb down" the Excel object model. This takestime.

However, in the code that uses an object variable of type Font, VBA only needs to resolve these

references once. Therefore, the second version runs much more quickly. This difference can be
very noticeable when there are hundreds or thousands of references to resolve.

9.5.3 An Object Variable Is a Pointer

There are some very important differences between object variables and nonobject variables, such
as those of type Integer, Single, or String. As we have mentioned, a nonobject variable can be
thought of as aname for alocation in the computer's memory that holds some data. For instance,
in the code:

Dim iVar As Integer
ivar = 123

the variable iVar is a4-byte memory location that holds the integer value 123. This can be
pictured asin Figure 9-2. (Actually, the 4-byte memory location holds the value 123 in binary
format, but that is not relevant to our discussion.)

Figure 9-2. Integer variables in memory

ivar 123

ivar2 567

95

Further, if we were to write:

Dim iVar2 As Integer
ivar2 ivar
ivar2 567

we would not expect the last line of code to have any effect upon the value of the variable iVar,
which should still be 123. Thisis because iVar and iVar2 represent different areas of memory,
as pictured in Figure 9-2.

However, an object variable is not the name of a memory location that holds the object. Rather, an
object variable is the name of a memory location that holds the address of the memory location
that holds the object, as shown in Figure 9-3. Put another way, the object variable holds a
reference to or points to the object. For thisreason, it is an example of a pointer variable, or
simply apointer. In Figure 9-3, the object variable rng points to an object of type Range, namely,
the first column in the active sheet.

Figure 9-3. An object variable in memory

mg addressof —————
ActiveSheet.Columns{1)

The code that goes with Figure 9-3is:

Dim rng as Range
Set rng = ActiveSheet.Columns(l)

One of the consequences of the fact that object variables are pointersis that more than one object
variable can point to (or refer to) the same object, asin:

Dim rng as Range

Dim rng2 as Range

Set rng = ActiveSheet.Columns(l)
Set rng2 = rng

This code creates the situation pictured in Figure 9-4.

Figure 9-4. Two object variables referencing the same object

mg addressof ——————m
ActiveSheet.Columns(1)
mg? addressof ————»

We emphasize that while rng and rng2 are different object variables, they hold the same value
and so, point to the same object. Thus, we can change the first column using either of these object
variables.

It isimportant when programming with objects to keep very careful track of all object variables
and what they are referencing. Furthermore, it is generally not a good idea to have more than one
object variable pointing to the same object (as in Figure 9-4) unless there is acompelling reason to
do so. It isvery easy to change the object using one object variable (say rng) and then later use
the other variable (rng2), thinking it refers to the unchanged object.

96

9.5.4 Freeing an Object Variable: the Nothing Keyword

To free an object variable so that it no longer points to anything, we use the Nothing keyword, as
in:

Set rng2 = Nothing

It is good programming practice to free object variables when they are no longer needed, since this
can save resources. An object variable is also set to Nothing automatically when its lifetime
expires.

Note that once an object no longer has any references to it, the object will automatically be
destroyed by VBA, thus freeing up its resources (memory). However, all references to the object

must be freed before the object is destroyed. This is another reason not to point more than one
object variable at the same object if possible.

9.5.5 The Is Operator

To compare the values of two ordinary variables, Varl and Var2, we would just write:

If Varl = Var2 Then .

However, the syntax for comparing two object variables to see if they refer to the same object is
specia (asisthe syntax for setting the value of an object variable—using the Set statement). Itis
done using the I's operator:

IT rng Is rng2 then .

Similarly, to test whether or not an object variable has been set to Nothing, we write:

IT rng Is Nothing Then .

Be advised that there is a problem with the I's operator in the current version of VBA. This
problem exists in the version of VBA used by Office 97 and Office 2000. (Microsoft has
acknowledged the problem.) For example, the code:

Dim Wks As Worksheet
Dim Wks2 As Worksheet

Set Wks = ActiveSheet
Set Wks2 = ActiveSheet

MsgBox Wks Is Wks2
will correctly display the value True. However, the analogous code:

Dim rng As Range
Dim rng2 As Range

Set rng = ActiveSheet_Rows(1l)
Set rng2 = ActiveSheet.Rows(1)

MsgBox rng Is rng2

incorrectly displaysthe value Fal se. If we change the penultimate line to:

97

Set rng2 = rng
then the message box correctly displays True.

9.5.6 Default Members

In most object models, many objects have a default member (property or method) that is invoked
when a property or method is expected but we do not specify one. For instance, in the Microsoft
Word object model, the default member for the Range object is the Text property. Hence, the
VBA Word code:

Dim rng As Range
Set rng = ActiveDocument.Words(1)
rng = "Donna™

sets the first word in the active document to Donna, since Word applies the default property in the
last line, effectively replacing it with:

rng.Text = "‘Donna’

Unfortunately, neither the Excel VBA documentation nor the Excel object model make an effort
to identify the default members of Excel objects. Accordingly, my suggestion isto avoid the issue
when programming Excel.

In any case, default members tend to make code less readable, and for this reason, | generally
avoid them. One notable exception is for a collection object. It is generally the case that the
default member of a collection object is the Item method. Hence, for instance, we can refer to the
fourth cell in the current selection by:

Selection.Cells(4)
rather than by the more clumsy:
Selection.Cells.l1tem(4)

Since this use of the default member is not likely to cause any confusion, we will useit.

9.5.7 Global Members

Many of the properties and methods of the Application object can be used without qualifying them
with theword Application. These are called global members. For instance, the Selection
property is global, and so we can write:

Selection.Cells.Count
instead of:

Application.Selection.Cells.Count

To identify the global members, the Excel object model has a special object called the Global
object. This object is not used directly—its purpose is simply to identify the global members of
the object model. Note that the members of the Global object form a proper subset of the members
of the Application object (which means that not all of the members of the Application object are
global).

98

Table 9-2 lists the (nonhidden) global members of the Excel object model

Table 9-2. Excel global members

_Evaluate CommandBars Parent

_Run2 Creator Range
ActiveCell DDEAppReturnCode Rows
ActiveChart DDEExecute Run
ActiveDialog DDElnitiate Selection
ActiveMenuBar DDEPoke SendKeys
ActivePrinter DDERequest Sheets
ActiveSheset DDETerminate ShortcutMenus
ActiveWindow DialogSheets ThisWorkbook
ActiveWorkbook Evauate Toolbars
Addlns ExceldintiMacroSheets Union
Application Excel4MacroSheets Windows
Assistant ExecuteExcel4Macro Workbooks
Cdculate Intersect WorksheetFunction
Cdls MenuBars Worksheets
Charts Modules

Columns Names

99

Chapter 10. Excel Applications

Simply put, we can define an Office application to be an Office "document” (for instance, an
Access database, Excel workbook, Word document, Word template, or PowerPoint presentation)
that contains some special customization. This customization usually takes the form of a
combination of VBA procedures and menu and/or toolbar customizations and is generally
designed to simplify or automate certain tasks. It may provide utilities, which are programs for
performing a specific task, such as printing or sorting.

This may seem like afairly libera definition. For instance, if we add a single custom menu item to
aWord template that simply adds a closing (Sincerely yours, etc.) to the end of a Word document,
we could consider this template to be a Word application. However, it is doubtful that we could
get anyone to buy this Word application!

The point we want to emphasize is that an Office application is quite different from a traditional
Windows application, such as Excel itself. Traditional Windows applications are built around a
main executablefile. In the case of Excel, thisfile is called excel.exe. Of course, a complex
application like Excel involves many additional supporting files, such as additional executables,
help files, abject library files, resource files, information files, ActiveX control files, and the
ubiquitous DLL files.

On the other hand, Office applications do not revolve around standal one executabl e files. Rather,
they are created within an Office document. In particular, an Access application is created within
an Access database, an Excel application is created within an Excel workbook, a Word application
is created within a Word document, and a PowerPoint application is created within a PowerPoint
presentation. Office applications can be created within Office templates or add-ins as well.

This raises awhole new set of issues related to the distribution of Office applications. In
developing an Office application for distribution, we must immediately deal with two issues.
Where do we put the code for this application, and what means do we provide the user to invoke
the features of the application? Thefirst issue is complicated by whether we will allow the user to
have access to the application’'s code and data or not.

The answers to these questions depend, not surprisingly, on the nature of the application.

10.1 Providing Access to an Application's Features

| recently created an Excel application for awell-known fast food company. The company wanted
to send out data on sales and other things to its field offices, in the form of arather complicated
Excel pivot table. They wanted the field personnel to be able to filter the pivot table by various
means (thus creating smaller pivot tables) as well as generate avariety of charts showing different
views of the data. (The complete application involved other features, but thiswill illustrate the
point.)

In particular, the main pivot table contains severa types of data (sales, transaction counts, and so
on) for several Designated Marketing Areas (DMAS) and store types (company, franchise, or
both). One feature of the application is a chart-creating utility for this data. But where should the
code for this feature go and how should the field personnel be given access to this charting utility?

Since the charting utility directly involves the pivot table, it seems reasonable in this caseto
simply place a command button |abeled Make Chart(s) directly on the pivot table worksheset.

100

When the user clicks the button, a dialog box such as the one shown in Figure 10-1 appears,
allowing the user to make various selections and then create the chart or charts.

Figure 10-1. Dialog for a charting utility

Make Multiple Charts (One Graph Per Chart)

Choose at least one item from each of the DA, Agreement
Type and Data Type lists,

Ci&s

Canceal

= B L R e

Lo

Resuits

Agreement Types J

Cormpany
Frainchise
Boith

Diata Types

Sales
Transactions
Faceipts

58 14 GRid

hd

In general, there are severa possible options for providing access to the charting utility, that is, for
displaying the dialog box in Figure 10-1 (or, for that matter, for providing access to any macro):

e Select it from the Macro dialog by choosing Tools =—* Macro =—* Macros. The Macro
dialog was discussed in Chapter 4. Thisis the most efficient method for a user who writes
macros and wants to run one quickly (and it provides an easy method to run many of the
very short examples presented in this book). But since the dialog displays only the names
of macros to be run, it's not suitable for a user who is unfamiliar with the macros, nor isit
avery efficient method of running frequently used macros.

e Runor display it automatically when aworkbook opens by attaching code to one of
Excel's events, in this case the Open event. Events are discussed in detail in Chapter 11.

e Place abutton directly on the worksheet.

e Place abutton on an existing Excel toolbar. This can be done programmetically (atopic
discussed in Chapter 12) or through the user interface (see Section 10.1.2 later in this
section).

e Create anew toolbar and add the button to it, either programmatically or through the user
interface. For information on the latter, see Section 10.1.1 later in this section.

e Addamenuitem to an existing Excel menu, either programmatically or through the user
interface.

e Create anew menu bar and add a menu item, either programmatically or through the user
interface.

In this case, since we did not want the user to be able to invoke the chart-printing utility unless the
worksheet containing the pivot table was active, we opted for the button on the worksheet
approach. Thisis not to say, however, that the other approaches would not work.

On the other hand, if the utility in question has wider applicability, then it would probably make
more sense to use atoolbar or add a menu item. (I much prefer menu items over toolbar buttons,
because they are easily invoked using the keyboard and don't get in the way of other windows.)

101

Indeed, an application that has many features might benefit from a dedicated toolbar or menu bar
or adedicated popup menu on, say, the main Excel worksheet and chart menu bars.

In short, the decision as to how to provide access to the features of an Office application depends
on several things, including the complexity of the application, the scope of its features, and
personal preferences.

10.1.1 Working with Toolbars and Menus Interactively

Whether we choose to place a command button for a macro on an existing Excel toolbar or on a
custom toolbar of our own making, we may need to specify, using the Excel user interface, when
the toolbar in question will be displayed. We can create a new toolbar and display or hide existing
toolbars by selecting the Customize option from the Tools menu. The Toolbars tab for the
Customize dialog box is shown in Figure 10-2.

Figure 10-2. The Toolbars tab of the Customize dialog

Toalhars I Coanmznds

Toolbars:
[standard - Hew, ..
[Formattng =

[Tablas znd Bardars

I Database

[Crrawing

[~ Forms

[Wiswal Basic

[Microsaft LI
[AwkoText

[~ wieb

[~ wardart =1
[~ 2D Settings

[Shadow Settings

[~ Picture

7 T I - |
EI Eeyhosed, . I Cloge I

Opticrs |

To create a new toolbar, simply click the New button. Excel opens the New Toolbar dialog, which
prompts us for a name for the toolbar. After we assign it a unique name, Excel will create the
toolbar, list it in the Toolbars list box, and display the toolbar. We can then populate the toolbar
with buttons.

To display or hide existing toolbars, we simply check or uncheck their boxesin the Toolbars list
box.

We can aso create a new submenu, which can then be added to an existing menu or toolbar. To do
this, we select the Commands tab of the Customize dialog (see Figure 10-3), then select the New
Menu option in the Categories list box. Click on the New Menu item in the Commands list box
and drag it to the appropriate menu or toolbar. Finally, we right-click on the new menu and enter
its caption in the context menu's Name field.

Figure 10-3. The Commands tab of the Customize dialog

102

Customize [7] %]

Toolers Gommands | options |

Cabegories: Commangds:

Wincow and Help -] Maw Manu y =]
Do awilrg
futoshapes
Charting

ek

Forms

Control Toalbax
Maros

Bult-in Mesus

o

10.1.2 Assigning Macros to Menus and Toolbars

Excel also alows usto assign macros to existing menus and toolbars, which is al'so done from the
Commands tab of the Customize dialog shown in Figure 10-3.

Although many users find the Commands tab, and the menu and toolbar customization featuresin
Office, to be confusing and intimidating, they are actually quite smple if we keep the following in
mind: ordinarily, menus and toolbars are in run mode. In this mode, selecting amenu item or a
toolbar button causes the corresponding action to be performed. On the other hand, whenever the
Customize dialog is visible, menus and toolbars are in edit mode. While in edit mode, clicking on
amenu item or button has an entirely different effect. In particular, right-clicking on amenu item
displays a menu with the item'’s properties. Also, we can move, delete, or add items to amenu
simply by dragging and dropping these items!

Since edit mode is active whenever the Customize dialog is visible, you
”@ should be very careful not to inadvertently drag a menu item (or tool bar
button) off of amenu (or toolbar), because this will delete that item from
the menu (or toolbar).

So, to assign amacro to atoolbar or menu item, make sure the Customize dialog is visible, select
Macrosin the Categories list (see Figure 10-3), and drag the macro from the Commands list to the
appropriate location on the menu or toolbar. That'sit.

It isworth pointing out that customizing menus and toolbars through the Customize dialog, as we
have just described, may be the right way to proceed for devel opers, but it also may be too much
to ask aclient to perform this customization himself. The alternative is to create the custom object
programmatically, as discussed in Chapter 12. This is something you will need to judge for
yourself.

10.2 Where to Store an Application

In the case of the Excel application for the aforementioned fast food company, al of the datafor
the application is contained in a single workbook. Since none of this data needs to be hidden from
the user, it is reasonable to distribute the code and any concomitant data for the application
directly in the workbook that contains the data (the pivot table). This makes the workbook totally

103

self-contained and eliminates the need for an installation procedure. All the main office needsto
dois email the workbook to its field offices. There are several possibilities here, however:

e Storethe application and its data in the document in which it will be used. Thisis suitable
for a standal one application like the one shown in Figure 10-1. It is aso suitable for small
macros, such as those contained in code fragments throughout this book, that we want to
run just to see how some Excel VBA feature isimplemented.

e Storethe application and its datain an Excel template. Thisis suitable, of course, when
the template will serve as the basis of multiple spreadsheets.

e Storethe application and its datain a hidden Excel workbook in Excel's startup directory.

e Storethe application and its datain an Excel add-in.

Each of these choices has its advantages and disadvantages, which, incidentally, vary among the
Office applications. For instance, templates are much more useful in Word than in Excel, and add-
ins are more useful in Excel than in Access. In any case, our interest hereisin Excel.

10.2.1 The Excel Startup Folder

When Excel loads, it automatically loads any spreadsheets stored in its startup and alternate
startup folders. The default location of the startup folder is usually a subfolder of the main Excel
folder named XlSart. By default, there is no alternate startup folder, although one can be defined
using the General tab of the Options dialog; to open it, select Options from the Tools menu.

Because the contents of these folders are opened at startup as ordinary workbooks, their macros
are easily accessible to all other Excel workbooks. This makes them ideal as a storage location for
macros. The only drawback is that Excel actually opens the spreadsheets stored in these
directories; to prevent this, they should be hidden by selecting the Hide option from Excel's
Window menu (not the Format menu) when the spreadsheet to be hidden is active.

Macros that are stored in the startup and alternate startup folders are available from the Macro
dialog, and we can assign them to toolbars and menus through the Excel user interface, aswell as
programmatically. (On the other hand, an add-in, which is discussed later in this chapter, does not
make its subroutines directly accessible to other Excel workbooks, but instead requires that they
be assigned to toolbar or menu items programmatically.)

A workbook stored in either of these foldersis an excellent choice for alibrary of macros that you
want to be globally available to your spreadsheets. It is also suitable for devel oping Excel macros
for othersto use, athough Excel add-ins (which are discussed in Section 10.2.3 later in this
chapter) provide greater flexibility and control, and are much more suitable for macros intended
for distribution.

We will assume in this book that you want to store macros in an add-in. Aswe will see, there are
clear advantages to using add-ins. Moreover, thiswill give us a chance to discuss how add-ins are
created in Excel. However, you can feel free to place the example macros in a spreadsheet that is
kept in the startup or alternate startup folder.

10.2.2 Excel Templates

The purpose of an Excel template is to provide a starting place for a new workbook, worksheet,
chart, or code module. Creating atemplate is easy. We simply create a new workbook and save it
as atemplate using the Save As command.

For instance, suppose we start a new workbook and enter the number 123 in the first cell of the
first sheet. Then we save the workbook in the templates directory (more on this later) as a template
called test.xlt. When we next invoke the New command from the File menu, Excel will display a

104

New dialog with anicon for our template, as shown in Figure 10-4. When we select the test.xlt
icon, Excel will create a new workbook and copy the data from the template into the workbook.

Figure 10-4. The New dialog showing template icons

New 7%
ceneral |
=) ﬁ“_J [, ££|im
Anorkbook tetult FrEwaEy

Salact an kon o
SRR & DrEvEs,

| I CangeE |

It is very important to note that the data (and other things such as formatting) as well as macros
are actually copied to the workbook, after which all connection between the template and the new
workbook is severed. Thisis quite different from the way that Microsoft Word uses templates. A
Word template remains attached to the document. Certain changes, such as the addition of styles
or macros, can be saved either in the template or in the document itself, but Word never copies
macros from atemplate into a document. Also, several templates can be opened at one time (the
so-called global templates), each of which may affect the document. Word templates are dynamic;
Excel templates are static.

This reduces the usefulness of Excel templates considerably, for if we create atemplate that
contains lots of code, for instance, then each workbook that is based on that template will contain
its own copy of that code. This can be a major waste of space and can also make it very difficult to
maintain and upgrade the code. For these reasons, | generally avoid using Excel templates
whenever possible.

For the record, however, we should note that the following items are transferred to a new
workbook or worksheet that is based on atemplate:

The number and type of sheetsin aworkbook

Cell and sheet formats set using the Format menu

Cell styles

Page formats and print-area settings for each sheet

Cell contents

Worksheet graphics

Custom toolbars, macros, hyperlinks, and ActiveX controls on forms; custom toolbars
must be attached to the template

Protected and hidden areas of the workbook

e Workbook calculation options and window display options set using the Options
command on the Tools menu

We should also note that Excel supports several types of specia templates called autotemplates.
They are templates with the following names:

Book.xlt

Sheet.xlt

Chart.xIt

Dialog.xIt

Module.xIt

Macro.xIt (for Excel version 4 macros)

105

When the Book.xIt template is stored in the XIStart subdirectory, Excel bases all new workbooks
on this template when you select the Workbook icon in the New dialog (see Figure 10-2).

If you want new worksheets to have a specia format, then you can create a template named
Sheet.xIt and placeit in the XISart folder. Then every time the Insert Worksheet menu itemiis
invoked, Excel will make copies of al of the worksheets in the Sheet.xIt template and place them
in the current workbook. Note that this can be more than one sheet if there is more than one sheet
in Sheet.xlt.

By now you get the idea. The other autotemplates work similarly.

It isaso important to know that all of the Office applications use the same default directory for
templates. Hence, this directory may contain Word, Excel, PowerPoint, and Access templates. But
Word is the only Office application (as of Office 97) that provides away for the user to change
this directory (from the File Locations tab of the Options dialog under the Word Tools menu). It
follows that, changing this directory using Word will change it for al Office applications!

10.2.3 Excel Add-Ins

An Excel add-inisaspecia type of workbook that is usually saved with an .xla file extension.
(We will discuss how to create add-ins later in this section.) An add-in can be connected to Excel
by checking its check box in the Add-Ins dialog (see Figure 10-5), which is displayed by selecting
Add-Ins from the Tools menu.

Figure 10-5. The Add-Ins dialog

Add-ns E

Add-Ins available:
I anakysis TooPak -

I~ analysis TooPak - VBA T

I autSare i

I Conditonal Sum Wizard

™ Intermat Assistant Wizard Browse...

[Microsoft Bookshe if Integration

™ MS Query add-in for Excel 5 Compati

™ oD8C Add-In T
™ BP Add In

™ Template Utilities j

Lookup Wizard
Helps you create formulas o find data in lists,

Once an add-in is connected, it remains so (even if Excel is closed and reopened) until the check
box in the Add-Ins dialog is unchecked. When connected, an add-in's functionality (VBA
procedures) is accessible from any Excel workbook. Thus, it istruly an extension of Excel.

Typically, an add-in contains code that creates new menu items or toolbar items that provide the
user with access to the procedures in the add-in. This code is placed in the Workbook _Open event

of the add-in so that the menus (or toolbars) are created/customized as soon as the add-in is
connected. (We will see examples of this soon.)

10.2.3.1 Creating an add-in

106

Creating an add-in isasimple process. It begins with an Excel workbook, say SRXUtils.xls. (This
stands for Steven Roman's Excel Utilities.) The workbook, of course, contains a number of macros.
To create an add-in from the workbook, follow these steps:

1. Compilethe project using Excel's VBA Editor.

When the code in any VBA procedure is edited and then executed, Excel must first
compile the code; that is, translate the code into alanguage that the computer can
understand. Thisis why there may be a dlight delay the first time code is executed.
Subsequent execution of the same code does not require compilation unless the code has
been changed since the previous compilation. To compile the code in SRXUtils.xls, select
the Compile option from the Debug menu.

2. Set afew worksheet properties and afew project properties.

We should also set afew properties for the add-in. When SRXUtils.xls is the active
workbook in Excel, choose the Properties option from the Excel File menu and then
display the Summary tab, as shown in Figure 10-6. The Titleis the string that will be used
in the Add-Ins dialog, shown in Figure 10-7. The Comments will be shown at the bottom
of the Add-Ins dialog. Therefore, you should fill in both of these sectionsin the Properties
dialog, as shown in Figure 10-6.

Figure 10-6. Add-in properties

SRXLils xls Properties

Ganaral Summﬂr}flﬂtatisﬁm Conmnts| I:ust::um|

Titke: |ER‘KL|H}5

Subject: |

Author: |~5r

Manager |

Campary: |¢,,

Category: |

feEywords: |

Comments: | Excel Litilities by 52

Hyper link
hase: |

™ Save previev picing

(0] 4 | Cancel

Figure 10-7. The Add-Ins dialog

Add-Ins E
Add-Ing available:
I tnalysis TooPak ™
™ analysis TooPak - vBA —] ST
I AutoSave
™ Conditonal Sum Wizard
™ Intermet Assistant Wizard Browse, ..

W Lookup Wizard

™ Microsoft Bookshelf Integration
™ M= Query Add-in for Excel 5 Compati

™ opacC add-In T,

™ Tamplate Utilibes ll

SRl
Excal Utilites by SR

Next, we use Excel's VBA Editor to set the properties of the VBA project. In the Project
Explorer of the VBA Editor, select the project whose filename is SRXUtils.xls. Then
choose Properties from the Tools menu to display the dialog. Fill in the project name and
description as shown in Figure 10-8.

Figure 10-8. VBA project properties

SRxUtilz = Froject Froperties

General | Pratection

Projact Hamea:

|srontils

Project Description:

|EJ:-:-E~I utllities wsing an add-in]

Project Halp
Help File Name: Ciartenect [D:

| 1
Conditional Compilataon Arguments:

(] 4 | Cancel Help

3. Protect the code from viewing.

To protect the code in an Excel workbook from unauthorized viewing, we can use the
VBA Project Properties dialog. Selecting the dialog's Protection tab, we get the dialog
shown in Figure 10-9. Checking "Lock project for viewing" and entering a password
protects the code from viewing (and from alteration). The project will still appear in the
VBIDE Project window, but Excel will not allow the user to expand the tree for this
project without the password.

Figure 10-9. Protection tab

108

TestAddin - Project Froperies

General Froteclion
Lock project

¥ Lock project for yiewing|

Passward 10 wiew praject properties

ok

Bassword

L LR
Confirm password

Ok, | Cancel Help

4. Savethe workbook as an add-in in adirectory of your choice.

Select the Save As option from the File menu, select "Microsoft Excel Add-In (*.xla)"
from the "Save as type" drop-down list, navigate to the directory in which you'd like to
save the file, enter the filename in the "File name" drop-down list box (in our example,
it's SRXUtils.xla) and press the Save button.

Every Excel workbook has a property called IsAddin. When this property is True, Excel
considers the workbook to be an add-in. One of the consequences of thisisthat the
workbook becomes invisible, so we cannot simply set the ISAddIn property and then save
the project as an XLA file, since its workbook will be inaccessible from the Excel user
interface. Fortunately, Microsoft realized this and arranged it so that when we save the
file as an add-in using the Save As dialog and choosing xla in the "Save as type" drop-
down listbox, Excel will automatically change the ISAddIn property valueto True. (We
can change the value to Fal se as discussed later, in the section, Section 10.2.3.3.)

10.2.3.2 Characteristics of an add-in
An add-in has the following characteristics that set it apart from ordinary Excel workbooks:

e Theworkbook window and any worksheets in an add-in are hidden from view. The
intention is that the creator of the add-in can use worksheets to store supporting data for
the add-in. However, this data should not be visible to the user of the add-in. In fact, an
add-in is designed to be transparent to the user; both the code and any supporting data are
hidden from the user. Thus, if you want your add-in to expose worksheets to the user,
they must be placed in separate Excel workbook files, which can be opened by codein the
add-in at the desired time.

e Asyou probably know, when an Excel workbook is changed and the user tries to close
the workbook, Excel displays awarning message asking if the user wants to save the
changes before closing the workbook. No such message is displayed for an add-in. Thus,
the creator of an add-in can change the datain an add-in worksheet through code without
worrying that the user of the add-in will be bothered by a message to which he or she
could not possibly respond intelligently. (Of course, it is up to the add-in's creator to save
any changesif desired, using the Save As method of the Worksheet object.)

e When an Excel workbook is opened, the Workbook Open event isfired. For an ordinary
Workbook, the user can suppress this event by holding down the Shift key. The Open
event for an add-in cannot be suppressed. Thisisin keeping with the tamper-proof nature
of add-ins.

e Add-in macros are not displayed in the Macros dialog box, thus hiding them from the user.

109

Add-ins and COM Add-ins

Excel 2000 supports the same add-in model that is supported by Excel 97. Thisisthe
add-in model that we use to create the SRXUtils add-in.

In addition, the Office 2000 suite supports a new add-in model called the COM add-in
model. A COM add-inisan ActiveX DLL or executable file that can be connected to
multiple Office 2000 applications. Since this type of add-inisan ActiveX DLL or
executable, it must be created using a programming environment, such as Visual Basic
or Visual C++, that is capable of creating these types of files. However, Visual Basic for
Applications cannot create ActiveX DLLs or executables, so it cannot be used to create
COM add-ins.

10.2.3.3 Debugging add-ins

An add-in can be debugged just like any other Excel workbook. Y ou do not need to refer again to
the original XLSfile.

In particular, an add-in can be opened like any other Excel workbook. However, unless you know
the password (assuming that the add-in has one), you will not be able to see either the add-in's
code or its workbook window. Using the password, you can expand the project node in the Project
window to view the code and, if you select the Thisworkbook node and open the Properties
window, change the ISAddIn property to Fal se to display the workbook window. Now you can
treat the workbook just like any other Excel workbook. Once the necessary changes have been
made, you can recompile the code and return the ISAddIn property to True.

10.2.3.4 Deleting an add-in

Y ou may have noticed that the Add-Ins dialog shown in Figure 10-5 does not have a Delete button.
To remove an add-in from the list, uncheck the add-in, rename the XLA file, and then check the
add-in again. Y ou will get amessage asking if Excel should remove the add-in from thelist. And
while we are on the subject of idiosyncratic behavior, note that changesto an add-in's Title
property may not be reflected in the Add-Ins dialog until Excel is shut down and reopened.

10.3 An Example Add-In

Let's begin the creation of an Excel add-in by creating an add-in shell. Thiswill demonstrate the
process of add-in creation and provide a starting point from which we can create a full-fledged
add-in-based Excel application, adding new features as we proceed through the book. | strongly
suggest that you follow along in the creation process.

In this chapter, we will create the add-in shell whose features just display message boxes (for
now). At thistime, we do not want to cloud the issue of add-in creation by implementing any red
features. In Chapter 12, we will increase the number of mock features so that we can demonstrate
how to handle multiple features in an add-in, as well as how to create a custom menu system for
an add-in. In later chapters, we will implement these features and add additional ones.

10.3.1 Creating the Source Workbook

110

Thefirst step isto create a new workbook that will act as the source for the add-in. Please do this
now. Thisworkbook will eventually be saved as an add-in. | will refer to the workbook as
SRXUtils.xls, but you can feel free to name your version anything you like.

Incidentally, as we make changes to our add-in, we will do so in the SRXUtils.xls worksheet and
then save that worksheet over the current add-in. Before doing so, of course, we must unload the
current version of the add-in.

10.3.2 Setting Up the Custom Menus

To activate the mock features of our add-in shell, we will create a custom menu. We will discuss
the creation of menus and toolbars at length in Chapter 12. For now, we will keep the detailsto a
minimum so we can get the overall picture of add-in creation.

Our custom menu should be created automatically when the add-in loads and destroyed when the
add-in unloads. Accordingly, we begin by placing some code in the Open and BeforeClose events
of ThiswWorkbook, as shown in Example 10-1.

Example 10-1. The Workbook's Open and BeforeClose Event Handlers

Private Sub Workbook BeforeClose(Cancel As Boolean)
DeleteCustomMenultem
End Sub

Private Sub Workbook Open()
CreateCustomMenultem
End Sub

This event code just calls procedures to create or delete the custom menu. These procedures
should be placed in a new code module, so add a module to the SRXUtils project and name it
basMenus. Next, place the CreateCustomMenu I tem procedure shown in Example 10-2 in
basMenus. It is not necessary to completely understand this procedure now, since we will go
over the details in Chapter 12. For the moment, note that Example 10-2 creates an ActivateSheset
menu item on the Custom menu, and that when we click the item, the routine defined by its
OnAction property—in this case, the ActivateSheet subroutine—isrun.

Example 10-2. The CreateCustomMenultem Procedure

Sub CreateCustomMenultem()
Dim cbcpop As CommandBarControl

" Check for custom menu. If it exists then exit.
Set chcpop = Application.CommandBars(_
"Worksheet menu bar'™). _
FindControl (Type:=msoControlPopup, _
Tag:="SRXUtilsCustomMenu')

IT Not cbcpop Is Nothing Then Exit Sub

" Control does not exist -- create it.

Set cbcpop = Application.CommandBars(_
"Worksheet menu bar'™). _
Controls.Add(Type:=msoControlPopup, _
Temporary:=True)

cbcpop.Caption = ""Cu&stom”

111

" Set tag property to find it later for deletion
cbcpop.Tag = ""SRXUtilsCustomMenu™

" Add menu item to popup menu
With cbcpop.Controls.Add(Type:=msoControlButton, _
Temporary:=True)
-Caption = "&ActivateSheet"
-OnAction = "ActivateSheet"
End With
End Sub

Also place the De leteCustomMenu I tem procedure shown in Example 10-3 into basMenus:
Example 10-3. The DeleteCustomMenultem Procedure

Sub DeleteCustomMenultem()
Dim cbc As CommandBarControl
Set cbc = Application.CommandBars(_
"Worksheet menu bar'™). _
FindControl (Type:=msoControlPopup, _
Tag:="SRXUtilsCustomMenu')
IT Not cbc Is Nothing Then cbc.Delete
End Sub

10.3.3 Implementing the Features of the Add-In

Sincethe ActivateSheet utility (which isinvoked when the user selects the ActivateSheet
custom menu item created by the code in Example 10-2) is very simple, it does not require its own
code module. We simply add the following procedure to the basMain code module, which we
also must create:

Public Sub ActivateSheet()
MsgBox "'This is the ActivateSheet utility"
End Sub

10.3.4 Final Steps
Finally, you should follow these steps:

1. Compilethe project. Use the Debug menu to compile the SRXUtils.xls project.

2. Set the properties. Set the workbook and project properties as shown in Figure 10-6 and
Figure 10-8, making any necessary changes based on the name you have chosen for your
add-in.

3. Protect the add-in. Under the Protection tab of the project's Properties dialog, check the
"Lock project for viewing" checkbox and enter a password.

4. Savethe add-in. Save the project as an add-in named SRXUtils.xla in a directory of your
choice.

Now we are ready to try the add-in. Close the SRXUTtils.xls workbook and open a new workbook.
Select the Add-Ins menu item under the Tools menu and hit the Browse button on the Add-Ins
dialog. Locate your SRXUtils.xla file. Then check the entry in the Add-Ins dialog. Y ou should see
the new Custom menu in the worksheet menu bar. Select the ActivateSheet item. Y ou should get
the expected message box. Finis.

As mentioned earlier, as we progress through the book, we will make this example add-in much
more meaningful.

112

Chapter 11. Excel Events

During the course of using Excel, certain events happen. For instance, when aworksheet is created,
that is an event. When achart is resized, that is an event. Microsoft Excel defines atotal of 63
different events. When an event occurs, programmers like to say that the event fires.

The purpose of an event is simply to allow the VBA programmer to write code that will execute
whenever an event fires. Aswe will see, this code is placed in an event procedure. The code itself
isreferred to as event code. We wrote some simple event code for the Open and BeforeClose
workbook events when we created the SRXUtils add-in in the previous chapter.

Most Excel events break naturally into five groups, asindicated in Table 11-1 through Table 11-5.
These groups partially reflect the level at which the event takes place—the application level
(highest), the workbook level (middle), or the worksheet/chartsheet level (lowest).

Toillustrate, when aworksheet is activated by the user or through code (by calling the Activate
method) severa eventswill fire. They are, in firing order:

e The Activate event of the worksheet. This event fires whenever the worksheet is activated.

e The SheetActivate event of the workbook. This event fires whenever any worksheet in the
workbook is activated.

e The SheetActivate event of the application. This event fires whenever any worksheet in
any workbook in the currently running instance of Excel is activated. (However, aswe
will discuss later, to enable this event, we must write specia code.)

11.1 The EnableEvents Property

It isimportant to note that no Excel event will fire unless the EnableEvents property is set to True
(although it is set to True by default). Thus, the programmer has control over whether Excel
events are enabled. The EnableEvents property is a property of the Application object, so, for
instance, to prevent the Save event from firing when the active workbook is saved, we can write:

Application.EnableEvents = False
ActiveWorkbook.Save

Application.EnableEvents = True

11.2 Events and the Excel Object Model

The Excel object model contains several objects that exist simply as a convenience, in order to
include the Excel eventsin the object model. (We do not actually program with these objects.)
These objects are A ppEvents, DocEvents, ChartEvents, WorkBookEvents, OL EObjectEvents, and
RefreshEvents. The events associated with aworksheet, for instance, are methods of the
DocEvents object, which isachild of the Worksheet object and the Chart object.

11.3 Accessing an Event Procedure

113

By now you are probably wondering how to write an event procedure. The short answer isthat for
each event, Excel provides us with an event code shell where we can place the event code for that
event.

Toillustrate, consider the SelectionChange event of the Worksheet object. Figure 11-1 shows the
code window for aworksheet (Sheetl). Note that the Worksheet object is selected in the objects
list box. This causes the procedures list box to be filled with the names of the worksheet events.
We can simply choose the event for which we want to write event code.

Figure 11-1. Events for the Worksheet object

X4 Book1 - Sheet] (Code)
IWurI:shee‘t ﬂ |Seleclinnfhange ﬂ

At vl -

EBeforaDoublaClick I

SeforaHightChck

= 1| Calculate
Change

| | Bnd Sub Deactivate

Private Sub Worksheet

oelechionl-hanoe j

For instance, if we choose the SelectionChange event, Excel will automatically produce the
following code shell:

Private Sub Worksheet SelectionChange(ByVal Target As Excel.Range)
End Sub

Excel will even place the cursor between the two code lines so we can begin entering event code.
Asthe name implies, this event fires when the current selection is changed in the worksheet. Note
that Excel will fill in the Target parameter with the Range object that represents the new
selection. Thus, our event code has access to the new selection, but not to the previous selection.
Many events have parameters associated with them. This provides away for Excel to pass us

information related to the event.

The same approach will work for the workbook and chart events, but Application events require a
different approach, which we will discuss later in the chapter.

The Excel eventsarelisted in Table 11-1 through Table 11-5.

11.4 Worksheet Events

The worksheet-rel ated events are shown in Table 11-1. These events are also referred to as
document events.

Table 11-1. Worksheet Events (DocEvents)

\ Event name | Description

Activate Occurs when aworksheet is activated.

Occurs when aworksheet is double-clicked, before the default

BeforeDoubleClick double-click action.

114

BeforeRightClick

Occurs when aworksheet is right-clicked, before the default right-
click action.

Calculate |Occurs after the worksheet is recal cul ated.

Change

Occurs when cells on the worksheet are changed by the user or by
an external link.

Deactivate |Occurs when the worksheet is deactivated.

PivotTableUpdate (Excel 10
only)

Occurs after a PivotTable report is updated on aworksheet.

SelectionChange |Occurs when the selection changes on aworksheet.

11.5 WorkBook Events

Table 11-2 shows the workbook-rel ated events.

Table 11-2. Workbook Events

\ Event name \ Description

Activate Occurs when aworkbook is activated.

Addinlinstall Occurs when the workbook isinstalled as an add-in.
AddinUninstall Occurs when the workbook is uninstalled as an add-in.
BeforeClose Occurs before the workbook closes.

\BeforePri nt \Occurs before the workbook (or anything in it) is printed.
BeforeSave ‘Occurs before the workbook is saved.

Deactivate Occurs when the workbook is deactivated.

NewSheet Occurs when a new sheet is created in the workbook.
Open Occurs when the workbook is opened.

PivotTableCloseConnection (Excel 10
only)

Occurs after aPivotTable closes the connection to its data
source.

PivotTableOpenConnection(Excel 10
only)

Occurs after a PivotTable opens the connection to its data
source.

SheetActivate

Occurs when any sheet is activated.

SheetBeforeDoubleClick

Occurs when any worksheet is double-clicked, before the
default double-click action.

SheetBeforeRightClick

Occurs when any worksheet is right-clicked, before the
default right-click action.

Occurs after any worksheet is recalculated or after any

SheetCalculate changed datais plotted on a chart.

SheetChange Occurswhen cellsin any worksheet are changed by the
user or by an externa link.

SheetDeactivate Occurs when any sheet is deactivated.

ShestSlectionChange Occurs when the selection changes on any worksheet

(does not occur if the selection is on a chart sheet).

WindowActivate

Occurs when any workbook window is activated.

WindowDeactivate

Occurs when any workbook window is deactivated.

\WindowResize

‘Occurs when any workbook window is resized.

115

Incidentally, a user can suppress the Open event for aworkbook by holding down the Shift key
when opening the workbook.

11.6 Chart Events

Table 11-3 shows the chart-related events.

Table 11-3. Chart Events

Event name

Description

Activate

Occurs when a chart sheet or embedded chart is activated.

BeforeDoubleClick

Occurs when an embedded chart is double-clicked, before the default double-
click action.

BeforeRightClick

Occurs when an embedded chart is right-clicked, before the default right-click
action.

Calculate Occurs after the chart plots new or changed data.

Deactivate |Occurs when the chart is deactivated.

DragOver |Occurs when arange of cellsis dragged over achart.

DragPlot Occurs when arange of cellsis dragged and dropped on a chart.
MouseDown Occurs when a mouse button is pressed while the pointer is over a chart.
MouseMove Occurs when the position of the mouse pointer changes over a chart.
MouseUp |Occurs when amouse button is released while the pointer is over achart.
Resize |Occurs when the chart is resized.

Select Occurs when a chart element is selected.

SeriesChange Occurs when the user changes the value of a chart data point.

11.7 Application Events

Table 11-4 shows the Application-level events. These events apply to al objectsin the currently

running instance of

Excel.

Table 11-4. Application Events

\ Event name \ Description
NewWorkbook Occurs when a new workbook is created.
SheetActivate Occurs when any sheet is activated.

SheetBeforeDoubleClick

Occurs when any worksheet is double-clicked,
before the default double-click action.

SheetBeforeRightClick

Occurs when any worksheet is right-clicked, before
the default right-click action.

SheetCalculate

Occurs after any worksheet is recalculated or after
any changed datais plotted on a chart.

SheetChange

Occurs when cellsin any worksheet are changed by
the user or by an external link.

SheetPivotTableUpdate (Excel 10 only)

Occurs after the sheet containing the PivotTable
report has been updated.

116

SheetDeactivate

\Occurs when any sheet is deactivated.

SheetSelectionChange

Occurs when the selection changes on any
worksheet (does not occur if the selectionison a
chart sheet).

WindowActivate

Occurs when any workbook window is activated.

\WindowDeactivate

\Occurs when any workbook window is deactivated.

\WindowResize

‘Occurs when any workbook window is resized.

WorkbookActivate Occurs when any workbook is activated.
WorkbookAddininstall Occurs when aworkbook isinstalled as an add-in.
WorkbookAddinUninstall Occurs when any add-in workbook is uninstalled.
WorkbookBeforeClose Occurs immediately before any open workbook

closes.

WorkbookBeforePrint

Occurs before any open workbook is printed.

\WorkbookBeforeSave \Occurs before any open workbook is saved.

WorkbookDeactivate Occurs when any open workbook is deactivated.

WorkbookNewSheet Occurs when a new sheet is created in any open
workbook.

WorkbookOpen Occurs when aworkbook is opened.

(Excel 10 only)

WorkbookPivotTableCloseConnection

Occurs after a PivotTable report connection has
been closed.

10 only)

WorkbookPivotTableOpenConnection (Excel

Occurs after a PivotTable report connection has
been opened.

Unfortunately, Excel makesit a bit more difficult to reach the Application events than eventsin
the other categories. Here is a step-by-step procedure for reaching the event code shells for the

Application events:

1. UsetheVBA Insert menu to insert a class module into your project. Let us call this class
module CApp (short for Class Application). Inthe declaration section of the class

module, add the line:

Public WithEvents App As Application

Choosing the App object in the objects drop-down should now give you access to the
Application event code shells, as shown in Figure 11-2.

Figure 11-2. Application-level events

g

x| |Hewivaikbaok |

Public WithEvents App As Appli ot SR .|

Shectdctivale —
ShesiBbeforeDouble Click

Private Sub App_Newlorkbook(Byt
End Sub
Private Sub App_Sheethctivate(f

HsgBox "Application-leuvel Shee
End 3ub

ShestBeforeRight Click
ShealCaleulate
ShaslChange
Sheelleactivala
ShestSelectionChange
Wind oAt el
WindowDeactioate
WindowResiza

Wirkb ookAcinate il

2. Inthe code module in which you want to activate Application-level events (say, the code
modul e associated with a workbook, worksheet, or chart), place the following declaration
in the declarations section of the module:

117

Dim AppObj As New CApp
(You can use any variable name you wish in place of AppObj).

3. Finadly, assign the App property of AppObj to the Application object, by executing the
code:

Set AppObj.App = Excel .Application

It is up to you where to place this line of code, but it must be executed in order to activate
Application-level events. (Thereisacertain circularity here, since a natura place to put
this code isin the WorkbookOpen event. However, this event will not fire until this code
has been executed.)

In addition to using the EnableEvents property, you can turn off Application-level events by
executing the code:

Set AppObj.App = Nothing

11.8 QueryTable Refresh Events
Table 11-5 shows the events related to QueryTables. We will not discuss QueryTables in this book,
but at least now you are aware of the existence of these events should you decide to pursue this

matter on your own.

Table 11-5. Refresh Events

\ Event name | Description
\AfterRefresh |Occurs after aquery is completed or canceled.
BeforeRefresh |Occurs before any refreshes of the query table.

118

Chapter 12. Custom Menus and Toolbars

In this chapter, we discuss methods for programmatically controlling menus and toolbars. Even
though the subject of menus and toolbars is fairly straightforward, it can seem very confusing,
especially since the documentation is less helpful than it might be.

12.1 Menus and Toolbars: An Overview

Actually, Excel's menu and toolbar objects do not belong to the Excel object model. The menus
and toolbars throughout the Microsoft Office application suite belong to the Office object model.
The portion of the Office object model that relates to menus and toolbarsis shown in Figure 12-1.

Figure 12-1. The menu and toolbar portion of the Office object model

= TEl CommendBars
- 70 CommandB8ar
o CommeandBarContal +
= 7Tk CommandBarControls
T2 CommandBar +
7o CommandBarControl +
= 7o CommandBarConrol
?0 CommandBar +
70 CommeandBarContal +

Note that this model is actually quite small, containing only two objects and their corresponding
collections:

e CommandBar objects and the CommandBars collection
e CommandBarControl objects and the CommandBarControls collection

12.1.1 Menu Terminology

To help set the notation, Figure 12-2 shows the components of the Office menu structure (this
happens to be a Word menu, but no matter).

Figure 12-2. An Office menu

119

“ﬂﬁla Edit ¥iew [nsert Format Tools Table wWindow OCustom Help

Break. ..
Paoe Mumbers. ..
Dake and TiMeE. ..
fustoText b
Beld...
Svmbol,, .

g Coment

Foatnote...
Caption..,
Cross-reference...
Indec and Tables...

...... Fichure » JEHCEISS
| Text Box "3 Erom Fie...
File.
;;ject @ Autoshapes
&Ih'l'l;k -‘1' Eﬁrdﬂ.rt...
i il chart

Wk, Hyperlnk... Chrbbk

12.1.2 The CommandBar Object

Toolbars, menu bars, menus, submenus, and shortcut menus are all CommandBar objects. (A
shortcut menu is a menu that pops up in response to aright mouse click.) Thus, every item
pictured in Figure 12-2 is a command bar except the popup controls and the button control.

Of course, toolbars, menu bars, and shortcut menus are "top level" objects, whereas menus and
submenus emanate from toolbars, menu bars, or shortcut menus.

It isimportant to note that Office VBA does not treat each of these CommandBar objectsin the
same way. For instance, the Count property of the CommandBars collection counts only the top-
level items. menu bars, toolbars, and shortcut menus. It does not count menus or submenus. Also,
the Add method of the CommandBars collection can be used to create toolbars or menu bars, but
not menus or submenus.

The CommandBar object has a Type property that can assume one of the constants in the
following enum:

Enum MsoBarType
msoBarTypeNormal = 0O

toolbar

msoBarTypeMenuBar = 1 " menu bar
msoBarTypePopup = 2 " menu, submenu, or shortcut menu
End Enum

12.1.3 Command-Bar Controls

The items on atoolbar, menu bar, menu, or submenu are actually controls, called command-bar
controls; that is, they are CommandBarControl objects. Aswe will see, there are various types of
command-bar controls, falling into two broad categories: custom command-bar controls
(including custom text boxes, drop-down list boxes, and combo boxes) and built-in command-bar
controls. Note that command-bar controls are not the same as the controls that we can place on a
UserForm; they are designed specifically for toolbars and menus.

There are two special types of custom command-bar controls that are not typical of other types of
controls. These are Popup controls and Button controls.

120

12.1.3.1 Popup controls

A command-bar control of type msoControlPopup is acontrol whose sole purposeisto pop up
amenu (when the control ison amenu bar) or a submenu (when the control is on amenu). These
controls are naturally referred to as popup controls (see Figure 12-2). Popup controls that are
located on a menu bar take on the appearance of a recessed button when the mouse pointer is over
the control. Popup controls on amenu or submenu have asmall arrow on the far right to identify
them.

Thus, the term popup is used in two different ways. A popup control is a command-bar control of
type msoControlPopup and isused to pop up amenu or submenu. A popup command bar isa
command bar of type msoBarTypePopup and is either a menu, submenu, or shortcut menu. Note
that to display a popup command bar, the user needs to activate a popup control.

12.1.3.2 Button controls

A command-bar control of type msoControlButton is caled abutton control. When a button
control is activated (using an accelerator key or mouse click), amacro is executed. Button controls
have a string property called OnAction, which we can set to the name of the macro that is
executed when the control is activated.

12.1.4 Adding a Menu ltem

It isworth mentioning now that there are afew counterintuitive wrinkles in the process of menu
creation. In particular, we might think at first that adding a new menu should be done using the
Add method of the CommandBars collection, specifying the name of the parent menu and the
location of the new menu on the parent. After al, amenu is a CommandBar object, and this
procedure would be consistent with other cases of adding objects to a collection.

However, thisis not how it is done. Instead, aswe will see, a new menu (or submenu) is created
by adding a command-bar control of type msoControlPopup to the CommandBarControls
collection of the parent menu (and specifying the new control's position on the parent). Actually,
this represents a savings of effort on our behalf. For, as we have remarked, a menu or submenu
requires a popup control for activation. Thus, Microsoft makes the task of creating menus and
submenus easier by automatically creating the corresponding (empty) menu or submenu in
response to our creation of a popup control. (We will see an example of thislater, so don't worry
too much if thisis not perfectly clear yet.)

One word of advice before proceeding: Aswe will see, when creating a new toolbar or menu, you
can set one of the parameters to make the object temporary, meaning that it will be destroyed
when Excdl is closed. In thisway, if anything unexpected happens, it is easy to recover—just
close Excel and reopen it. Alternatively, by opening the Customize dialog box (from the Tools
menu), you can delete menu items by dragging them off of the menu, and you can delete toolbars
by using the Delete button.

12.2 The CommandBars Collection

The topmost object that relates to menus and toolbars is the CommandBars collection, which
contains all of the application's CommandBar objects. The CommandBars collection is accessible
through the CommandBars property of the Application object, that is:

Application.CommandBars

121

The code in Example 12-1 will print alist of al of the CommandBar objects to the immediate
window. Y ou may be surprised at the large number of objects, most of which are not currently
visible.

Example 12-1. Listing Excel's CommandBar Objects

Public Sub ShowCmdBars()
Dim sType as string, cbar as CommandBar

For Each cbar In Application.CommandBars
Select Case cbar.Type

Case msoBarTypeNormal " A toolbar
sType = "Normal™
Case msoBarTypeMenuBar " A menu bar
sType = "Menu bar™
Case msoBarTypePopup " Menu, submenu
sType = ""Popup™
End Select

Debug.Print cbar_Name & ",'" & sType & "," & cbar.Visible
Next
End Sub

If you execute this code, you should get the following entries, among many others:

Worksheet Menu Bar,Menu bar,True
Chart Menu Bar,Menu bar,False

Thisindicates that Excel's main menu bars are different for worksheets than for chartsheets, asis
evident if you look at the menus themselves. The worksheet menu bar has different controls than
the Chart menu bar. Thus, if you want to add a custom menu item to Excel's "main" menu bar,
regardless of what type of sheet is currently active, you will need to do so for both the Worksheet
Menu Bar and the Chart Menu Bar.

There isa dight complication concerning the CommandBars property that we should discuss.
When qualified with the Application object, asin Appl ication.CommandBars, this property
returns the collection of all available built-in and custom command bars for the application which
in this case is Excel. Thisiswhy we used the fully qualified expression
Application.CommandBars in Example 12-1. Note that from a standard code module, we
can skip the qualification and just write CommandBars.

However, from a Workbook, the CommandBars property returns adifferent collection. In
particular, there are two possibilities. When the workbook is embedded within another application
and Excel is activated by double-clicking on that embedded workbook, the CommandBars
collection returns the collection of command bars that are available in that setting. This may be
different from the full collection of Excel command bars. If the workbook is not embedded in
another application, then the CommandBars property returns Nothing.

Note also that the Workbook object has a CommandBars property. However, this property is
meaningful only when the workbook is embedded within another application, in which case the
property returns the CommandBars collection for that application. When applied to a
nonembedded workbook, the property returns Nothing. Moreover, there is no programmatic way
to return the set of command bars attached to a workbook.

122

12.3 Creating a New Menu Bar or Toolbar

Aswe have said, one way in which menu bars and toolbars differ from menus and submenusisin
their creation. To create anew menu bar or shortcut menu, we use the Add method of the
CommandBars collection. The syntax for the Add method is:

CommandBarsObject.Add(Name, Position, MenuBar, Temporary)

The optional Name parameter is the name of the new command bar. If this argument is omitted,
Excel VBA assigns adefault name (such as "Custom 1") to the command bar. The optiona
Position parameter gives the position of the new command bar. This can be set to
msoBarLeft, msoBarTop, msoBarRight, msoBarBottom, msoBarFloating (for a
floating command bar), or msoBarPopup (for a shortcut menu).

The optional Boolean MenuBar parameter is set to True for amenu bar and False for atoolbar.
The default valueis Fal se, so if the argument is omitted, atoolbar is created. Note that if you
create a new menu bar and make it visible, it will replace the existing Excel menu bar! If this
happens, you can still exit Excel by typing Alt-F4, and the normal Excel menu will reappear the
next time that you launch Excel.

Setting the optional Temporary parameter to True makes the new command bar temporary.
Temporary command bars are deleted when Excel is closed. The default valueis Fal se.

Toillustrate, the following code creates a new floating toolbar called "Custom Toolbar" and
makes it visible:

Dim cbar As Office.CommandBar

Set cbar = Application.CommandBars.Add(*'Custom Toolbar™, _
msoBarFloating, False, True)

cbar_Visible = True

It isimportant to note that, if a CommandBar object by the name Custom Toolbar already exists,
the previous code will produce aruntime "Invalid procedure cal" error. Thus, we really should
test for the existence of the CommandBar object before using the Add method, as shown in

Example 12-2.
Example 12-2. Creating a New Toolbar

Public Sub CreateToolbar()
Dim cbar As Office.CommandBar
Dim bExists As Boolean

bExists = False
For Each cbar In Application.CommandBars

IT cbar.Name = "Custom Toolbar' Then bExists = True
Next

IT Not bExists Then
Set cbar = Application.CommandBars.Add(*'Custom Toolbar™, _
msoBarFloating, False, True)
cbar.Visible = True
End If
End Sub

123

12.4 Command-Bar Controls

Initially, one of the most confusing aspects of the Office menu system is that the items that appear
on amenu bar are not menus, or even names of menus. Rather, they are controls of type
CommandBarControl. Command-bar controls can be added to a menu bar, toolbar, menu,
submenu, or shortcut menu. (Think of toolbars, menu bars, and so on as "forms" upon which you
place controls.)

Every command-bar control is an object of type CommandBarControl and so it belongsto the
CommandBarControls collection. (We are not saying that the Type property of a command-bar
control is CommandBarControl.) In addition, every command-bar control is an object of one of
the following three object types:

e CommandBarButton
e CommandBarComboBox
e CommandBarPopup

Thisdual identity of CommandBarControl objects allows the various types of command-bar
controls to possess on the one hand a common set of properties and methods (those of the
CommandBarControl object) and, on the other hand, an additional set of properties and methods
that reflects the diversity of these controls. This makes sense, since, for instance, text boxes are
quite different from popup controls. Moreover, as we will see, CommandBarPopup objects need a
specia property (called Controls) that provides access to the associated menu's controls. (The
other types of CommandBarControl objects do not need, and do not have, this property.)

The Type property of a CommandBarControl helps to identify the data type of the control. It can
assume any of the valuesin the following enum:

Enum MsoControlType

msoControlCustom = 0O

msoControlButton = 1 " CommandBarButton
msoControlEdit = 2 " CommandBarComboBox
msoControlDropdown = 3 " CommandBarComboBox
msoControlComboBox = 4 " CommandBarComboBox
msoControlButtonDropdown = 5 " CommandBarComboBox
msoControlSplitDropdown = 6 " CommandBarComboBox
msoControlOCXDropdown = 7 " CommandBarComboBox
msoControlGenericDropdown = 8

msoControlGraphicDropdown = 9 " CommandBarComboBox
msoControlPopup = 10 " CommandBarPopup
msoControlGraphicPopup = 11 " CommandBarPopup
msoControlButtonPopup = 12 " CommandBarPopup
msoControlSplitButtonPopup = 13 " CommandBarPopup

msoControlSplitButtonMRUPopup = 14 " CommandBarPopup
msoControlLabel = 15
msoControlExpandingCGrid = 16
msoControlSplitExpandingGrid = 17
msoControlGrid = 18
msoControlGauge = 19
msoControlGraphicCombo = 20

End Enum

CommandBarComboBox

The comments that follow some of the constants in this enum indicate the data type of the control.
This information comes from the Microsoft help files. The missing comments mean either that
some command-bar controls do not belong to one of the three data types in question or el se that
the help file has not kept up with later additions to the enum.

124

12.4.1 Creating a New Command-Bar Control

To create and add a command-bar control to acommand bar, use the Add method of the
CommandBarControls collection. This method returns a CommandBarButton,
CommandBarComboBox, or CommandBarPopup object, depending on the value of the Type
parameter. The syntax is:

CommandBarControlsObject.Add(Type, Id, Parameter, Before, Temporary)

Type isthe type of control to be added to the specified command bar. Table 12-1 shows the
possible values for this parameter, along with the corresponding control and the return type of the
Add method.

Table 12-1. msoControlType Values for the Type Parameter

\ Type Parameter (Value) | Control \ Returned object
msoControlButton (1) Button CommandBarButton
msoControlEdit (2) Text box CommandBarComboBox
msoControlDropdown (3) List box CommandBarComboBox
\soControlComboBox (€)) |Combo box \CommandBarComboBox
\msoControlPopup (10) |Popup \CommandBarPopup

The optional Before parameter is a number that indicates the position of the new control on the
command bar. The new control will be inserted before the control that is at this position. If this
argument is omitted, the control is added at the end of the command bar.

To add a so-called custom control of one of the typeslisted in Table 12-1, set the 1d parameter to
1 or leaveit out. To add a built-in control, set the 1d parameter to the ID number of the control
(and leave out the Type argument). We will discuss built-in control IDs, and consider some
examples, in the following section.

Aswith command bars, we can set the optional Temporary parameter to True to make the new
command-bar control temporary. It will then be deleted when Excel is closed.

It isvery important to note that a CommandBar object does not have a CommandBarControls
property, as might be expected. In order to return a CommandBarControls object, we must use the
Controls property, asin:

CommandBars(*'Worksheet Menu bar') .Controls

It is equally important to note that, among all of the types of CommandBarControls, one and only
one type has a Controls property. In particular, a CommandBarControl of type
CommandBarPopup has a Controls property, which provides access to the CommandBarControls
collection associated with the corresponding menu for the popup control. Aswe will seein an
upcoming example, the Controls property thus provides the means by which we can add controls
to the menu!

12.5 Built-in Command-Bar-Control IDs

125

Aswewill seein Example 12-3, it is possible to place built-in command-bar controls on toolbars
(or menus). Thisis done by setting the Id parameter of the Add method of the
CommandBarControls collection to the ID of the built-in command-bar control.

We must now address the issue of how to determine the IDs for the built-in controls. One
approach to finding the ID of a particular control is to use the FindControl method to get a
reference to the control. Once thisis done, we can examine the control's ID property. The syntax
for FindControal is:

expression.FindControl (Type, Id, Tag, Visible, Recursive)

where expression is either aCommandBar or CommandBars object. The other parameters are
optional. The method returns the first CommandBarControl object that fits the criteria specified by
the parameters, or Nothing if the search is unsuccessful. Briefly, the parameters are:

Type

One of the MsoControl Type constants in the enum given earlier in this chapter
Id

The ID of the control
Tag

Thetag value of the control
Visible

Set to True to include only visible command-bar controls in the search
Recursive

True to include the command bar and al of its popup subtoolbars in the search

While the FindControl method can be quite useful, the problem in this situation is that the method
requires another way to identify the control, such as through its Tag property. Thus, the
FindControl method is most useful in finding a custom control that we have created and assigned a
Tag value.

An alternative approach to getting built-in control IDsisto create a one-time list for future
reference. The code in Example 12-3 will create atext file and fill it with alist of al built-in
control names and IDs. (Note that it requires that a directory named \temp exist on your D: drive;
feel free to change the drive and path to one suitable for your system.) The code creates a
temporary toolbar, adds a built-in control for each possible control ID using asimple For loop,
and then examines each of these controls. Thisisarather ad hoc approach, but seems to be the
only approach available.

Example 12-3. Code to Generate a List of Control IDs

Public Sub ListControllIDs()
Dim fr As Integer
Dim cbar As Office.CommandBar
Dim ctl As CommandBarControl
Dim 1 As Integer

126

Const maxid = 4000

fr = FreeFile
Open "d:\temp\ids.txt" For Output As #fr

" Create temporary toolbar
Set cbar = Application.CommandBars.Add('"temporary', msoBarTop, _
False, True)

For 1 = 1 To maxid
On Error Resume Next
cbar.Controls.Add ld:=i
Next i

skip if cannot add

On Error GoTo O
For Each ctl In cbar.Controls

Print #fr, ctl_Caption & " " & ctl.ld
Next

cbar.Delete
Close #fr

Example 12-4 shows asmall portion of the resulting file when the code is run on my system.
Appendix C, contains acomplete list.

Example 12-4. Outputting the IDs of Command-Bar Controls

<Custom> 1

&Spelling. .. 2
&Save 3
&Print. .. 4
&New. . . 18
&Copy 19

Cu&t 21

&Paste 22

Open 23

Can"t Repeat 37
&Microsoft Word 42
Clear Contents 47
Custom 51

&Piggy Bank 52
Custom 59

&Double Underline 60
Custom 67

Custom 68

&Close 106
AutoFormat 107
&Format Painter 108
Print Pre&view 109
Custom 112

&Bold 113

<alic 114
&Underline 115

We will consider an example that uses built-in controls later in the chapter (at which time it should
become clearer just what a built-in control is.)

Tbu&ZTﬁ/”

12.6 Example: Creating a Menu

The program shown in Example 12-5 creates the menu system shown in Figure 12-3 on Excel's
worksheet menu bar. Note that the macros that are invoked by the selection of the menu items are
named ExampleMacrol and ExampleMacro2

Figure 12-3. An example custom menu

Custom
Wanultaml |

Suohberuleml #

Example 12-5. An Example Menu

Sub CreatePopup()
Dim cbpop As CommandBarControl
Dim cbctl As CommandBarControl
Dim cbsub As CommandBarControl

" Create a popup control on the main menu bar

Set cbpop = Application.CommandBars(""Worksheet Menu Bar'). _
Controls_Add(Type:=msoControlPopup)

cbpop.Caption = "&Custom"

cbpop.Visible = True

" Add a menu item
Set cbctl = cbpop-Controls.Add(Type:=msoControlButton)
cbctl .Visible = True

" Next is required for caption
cbctl.Style = msoButtonCaption
cbctl_Caption = "Menultem&l"

" Action to perform
cbctl .OnAction = "ExampleMacrol™

" Add a popup for a submenu
Set cbsub = cbpop-Controls._Add(Type:=msoControlPopup)

True
"&SubMenulteml™

cbsub.Visible
cbsub.Caption

" Add a menu item to the submenu
Set cbctl = cbsub.Controls.Add(Type:=msoControlButton)

cbctl .Visible = True

" Next is required for caption
cbctl_Style = msoButtonCaption
cbctl.Caption = ""SubMenultemé&2"

" Action to perform
cbctl_OnAction = "ExampleMacro2'
End Sub

Note also the use of the ampersand character (&) in the Caption properties. This character signals
ahot key (or accelerator key). Thus, "& Custom" appears as Custom in the menu bar and can be
invoked using the keystroke combination Alt-C.

128

12.7 Example: Creating a Toolbar

Let us construct a custom toolbar with four different types of controls, as shown in Figure 12-4.
Thiswill illustrate the use of the built-in controls. The code in Example 12-6 does the job. We will
discuss various portions of the code after you have glanced at it.

Figure 12-4. A custom toolbar

Cumnmmmnrnﬂfé; 25?' -

Example 12-6. An Example Toolbar

Sub CreateToolbar()
Dim cbar As CommandBar, cbctl As CommandBarControl

" Delete if it exists
For Each cbar In Application.CommandBars

IT cbar.Name = "Toolbar Example'™ Then cbar.Delete
Next

" Create a floating toolbar

Set cbar = Application.CommandBars.Add(Name:="Toolbar Example", _
Position:=msoBarFloating)

cbar_Visible = True

" Add a custom button control to execute a macro

Set chctl = cbar.Controls.Add(Type:=msoControlButton)
cbctl .Visible = True

cbctl_Style = msoButtonCaption

cbctl _Caption = ""CustomButton"

" Run the following macro
cbctl.OnAction = "ExampleMacro™

" Add built-in Open... control

Set cbctl = cbar.Controls_Add(1d:=23)
* lcon for button
cbctl_Faceld = 23
cbctl _Visible = True

" Add built-in spell checking button
Set cbctl = cbar.Controls.Add(1d:=2)
cbctl._Faceld = 2

cbctl _Visible = True

" Add a list box
Set cbctl = cbar.Controls.Add(Type:=msoControlDropdown)

" Add a tag so macro can find it
cbctl.Tag = "ComposerList”

cbctl .Visible = True

cbctl .Caption "ListCaption"”

129

" Set list properties of the list box
With cbctl

-Addltem "Chopin™, 1

-AddIltem "Mozart', 2

-Addltem "Bach"™, 3

-DropDownLines 0

-DropbDownWidth 75

select nothing to start
-ListIndex = 0
End With

" Set macro to execute when an item

" is selected

cbctl.OnAction = "ExampleListMacro"
End Sub

Thefirst step isto check for an existing toolbar named Toolbar Example. If it exists, we deleteit.
Then we create a floating toolbar named Toolbar Example. The name isimportant, since we will
useit later for identification.

Next, we add a custom button control (1d argument missing) and assign it the macro
Examp leMacro, whose code, which is shown in Example 12-7, simply tells us that we pushed
the button.

Example 12-7. The ExampleMacro Macro

Sub ExampleMacro()
MsgBox "‘Custom button pressed"
End Sub

Next, we add a built-in File Open... custom control, whose Id happens to be 23. (We have already
discussed how to get built-in control 1Ds.) This custom control automatically displays the Open
dialog box. Note that we set the Face I d to 23 aswell. This displays the default icon for the Open
command, but we could choose another icon if desired.

Then we add the built-in Spelling custom control, which checks the spelling of the active
document.

Finally, we add a custom list box and populate it with the names of three composers. Note that we
set the Tag property of thislist box. The reason is that we want to be able to use the FindControl
method to find the list box from within the macro that is assigned to the OnAction property, which
is shown in Example 12-8.

Example 12-8. Macro Invoked by Selecting a Composer from the List Box

Sub ExampleListMacro()
Dim cbctl As CommandBarControl
Find the list box control
Set cbctl = CommandBars(*'Toolbar Example'). _
FindControl (Tag:="ComposerList')
IT Not cbctl Is Nothing Then
MsgBox "You selected " & cbctl.List(cbctl.Listlndex)
End IF
End Sub

130

In this macro, we use the FindControl method to locate the list box control, viaitstag, on the
toolbar. Once we have located the list box, we can get the currently selected item (which we
simply display for this example). Note that if two or more controls fit the search criteria,
FindControl returns the first control that it finds. Also, if no control fits the criteria, FindControl
returns Nothing, so we can check this as we have done in our program.

12.8 Example: Adding an Item to an Existing Menu

Of course, rather than creating a custom toolbar or adding a custom menu to Excel's menu system,
you may prefer to add a button to an existing toolbar or amenu item to an existing menu. In that
case, you simply need to retrieve a reference to the CommandBar object to which you wish to add
the item and call the Controls collection's Add method to add an item to it. In addition, you can
retrieve the Index property of the item before which you'd like to position your new menu item or
toolbar button. Example 12-9, which contains the source code for a Workbook Open event that
adds an "About SRXULils" menu item immediately before the "About Microsoft Excel” item,
shows how this can be done. Note that the procedure is able to determine the precise location of
the About Microsoft Excel menu item by retrieving a reference to its CommandBarControl object
and its Index property.

Example 12-9. Adding a Menu Item to an Existing Menu

Private Sub Workbook Open()
Dim IngPos As Long
Dim objHelpMenu As CommandBar
Dim objHelpMenultem As CommandBarControl
Dim objExcelAbout As CommandBarControl

"Get reference to Help menu
Set objHelpMenu = Application.CommandBars(*'Help'™)

" Determine position of "About Microsoft Excel"
Set objExcelAbout = objHelpMenu.Controls('About Microsoft Excel™)
IT Not objExcelAbout Is Nothing Then
IngPos = objExcelAbout. Index
Else
IngPos = objHelpMenu.Controls.Count
End IFT

" Add "About SRXUtils' menu item
Set objHelpMenultem = objHelpMenu.Controls.Add(msoControlButton, _
1, , IngPos, True)

objHelpMenultem.Caption = "About &SRXUtils"
objHelpMenultem.BeginGroup = True

objHelpMenultem.OnAction = "‘ShowAboutMacros™
End Sub

12.9 Augmenting the SRXUtils Application

Armed with our knowledge of Office CommandBars, we can augment our add-in shell, first
discussed in Chapter 10.

131

12.9.1 Creating the Data Worksheet

As an Excel application gets more complex, the associated menu gets more complex. Rather than
store all datadirectly in code, it makes sense to use a worksheet. Recall that add-in worksheets are
hidden from the user, so they are the perfect place to keep data for the add-in.

Open the SRXUtils.xls source workbook, delete all sheets but one, and name that sheet DataSheet.
Fill in the sheet as shown in Figure 12-5. This sheet contains one row for each procedure (or
utility) of the add-in (we will add more rows later in the book). The first row isfor the
ActivateSheet utility whose code shell we included earlier. We will add code shells for the
other utilities abit later. In later chapters, we will implement these utilities properly.

Figure 12-5. DataSheet of SRXUtils.xls

E F i
Menu e SubMenu em On ¥ks Menu On Chart Mer
SROTEN S TRLE LE
Frini et Frinl AFrin Emizadsad Gk TRLE TRLUE
PrniPrapiTebiss Frrbug Bt Tackes TRLE TRLE
Prnzheats Frinboe EoTmilE TRLE e

3
I Werkizank
Thesthtorkdoa

Uity
| 2 | Retrame St
| & [Fring Chas
| & Tt Erax Tatdss
| & |Frnt Ehasts

OnAckian Pras Procedurs
Huna iy Acraakzhaot
Hul Ry
Sunl By
Frun R iy

Let ustake acloser look at the contents of DataSheet. The first column is the name of the utility.
Thisis not used outside of the sheet.

The second column is the name of the procedure that is activated when the utility isinvoked by
the user through a menu item created by the add-in. In this case, al menu items fire the same
utility: RunUti Lity. Thisutility will determine the menu item that was clicked and call the
appropriate procedure.

The third column gives the location of this procedure. As you can see, we have placed the printing
procedures in a separate workbook called Print.utl. As an application gets more complex, you may
want to split it up into several workbooks. In thisway, your add-in can be written to load afile
only when it is needed, thus saving resources. (In this example, we are splitting up the application
for demonstration purposes only. The printing utilities are not really complex enough to warrant a
separate workbook.)

The fourth column contains the caption for the menu item that will invoke the utility. Note the
ampersand character (&), which determines the menu hot key. For example, the ActivateSheet
menu item can be invoked using the A key. The fifth column gives the menu item name in case
thereis a submenu. Thus, the print utilities are accessed through the Print submenu.

The final two columns determine whether the menu (or submenu) item will be enabled or disabled
when aworksheet or chartsheet is active. Aswe have seen, Excel uses a different main menu bar
when aworkshest is active (Worksheet Menu Bar) than when a chartsheet is active (Chart Menu
Bar). For a utility that pertains only to charts, for instance, we may not want the corresponding
menu item to be available from the Worksheet menu bar and vice-versa.

Next, you should create a new standard code module called basMain and place the following
constant declarations in the Declarations section:

Public
Public
Public
Public
Public
Public
Public
Public

Const
Const
Const
Const
Const
Const
Const
Const

Utility Col =1
OnAction_Col = 2
Procedure Col = 3
InWorkbook_Col = 4
Menultem Col = 5
SubMenultem_Col
OnWksMenu_Col =
OnChartMenu_Col

6

I~

8

132

By using these constants throughout the add-in, if we need to move any columns in the DataSheet
sheet, all we need to do is change the values of these constants. (Thisis precisely what symbolic
constants are for!)

12.9.2 Setting Up the Custom Menus

Thefirst step in creating the custom menus for our featuresis to make a dight alteration in the
code for the Open event for ThisWorkbook. Change the code as shown in Example 12-10.

Example 12-10. The Revised Versions of ThisWorkbook's Open and Close Events

Private Sub Workbook Open()
CreateCustomMenus
End Sub

The code for creating the custom menu is more complicated than the one from Chapter 10 because
we must now extract the necessary information from the DataSheet worksheet. There are many
ways to do this, but we have elected to split the process into two procedures. The first procedure,
CreateCustomMenus, checks for the existence of the custom menus using the Tag property. If
the menu exists, it is deleted. Then the procedure calls the second procedure,
CreateCustomMenu, which actually does the menu creation. This is done once for the
worksheet menu bar and once for the chart menu bar. The first procedure is shown in Example 12-
11.

Example 12-11. The CreateCustomMenus Procedure

Sub CreateCustomMenus()
" Create custom menu on both worksheets and chartsheets
" menu bars if they do not already exist.
" Use the control®s tag property to identify it.

Dim cbc As CommandBarControl

Set cbc = Application.CommandBars(_
"Worksheet menu bar'™).FindControl(_
Type:=msoControlPopup, Tag:="SRXUtilsCustomMenu')

IT Not cbc Is Nothing Then cbc.Delete
CreateCustomMenu ""Worksheet Menu Bar"

Set cbc = Application.CommandBars(_
"Chart menu bar'™)._.FindControl(_
Type:=msoControlPopup, Tag:="SRXUtilsCustomMenu')

IT Not cbc Is Nothing Then cbc.Delete

CreateCustomMenu "‘Chart Menu Bar"
End Sub

The CreateCustomMenu procedure is shown in Example 12-12. Note that the OnAction
property of every menu item is set to a procedure called RunUti lity, asthe "onActivation Proc"
column in Figure 12-3 shows. This procedure will sort out which menu item was selected and call
the appropriate procedure. To pass the information to RunUti I'i ty, we set each control's Tag
property to the name of the procedure and its Parameter property to the name of the workbook that
contains the procedure. (The Tag and Parameter properties are "spare” properties designed to
allow the programmer to store important information, which is precisely what we are doing.) In

133

the RunUti lity procedure, we can use the ActionControl property to return the control that
caused the RunUti ity procedure to execute. Then it is a simple matter to read the Tag and
Parameter properties of that control.

Example 12-12. The CreateCustomMenu Procedure

Sub CreateCustomMenu(sBarName As String)
Dim cbpop As CommandBarControl
Dim cbctl As CommandBarControl
Dim cbctlCurrentPopup As CommandBarControl
Dim iEnabledColumn As Integer
Dim iLastRow As Integer
Dim iCurrentRow As Integer
Dim sCurrentMenultem As String
Dim sCurrentSubMenultem As String
Dim sCurrentProcedure As String
Dim sCurrentWorkbook As String
Dim sCurrentOnAction As String
Dim ws As Worksheet

iEnabledColumn = OnWksMenu_Col " Column for worksheet menu bar
IT LCase(sBarName) = "chart menu bar'™ Then _
iEnabledColumn = OnChartMenu_Col

Set ws = ThisWorkbook.Worksheets('DataSheet')

" Create a popup control on main menu bar sBarName
Set chbpop = Application.CommandBars(sBarName).
Controls_Add(Type:=msoControlPopup, Temporary:=True)

With cbpop

-.Caption = "Cu&stom"

.Tag = "SRXUtilsCustomMenu™
End With

" Get last used row of DataSheet
iLastRow = Application.WorksheetFunction.CountA(ws.Range("'A:A™))

" Go through DataSheet to get menu items
For iCurrentRow = 2 To ilLastRow
" Set the values
sCurrentProcedure = ws.Cells(iCurrentRow, Procedure Col).Value
sCurrentWorkbook = ws.Cells(iCurrentRow, InWorkbook Col).Value
sCurrentMenultem = ws.Cells(iCurrentRow, Menultem_Col).Value
sCurrentSubMenultem = ws.Cells(iCurrentRow,
SubMenultem_Col) .Value
sCurrentOnAction = ThisWorkbook.Name & "I' &
ws.Cells(iCurrentRow, OnAction_Col).Value
" If no Submenu item then this is a button control
else it is a popup control
IT sCurrentSubMenultem = """ Then
" Add button control
With cbpop.Controls.Add(Type:=msoControlButton,
Temporary:=True)
.Caption = sCurrentMenultem
-OnAction = sCurrentOnAction
.Tag = sCurrentProcedure to pass this on
-Parameter = sCurrentWorkbook to pass this on
-Enabled = ws._Cells(iCurrentRow, iEnabledColumn)._Value

134

End With
Else
" Add popup control if it is not already added
IT sCurrentMenultem <> """ Then
Set chctlCurrentPopup = cbpop.Controls.Add(_
Type:=msoControlPopup, Temporary:=True)
cbctlCurrentPopup.Caption = sCurrentMenultem
End If

" Now add the submenu item, which is a button control
With cbctlCurrentPopup.Controls.Add(_
Type:=msoControlButton, Temporary:=True)
-Caption = sCurrentSubMenultem
-OnAction = sCurrentOnAction
.Tag = sCurrentProcedure to pass this on
.Parameter = sCurrentWorkbook * to pass this on
-Enabled = ws.Cells(iCurrentRow, iEnabledColumn).Value

End With
End If
Next " row

End Sub

12.9.3 Implementing the Features of the Add-in

We are now ready to "implement” the features of the add-in. As discussed earlier, for now we will
just supply a message box for each feature.

The ActivateSheet utility has aready been taken care of, since there should be a code module
named basMain in the SRXUtils.xls project. For now, this module should contain only the
following procedure:

Public Sub ActivateSheet()
MsgBox "'This is the ActivateSheet utility"
End Sub

For the printing utilities, we need a new Excel workbook. Create a new workbook and name it
Print.xls. Add a code module (with any name) containing the code shown in Example 12-13.

Example 12-13. Code for the Printing Procedures

Public Sub PrintCharts()
MsgBox "This is the print charts utility"
End Sub

Public Sub PrintPivotTables()
MsgBox "This is the print pivot tables utility”
End Sub

Public Sub PrintSheets()
MsgBox "This is the print sheets utility"”
End Sub

Now, the Print.xls workbook is an ordinary Excel workbook, so if our add-in opens this workbook
in order to call one of its procedures, the workbook will be visible to the user. Thisis not good.
Hence, we need to create an add-in from this worksheet aswell. Let us call it Print.utl. (Y ou can
save the worksheet under this name by placing the name in quotation marks in the File name box

in Excel's Save Asdiaog. If you omit the quotation marks, Excel will save the file as Print.utl.xla.)
Don't forget to perform the usual add-in creation rituals for this workbook (compile the code, set

135

the workbook and project properties, and lock the workbook from viewing) before saving it as an
add-in.

We now need to implement the RunUti I ity procedure. This procedure, which should be placed
in the basMain code module, is shown in Example 12-14.

Example 12-14. The RunUtility Procedure

Sub RunUtility(Q)
" Use Tag and Parameter properties to find the procedure for
" the requested utility. Procedure name is in Tag property
" and workbook name is in the Parameter property.
" Use ActionControl to return the control.

Dim WkbName As String
Dim ProcName As String

WkbName = Application.CommandBars.ActionControl .Parameter
If WkbName = """ Or WkbName = "ThisWorkbook' Then _
WkbName = ThisWorkbook.Name

ProcName = Application.CommandBars.ActionControl.Tag

" Open workbook if necessary
On Error GoTo WkbNotFound
IT Not IsBookOpen(WkbName) Then
Workbooks.Open ThisWorkbook.Path & Application.PathSeparator &
WkbName
End If

" Run procedure
On Error GoTo ProcNotFound

Application.Run WkbName & "!'" & ProcName
Exit Sub

WkbNotFound:
MsgBox "‘Cannot find workbook ™ & WkbName & ™ in " &
ThisWorkbook.Path, vbCritical, "Test Add-In"
Exit Sub

ProcNotFound:
MsgBox *‘Cannot find procedure "™ & ProcName & " in " & _
WkbName, vbCritical, "Test Add-In"
Exit Sub
End Sub

Example 12-14 makes a call to the IsBookOpen function (which is shown in Example 12-15) to
see if the workbook containing the procedure is open. Perhaps the obvious choice for determining
whether or not aworkbook is open isto look through the Workbooks collection, which is the
collection of al "open" workbooks (more on thisin Chapter 17). However, an add-in is hidden,
even from this collection. Fortunately, we can still refer to an add-in workbook by name, so we
just try to get this name using the line;

sName = Workbooks(sWkbName) .Name

If this generates an error, we know that the workbook is not open. Otherwise, it will return the
name of the workbook. (Of course, we aready knew the name in this case, but that doesn't matter.)

136

Example 12-15. The IsBookOpen Function

Private Function IsBookOpen(sWkbName) As Boolean
" Check to see if workbook is open
" Note that an add-in workbook does not appear in
* the Workbooks collection, so we need another method.
" However, an add-in can be referenced by name, so we simply
" access its Name property. If an error occurs, then
" the workbook is not open.

Dim sName As String

On Error GoTo WkbNotOpen
IsBookOpen = True
sName = Workbooks(sWkbName) .Name

Exit Function

WkbNotOpen:
IsBookOpen = False
End Function

12.9.4 Closing Any Open Add-Ins

When the user unchecks the SRXUtils item in the Add-Ins dialog, Excel will closethe
SRXUtils.xla workbook. But it will not close any add-ins, such as Print.utl, that were opened in
code. The place to close all open add-ins isin the workbook's BeforeClose event, which currently
only deletes the custom menu.

A simple (but perhaps not elegant) approach isto close every add-in listed in the DataSheet except
the main SRXUtils.xla (which is closed when the user desel ects the add-in). For this, we need an
On Error Resume Next line so that an attempt to close aworkbook that is not open will be
ignored. Thus, you should change the code for the existing BeforeClose event to that shownin

Example 12-16.

Example 12-16. The Workbook BeforeClose Event Handler

Private Sub Workbook BeforeClose(Cancel As Boolean)
" Delete custom menu and close all add-ins

Dim r As Integer
Dim ws As Worksheet
Dim sName As String

" In case we try to close a workbook that is not open
On Error Resume Next

DeleteCustomMenus
Set ws = ThisWorkbook.Worksheets(''DataSheet')

For r = 2 To Application.WorksheetFunction.CountA(ws.Range("'A:A™))
sName = ws.Cells(r, InWorkbook Col).Value

IT sName <> """ And sName <> "'ThisWorkbook' Then
Workbooks(sName) .Close
End If
Next r
End Sub

The DeleteCustomMenus procedure is shown in Example 12-17.
Example 12-17. The DeleteCustomMenus Procedure

Sub DeleteCustomMenus()
Dim cbc As CommandBarControl

Set cbc = Application.CommandBars('Worksheet menu bar'). _
FindControl (Type:=msoControlPopup, Tag:="TestAddInCustomMenu')

IT Not cbc Is Nothing Then cbc.Delete

Set cbc = Application.CommandBars('Chart menu bar'). _
FindControl (Type:=msoControlPopup,
Tag:="TestAdd InCustomMenu')
IT Not cbc Is Nothing Then cbc.Delete
End Sub

The pieces are now complete, so you can save the SRXUtils.xIs file as an add-in, just aswe did in
Chapter 10. (If you have a problem, you can download the source code for this add-in from the
O'Rellly web site and compare it with your code.)

138

Chapter 13. Built-In Dialog Boxes

The Excel object model contains a Dialog object for each of Excel's built-in dialog boxes. These
Dialog objects are kept in the Dialogs collection and are indexed by the XIBui ltInDialog
constants shown in Table 13-1 and Table 13-2. The Dialogs collection is returned by the Dialogs

property of the Application object. In Table 13-1, "<vX>" indicates that the constant is new for

Excel version X.

Table 13-1. XIBuiltinDialog constants and values

]_xl DiaogChartSourceData (541)<v9>

|x| DialogFormatMove (128)

|x| DialogPrinterSetup (9)

|_xIDialogPhonetic (538)<v9>

|xIDiangFormatN umber (42)

|xIDiangPri ntPreview (222)

xIDialogActivate (103)

xIDialogFormatOverlay (226)

xIDialogPromote (202)

xIDialogActiveCellFont (476)

xIDialogFormatSize (129)

xIDialogProperties (474)

xIDialogAddChartAutoformat (390)

xIDial ogFormatText (89)

xIDial ogPropertyFields (754)<v10>

xIDialogAddinManager (321)

xIDialogFormulaFind (64)

xIDialogProtectDocument (28)

xIDialogAlignment (43)

xIDialogFormulaGoto (63)

xIDial ogProtectSharing (620)

xIDialogApplyNames (133)

xIDial ogFormulaReplace (130)

xIDial ogPublishAsWebPage
(653)<v9>

xIDialogApplyStyle (212)

xIDial ogFunctionWizard (450)

xIDial ogPushbuttonProperties
(445)

xIDialogAppMove (170)

xIDialogGallery3dArea (193)

xIDialogReplaceFont (134)

xIDialogAppSize (171)

xIDialogGallery3dBar (272)

xIDialogRoutingSlip (336)

xIDialogArrangeAll (12)

xIDialogGallery3dColumn (194)

xIDialogRowHeight (127)

xIDialogAssignToObject (213)

xIDialogGallery3dLine (195)

xIDialogRun (17)

xIDialogAssignToTool (293)

xIDialogGallery3dPie (196)

xIDialogSaveAs (5)

xIDialogAttachText (80)

xIDialogGallery3dSurface (273)

xIDialogSaveCopyAs (456)

xIDia ogAttachTool bars (323)

xIDialogGalleryArea (67)

xIDial ogSaveNewObject (208)

xIDialogAutoCorrect (485)

xIDialogGalleryBar (68)

xIDialogSaveWorkbook (145)

xIDialogAxes (78)

xIDialogGalleryColumn (69)

xIDialogSaveWorkspace (285)

xIDialogBorder (45)

xIDial ogGalleryCustom (388)

xIDialogScale (87)

xIDialogCalculation (32)

xIDialogGalleryDoughnut (344)

xIDialogScenarioAdd (307)

xIDial ogCellProtection (46)

xIDiaogGalleryLine (70)

xIDial ogScenarioCells (305)

xIDialogChangeL.ink (166)

xIDiaogGalleryPie (71)

xIDial ogScenarioEdit (308)

xIDialogChartAddData (392)

xIDialogGalleryRadar (249)

xIDialogScenarioMerge (473)

xIDialogChartL ocation (527)

xIDialogGalleryScatter (72)

xIDialogScenarioSummary (311)

(724)<v10>

xIDialogChartOptionsDatal_abelMultiple

xIDial ogGoal Seek (198)

xIDial ogScrollbarProperties (420)

xIDial ogChartOptionsDatal abel s (505)

xIDialogGridlines (76)

xIDialogSearch (731)<v10>

xIDialogChartOptionsDataT able (506)

xIDialoglmportTextFile
(666)<v9>

xIDialogSel ectSpecia (132)

xIDialogChartSourceData (540)

xIDialoglnsert (55)

xIDialogSendMail (189)

xIDialogChartTrend (350)

xIDialoglnsertHyperlink (596)

xIDialogSeriesAxes (460)

xIDialogChartType (526)

xIDialoglnsertNameL abel (496)

xIDial ogSeriesOptions (557)

xIDialogChartWizard (288)

xIDial oglnsertObject (259)

xIDialogSeriesOrder (466)

xIDial ogCheckboxProperties (435)

xIDialoglnsertPicture (342)

xIDialogSeriesShape (504)

xIDialogClear (52)

xIDialoglnsertTitle (380)

x| Dial ogSeriesX (461)

xIDialogColorPalette (161)

xIDialogL abel Properties (436)

xIDialogSeriesY (462)

xIDialogColumnWidth (47)

xIDialogListboxProperties (437)

xIDial ogSetBackgroundPicture
(509)

xIDialogCombination (73)

xIDialogMacroOptions (382)

xIDialogSetPrintTitles (23)

xIDial ogConditional Formatting (583)

xIDialogMail EditMailer (470)

xIDialogSetUpdateStatus (159)

xIDia ogConsolidate (191)

xIDialogMailLogon (339)

xIDialogShowDetail (204)

139

xIDialogCopyChart (147)

xIDialogMailNextL etter (378)

xIDialogShowToolbar (220)

xIDialogCopyPicture (108)

xIDialogMainChart (85)

xIDialogSize (261)

xIDialogCreateNames (62)

xIDialogMainChartType (185)

xIDialogSort (39)

xIDialogCreatePublisher (217)

xIDialogM enuEditor (322)

xIDialogSortSpecial (192)

xIDialogCustomizeToolbar (276)

xIDialogMove (262)

xIDialogSplit (137)

]xl DiaogCustomViews (493)

xIDialogNew (119)

x| Dial ogStandardFont (190)

xIDialogDataDel ete (36)

xIDial ogNewWebQuery
(667)<v9>

xIDialogStandardWidth (472)

xIDialogDatal abel (379)

xIDialogNote (154)

xIDialogStyle (44)

xIDiaogDatal abelMultiple (723)<v10>

xIDial ogObjectProperties (207)

xIDial ogSubscribeTo (218)

xIDialogDataSeries (40)

xIDial ogObjectProtection (214)

xIDialogSubtotal Create (398)

xIDialogDataV didation (525)

xIDialogOpen (1)

xIDialogSummarylnfo (474)

xIDialogDefineName (61)

xIDial ogOpenLinks (2)

xIDialogTable (41)

xIDialogDefineStyle (229)

xIDialogOpenMail (188)

xIDialogTabOrder (394)

xIDialogDeleteFormat (111)

xIDialogOpenText (441)

xIDialogTextToColumns (422)

xIDialogDeleteName (110)

xIDial ogOptionsCal culation
(318)

xIDialogUnhide (94)

xIDialogDemote (203)

xIDialogOptionsChart (325)

xIDialogUpdateLink (201)

xIDialogDisplay (27)

xIDialogOptionsEdit (319)

xIDialogV bal nsertFile (328)

xIDial ogEditboxProperties (438)

xIDialogOptionsGenera (356)

xIDial ogV baM akeAddin (478)

xIDialogEditColor (223)

xIDialogOptionsListsAdd (458)

xIDialogV baProcedureDefinition
(330)

xIDialogEditDelete (54)

xIDialogOptionsM E (647)<v9>

xIDialogView3d (197)

xIDial ogEditionOptions (251)

xIDialogOptionsTransition
(355)

xIDial ogWebOptionsBrowsers
(773)<v10>

x| Dial ogEditSeries (228)

xIDialogOptionsView (320)

xIDial ogWebOptionsEncoding
(686)<v9>

xIDialogErrorbarX (463)

xIDialogOutline (142)

xIDialogWebOptionsFiles
(684)<v9>

xIDialogErrorbarY (464)

xIDialogOverlay (86)

xIDial ogWebOptionsFonts
(687)<v9>

xIDialogErrorChecking (732)<v10>

xIDialogOverlayChartType
(186)

xIDial ogWebOptionsGeneral
(683)<v9>

xIDial ogEvaluateFormula (709)<v10>

xIDial ogPageSetup (7)

xIDial ogWebOptionsPictures
(685)<v9>

xIDial ogExternal DataProperties (530)<v9>

xIDialogParse (91)

xIDialogWindowMove (14)

xIDialogExtract (35)

xIDialogPasteNames (58)

xIDialogWindowsSize (13)

xIDialogFileDel ete (6)

xIDialogPasteSpecial (53)

xIDialogWorkbookAdd (281)

xIDialogFileSharing (481)

|xI DiaogPatterns (84)

|x| Dia ogWorkbookCopy (283)

xIDial ogFillGroup (200)

xIDial ogPhonetic (656)

xIDial ogWorkbookl nsert (354)

xIDial ogFillWorkgroup (301)

xIDialogPivotCal culatedField
(570)

xIDialogWorkbookMove (282)

xIDialogFilter (447)

xIDialogPivotCal culateditem
(572)

xIDialogWorkbookName (386)

xIDialogFilterAdvanced (370)

xIDialogPivotClientServerSet
(689)<v9>

xIDialogWorkbookNew (302)

xIDialogFindFile (475)

xIDialogPivotFieldGroup (433)

xIDialogWorkbookOptions (284)

xIDialogFont (26)

xIDial ogPivotFieldProperties
(313)

xIDialogWorkbookProtect (417)

xIDial ogFontProperties (381)

xIDial ogPivotFieldUngroup
(434)

xIDialogWorkbookTabSplit (415)

xIDial ogFormatAuto (269)

xIDial ogPivotShowPages (421)

xIDialogWorkbookUnhide (384)

xIDialogFormatChart (465)

xIDialogPivotSolveOrder (568)

xIDialogWorkgroup (199)

xIDialogFormatCharttype (423)

xIDialogPivotTableOptions
(567)

xIDialogWorkspace (95)

140

xIDial ogFormatFont (150) ?:I))[l);)’i OgPivoiTablewizard xIDialogZoom (256)
xIDialogFormatL egend (88) xIDial ogPlacement (300)
xIDialogFormatMain (225) xIDialogPrint (8)

Table 13-2. Additional XIBuiltinDialog Constants and Their Values for Excel 9.0

_xIDialogChartSourceData (541) xIDialogOptionsM E (647) xIDial ogWebOptionsFonts (687)
_xIDialogPhonetic (538) xIDialogPivotClientServerSet (689) |xIDialogWebOptionsGeneral (683)
xIDial ogExterna DataProperties (530) |xIDialogPublishAswWebPage (653) |xIDia ogWehOptionsPictures (685)
xIDialoglmportTextFile (666) xIDialogWebOptionsEncoding (686)

xIDialogNewWebQuery (667) 'xIDialogWebOptionsFiles (684) |

Note that each of the constantsin Table 13-1 isformed from the prefix xIDial og followed by
the name of the dialog box. For example, the Open dialog box constant isxIDial ogOpen and so
the corresponding Dialog object is:

Application.Dialogs(xIDialogOpen)

The Open dialog box is shown in Figure 13-1.

Figure 13-1. The Open File dialog box

Open E
took ;[Excel =] B &S = mise =] B
Cef |

Cancel

Agvanoed.,
Find files Tat match thess search oriteria:
File pamsa! | LI Teuk oF property: i - Eind Mow
Filas: af type: |r-'ln;|1:rs.c"t Exced Files .0 ‘_:I;__j Lzt o ifiesd j_:-'.,' K - Mew Search

7 file(=) founad

Unfortunately, the Dialog object has only one useful property or method: the Show method.

13.1 The Show Method

The Show method displays a dialog box. This provides a convenient way to "lead" the user to a
built-in dialog box. Unfortunately, we cannot access the values that the user enters into that dialog.
Until the dialog is dismissed by the user and the actions specified in the dialog are completed, we
have no control over the chain of events. (In Word 97, for instance, we can use built-in dialog
boxes to get values from the user, without letting Word act automatically on those values.)

To illustrate, the code:
Application.Dialogs(xIDialogOpen) .Show

displays the Open dialog box in Figure 13-1. The Show method returns True if the user clicks the
OK button and Fal se if the user clicks the Cancel button.

141

When the dialog box is dismissed by the user using the OK button, any appropriate actions
indicated by the fields in the dialog box are carried out. In the case of the Open dialog, this means,
of course, that the file selected by the user is actually opened in Excel. However, no actions are
taken if the user dismisses the dialog box using the Cancel button.

The Show method has syntax:
DialogObject.Show(argl, arg2, ..., arg30)
where the arguments are used to set some dialog options.

In particular, it is possible to set some of the values on abuilt-in Excel dialog box using arguments
to the Show method. These arguments are listed in the Excel VBA Help file under "Built-In

Dialog Box Argument Lists." For instance, the xIDialogOpen dialog box has the following
arguments:

file_text
update_ links
read_only
format

prot_ pwd
write_res_ pwd
ignore_rorec
file_origin
custom delimit
add_logical
editable

file _access
notify_logical
converter

Hence, the code:
Application.Dialogs(xIDialogOpen) .Show "*_*" False, True

displays the Open dialog, setsthe "Files of type" drop-down box to All Files"*.*" so that the
dialog will display the names of all files, setsupdate_links to False (sothat Excel links are
not automatically updated) and read_only to True (thus any file that is opened will be read-

only).

Unfortunately, Microsoft does not seem to have documented the meaning of the various
arguments. Also, the arguments are not named arguments, so we must include space for all
arguments that precede the arguments that we want to set. Thus, atrial-and-error approach seems
to be the only solution if you must set some dialog options. (Have fun.)

142

Chapter 14. Custom Dialog Boxes

Aswe have seen, Excel's built-in dialogs offer very restricted communication with the user.
Fortunately, Excel makesit possible to create custom dialog boxes that allow much more flexible
communication. Custom dialog boxes are also called forms or UserForms. Our intention hereisto
present an introduction to the subject, which will provide a good jumping-off point for further
study.

Generally speaking, most Excel applications will require only very simple forms. For example, we
may want to display aform with atext box for text input, alist box to allow user selection, or
some option buttons to select from several choices. Of course, we will want some command
buttons to allow the user to execute procedures.

In fact, Microsoft's Visual Basic is amore appropriate programming environment than Microsoft
Office for creating applications that involve complex forms, since it was designed specifically for
that purpose. And Visual Basic alows you to access any of the object models in the Microsoft
Office suite, just as Excel does.

14.1 What Is a UserForm Object?

A UserForm object can be thought of as a standard code module with avisual interface (aform)
that is used to interact with the user (hence the term UserForm). However, we must be careful not
to take this description too literally. For instance, procedures (even public ones) that are declared
in the General section of a UserForm module are generally intended to support objects (or code)
on the form itself, whereas public procedures declared in a standard module are generally intended
to support code anywhere in the project (not just in its own modul€).

To illustrate the point, suppose we declare a public procedure called ProcedureA in the Generd
section of a UserForm module called UserForm1. Even though this procedure is public, we cannot
access it from another module (even within the same project) by simply writing:

ProcedureA

aswe could if the procedure was defined within a standard module. Instead, we must use the
qualified name:

UserForml.ProcedureA

14.2 Creating a UserForm Object

To create auser form at design time, we just select the project in which the form will reside and
choose UserForm from the Insert menu. (Forms can be created at run time using the Add method
of the UserForms collection, but we will confine our attention to creating forms at design time.)
Figure 14-1 shows the design environment when a UserForm object is selected in the Project
window.

Figure 14-1. A UserForm dialog box (design time)

143

Al Microool Visual Basic - Bookl ki - [Book] als - Wylhekeg (WeaiFom]]

M e Qo2 vhes st Bprvot Gobus Bun Dol iedew He ol
]
X 3= ©)y el MEER L
?J L) w
W] s Cshaotll) ﬂ I This i & Text e
W TheatTMa e Ol
M ThisWiorttook
4 Fer s - H
R Mwliaiog =]
At | e R =
B T - e e — kA om -
Claws Modudas j R
x| w 2 |_'|
=1 [- ik]

Note that the window on the right in Figure 14-1 contains the dialog box, in which we have placed
atext box control and two command button controls. Thereis also a Toolbox window that
contains icons used to add various Windows controls to the form.

To place a control on aform, we simply click on the icon in the Toolbox and then drag a rectangle
on the form. This rectangle is replaced by the control. We can change the properties of the form
itself (or any controls on the form) by selecting the object and making the changesin the
Properties window. (Note the change to the form's caption in Figure 14-1.)

Additional controls may also be available on your system. These can be accessed by choosing
"Additional controls" under the Tools menu. (This menu option is enabled, though only if a user
form has the focusin the VB IDE.)

14.3 ActiveX Controls

If you have been using Microsoft Windows for some time (as we presume you have, since you are
reading this book), then you are quite familiar with controls at the user level. The following are
examples of controls:

Command buttons
Text boxes

List boxes
Combo boxes
Option buttons
Check boxes
Labels

Tabs

Scroll bars

All of these controls have a visual interface for interaction with the user. However, some controls
do not have avisual interface. One example isthe Timer control, which can be set to fire an event
at regular intervals. Thus, the programmer can write code that will execute at regular intervals.

144

Generally speaking, a control (or ActiveX control) can be thought of as a special type of code
component that can be placed within alarger container object (such as aform) and has the
following properties:

e Controls generally (but not always) provide avisual interface for communication with the
user.

e Controls can have methods that can be invoked by the user.

e Controls can have properties that can be read and set by the user.

e Controls can have events for which the user can write event code.

We discussed events that are associated with Excel objects (worksheets, workbooks, charts, and so
on) in Chapter 11. Control events work in precisely the same way, as we will seein the upcoming
examples.

14.4 Adding UserForm Code

In general, VBA programmers add two types of code to a UserForm module: event code that
underlies the various controls on the form (and perhaps the form itself) and additional procedures
that perform utility functions needed by the application. The latter code is added to the general
section of the UserForm code module.

To illustrate the point with a very simple example, suppose we want to create an application that
sorts selected columns (treating each column as a single object) using the first row as the sort key.
Our form might look something like the one shown in Figure 14-2.

Figure 14-2. A Sort dialog box

Sort Columns

When the user clicks the Sort button, VBA will ask him or her to confirm the sort operation and
then act accordingly. Now, when the Sort button is selected by the user, VBA firesthe Click event
for this button. If the button is named cmdSort, then VBA provides the event code shell:

Private Sub cmdSort_Click()

End Sub

Clearly, we want to perform the sorting operation when this event isfired. However, it would not
be agood ideato place the actual code to perform the sort in this event code shell. Instead, we
write a separate sorting procedure to do the sorting and place it in the General section of the
UserForm module, or perhaps make it a public procedure in a separate standard code module
within the project:

Public Sub SortColumns()
" code here to sort text
End Sub

145

There are several reasonswhy it is better to place the sorting code in a separate procedure. This
code modularity makes it easier to:

Use the code in other locations in the application
Move the code to other applications

Find and repair bugs in the code

Make improvements or additions to the code
Just plain read the code

Once the sorting procedure is complete, we can add the following code to the Click event:

Private Sub cmdSort_Click()
IT MsgBox(*'Sort currently selected columns?"”, _
vbQuestion + vbYesNo) = vbYes Then SortColumns
End Sub

Incidentally, the Click event for the Cancel button is often just the following:

Private Sub cmdCancel_Click()
Unload Me
End Sub

All this does is unload the form.

While on the subject of unloading aform, it isimportant to understand the distinction between
unloading aform and hiding aform. We can hide aform by setting the form's Visible property to
False. This makes the form invisible, but it still consumes resources, such as memory. When we
unload aform, it no longer consumes resources. (Well, thisis not quite true. We need to not only
unload the form, but also to set any variables that reference the formto Nothing.)

14.5 Excel's Standard Controls

Excel hastwo types of controls. Figure 14-3 shows two toolboxes, each of which provides access
to one type of control. (Below each toolbox is a control created using that toolbox.)

Figure 14-3. Control toolbars

M= Aah| [
V ol & v & [EEHEE
EBEE & £ & ¢
T ARE R T

CommandButani Button 1 ‘

146

The controls on the Control Toolbox (on the left in Figure 14-3) are ActiveX controls. These
controls can be placed either on a UserForm or directly on aworksheet (but not a chartsheet).
They are the same as the controls that are accessible from the VB editor's Toolbox when designing
aUserForm. ActiveX controls are very flexible and generally support awide range of events. The
Control Toolbox can be opened from within Excel (not the Excel VBA IDE) by selecting the
Customize option from the Tools menu and checking the Control Toolbox toolbar in the Toolbars
tab.

Note that the Control Toolbox in Figure 14-3 is not the same as the Toolbox in Figure 14-1, even
though both are used to access ActiveX controls. The Toolbox in Figure 14-1 places ActiveX
controls on user forms; the Control Toolbox in Figure 14-3 places ActiveX controls on worksheets.
The first button on the Control Toolbox, called the Design Mode button, is particularly important.
Pressing it puts the worksheet in design mode at least with respect to its controls. When in design
mode, we can move and resize the controls on the worksheet using the mouse. We can also right-
click the control to bring up a dialog box with control options. When the Design Mode button is
not depressed, clicking on a control with the mouse simply fires the Click event!

By selecting the Customize option from the Tools menu and checking the Forms toolbar in the
Toolbars tab, you open the Forms toolbox. The controls on the Forms toolbox (on theright in
Figure 14-3) arereferred to as "standard Excel worksheet controls* and are a remnant from Excel
5.0. They can be placed on worksheets or chartsheets (but not UserForms) and have only asingle
event: the Click event.

For instance, if you place a standard button on a worksheet, Excel immediately opens the Assign
Macro dialog box, as shown in Figure 14-4. This allows you to assign a macro to the button's
Click event.

Figure 14-4. Response to placing a standard Excel command button

Assign Macro

Macro Marme!
R
Testaddin, glsiActivateShaet J

TestaddinlsiCreateCustomidznus Cancel
Testaddin, «lsiDe leteCustombenus

Testaddin, klsiRunitility

Fecord...

il

facros in; All Open Workbooks j
Description

Since standard Excel controls are the only controls that can be placed on a chartsheet, they remain
useful. But ActiveX controls are far more flexible and should be used whenever possible. We will
speak no further about the standard Excel controls.

14.6 Example: The ActivateSheet Utility

It istime now to implement the ActivateSheet utility in our SRXULtils application. This will
demonstrate the use of UserForms.

147

In particular, when the user selects ActivateSheet, we would like to present her with a custom
dialog that lists all of the sheets in the active workbook, as shown in Figure 14-5. The user can
select one of these sheets, which will then be activated.

Figure 14-5. The activate sheet dialog

Activate Shest

Sheet2 _ _ _ o
Eheet] Activare
DataShest

Cancel

To implement this utility, we need to do the following:

e Changethe ActivateSheet procedurein basMain to open the Activate Sheet dialog
(instead of displaying the current message).

e Designthe Activate Sheet dialog itself.

e Write the code behind the Activate Sheet dialog.

14.6.1 Back to SRXUtils

So crank up the SRXUTtils.xls worksheet and replace the ActivateSheet procedure in basMain:

Public Sub ActivateSheet()
MsgBox "'This is the ActivateSheet utility”
End Sub

with the procedure:

Public Sub ActivateSheet()
dlgActivateSheet.Show
End Sub

which simply displays the Activate Sheet dialog (which we will call dlgActivateSheet).

14.6.2 Create the UserForm

After you insert a UserForm into your project, you should use the Properties window to change its
Name property to dlgActivateSheet and its Caption property to "Activate Sheet." Then you
can add the controlsto the form. The UserForm in Figure 14-5 has two command buttons and one
list box.

14.6.2.1 List box

Place a List box on the form asin Figure 14-5. Using the Properties window, set the properties
shown in Table 14-1. Note that the Tablndex property determines not only the order that the
controls are visited as the user hits the Tab key, but also determines which control has the initial
focus. Since we want the initial focus to be on the list box, we set its tab index to 0.

Table 14-1. Nondefault Properties of the ListBox Control

Property Value

Name | stSheets

148

Tablndex 0

We should also note that, in general, there are two places in which a control property can be set: in
the Properties window at design time or using code during run time. Some properties should be (or
must be) set at design time, whereas others can only be set at run time. However, most properties
can be set at either time.

Asasimple example, a control's Visible or Enabled property is often set during run time, in
response to actions by the user. For instance, we may want to disable a command button labeled
Print until the user has selected an object to print from alist of objects. Setting the Enabled
property of a command button whose nameisPrintButton iseasily done:

PrintButton.Enabled = False

In general, the choice of where to set a given property of a control is partly a matter of taste. |
favor setting propertiesin code because it tends to make the code more complete and thus more
readable. It can also make changing properties simpler. However, some fundamental properties,
such as Name and Caption, are best set at design time.

14.6.2.2 Activate button

Place a command button on the form, asin Figure 14-5. Using the Properties window, set the
properties shown in Table 14-2.

Table 14-2. Nondefault Properties of the Activate Button

\ Property \ Value
Name 'cmdActivate

Accelerator A

Caption Activate

Tablndex 1

14.6.2.3 Cancel button

Place another command button on the form, asin Figure 14-5. Using the Properties window, set
the properties shown in Table 14-3.

Table 14-3. Nondefault Properties of the Cancel Button

\ Property \ Value
Name ‘cmdCancel

Accelerator C

Caption Cancel

Tablndex 2

|Cancel True

14.6.3 Create the Code Behind the UserForm
Now it istime to create the code behind these controls.
14.6.3.1 Cancel button code

Double click on the Cancel button to display the Click event code shell. Adding the line:

149

Unlload Me

will fill out the code shell asfollows and cause the form to be unloaded when the user hits the
Cancel button:

Private Sub cmdCancel_Click()
Unload Me
End Sub

14.6.3.2 ActivateSelectedSheet procedure

Next, we create a procedure that will activate the selected sheet. We want this procedure to be
called in three situations; namely, when the user:

e Selects a sheet name from the list box and clicks the Activate button (or uses the Alt-A
hot key)

e Double-clicks on asheet namein the list box

e Selects asheet name from the list box and hits the Enter key

Since this code will be used in three different situations, we can avoid repeating the code by
placing it in its own procedure in the General section of a UserForm, as shown in Example 14-1.

Example 14-1. The ActivateSelectedSheet Procedure

Sub ActivateSelectedSheet()
IT IstSheets.Listlndex > -1 Then
Sheets(lIstSheets.List(IstSheets.Listlndex)).Activate
End IF
Unload Me
End Sub

This code demonstrates some list box properties. First, the Listindex property returns the index
number (starting at 0) of the currently selected itemin the list box. Thus, the following code
checksto seeif anitemis selected (otherwise Listindex = -1):

IT IstSheets.ListIndex > -1 Then

The code:

IstSheets._List(i)

returnsthe ith item in the list box (as astring). Thus:
IstSheets._List(IstSheets.Listlndex))

isthe currently selected item—that is, the currently selected sheet name. Finaly, the code:

Sheets(lIstSheets.List(IstSheets.Listlndex)) .Activate

activates that worksheet by invoking its Activate method. We will discuss the Activate method in
Chapter 18. For now, we simply note that if aworksheet has the name MySheet, then the code:

Sheets(*'MySheet'") .Activate

activates that sheet.

150

Finally, the last thing done in the cmdActivate Click event isto unload the form, sinceitisno
longer needed.

14.6.3.3 Activate button code

To set the code behind the Activate button, select cmdA ctivate in the Objects drop-down box
(above the upper-left corner of the code window) and select Click in the Procedures drop-down
box (above the upper-right corner of the code window). Y ou can now fill in the code for the Click
event of the cmdActivate button:

Private Sub cmdActivate Click()
ActivateSelectedSheet
End Sub

14.6.3.4 Double-click IstSheets code

We also want ActivateSelectedSheet to be called when the user double-clicks on a sheet
name. The DbIClick event for the list box fires when the user double-clicks on an itemin the list
box. Select IstSheets in the Objects drop-down and DbICIk in the Procedures drop-down. Then fill
in the DbICIk event code shell:

Private Sub IstSheets DblIClick(ByVval Cancel As _
MSForms.ReturnBoolean)
ActivateSelectedSheet
End Sub

14.6.3.5 Enter key event

We also want to invoke ActivateSelectedSheet when the user selects a sheet name and hits
the Enter key. When the list box has the focus, any keystroke fires the KeyDown event. Choose
this event in the Procedures drop-down and add the code shown in Example 14-2 to the event shell.

Example 14-2. The IstSheets_KeyDown Event Procedure

Private Sub IstSheets KeyDown(ByVal KeyCode As _
MSForms.Returnlnteger, ByVal Shift As Integer)
IT KeyCode = vbKeyReturn Then ActivateSelectedSheet
End Sub

In this case, we must add code to determine whether the Enter key was struck. Fortunately, Excel
will fill in the KeyCode parameter of the KeyDown event with the key code for the key that
caused the event to be fired. (For alist of key codes, check "KeyCode" in the Excel VBA helpfile.)

14.6.3.6 Fill the IstSheets list box

Next, we need to fill the IstSheets list box with alist of al of the sheetsin the current
workbook. We want this to be done automatically, so we will place the required code in the
Initialize event of the UserForm. This event isfired by Excel when the formisloaded, but before
it becomesvisible. Asthe nameimplies, it is designed to initialize various properties of the form
and its controls.

Select UserForm in the Object drop-down and Initialize in the Procedures drop-down. Y ou should
get the UserForm_Initialize event code shell. Fill it with the code shown in Example 14-3.

Example 14-3. The UserForm_Initialize Event Procedure

151

Private Sub UserForm Initialize()
" Fill IstSheets with the list of sheets
Dim cSheets As Integer
Dim 1 As Integer

cSheets = Sheets.Count
IstSheets.Clear

For 1 = 1 To cSheets
IstSheets.Addltem Sheets(i).Name
Next
End Sub

This code first gets the total number of sheets (worksheets and charts) in the current workbook.
(Wewill discussthisin detail in later chapters, so don't worry about it now.) The list box isthen
cleared of any previous content. Then we have a For loop that adds the sheet names to the list box.
Thisisdone using the ListBox control's Additem method. The name of a sheet is given by its
Name property.

14.6.4 Trying the Activate Utility

If al has gone well, you can now save SRXUtils as an add-in, load it through the Tools menu (if it
is currently loaded, you will need to unload it before saving the add-in or Excel will complain),
and try out the new ActivateSheet feature.

14.7 ActiveX Controls on Worksheets

Asyou may know, ActiveX controls (and standard Excel controls) can be placed directly on a
worksheet. Care must be taken, however, not to clutter up aworksheet with controls that would be
better placed on a UserForm. When only a small number of controls are required, placing these
controls directly on aworksheet may be appropriate.

There are some special considerations when controls are placed directly on aworksheet. In
particular, each ActiveX control on aworksheet (not on a UserForm) is represented by an
OLEObject in the Excel object model. However, it isimportant to note that OLEObject objects
can aso represent embedded OLE objects. Thus, for instance, if we insert a bitmap on a worksheet
(select Object from Excel's Insert menu), this bitmap object will be represented by an OLEObject.

The Worksheet abject has a property called OLEODbjects that returns the OL EObjects collection
consisting of all OLEODbject objects on the worksheet. Thus, the OLEODbjects collection for the
active worksheet is:

ActiveSheet.OLEObjects

Because OLEObjects al so represent embedded OLE objects (such as bitmaps), we cannot be
certain that, say:

ActiveSheet.OLEObjects(1)

isacontrol. Thus, it is wise when adding a control or embedded OLE object to a worksheet to
immediately assign the control or object a name and then refer to it by this name rather than by
index, asin:

152

ActiveSheet.OLEObjects("'"MyButton'™)

14.7.1 Referring to a Control on a Worksheet

Fortunately, Excel lets us refer to an ActiveX control on aworksheet by using its name, without
reference to the OLEODjects collection. For instance, if we place acommand button on a
worksheet, Excel will giveit the default name CommandButtonl. Both of the following lines set
the height of this command button to 20 points:

ActiveSheet.OLEObjects("'CommandButtonl'™) _Height = 20
ActiveSheet.CommandButtonl._Height = 20

Unfortunately, however, the properties and methods that we access in this manner are the
properties and methods of the OLEObject, not the control itself. These properties are shown in
Table 14-4.

Table 14-4. Members of the OLEObject object

AItHTML Enabled PrintObject
Activate Height Progld
Application Index Select
\AutoLoad Interior 'SendToBack
AutoUpdate Left Shadow
Border LinkedCell ShapeRange
BottomRightCell ListFillIRange SourceName
BringToFront Locked Top

(Copy ‘Name TopLeftCell
CopyPicture Object Update
Creator OLEType Verb

Cut OnAction Visible
Delete Parent Width
Duplicate Placement ZOrder

Thus, for instance, while we can set the Height property of the command button, we cannot set its
Caption property in thisway. That is, the code:

ActiveSheet . OLEObjects("'CommandButtonl'™) _Caption = "ClickMe"
will generate an error.

The way to reach the members of the control itself is to use the Object property of an OLEObject
object, which returns the underlying control, and makes its properties and methods accessible.
Thus, the following two lines each set the button's caption:

ActiveSheet.OLEObjects("'CommandButtonl'™) .Object.Caption = "ClickMe"
ActiveSheet.CommandButtonl.Object.Caption = ""ClickMe™

In addition to the standard properties available for ActiveX controls, the following properties can
be used with ActiveX controls embedded in sheets in Microsoft Excel:

BottomRightCell

153

Returns a Range object that represents the cell that lies under the lower-right corner of the
object.

LinkedCell

Returns or sets the worksheet range that is linked to the value of the control. Thus, if we
place avaluein the linked cell, the control will assume this value, and vice-versa.

ListFillRange
Returns or sets the worksheet range that is used to fill alist box control.
Placement
Returns or sets the way that the control is attached to the cells below it. The possible

values are the X1Placement constants: x IMoveAndSize, xIMove, and
xIFreeFloating.

PrintObject
Prints the control when the worksheet is printed if this property is set to True.
TopLeftCell

Returns a Range object that represents the cell that lies under the top-left corner of the
object.

ZOrder
Returns the ZOrder position of the control.

Note also that Table 14-4 has some properties that are not properties of controls themselves. They
relate to the OLEObject, which is the container for the control, and thus to the control's
relationship with the worksheet. For instance, the code:

ActiveSheet.CommandButtonl.TopLeftCell_Address

returns the address of the top-left cell of the worksheet that lies under the control (or rather, the
control's container: the OLEODbject).

As another example, the following code will locate the top-left cell under the command button and
then scroll the active window so that this cell (and therefore the command button) is at the upper-
left corner of the window:

Dim rng As Range
Set rng = ActiveSheet.CommandButtonl.TopLeftCell
With ActiveWindow
-ScrollRow = rng-Row
-ScrollColumn = rng.Column
End With

It isimportant to note that some properties and methods of some Excel objects are disabled when
an ActiveX control has the focus. For example, the Sort method of the Range object cannot be
used when acontrol is active. Since a control on aworksheet remains active after it is clicked, the
following code will fail:

154

Private Sub CommandButtonl_Click
Range("'A:A"™) .Sort Keyl:=Range("'A:A"™)
End Sub

(We will discuss the sort method in Chapter 19. Don't worry about that now.) Thisis one
disadvantage of placing controls directly on worksheets.

Of course, one way to avoid this problem isto activate another object before calling the sort
method. For instance, we can amend the previous code as follows:

Private Sub CommandButtonl_Click
Range(*'A:A'™) .Activate
Range("'A:A"™) .Sort Keyl:=Range("'A:A"™)
CommandButtonl.Activate " Optional
End Sub

It is aso worth mentioning that if you save an Excel 97 or Excel 2000 workbook in Excel 5.0/95
Workbook file format, all ActiveX control information will be lost.

14.7.2 Adding a Control to a Worksheet Programmatically

To programmatically add an ActiveX control to a worksheet, we use the Add method of the
OLEObjects collection. The syntax is:

OLEObjectCollection.Add(ClassType, FileName, Link, DisplayAslcon, _
IconFileName, lIconlndex, lconLabel, Left, Top, Width, Height)

The ClassType parameter isthe so-called programmatic identifier (or ProglD) for the control.
Table 14-5 shows the ProglDs for various contrals.

Table 14-5. ProglDs for ActiveX Controls

| Control | ProglD
|CheckBox 'Forms.CheckBox.1
|ComboBox 'Forms.ComboBox.1
CommandButton Forms.CommandButton.1
Frame Forms.Frame.1

Image Forms.Image.1

Label Forms.Label.1

ListBox [Forms.ListBox.1
MultiPage Forms.MultiPage.1
OptionButton Forms.OptionButton.1
Scrol|Bar Forms.Scrol|Bar.1
\SpinButton [Forms.SpinButton.1
TabStrip [Forms. TabStrip.1
TextBox Forms.TextBox.1
ToggleButton Forms.ToggleButton.1

The only other parameters that are relevant to adding ActiveX controls (this method is used for
other types of OLE objects as well) are the Left, Top, Width, and Height parameters, which
specify in points the location (with respect to the upper-left corner of cell Al) and size of the
control. All other parameters should be omitted. (Thisis agood place for named arguments!)

155

For instance, the code:

ActiveSheet . OLEObjects.Add ClassType:="Forms.Textbox.1", _
Left:=72, Top:=72, Height:=20, Width:=100

places a new text box approximately one inch from the top and left edges of the active worksheet.
(The dimensions do not seem to be terribly accurate.)

156

Chapter 15. The Excel Object Model

The Excel object model is one of the most extensive object models in Microsoft's arsenal, with
almost 200 objects and over 5000 properties and methods. As we have mentioned, however, many
of these objects and members are included solely for backward compatibility with earlier versions
of Excel. When we ignore these objects and members, the object count drops to 140 and the
member count is about 3000. This makes the Excel object model second in size only to the Word
object model.

We will not discuss the objects and members that are included for backward compatibility only.
However, since you should at least be aware of the existence of these objects, we will include
them in our pictures of the model (appropriately marked) but not in the tables.

It is certainly not our intention in this book to cover al, or even most, of the objects and members
of the Excel object model. Our goal isto acquaint you with the major portions of this model, so
that you can easily learn more as needed.

It seems appropriate to begin by trying to present an overall view of the Excel object model.

15.1 A Perspective on the Excel Object Model

To put the Excel object model in some perspective, Table 15-1 gives some statistics on various
Microsoft object models for Office 97 (the numbers are somewhat larger for later versions of
Office).

Table 15-1. Some Object Model Statistics for Office 97

| Application | Objects ! Properties | M ethods | Enums | Constants
\Access 8 51 11596 532 131 485
Binder 8 4 37 15 4 11
DAO 35 37 235 174 26 185
Excel 8 192 3245 1716 152 1266
Forms 2 64 588 352 42 191
\Graph 8 44 1120 234 58 447
Office 97 40 615 209 78 801
Outlook 8 42 1568 534 34 154
PowerPoint 8 110 1197 322 53 370
Word 8 188 2300 837 192 1969

For reference, Table 15-2 shows all nonhidden objects in the Excel XP object model, along with
the number of children for each object.

Table 15-2. Excel 10 objects and their child counts

Addin (1) FillFormat (1) Protection (1)
Addins (2) Filter (1) PublishObject (1)
\Adjustments (0) Filters (2) "PublishObjects (2)
AllowEditRange (2) Floor (4) QueryTable (3)
AllowEditRanges (1) Font (1) QueryTables (2)

B
[%2]
~l

\Application (32) [FormatCondition (4) 'Range (22)

Areas (2) FormatConditions (2) RecentFile (2)
AutoCorrect (1) FreeformBuilder (2) RecentFiles (2)
AutoFilter (3) Graphic (1) RoutingSlip (1)
AutoRecover (1) Gridlines (2) RTD (0)

Axes (2) \GroupShapes (3) 'Scenario (2)

Axis (6) HiLoLines (2) 'Scenarios (2)
AxisTitle (6) HPageBreak (3) Series (6)

Border (1) HPageBreaks (2) SeriesCollection (2)
Borders (2) Hyperlink (3) SeriesLines (2)
CalculatedFields (2) Hyperlinks (2) 'ShadowFormat (1)
Calculateditems (2) lInterior (1) ‘Shape (22)
CalculatedMember (1) IRtdServer (0) ShapeNode (0)
CalculatedM embers (2) IRTDUpdateEvent (0) ShapeNodes (1)
CadloutFormat (0) LeaderLines (2) ShapeRange (17)
CellFormat (4) ILegend (5) ‘Shapes (4)
(Characters (2) LegendEntries (2) ‘Sheets (3)

Chart (16) LegendEntry (3) SmartTag (4)
ChartArea (5) LegendKey (4) SmartTagAction (1)
ChartColorFormat (1) LineFormat (1) SmartTagActions (2)
ChartFillFormat (2) LinkFormat (1) SmartTagOptions (1)
(ChartGroup (7) Mailer (1) 'SmartTagRecognizer (1)
ChartGroups (2) Name (2) SmartTagRecognizers (2)
ChartObject (6) Names (2) SmartTags (2)
ChartObjects (6) ODBCError (1) SoundNote (1)
Charts (4) ODBCErrors(2) Speech (0)
(ChartTitle (6) |OLEDBETTror (1) 'SpellingOptions (0)
ColorFormat (0) OLEDBErrors (2) Style (4)

Comment (3) OLEFormat (1) Styles (2)
Comments (2) OLEObject (5) Tab (1)
ConnectorFormat (2) OLEObjects (6) TextEffectFormat (0)
|Control Format (1) Outline (1) TextFrame (2)
(Corners (1) \PageSetup (2) "ThreeDFormat (1)
CubeField (3) Pane (2) TickLabels (2)
CubeFields (2) Panes (2) TreeviewControl (1)
CustomProperties (2) Parameter (2) Trendline (3)
|CustomProperty (1) \Parameters (2) "Trendlines (2)
|CustomView (1) [Phonetic (2) \UpBars (4)
CustomViews (2) Phonetics (2) UsedObjects (1)
Datal_abel (6) PictureFormat (0) UserAccess (0)
Datal_abels (6) PivotCache (2) UserAccessList (1)
DataTable (3) IPivotCaches (2) Validation (1)
DefaultWebOptions (1) PivotCell (6) VPageBreak (3)
Diagram (2) PivotField (5) V PageBreaks (2)
DiagramNode (3) PivotFields (2) Walls (4)
DiagramNodeChildren (1) PivotFormula (1) Watch (1)

158

DiagramNodes (1) PivotFormulas (2) Watches (2)

Didog (1) Pivotitem (4) WebOptions (1)
Dialogs (2) PivotltemList (2) Window (7)
DisplayUnitLabel (6) Pivotlitems (2) Windows (2)
DownBars (4) PivotLayout (4) Workbook (14)
DropLines (2) IPivotTable (8) 'Workbooks (2)

[Error (1) IPivotTables (2) \Worksheet (17)
ErrorBars (2) PlotArea (4) WorksheetFunction (1)
ErrorCheckingOptions (1) Point (5) Worksheets (3)

Errors (2) Points (2)

Table 15-3 shows the Excel objects that have at least five children. Aswe can see by comparing
the sizes of Tables 15-2 and 15-3, most objects by far have fewer than five children.

Table 15-3. Excel 10 objects with 5 or more children

Application (32) Datal_abel (6) Point (5)

AXis (6) Datal_abels (6) Range (22)
\AxisTitle (6) DisplayUnitLabel (6) Series (6)

(Chart (16) ILegend (5) Shape (22)
ChartArea (5) OLEObject (5) ShapeRange (17)
ChartGroup (7) OLEObjects (6) Window (7)
ChartObject (6) PivotCell (6) Workbook (14)
(ChartObjects (6) IPivotField (5) \Worksheet (17)
ChartTitle (6) IPivotTable (8) |

This list shows the only Excel 10 objects whose child count isin the double digits:

Application (32)
Shape (22)
Range (22)
Worksheet (17)
ShapeRange (17)
Chart (16)
Workbook (14)

Indeed, much of the power of the Excel object hierarchy is concentrated in the seven objects and
much of the remainder of this book is devoted to those objects.

15.2 Excel Enums

It isalso interesting to glance over the list of Excel enums, whose names begin with XI (with the
sole exception of the Constants enum). Tables Table 15-4 through Table 15-6 show these
enums for Excel 8, 9, and 10, along with a count of the number of constants per enum. Note that
there are some rather large enums in the object model. The enums with at least 20 constants are:

e XIBuiltinDialog (241)

e Constants (167)
e XlChartType (73)

159

XIFileFormat (43)
XlPaperSize (42)

XlChartltem (32)

XlIPattern (20)

XIClipboardFormat (33)

XIApplicationinternational (45)

XIRangeA utoFormat (43)

XIPivotFormatType (22)
XlParameterDataType (21)

Table 15-4. The Excel Enums and their number of constants (Excel 8)

Constants (163)

XIEnableSelection (3)

XIPivotF eldOrientation (5)

XIApplicationinternationa (45)

XIEndStyleCap (2)

XIPivotTableSourceType (4)

XIApplyNamesOrder (2)

X|ErrorBarDirection (2)

XIPlacement (3)

XIArrangeStyle (4)

XIErrorBarlnclude (4)

XlIPlatform (3)

XIArrowHeadL ength (3)

XIErrorBarType (5)

XIPrintLocation (3)

XIArrowHeadStyle (5) XIFileAccess (2) XlPriority (3)
XIArrowHeadWidth (3) XIFileFormat (39) XIPTSelectionMode (6)
XIAutoFill Type (11) XIFillwith (3) XIRangeA utoFormat (21)

XIAutoFilterOperator (6)

XlIFilterAction (2)

XIReferenceStyle (2)

XIAxisCrosses (4)

XIFindLookIn (3)

XIReferenceType (4)

XIAxisGroup (2)

XIFormatConditionOperator (8)

XIRoutingSlipDelivery (2)

XIAxisType (3)

XIFormatConditionType (2)

XIRoutingSlipStatus (3)

XIBackground (3)

XIFormControl (10)

XIRowCal (2)

X|BarShape (6)

XIFormulaLabel (4)

XIRunAutoMacro (4)

XIBordersindex (8)

XIHAlign (8)

XlSaveAction (2)

XIBorderWeight (4)

XIHighlightChangesTime (3)

X|SaveAsAccessMode (3)

XIBuiltinDialog (221)

XIIMEMode (11)

X|SaveConflictResolution (3)

XICalculation (3)

XlInsertShiftDirection (2)

XIScaleType (2)

XICategory Type (3)

XILegendPosition (5)

X|SearchDirection (2)

XICélllnsertionMode (3)

XILineStyle (8)

X|SearchOrder (2)

XICellType (10)

XILink (4)

X1SheetType (5)

XIChartGallery (3)

XILinkInfo (2)

XSheetVisibility (3)

X|Chartltem (29)

XILinkInfoType (3)

X|SizeRepresents (2)

XIChartLocation (3)

XILinkType (2)

XISortMethod (2)

XIChartPicturePlacement (7)

XlLocationlnTable (9)

XISortMethodOld (2)

XlChartPictureType (3)

XILookAt (2)

XISortOrder (2)

XIChartSplitType (4)

XIMailSystem (3)

X|SortOrientation (2)

XIChartType (73)

XIMarkerStyle (12)

XISortType (2)

XIClipboardFormat (33)

XIMouseButton (3)

X|SpecialCellsvalue (4)

XlIColorIndex (2)

XIMousePointer (4)

XISubscribeToFormat (2)

XICommandUnderlines (3)

XIMSApplication (7)

X1SummaryColumn (2)

XICommentDisplayMode (3)

X|ObjectSize (3)

X1SummaryReportType (2)

XlConsolidationFunction (11)

XIOLEType (3)

XISummaryRow (2)

X|CopyPictureFormat (2)

XIOLEVerb (2)

X|TabPosition (2)

XlCreator (1)

XIOrder (2)

XITextParsingType (2)

XICutCopyMode (2)

XlQOrientation (4)

XITextQualifier (3)

160

XICVError (7)

X|PageBreak (2)

XITickLabel Orientation (5)

X|Datal abel Position (11)

XIPageBreakExtent (2)

XITickLabel Position (4)

XIDatal abelsType (6)

XIPageOrientation (2)

XITickMark (4)

X|DataSeriesDate (4)

Xl|PaperSize (42)

XITimeUnit (3)

XlDataSeriesType (4)

XlParameterDataType (20)

XIToolbarProtection (5)

XIDeleteShiftDirection (2)

X|ParameterType (3)

XITrendlineType (6)

XIDirection (4)

X|PasteSpecial Operation (5)

XIUnderlineStyle (5)

XIDisplayBlanksAs (3)

XlPasteType (6)

XIVAlign (5)

XIDisplayShapes (3)

XlIPattern (20)

XIWBATemplate (4)

XIDVAlertStyle (3)

XIPhoneticAlignment (4)

XIWindowState (3)

XIDVType (8)

XIPhoneticCharacter Type (4)

XIWindowType (5)

X|EditionFormat (4)

XIPictureAppearance (2)

XIWindowView (2)

XIEditionOptionsOption (8)

XlIPictureConvertorType (13)

XIXLMMacroType (3)

XIEditionType (2)

XIPivotFeldCalculation (9)

X1Y esNoGuess (3)

XIEnableCancelKey (3)

XIPivotFeldDataType (3)

Table 15-5. Additional enums for Excel 9.0

XICmdType (4)

XIHtmIType (4)

XlSourceType (7)

XIColumnDataType (10)

XlLayoutFormType (2)

XlISubtototal L ocationType (2)

XICubeFieldType (2)

XIPivotFormatType (22)

XIWebFormatting (3)

X|DisplayUnit (9)

XIQueryType (6)

XIWebSelectionType (3)

Table 15-6. Additional enums for Excel 10

XIArabicModes (4)

XlImportDataAs (2)

XIRobustConnect (3)

XICal culatedM emberType (2)

XlInsertFormatOrigin (2)

XlSearchWithin (2)

XICalculationlnterruptKey (3)

XILinkStatus (11)

X|SmartTagDisplayMode (3)

X|CalculationState (3)

XIPivotCell Type (10)

XISortDataOption (2)

XlCorruptLoad (3)

XIPivotTableMissingltems (3)

X1SpeakDirection (2)

X|Datal abel Separator (1)

XIPivotTableVersionList (3)

XlUpdateLinks (3)

XIErrorChecks (7)

XIPrintErrors (4)

XIHebrewM odes (4)

XIRangeV aueDataType (3)

15.3 The VBA Object Browser

Microsoft does supply atool for viewing the objects, properties, methods, events, and enumsin an
object model. It is called the Microsoft Object Browser, and it is accessible from the View menu
in the VBA IDE (or hit the F2 key). Figure 15-1 shows the Microsoft Object Browser.

Figure 15-1. The Microsoft Object Browser

161

s - Ohject B 5B
- e TG

IExceI ﬂ 4 I I I ﬂ
I ~| #lx

Classes Members of '=globals>'
®cgiobalss | .| ActiveCel EJ
&4 Addin s ActvelChart

o Addins ActvePrinter

& Adjustments i ActveShest

& Application 5 ActvelWindon

& Areas e Activelorkbook

) AunCorrect i Addins

o AumFilter i Applicaion

B Awms Assistant

2 fogs = Calculate

o foosTie Cells

w2 Border Charts

& Borders f Columns

& CaloulatedFields i CommandBars

& Calculatediteims ' Creatar

& CalloutFarmat ' DOEAppR etrnC ode
& Characters & ODEE=eCute

o Chart & ODEInitiate

&8 Chartdrea = DDEPoke

o2 ChartColorF ormat 2 DDERequest

&2 ChartFillF ormat ﬂ % COETerminate

Library Excel
F-\OfficeST W Offce\EXCELR, OLB
Microsoft Excel 8.0 Objact Library

LelI> ||«

The topmost drop-down list box lets us select an object model for viewing; in the case of Figure
15-1, we are viewing the Excel object model. The second list box isfor searching the object model.
On the left, we find alist of the classesin the object model. There is one class per object and one
class per enum. The right-hand list box shows the properties, methods, and events of the object
that is selected in the Classeslist box. The text box at the bottom gives some information about

the selected item.

The Object Browser is certainly a useful tool, and you will probably want to spend some time
experimenting with it. (Perhapsits best feature isthat it is easily accessible from the IDE.)
However, it gives only aflat, one-dimensional view of the object model. For thisreason, | have
written an object browser that provides atwo-dimensional view of an object model. In fact, many
of the figuresin this book are screen shots taken from my object browser. For more information
on this browser, please see the coupon in the back of this book.

162

Chapter 16. The Application Object

Aswe discussed in Chapter 15, the mgjority of the action in the Excel object model restsin the six
objects: Application, Chart, PivotTable, Range, Workbook, and Worksheet. In this book, we will
concentrate on the following objects, along with some of their children:

Application

Chart
CommandBars
Dialogs

Global

Names

Range

Sheets
Window/Windows
Workbook/Workbooks
Worksheet
WorkSheetFunctions

This constitutes the vast majority of the Excel object model. With this knowledge, you should be
able to program most Excel tasks and be in a position to easily pick up any additional information
from the Excel help files that you might need for less common programming tasks.

As you might imagine, several of these objects are complicated enough to deserve a complete
chapter, so we will devote this chapter to discussing some of the properties and methods of the
Application object itself, along with some of its simpler children.

Figure 16-1 shows the Application object, which sits atop the Excel object model and represents
Excel itself, and its children. Each object is preceded by an icon that indicates whether itisa
collection object (the little basket) or a noncollection object (the little oval). 2!

M This figure and others like it was taken from a program called Object Model Browser. For more on this,
please check out my web site at http://www.romanpress.com.

Figure 16-1. The Excel Application object and its children (the tag <vX> means that
the object is new in version X of Excel)

163

http://www.romanpress.com/

- 7o Agplication
o <Events:
+ 7 Addins
7o AutaCorect
To
70
70 Chert
+ - 7U Charts
T o Defaultd/ebOptions .3

4

=+ 71 Dialogs

To

71 Mames

T ODECEmars

7 OLEDEEmors<vd>
7L Rangea

Tl RecentFiles

To

7L Sheets

T

To

T

f s

|

7o Wandow

T wWindows

7o Warkbook

T Workbooks

7L WorkshestFunction
+ T Worksheets

)R

-

R R

Figure 16-2 shows all children of the Application object, including those that are marked as
hidden in the Excel object model. These latter objects are marked with an X through the icon. The
objectsin Figure 16-2 that are marked (Office 2.2) actualy belong to the Microsoft Office object
model, but are included here because they are accessible from the Excel object model and are
sometimes used when programming the Excel model. There is aso one object that belongs to the
Visual Basic Extensibility model. It is marked as (VBIDE 5.3).

Figure 16-2. The Excel Application object along with its hidden children

164

- To Application

+
s

¥

- + - [-

+

Tafc s M=

[¥

O {Events»
7L Adding
] newertyizard MICE €
o Assistant (Office 2.2)
70 AutoCorect
70 AutaR ere
Fl=] o0
7o Chart
TH Cherts
(] Fid Iris I & £
O CommandBars [Office 2.2)
{0 Defaultd/ebOptions w3
T Dialogs
2] DialogShest
FE DialogSheets
To Er] nedw]
= FileSearch (Office 2.2)
21 Glabal
O IFind (Office 2.2)
[guag tngs |
1 Menu
el MenuBer
2 MenuBars
2 Modules
T Names
71 ODBECEmors
7 OLEDEErorz<vds
74 Range
7L RecentFiles
70 Cen 10
7L Sheets
78 =
=]
?I:I I
e Toolbars
2 UsedObjectsov10>
© VBE (VBIDE 5.3)
7 Waiches o0
7o Windew
T Windows
7o Workbook
T Workbooks

7 WarksheatFunclion

T Worksheats

16.1 Properties and Methods of the Application Object

The Application object has awhopping 268 properties and methods, shown in Table 16-1.

Table 16-1. Application object members2

_Default DisplayRecentFiles OnDoubleClick
_Evauate DisplayScrollBars OnEntry
_FindFile<v9> DisplayStatusBar OnKey

_Run2 DoubleClick OnRepeat
_Wait<v9> Dummyl OnSheetActivate
_WSFunction Dummy10 OnSheetDeactivate

165

\ActivateMicrosoftApp 'Dummy101<v9> OnTime

ActiveCell Dummy11 OnUndo

ActiveChart Dummy12<v9> OnWindow
ActiveDialog Dummy13<v10> OperatingSystem
ActiveMenuBar Dummy14<v10> OrganizationName
\ActivePrinter 'Dummy?2 Parent

/ActiveSheet Dummy3 Path

ActiveWindow Dummy4 PathSeparator
ActiveWorkbook Dummy5 PivotTableSelection
AddChartAutoFormat Dummy6 PreviousSelections
\AddCustomList 'Dummy7 ProductCode<v9>
\Addins 'Dummy8 "PromptForSummaryInfo
AlertBeforeOverwriting Dummy9 Quit

AltStartupPath EditDirectlyInCell Range
AnswerWizard<v9> EnableAnimations Ready<v10>
\Application [EnableAutoComplete RecentFiles
\AskToUpdateL inks [EnableCancelKey 'RecordMacro
Assistant EnableEvents RecordRelative
AutoCorrect EnableSound ReferenceStyle
AutoFormatAsY ouTypeReplaceHyperlinks<v10> EnableTipWizard RegisteredFunctions
AutomationSecurity<v10> ErrorCheckingOptions<v10>|RegisterX LL
\AutoPercentEntry<v9> Evaluate 'Repeat
AutoRecover<v10> Excel4IntlMacroSheets ReplaceFormat<v10>
Build ExceldMacroSheets ResetTipWizard
Calculate ExecuteExcel4Macro RollZoom
CalculateBeforeSave ExtendList<v9> Rows
CalculateFull<v9> Featurel nstal|<v9> RTD<v10>
CalculateFull Rebuild<v10> FileConverters Run

Calculation FileDialog<v10> Save
CalculationinterruptK ey<v10> FileFind SaveWorkspace
CalculationState<v10> FileSearch ScreenUpdating
(CalculationVersion<v9> FindFile 'Selection

Caller FindFormat<v10> 'SendKeys
CanPlaySounds FixedDecimal SetDefaultChart
CanRecordSounds FixedDecimal Places Sheets

Caption GenerateGetPivotData<v10> |Sheetsl nNewWorkbook
|CellDragAndDrop GetCustomListContents ~ |ShortcutMenus

Cells GetCustomListNum ‘ShowChartTipNames
CentimetersToPoints GetOpenFilename ShowChartTipVaues
Charts GetPhonetic<v9> ShowsStartupDia og<v10>
CheckAbort<v10> GetSaveAskilename ShowToolTips
|CheckSpelling Goto 'ShowWindowslInTaskbar<v9>
ClipboardFormats Height 'SmartTagRecognizers<v10>
ColorButtons Help Speech<v10>
Columns Hinstance<v10> SpellingOptions<v10>
COMAddIns<v9> Hwnd<v10> StandardFont

166

|CommandBars IgnoreRemoteRequests | StandardFontSize
CommandUnderlines InchesToPoints StartupPath
ConstrainNumeric InputBox StatusBar

Control Characters Interactive TemplatesPath
ConvertFormula International ThisCell<v10>
|CopyObjectswithCells Intersect "Thisworkbook
Creator Iteration "ThousandsSeparator<v10>
Cursor LanguageSettings<v9> Toolbars
CursorMovement LargeButtons Top
CustomListCount Left TransitionMenuKey
|CutCopyMode LibraryPath TransitionMenuKeyAction
DataEntryMode 'MacroOptions TransitionNavigKeys
DDEA ppReturnCode MailLogoff UlLanguage
DDEExecute MailLogon Undo

DDElnitiate MailSession Union

IDDEPoke MailSystem \UsableHeight
DDERequest 'MapPaperSize<v10> \UsableWidth
DDETerminate MathCoprocessorAvailable |UsedObjects<v10>
Decimal Separator<v10> MaxChange UserControl
DefaultFilePath Max|terations UserLibraryPath<v9>
DefaultSaveFormat MemoryFree UserName
DefaulltSheetDirection 'MemoryTotal 'UseSystemSeparators<v10>
DefaultWebOptions<vo> MemoryUsed Vaue
DeleteChartAutoFormat MenuBars VBE
DeleteCustomList Modules Version

Diaogs MouseAvailable Visible
IDialogSheets 'MoveAfterReturn Volatile
DisplayAlerts MoveAfterReturnDirection |Wait
DisplayClipboardwWindow Name Watches<v10>
DisplayCommentIndicator Names Width
DisplayExcel4Menus Network TemplatesPath Windows
DisplayFormulaBar 'NewWorkbook<v10> 'WindowsForPens
DisplayFull Screen NextL etter 'WindowState
DisplayFunctionTool Tips<v10> ODBCErrors Workbooks
Displaylnfowindow ODBCTimeout WorksheetFunction
DisplaylnsertOptions<v10> OLEDBETrrors<v9> Worksheets
DisplayNotel ndicator ‘OnCalculate \
DisplayPasteOptions<v10> ‘OnData \

[2] (9) indicates a global member.

Of course, there are far too many members to discuss even the magjority in a nonreference book, so
we will pick out afew of the more interesting and useful members. The important point is that you
can use Table 16-1 to find a member that suits a particular purpose and then check the Excel help

filesfor more information if it is not covered in this book.

9)

We will aso discuss additional properties and methods of the Application object throughout the
remainder of the book, hopefully at times when the discussion will be more relevant.

In the hope of making our discussion a bit more structured, we will try to break the membersin
Table 16-1 into separate groups. Note, however, that thisisin many cases a bit arbitrary.

16.1.1 Members that Return Children

Many of the members of the Application object are designed simply to gain access to a child
object of the Application object. For instance, the Workbooks property simply returns the
Workbooks collection object, which represents all of the currently open Workbook objects (i.e.,
workbooks). We will discuss many of these objects at the proper time, but it is worth taking alook
at the members that return these objects now.

Table 16-2 shows the 48 members of the Application object that return child objects.

Table 16-2. Members that return child objects

| Name \ ReturnType
ActiveCell Range
ActiveChart Chart
ActiveDialog DialogSheet
\ActiveMenuBar ‘MenuBar
\ActiveWindow 'Window
ActivewWorkbook Workbook
Addins Addins
Application Application
\AutoCorrect /AutoCorrect
\AutoRecover /AutoRecover
Cells Range

Charts Sheets
Columns Range
DefaultWebOptions DefaultWebOptions
Dialogs Dialogs
DiaogSheets Sheets
ErrorCheckingOptions ErrorCheckingOptions
Excel4IntlMacroSheets Sheets
Excel4MacroSheets Sheets
IFindFormat CellFormat
Intersect Range
MenuBars MenuBars
Modules Modules
Names Names

INextL etter 'Workbook
|ODBCErrors (ODBCETrors
OLEDBEtrrors OLEDBEtrrors
Parent Application
Range Range
IRecentFiles RecentFiles

168

\ReplaceFormat CellFormat

Rows Range

RTD RTD

Sheets Sheets
ShortcutMenus Menu
\SmartTagRecognizers 'SmartTagRecognizers
\Speech 'Speech
SpellingOptions SpellingOptions
ThisCell Range
ThisWorkbook Workbook
Toolbars Toolbars

\Union Range
UsedObjects UsedObjects
Watches Watches
Windows Windows
\Workbooks Workbooks
\WorksheetFunction 'WorksheetFunction
\Worksheets ‘Sheets

There are some points worth noting in Table 16-2. First, there are several members that begin with
the word "Active." It should come as no surprise that these members return the corresponding
currently active object. For instance, the ActiveSheet member returns the currently active
worksheet or chart, depending upon which is active at the time. (Note that there is no Sheet object.
Sheets are either worksheets or stand-alone charts. We will discussthisissue in detail in Chapter

18)

Observe aso that often the name of a member is the same as the name of the object that the
member returns. For instance, the Addins property returns the Addins collection, the Application
property returns the Application object, and the Windows property returns the Windows collection.

The notable exceptionsto thisrule are:

e TheThisWorkBook property returns the Workbook object containing the currently
running code. One use of this property isin determining the location (complete path and
filename) of the workbook on the user's computer, which is done by writing:

ThisWorkbook.Ful IName

e Severa object properties, such as Cells, Columns, and Rows, return a Range object. This
is because there are no Cell, Column, or Row objects in the Excel object model. Instead,
each of these "objects’ is actually a Range object. (Incidentally, a similar thing happensin
the Word object model. In particular, there are no Character, Word, or Sentence objects.
Rather, these are Range objects in the Word object model as well.)

16.1.2 Members that Affect the Display

There are several members that affect the display of certain items:

DisplayAlerts property (R'W Boolean)

169

When True, Excel displays various warning messages (such as a confirmation message
that precedes the deletion of aworksheet) while amacro is running. If you do not want a
macro to be disturbed, then set thisto False:

Application.DisplayAlerts = False
The default value of this property is True.
DisplayCommentlndicator property (R/W Long)

This property affects the way that Excel indicates the presence of acomment in an
unselected cell. It can be any one of the constantsin the following enum:

Enum XICommentDisplayMode
xICommentindicatorOnly = -1
only
xINolndicator = 0O
xICommentAndIndicator = 1
and comment

Display indicator

Display
Display indicator

" itself
End Enum

Setting DisplayCommentindicator to either xICommentindicatorOnly or
xICommentAndIndicator setsthe value of the DisplayNotelndicator property
(described later in this section) to True, while setting DisplayCommentindicator to
xINolIndicator changes DisplayNotelndicator to Fal se.
DisplayFormulaBar property (R/W Boolean)
This property determines whether the formula bar is displayed. Its default valueis True.
DisplayFullScreen property (R/W Boolean)

This property determines whether Excel isin full-screen mode. (Note that displaying
Excel in full-screen mode is not the same as maximizing Excel's application window.)

DisplayNotel ndicator property (R/W Boolean)

If this property is True (its default value) then cells containing notes display cell tips and
contain note indicators (which are small dots in the upper-right corner of acell). Setting
DisplayNotelndicator to Fal se aso sets DisplayCommentindicator to xINoIndicator,
while setting DisplayNotelndicator to True sets DisplayCommentlndicator to
xICommentindicatorOnly.

16.1.3 Members that Enable Excel Features
Several Application members enable or disable certain Excel features:
AutoFormatAsYouTypeReplaceHyperlinks property (R/W Boolean)

Set to True to have Excel automatically format hyperlink text as a hyperlink. Set to
False to turn off this often-annoying feature of Excel.

EnableAnimations property (R/W Boolean)

170

This property determines whether animated insertion and deletion is enabled. When

animation is enabled, inserted worksheet rows and columns appear slowly and deleted

worksheet rows and columns disappear sowly. The default valueis Fal se.
EnableAutoComplete property (R/W Boolean)

This property determines whether Excel's AutoComplete feature is enabled; its default
valueisTrue.

EnableCancelKey property (R/W Long)

This property controls how Excel handles the Ctrl -Break or Esc key combinations during
arunning procedure. It can be one of the following XIEnableCance IKey constants:

Enum XIEnableCancelKey
xIDisabled = 0
xllInterrupt = 1
xIErrorHandler = 2

End Enum

The meanings of these constants follow:
xIDisabled

Trapping is disabled (the keystrokes are ignored).
xlInterrupt

The running procedure is interrupted by the display of a dialog box that enables the user
to either debug or end the procedure. Thisis the default value.

XIErrorHandler

The keystroke interrupt is sent to the running procedure as an error that is trappable by an
error handler usingtheOn Error GoTo statement. The error codeis 18.

Note that this property can be dangerous and should be used with great circumspection. In
particular, if you set the property to xIDisabled, then thereis no way to interrupt an
infinite loop. Similarly, if you set the property to xIErrorHandler but your error
handler returns using the Resume statement, there is no way to stop nonself-terminating
code.

For these reasons, Excel always resets the EnableCancelKey property to xI Interrupt
whenever Excel returnsto the idle state and there is no code running.

EnableEvents property (R'W Boolean)

This property is True (its default value) if events are enabled for the Application object.
(For more on this, see Chapter 11.)

EnableSound property (R/W Boolean)

This property enables and (mercifully) disables sounds for Microsoft Office. The default
valueisFalse.

171

16.1.4 Event-Related Members

It is possible to assign macros to certain events. (These are special events—not the events that we
discussed in Chapter 11.) For instance, we can assign amacro to play whenever aparticular key is
pressed. Thisis done by invoking the OnKey method for the Application object. Let us describe
two of the more useful events that can be assigned a macro.

16.1.4.1 OnKey method
The syntax for the OnKey method is:
Application.OnKey(Key, Procedure)

where Key isthe key or key combination (written as a string) that will execute the macro and
Procedure isthe name of that macro.

Note that we can ater the normal behavior of Excel by assigning a key combination to the Key
parameter that has a normal Excel response (such as Ctrl-S for save). If we assign an empty string
to the Procedure parameter, then Excel will omit its normal response (so nothing will happen).
If we omit the Procedure parameter, then Excel will return the key combination to its normal
function.

Toillustrate, the following code will disable the Ctrl-o key combination, which normally displays
the Open dialog box:

The following code returns the Ctrl-o key combination to its normal Excel function:
Application.OnKey "o

The Key argument can specify a single key or any key combined with one or more of Alt, Ctrl, or
Shift. Normal aphanumeric keys are denoted by themselves, asin "a," "A," "1." Table 16-3 shows
how to enter specia keys. For instance, the F2 key is denoted by "{F2}", and the Enter key is
denoted either by "{ENTER}" or "~".

Table 16-3. Special Keys for the Key Parameter

| Key | Code
\Backspace {BACKSPACE} or {BS}
Break {BREAK}

Caps Lock {CAPSLOCK}

Clear {CLEAR}

Delete or Del {DELETE} or {DEL}
'Down Arrow {DOWN}

End {END}

Enter (numeric keypad) {ENTER}

Enter ~ (tilde)

Esc {ESCAPE} or {ESC}
Help {HELP}

'Home {HOME}

Ins {INSERT}

172

Left Arrow {LEFT}

Num Lock {NUMLOCK}
Page Down {PGDN}

Page Up {PGUP}

Return {RETURN}

Right Arrow {RIGHT}

Scroll Lock {SCROLLLOCK}
Tab {TAB}

Up Arrow {UP}

F1 through F15 {F1} through { F15}

To combine keys with Shift, Ctrl, or Alt, use the following prefixes:

Shift + (plus sign)
ctrl " (caret)
Alt % (percent sign)

For instance, to denote the Alt-F2 key combination, write "%{ F2}". To denote Ctrl-Shift-Enter,
write""+{ENTER}".

In order to use one of the characters +, , %, {, }, or ~ without having it interpreted as a specia
key, ssmply enclose the character in braces. For instance, to reassign the { key, we would assign
the Key parameter to "{{}".

16.1.4.2 OnTime method

This method is used to run a procedure at a specific time or after a specific amount of time has
passed. The syntax is.

Application.OnTime(EarliestTime, Procedure, LatestTime, Schedule)

Of course, the Procedure parameter is the name of the macro to run. TheEarliestTime
parameter is the time you want the macro to be run. To specify atime, we usethe TimeValue
function. For instance, the following code executes the macro test in the ThisWorkbook code
module of the book1 workbook at 3:58 P.M..

Application.OnTime TimeValue('3:58 PM"™),
""d:\excel\bookl.xIs!ThisWorkbook. test"

LatestTime isan optional parameter that specifies the latest time at which the procedure can
begin running. We can use the TimeValue function to specify atime for this parameter, or we
can set LatestTime to EarliestTime plus some additional time. For instance, the following
code requires that Excel run the macro no later than 30 seconds following 3:58 P.M.:

Application.OnTime TimeValue(*'3:58 PM'"), _
"d:\excel\bookl.xlIs!ThisWorkbook.test",
TimeValue(*'3:58 PM'™) + 30

The LatestTime parameter may be useful, sinceif Excel isbusy (running another procedure, for
instance), then execution of the macro denoted by Procedure will be delayed. If you do not
want the macro to be run after a certain time, then set the LatestTime parameter.

173

If you want to clear a previously set OnTime macro, you can call the procedure with the
Schedule parameter set to Fal se. Otherwise, the parameter can be omitted, since its default
valueisTrue.

Note that the Now function returns the current time. Thus, to schedule amacro for a certain
amount of time from the present, we can set Ear liestTime to:

Now + TimeValue(time)

16.1.5 Calculation-Related Members
The Application object has several members related to calculation.
16.1.5.1 Calculate method

This method calculates all open workbooks, a specific worksheet in aworkbook, or a specified
range of cells on aworksheet, depending upon how it is applied.

When applied to the Application object, asin:

Application.Calculate

Excel will calculate all open workbooks. When applied to a specific worksheet, asin:
Worksheets(1) -Calculate

Excel will calculate that worksheet. When applied to a specific range, asin:
Worksheets(1) .Rows(2) .Calculate

Excel will calculate the cellsin that range. Note that since Calculate is a globa method, we can
simply write:

Calculate

in place of:

Application.Calculate

16.1.5.2 CalculateFullRebuild method

This method calculates all data and rebuilds all dependencies (formulas that refer to other cells) in
all open workbooks. This method applies only to the Application object.

16.1.5.3 Calculation property (R/W Long)
This property sets Excel's cal culation mode and can be set to any of the following constants:

Enum XICalculation
xICalculationManual = -4135
xICalculationAutomatic = -4105
xICalculationSemiautomatic = 2

End Enum

174

The default valueisxICalculationAutomatic. Asistypical, the documentation does not
explain the term semiautomatic (at least | could not find an explanation). However, thereis an
option in Excel's Calculation tab under the Options dialog that allows us to specify automatic
calculation except for data tables; thisiswhat is meant by semiautomatic.

16.1.5.4 CalculateBeforeSave property (R/W Boolean)

This property is True if workbooks are calculated before they are saved to disk. Thisis relevant
only when the Calculation property is set to x IManual.

16.1.5.5 CheckAbort method
This method stops recalculation in Excel. Its syntax is:
Application.CheckAbort(keepabortrange)

where keepabortrange isarangethat is exempt from the method; that is, recalcualtion still
takes place in thisrange.

16.1.6 File-Related Members
Let ustake a brief look at the members that are related to file operations.
16.1.6.1 DefaultFilePath property (R/W String)

This property returns or sets the default path that Microsoft Excel uses when it opens or saves files.
This setting can also be changed by the user in the General tab of the Options dialog.

16.1.6.2 DefaultSaveFormat property (R/W Long)
This property returns or sets the default format for saving files. The default for this property is

xIWorkbookNormal, indicating the normal workbook format for the current version of Excel.
The possible values for this property are the XLFi leFormat constants shown in Table 16-4.

Table 16-4. XLFileFormat constants

xIAddin (18) xIExcel5 (39) xIWJ3 (40)

xICSV (6) x|Excel 7 (39) xIWJIBFJ3 (41)

XICSVMac (22) x|Excel 9795 (43) xIWK1 (5)

XICSVMSDOS (24) XIHtml (44)<v9> xIWKI1ALL (31)
XICSVWindows (23) Xlintl Addlin (26) XIWK1FMT (30)
xICurrentPlatformText (-4158) |xlIntIMacro (25) XIWK3 (15)

xIDBF2 (7) XISYLK (2) XIWK3FM3 (32)

xIDBF3 (8) xITemplate (17) xIWK4 (38)

xIDBF4 (11) x| TextMac (19) XIWKS (4)

XIDIF (9) XITextMSDOS (21) xIWorkbookNormal (-4143)
XIExcel2 (16) XITextPrinter (36) XIWorks2FarEast (28)
XIExcel2FarEast (27) xITextWindows (20) xIWQL1 (34)

xIExcel3 (29) xlUnicodeText (42)<v9> [xIXML Spreadsheet (46)<v10>
xIExcel4 (33) xIWebArchive (45)<v10>

xIExcel4Workbook (35) XIWJ2WD1 (14) \

175

16.1.6.3 FileDialog property

This property programmatically opens afile-related dialog box and returns a FileDia og object. It
takes as parameter one of the following constants to indicate the type of dialog:

msoFileDialogFilePicker
msoFileDialogFolderPicker
msoFileDialogOpen
msoFileDialogSaveAs

Toillustrate, the following code:
" Open dialog

With Application.FileDialog(msoFileDialogFolderPicker)
-Show

" Display path
MsgBox .Selectedltems(l)
End With
allows the user to select afolder and then displays the folder's complete path.
16.1.6.4 FindFile method
This method, whose syntax is:

Application.FindFile

displays the Open dialog box. If afile is opened successfully by the user, the method returns True.
If the user cancels the dialog box, the method returns Fal se.

16.1.6.5 GetOpenFilename method

This method displays the Open dialog box and gets a filename or filenames from the user but does
not open thefiles. Itssyntax is:

Application.GetOpenFilename(FileFilter, _
FilterIndex, Title, ButtonText, MultiSelect)

The optional Fi leFi lter parameter isastring that specifies what to put in the "Files of type"
drop-down list box in the Open dialog. In other words, it specifiesfile filtering criteria. This string
isin two parts, of the form:

description, filefilter

Thefirst part is the description of the file type, and the second part isthe MS-DOS wildcard file-
filter specification. The two parts are separated by a comma. Note that the first part is the string
that appearsin the "Files of type" drop-down box in the Open dialog box. Thus, the first part also
includes the wildcard file-filter specification. Perhaps afew examples will help clarify:

Text files

Text Files (*.txt),*.txt
Lotusfiles

Lotus 1-2-3 (*.wk?), *.wk?
Add-In files

Add-In Files (*.xla),*.xla

176

It isaso possible to use multiple wildcard file filters, asin:

Backup Files (*.xlk; *_.bak), *.xlk; *_.bak

(Note the semicolons.) If the Fi leFi I ter argument is omitted, the default is:
All Files (*.*),*.*

Note that Fi leFi I'ter can consist of more than one filter specification, separated by commas, as
in:

Debug.-Print Application.GetOpenFilename(_
"Text Files (*.txt),*.txt, _
Backup Files (*.xlk; *_.bak), *.xlk; *_bak')

In this case, the optional Fi I ter Index parameter specifies which of the filters appearsin the
"Files of type" drop-down list box. For instance, the following will cause the second filter (backup
files) to appear in the "Files of type" drop-down list box:

Debug.-Print Application.GetOpenFilename(_
"Text Files (*.txt),*.txt, _
Backup Files (*.xlk; *.bak), *.xlk; *.bak', 2)

The optional Title parameter specifiesthe title of the dialog box. If this argument is omitted, the
titleis Open. The ButtonText parameter isignored by Windows, but used on the Macintosh.

The optional MultiSelect property is set to True to allow multiple filenames to be selected
and False to alow only one filename to be seiected. The default value is False. To select
multiple files from the Open dialog, the user must hold down the Ctrl or Shift key.

The method returns the selected filename or the name entered by the user. The returned name may
also include a path specification. If the Mul tiSelect parameter is True, the return valueis an
array of the selected filenames (even if only one filename is selected). The method returns False
if the user cancels the dialog box.

When Mul tiselect is True, we can determine the number of files selected by the user by using
the UBound function to get the upper bound for the returned array, asin:

NumFiles = UBound(Application.GetOpenFilename(MultiSelect:=True))
Note finally that this method may change the current drive or folder.
16.1.6.6 GetSaveAsFilename method

This method is similar to the GetOpenFilename method, but instead displays the Save As dialog
box and gets a filename from the user without saving any files. The syntax is:

Application.GetSaveAsFilename(InitialFilename, _
FileFilter, Filterindex, Title, ButtonText)

Theoptional InitialFilename parameter specifiesthe filenamethat is placed in the "File
name" text box on the Save As dialog. If this argument is omitted, Excel uses the name of the
active workbook. The other parameters (and return values) are the same as for the
GetOpenFilename method. As with GetOpenFilename, this method may change the current drive
or folder.

ver

16.1.6.7 RecentFiles property (Read-Only)

This property returns a RecentFiles collection that represents the list of recently used files. There
are two interesting aspects to the RecentFiles collection. First, it has a Maximum property that
returns or can be set to the maximum number of files allowed in the recently used files list that
appears on Excel's File menu. This number must be an integer between 0 and 9, inclusive. Thus,
the code:

MsgBox Application.RecentFiles.Maximum

displays the current value.

Second, we can print alist of the filenames of the most recently used files as follows (of course,
you may want to do more than print thislist):

Dim rf As RecentFile

For Each rf In Application.RecentFiles
Debug.Print rf.Name

Next

Note that the RecentFiles collection contains RecentFile objects, and not simply the names of the
recently used files, as one might expect.

16.1.6.8 SaveWorkspace method
This method saves the current workspace. Its syntax is.
Application.SaveWorkspace(Filename)

where Fi lename isan optional filename for the xlw file.

16.1.7 Members that Affect the Current State of Excel
The following members have an effect on the current settings of Excel:
CopyObjectsWithCells property (R'W Boolean)

When this property is True, objects (such as embedded controls or shapes) are cut,
copied, extracted, and sorted along with cells.

Cursor property (R'W Long)

This property returns or sets the appearance of the mouse pointer. It can be one of the
following XIMousePointer constants:

Enum XIMousePointer
xIDefault = -4143
xINorthwestArrow = 1
xIWait = 2
xIIBeam = 3

End Enum

It is considered good programming practice to set the mouse pointer to x IWai t if your
code will take more than a second or so to complete. Of course, you will need to return
the mouse pointer to its previous state when the procedure terminates. The proper way to

178

do thisisto save the origina Cursor property value before changing it, so it can be reset
toitsorigina value.

CutCopyMode property (R/W Long)
This property returns or sets the status of Cut or Copy mode.

The CutCopyM ode property can be set to either True or False. On the PC, these have
the same effect (but differ on the Macintosh); namely, to cancel Cut or Copy mode and
remove the moving border that surrounds the region to be cut or copied.

The CutCopyM ode property can return Fal se, indicating that Excel isin neither Cut nor
Copy mode, or else one of the two values from the following enum:

Enum XICutCopyMode

xICopy = 1 " Copy mode
xICut = 2 * Cut mode
End Enum

DataEntryMode property (R/W Long)

This property returns or sets Data Entry mode. When in Data Entry mode, data can be
entered only in the cellsin the currently selected range.

The property can assume any of the following constant values:

x10n

Data Entry mode is on.

x10FF

Data Entry mode is off.

xIStrict

Data Entry mode is on, and pressing Esc will not turn it off.
EditDirectlylnCell property (R/W Boolean)

When this property is True (which isits default value), Excel allows editing in cells.
Otherwise, it does not allow editing in the cells (but you can still edit in the formula bar).

FixedDecimal property (R/W Boolean)
When this property is True, al numeric data entered will be formatted with the number
of fixed decimal places set by the FixedDecimal Places property. The default value of this
property is False; the value of the FixedDecimal Places property isignored.
FixedDecimal Places property (R/W Long)
This property returns or sets the number of fixed decimal places used when the

FixedDecimal property is set to True. For example, if the FixedDecimal Property is True
and FixedDecimalPlaces is set to 3, an entry of 100 in a cell will be displayed as 0.1.

179

Interactive property (R/W Boolean)

When this property is set to Fal se, Excel will block al input from the keyboard and
mouse except for input to dialog boxes that are displayed by code. Thiswill prevent the
user from interfering with the currently running macro. The default value of the
Interactive property is True.

Of course, considerable care must be taken with this property. For instance, if you forget
to reset the property to True, or if your code terminates unexpectedly, the user may need
to restart Excel. Note that the Alt-F4 key combination will work to shut down Excel, but
the user will not be able to save any work. Be careful with this onel

MoveAfter Return property (R/W Boolean)

When this property is True, its default value, the active cell will be moved as soon as the
Enter key is pressed. The MoveAfterReturnDirection property is used to specify the
direction in which the active cell will be moved. If set to Fal se, the active cell remains
unchanged after the Enter key is pressed.

MoveAfter ReturnDirection property (R'W Long)

This property returns or sets the direction in which the active cell is moved when the user
presses Enter if the MoveAfterReturn property is set to True. It can assume any one of
the following values:

Enum XIDirection
xlUp = -4162
xIToRight = -4161
xIToLeft = -4159
xIDown = -4121
End Enum
ReferenceStyle property (R/W Long)

This property returns or sets the style (A1 style or R1C1 style) in which Excel displays
cell references and row and column headings. It can be one of the following
XIReferenceStyle constants:

Enum XIReferenceStyle
xIR1C1 = -4150
xIA1 = 1
End Enum
ScreenUpdating property (R'W Boolean)

When this property is True, its default value, screen updating is turned on. Since this
may slow down some display-intensive procedures considerably, you may want to
temporarily turn off screen updating.

SheetslnNewWor kbook property (R/W Long)

This property returns or sets the number of sheets that Excel automatically inserts into
new workbooks.

ShowChartTipNames property (R/'W Boolean)

When this property is True, its default value, Excel charts show chart tip names.

180

ShowChartTipValues property (R/'W Boolean)

When this property is True, its default value, Excel charts show chart tip values.
ShowTool Tips property (R/W Boolean)

When this property is True, its default value, Tool Tips are turned on.
SandardFont property (R'W String)

This property returns or sets the name of the standard font. Note that the change does not
take effect until Excel is restarted.

SandardFontSize property (R/W Long)

This property returns or sets the standard font size, in points. The change does not take
effect until Excel isrestarted.

SartupPath property (Read-Only String)
This property returns the complete path of the startup folder, excluding the final separator.
TemplatesPath property (Read-Only String)

This property returns the path where templates are stored.

16.1.8 Members that Produce Actions
Several members of the Application object perform some sort of action.
16.1.8.1 ConvertFormula method

This method converts cell references in aformula between the A1 and R1C1 reference styles. It
can also convert between relative and absolute references. Its syntax is.

Application.ConvertFormula(Formula, FromReferenceStyle,
ToReferenceStyle, _
ToAbsolute, RelativeTo)

The Formulla parameter is a string containing the formulato convert. It must be avalid formula,
beginning with an equal sign.

The FromReferenceSty le parameter must be one of the following constants:

Enum XIReferenceStyle
XIR1C1 = -4150
xIA1 = 1

End Enum

The optional ToReferenceSty le parameter isthe reference style into which to convert the
formula. It isaso one of the XIReferenceStyle constants. If we omit this argument, the
reference style is not changed.

181

The optional ToAbso lute parameter specifies the converted reference type and can be one of the
following XIReferenceType constants:

Enum XIReferenceType
x1Absolute = 1

x1AbsRowRelCollumn = 2
xIRelRowAbsCollumn = 3
xIRelative = 4

End Enum

If this argument is omitted, the reference type is not changed.

Finally, the optional RellativeTo parameter is a Range object containing asingle cell. This cell
is used to determine relative references.; that is, we can think of the formula as being placed in this
cell and so al relative references are with respect to this cell.

Toillustrate, consider the following code:

sFormula = "=D2"

Debug.Print Application.ConvertFormula(sFormula, _
x1A1, xIR1C1, xIRelative, Range('C3"™))

Debug.Print Application.ConvertFormula(sFormula, _
xI1A1l, xIR1C1l, xIRelRowAbsColumn, Range(''C3'))

The second line converts from A1 notation to R1C1 notation, assuming that the formulaisin cell
C3. Hence, the output is:

= R[-11C[1]

since D2 is one column to the right and one row up from cell C3. The third line of code converts
A1 notation to R1C1 notation, but uses an absolute column reference and so produces:

= R[-1]C4

since column 4 is one column to the right of column 3.

16.1.8.2 Evaluate method

This method converts an Excel name to an object or avalue. Its syntax is:
Application.Evaluate(Name)

(This method also applies to Chart, DialogSheet, and Worksheet objects.)

The Name parameter is the name of the object. It can be any of the following types of name:
An Al-style reference

Name can be any Al-style referenceto asingle cell. The reference is considered to be
absolute. Toillustrate, consider the following code, each line of which purports to place
theword Mary in cell Al:

Range(*'A1l™) .Value = "Mary"
Al_.Value = "Mary"
Evaluate("'A1'™) .Value = "Mary"

182

[A1]-value = "Mary"

The first line uses the Range method. The second line will produce an error because Excel
considers Al avariable rather than a cell reference. Thethird line uses the Evaluate
method to convert the name of a cell to a Range object. The fourth line is shorthand for
thethird line.

Arange
Name can be any range formed by using the range operator (colon), intersect operator
(space), and union operator (comma) with references. The Evaluate method will return

the corresponding Range object. To illustrate, consider the following code;

Evaluate(''B2:C4') .Select
Evaluate(''B2:C4, D5:F6').Select
Evaluate(''B2:C4 B1:F2') .Select
[B2:C4 B1:F2]-Select

Thefirst line selects the range B2:C4. The second line selects the union of the two
rectangular ranges B2:C4 and D5:F6. The third line selects the intersection of the two
rectangular ranges B2:C4 B1:F2. The fourth line is shorthand for the third line.

A Defined Name

Name can be any defined name. For instance, if we name arange test, then the
following code selects that range:

Evaluate("test'™) .Select

(Incidentally, 1 have had some inconsistent results using the syntax [test] -Select. It
seems to work some but not all of the time.) We can also use formula names. For instance,
the following code displays the sum of the valuesin cells B2 through B5:

MsgBox Evaluate(*'SUM(B2:B5)")

Note that external references (references to other workbooks) can be used aswell, asin:

Workbooks ("'BOOK2 . XLS"™) .Sheets("'"MySheet') .Evaluate("'A1l"") .Select

Aswe have seen, using square brackets is equivalent to calling the Evaluate method with a string
argument. Square brackets have the advantage of producing more concise code, but they cannot be
used with string variables. For instance, we can write:

Dim sFormula As String
sFormula = ""SUM(B2:B5)"
MsgBox Evaluate(sFormula)

But the code:
MsgBox [sFormula]
will simply display the string SUM(B2:B5), as it would without the sgquare brackets.

16.1.8.3 Goto method

183

This method selects a given range in any workbook. (It can also select aVisua Basic procedure.)
The syntax is:

Application.Goto(Reference, Scroll)

The optional Reference parameter specifies the destination. It can be a Range object, a string
that contains a cell reference in R1C1-style notation, or a string that contains a Visual Basic
procedure name. If the argument is omitted, the destination is the destination used in the previous
cal to GoTo.

The optional Scrol I parameter should be set to True to scroll through the window so that the
upper-left corner of the destination appearsin the upper-left corner of the window. The default is
False, which means the destination will not move if it was visible within the window, or elseit
will appear at the bottom of the window if it was not visible.

For example, to select the range B5:C6 in the active worksheet, we can write:
Application.Goto Reference:=Range("'B5:C6'")

or:

Application.Goto Reference:="R5C2:R6C3"

The GoTo method also works in conjunction with the PreviousSelections array. In particular, the
Application object has a PreviousSel ections property that returns an array of Range objects

referencing the previous four ranges selected. The syntax is.

Application.PreviousSelections(Index)

where Index isanumber between 1 and 4.

Each time the user selects arange or cell either by using the Name box or the Go To command (on
the Edit menu), or the Goto method is called in code, the current range (before the action takes

place) is added to the top (index 1) of the PreviousSelections array and the other items in the array
are moved down one index value. (The item in position 4, of course, drops out of the array.)

Asasimpleillustration, consider the code:

Application.Goto Sheetl.Range('Al™)
ActiveCell_.Value = 1
Application.Goto Sheet2.Range('Al™)
ActiveCell.Value = 2

which fillsthe first cell on each of two sheets, using the GoTo method to add the cell ranges to the
PreviousSelections array.

Now the following line will alternate between the two cells when executed repeatedly:
Application.Goto Application.PreviousSelections(1)
Note that the GoTo method differs from the Select method in several ways:

e Both methods select the given range, but the Select method does not activate the sheet

upon which the new selection is made (if it is not already active).
e The Select method does not have aScrol I argument.

184

e The Select method does not add the current selection to the PreviousSelections array.
e The Select method has aReplace argument.

16.1.8.4 Quit method

This method closes Excel. Note that the BeforeClose event will fire when the Quit method is
executed. (This event hasaCancel parameter that can be set to cancel the quit operation.) We
discussed workbook events (including BeforeClose) in Chapter 11.

Note that if there are any unsaved open workbooks when the Quit method is invoked, Excel will
display the usual dialog box asking the user whether he or she wants to save the changes. We can
prevent this either by explicitly saving all workbooks (using the Save method) before invoking the
Quit method or by setting the DisplayAlerts property to Fal se. However, in the latter case, any
unsaved datawill be lost without warning!

It is aso important to note that Excel checks the Saved property of aworkbook in order to
determine whether to prompt for saving. Thus, if we set the Saved property to True but do not
save the workbook, Excel will quit without prompting to save the workbook (and without saving
the workbook).

16.1.9 Miscellaneous Members
Here are some additional members of the Application object.
16.1.9.1 CellFormat, FindFormat and ReplaceFormat object

The CellFormat object works in conjunction with the FindFormat and ReplaceFormat properties
of the Application abject to programmatically find and replace cell formatting.

Specificaly, the new FindFormat and ReplaceFormat properties of the Application object each
return a unique CellFormat object. We can set the formatting properties of either of these
CellFormat objects and then use the Replace method of the Range object to replace the formatting
in the CellFormat object returned by the FindFormat property, with the formatting in the
CellFormat object returned by the ReplaceFormat property.

For example, the following code replaces cells that have been formatted as bold with bold italic
formatting. Note that nowhere in the code is a CellFormat object explicitly declared.

Sub Example_CellFormat()
" Replace Bold with Bold Italic

With Application.FindFormat

.Clear
.Font.Bold = True

End With

With Application.ReplaceFormat
.Clear
.Font.Bold = True
.Font.ltalic = True

End With

Cells.Replace SearchFormat:=True, ReplaceFormat:=True
End Sub

185

The CellFormat object has a number of format-related properties. These are listed here. (The
CellFormat object has a single method named Clear, which clears al formatting.) These are used
just as we used the Font property in the previous code.

AddlIndent

Borders

Font

FormulaHidden
Horizontal Alignment
IndentLevel

Interior

Locked

MergeCells
NumberFormat
NumberFormatL ocal
Orientation

Shrink ToFit
VerticalAlignment
WrapText

16.1.9.2 InputBox method
We have already discussed the VBA InputBox function, which is used to return input from the
user. The InputBox method of the Application object also returns user information, but has the

advantage of being able to validate the return type and to return Excel formulas, objects, and error
values.

The syntax for the InputBox method is:

Application. InputBox(Prompt, Title, Default, _
Left, Top, HelpFile, HelpContextld, Type)

The parameters are as follows (note that all of the parameters are optional except the Prompt
parameter):

Prompt

The message to be displayed in the dialog box; it can be a string, number, date, or
Boolean value.

Title
The caption for the dialog box. The default caption is Input.
Default

The value that will appear in the text box when the dialog box is displayed. If this
argument is omitted, the text box will be empty.

Leftand Top

The upper-left corner of the dialog box in points, measured from the upper-left corner of
the screen.

HelpFile and HelpContextID

186

The name of the Help file and the context 1D for a help topic to invoke when the user hits
the Help button on the input box. If these arguments are omitted, then no Help button is
included on the input box dialog.

Type
The data type that can be entered into the text box by the user (and thus the return type of
the method). It can be one or a sum of the values in Table 16-5. When the value isa sum
of several numbers, then any of the corresponding data types is acceptable. It follows that
formulas are always acceptable. The default valueis 2 for Text.

Table 16-5. Values for the InputBox Method's Type Parameter

| Value | M eaning

0 A formula

1 A number

2 Text (astring)

4 A logical value (True or False)

8 A reference to asingle cell

116 /An error value, such as#N/A

64 /An array of values

Unfortunately, the type checking done by the InputBox method does not seem to be very accurate.
Toillustrate, the InputBox statement:

Range(*'Al™) .Value = Application. InputBox(_
Prompt:="Enter data', Type:=0)

should accept only formulas and not text. However, entering the text "test" simply puts thistext in
cell Al. (The help documentation does say that when Type is0, InputBox returns the formula as
text and any references in the formula are returned as A 1-style references.)

Note that when Type isequal to 8, the inputBox method returns a Range object that refersto the
cell in the reference. Therefore, we must use the Set statement to assign this object to avariable
of type Range, asin:

Dim rng as Variant
Set rng = Application. InputBox(_
Prompt:="Enter Cell Reference', Type:=8)

If we omit the Set statement, the variable is set to the value in the range, rather than the Range
object itself. (If we had declared the rng variable to be of type Range, then the preceding code,
without the Set statement, would result in the error message, "Object variable or With block
variable not set.")

When Type isequal to 64, the user is expected to enter arectangular cell range that will be treated
as atwo-dimensiona array. For instance, consider a worksheet as shown in Figure 16-3.

Figure 16-3. lllustration of Type = 64

s 4 24
2 5 45
3 23 56
4 14 57
5 55 78
6 67 667

The code:

Dim a As Variant

a = Application. InputBox(_
Prompt:="Enter Array", Type:=64)

Debug.Print a(3,2)

will accept the input:

Al1:B6

after which a(3,2) will equal 56.

Asafina example, if we respond to the code:

Dim a As Variant
a = Application. InputBox(Prompt:="Enter Formula"™, Type:=1)
Range("'D1') .Formula = a

with aformula, Excel does not put the formulain the cell D1 (it puts only the number), even
though 1 isasum of 1 and 0. In other words, we shouldn't take the sum statement too literally.

16.1.9.3 Selection property

This property simply returns the currently selected object in the active window. For instance, if a
cell is selected, the property returns a Range object denoting this cell. The Selection property
returns Nothing if nothing is selected. Note that the property also applies to a Window object
and returns the current selection in that window.

16.1.9.4 StatusBar property (R/W String)

This useful property returns or sets the text in Excel's status bar. To return control of the status bar
to Excel, simply set this property to False. (Similarly, this property will return Fal se if Excel
currently has control over the status bar.)

16.1.9.5 Intersect method

This method returns a Range object that represents the rectangular intersection of two or more
ranges. The syntax is:

Application. Intersect(Argl, Arg2, ...)

where Argl, Arg2, . . . are the Range objects whose ranges we wish to intersect. At least two
Range objects must be specified. For instance, the following line selects the intersection, which is
the range B2:D5:

188

Application. Intersect(Range("'A1:D5"), Range(''B2:F9')).Select
16.1.9.6 Union method

This method is the analog of the Intersect method, but returns the union of two or more ranges.
The syntax is:

Application.Union(Argl, Arg2, ...)

where Argl, Arg2, . . . are the Range objects whose ranges we wish to join together. At least two
Range objects must be specified. For instance, the following code selects both rectangular regions
A1.D5 and B2:F9:

Application.Union(Range("'A1:D5"), Range(''B2:F9'")).Select

16.2 Children of the Application Object

Figure 16-4 shows the children of the Application object. (This repeats Figure 16-1.)

Figure 16-4. The Excel Application object and its children

- 7o Agplication
o <Evantsy

+ 71 Addins
1o AutoCorect
70 A
70
70 Chart
¥ -7 chearts

T o Defaultd/ebOptions .32

4

+ 71 Dialogs

To

7L Mames

T ODECErmars

7@ OLEDEEmorsev>
T Rangea

T RecentFiles

7o

L1 Sheets

T

To

T

i

o

7o Wandow

T wWindows

7o Warkbook

T Workbooks

7L WorksheefFunclion
+ T Worksheets

)

-

R R

We will discuss many of the children of the Application object, including AppEvents, Chart,
Range, Sheets, Workbook, and Workshest, in later chapters. (We have already discussed the
Dialogs object.) For now, let us discuss some of the "smaller" children.

16.2.1 Name Objects and the Names Collections

189

A Name object represents a defined name for arange of cells. There are two types of namesin
Excel: built-in names such asPrint_Area and custom names created by the user or by code.

Name objects are kept in several Names collections. There is a Names collection for the
Application object, as well as Names collections for each Workbook and Worksheet object.

There are avariety of waysto create a new Name object. We can add a Name object to a Names
collection by calling the collection's Add method or we can use the CreateNames method of the
Range object (discussed in Chapter 19).

For instance, the following code creates a Name object that refers to a range on Sheet1 of Book1.
The Name object is added to the workbook's Names collection, but not to Sheetl's Names
collection:

Workbooks(*'Bookl .x1s') _Names.Add Name:=""WkBkName"*
RefersTo:="=Sheetl1!A1:B1"

Note the use of a sheet qualifier in the RefersTo parameter and the specification of an absolute
address. If the absolute operator ($) is not used, the range will be defined relative to the active cell.

The following code adds a Name object to the Names collection of Sheetl and Sheet2:

Workbooks(*'Bookl.xIs') .Worksheets("'Sheetl')
-Names.Add Name:="WkSheetlName',
RefersTo:="=Sheetl!A1:$BS1"

Workbooks(*'Bookl .x1s') _Worksheets(*'Sheet2'). _
Names.Add Name:="WkSheet2Name',
RefersTo:="=Sheet2!A1:$BS1""

Note that this code will also add the Name objects to the workbook's Names collection.
The following code sets the font for the range WkSheet1Name to boldface:
Sheetl.Names(*"WkSheetlName') .RefersToRange.Font.Bold = True

Note that there is no Names collection for a given Range object, even though a Range object can
have more than one name. The best we can do is retrieve the first name for a range object by using
the Name property (see the discussion in Chapter 19).

Let us review some of the properties and methods of the Name object:
Delete method

This method, whose syntax is:

NameObject.Delete

deletes the Name object from the Names collections in which it resides. It does not delete
the actual range.

Name property

This property returns or sets the name of the Name object.

190

RefersTo property

This property returns or sets the formulathat defines a named range, in A1-style notation,
beginning with an equal sign.

RefersToR1C1 property

This property returns or sets the formula that defines a named range, in R1C1-style
notation, beginning with an equal sign.

Refer sToRange property

This property returns the Range object referred to by the named range. It is read-only.
(See the previous example code.)

Value property

This property also returns or sets the formula that defines a named range, in Al-style
notation, beginning with an equal sign. Thus, it is equivalent to the RefersTo property.

Visible property
This property returns or sets the visibility of the named range.

16.2.2 The Windows Collection and Window Objects

Of course, a Window object represents an Excel window. The Windows collection of the
Application object is the collection of Window objects for all currently open windows in the
currently running version of Excel. (Similarly, the Windows collection for a Workbook object
contains only the windows in the workbook.)

The Arrange method of the Windows collection is used to arrange the current windows. The
syntax is.

WindowsObject.Arrange(ArrangeStyle, _
ActiveWorkbook, SyncHorizontal, SyncVertical)

The optional ArrangeSty le parameter can be one of the following XIArrangeStyle
constants:

Enum XIArrangeStyle

xlArrangeStyleVertical = -4166
xlArrangeStyleHorizontal = -4128
xIArrangeStyleTiled = 1 " Default
xlArrangeStyleCascade = 7

End Enum

We can set the ActiveWorkbook parameter to True to arrange only the visible windows of the
active workbook. The default value is Fal se, in which case al windows are arranged.

When ActiveWorkbook is True, the remaining parameters are evaluated (otherwise they are
ignored). SyncHorizontal can be set to True to synchronize the horizontal scrolling windows
of the active workbook. In other words, all windows scroll at the same time when one window is
scrolled horizontally. The default valueis False. Similarly, the SyncVertical parameter

191

specifies vertical scrolling synchronization. Thus, the following code tiles the visible windows and
enables horizontal scrolling synchronization:

ActiveWorkbook.Windows.Arrange _
ArrangeStyle:=xlArrangeStyleTiled, _
SyncHorizontal :=True

To create a new window, we use the NewWindow method of the Workbook object, asin:
ThisWorkbook .NewWindow

in which case a copy of the active window is created. This method also appliesto an existing
Window object and creates a copy of the window to which it is applied.

The Windows collection has a special property with respect to indexing, namely, the active

window is aways:

Windows (1)

The 58 members of the Window object are shown in Table 16-6.

Table 16-6. Members of the Window object

| DisplayRightToL eft<v9> [EnableResize ScrollWorkbook Tabs
Activate FreezePanes Sel ectedSheets
ActivateNext GridlineColor Selection
ActivatePrevious GridlineColorlndex SmallScroll
ActiveCell Height Split
\ActiveChart Index SplitColumn
ActivePane LargeScroll SplitHorizontal
ActiveSheset Left SplitRow
Application NewWindow SplitVertical
Caption OnWindow TabRatio
Close |Panes Top

Creator |Parent Type
DisplayFormulas PointsT oScreenPixel sX <v9> UsableHeight
DisplayGridlines PointsToScreenPixelsY <v9> UsableWidth
DisplayHeadings PrintOut View
DisplayHorizontal Scrol|Bar PrintPreview \Visible
DisplayOutline \RangeFromPoint<v9> \VisibleRange
DisplayRightToL eft RangeSelection Width
DisplayVertical ScrolIBar ScrollColumn WindowNumber
DisplayWorkbookTabs ScrollintoView<vo> WindowState
DisplayZeros 'ScrollRow \Zoom

16.2.3 The WorksheetFunction Object

The WorksheetFunction object is returned by the WorksheetFunction property of the Application

object. The sole purpose of the WorksheetFunction object isto provide access to Excel's

worksheet functions. For instance, the following code illustrates the use of the WorksheetFunction

object to access Excel'sMin function:

192

Dim rng As Range

Dim rMin As Single

Set rng = Worksheets(''Sheetl') .Range(*'A1:D10")
rMin = Application._WorksheetFunction_Min(rng)

193

Chapter 17. The Workbook Object

In this chapter, we discuss the Workbook object and the Workbooks collection. Figure 17-1 shows
the portion of the Excel object model that relates directly to workbooks.

Figure 17-1. The Workbook object

=70 Workbook

70 Chant

+ 7 Customisws
70 Mailer

+ 71 Mames

+ 7 PivotCaches

+ -7l PublishOlbjects<s0s
7o RoulingSlip

+ 7 Shesis
20

+ 7 Styles
70 WabOplions o9
70 Window

F -7 Windows

+ 70 Worksheet

17.1 The Workbooks Collection

The Application object has a Workbooks property that returns a Workbooks collection, which
contains all of the Workbook objects for the currently open instance of Excel. For instance, the
following code displays the number of open workbooks:

Dim wbs As Workbooks
Set wbs = Application.Workbooks
MsgBox wbs.Count

Let uslook at afew of the properties and methods of the Workbooks collection.

17.1.1 Add Method

The Add method creates a new workbook, which is then added to the Workbooks collection. The
new workbook becomes the active workbook. The syntax is:

WorkbooksObject.Add(Template)

where the optional Temp late parameter determines how the new workbook is created. If this
argument is a string specifying the name of an existing Excel template file, the new workbook is
created with that file as atemplate.

Asyou may know, atemplate is an Excel workbook that may contain content (such as row and
column labels), formatting, and macros and other customizations (menus and toolbars, for
instance). When you base a new workbook on atemplate, the new workbook receives the content,
formatting, and customization from the template.

The Template argument can also be one of the following constants:

194

Enum XIWBATemplate
XIWBATWorksheet = -4167
XIWBATChart = -4109
XIWBATExcel4MacroSheet = 3
XIWBATExcel4IntIMacroSheet = 4

End Enum

In this case, the new workbook will contain a single sheet of the specified type. If the Template
argument is omitted, Excel will create a new workbook with the number of blank sheets set by the
Application object's SheetsinNewWorkbook property.

17.1.2 Close Method

The Close method closes all open workbooks. The syntax is simply:

WorksbooksObject.Close

17.1.3 Count Property

Most collection objects have a Count property, and the Workbooks collection is no exception.
This property simply returns the number of currently open workbooks.

17.1.4 Item Property
The Item property returns a particular workbook in the Workbooks collection. For instance:
Workbooks . Item(1)

returns the Workbook object associated with the first workbook in the Workbooks collection.
Since the Item property is the default property, we can also write this as:

Workbooks (1)

Note that we cannot rely on the fact that a certain workbook will have a certain index. (This
appliesto all collections.) Thus, to refer to a particular workbook, you should aways use its name,
asin:

Workbooks(*'Bookl.x1s"™)

It isimportant to note that if a user creates a new workbook named, say, Book2, using the New
menu item on the File menu, then we may refer to this workbook in code by writing:

Workbooks(*'Book2'™)
but the code:
Workbooks(*'Book2.x1s')

will generate an error (subscript out of range) until the workbook is actually saved to disk.

17.1.5 Open Method

This method opens an existing workbook. The rather complex syntax is:

195

WorkbooksObject.Open(FileName, UpdateLinks, ReadOnly,
Format, Password, WriteResPassword, lIgnoreReadOnlyRecommended, _
Origin, Delimiter, Editable, Notify, Converter, AddToMRU)

Most of these parameters are rarely used (severa of them relate to opening text files, for instance).
We discuss the most commonly used parameters and refer the reader to the help files for more
information. Note that all of the parameters are optional except Fi IeName.

Fi leName isthe file name of the workbook to be opened. To open the workbook in read-only
mode, set the ReadOn 'y parameter to True.

If apassword is required to open the workbook, the Password parameter should be set to this
password. If a password is required but you do not specify the password, Excel will ask for it.

The AddToMru parameter should be set to True to add this workbook to the list of recently used
files. The default valueis Fal se.

17.1.6 OpenText Method

This method will load atext file as a new workbook. The method will parse the text data and place
it in asingle worksheet. The rather complex syntax is.

WorkbooksObject.OpenText(Filename, Origin, StartRow, _
DataType, TextQualifier, ConsecutiveDelimiter, Tab, _
Semicolon, Comma, Space, Other, OtherChar, FieldInfo)

Note first that all of the parameters to this method are optional except the Fi leName parameter.
The Fi lename parameter specifies the filename of the text file to be opened.

The Origin parameter specifies the origin of the text file and can be one of the following
X1Platform constants:

Enum XIPlatform
xIMacintosh = 1
xIWindows = 2
xIMSDOS = 3

End Enum

Note that the x IWindows value specifies an ANSI text file, whereas the x IMSDOS constant
specifies an ASCII file. If this argument is omitted, the current setting of the File Origin option in
the Text Import Wizard will be used.

The StartRow parameter specifies the row number at which to start parsing text from the text file.
The default valueis 1.

The optional DataType parameter specifies the format of the text in the file and can be one of the
following X1TextParsingType constants:

Enum XITextParsingType
xIDelimited = 1 " Default
xIFixedWidth = 2

End Enum

196

The TextQual i fier parameter is the text quaifier. It can be one of the following
XITextQualifier constants:

Enum XITextQualifier
xITextQualifierNone = -4142
xITextQualifierDoubleQuote
xITextQualifierSingleQuote

End Enum

" Default

1
2

The ConsecutiveDel imiter parameter should be set to True for Excel to consider
consecutive delimiters as one delimiter. The default valueis Fal se.

There are severa parameters that require that DataType be xIDel imited. When any one of
these parametersis set to True, it indicates that Excel should use the corresponding character as
the text delimiter. They are described here (all default values are Fal se):

Tab

Set to True to use the tab character as the delimiter.
Semicolon

Set to True to use a semicolon as the delimiter.
Comma

Set to True to use acomma as the delimiter.
Space

Set to True to use a space as the delimiter.
Other

Set to True to use a character that is specified by the OtherChar argument as the
delimiter.

When Other isTrue, OtherChar specifies the delimiter character. If OtherChar contains
more than one character, only the first character is used.

TheFieldInfo parameter isan array containing parse information for the individual source
columns. The interpretation of FieldInfo depends on the value of DataType.

When DataType isxIDel imited, the FieldInfo argument should be an array whose sizeis
the same as or smaller than the number of columns of converted data. The first element of atwo-
element array is the column number (starting with the number 1), and the second element is one of
the following numbers that specifies how the column is parsed:

\ Value \ Description

Genera

Text

MDY date

AIWNBE

DMY date

5 'YMD date

6 MYD date
7 DYM date
8 YDM date
9 Skip the column

If atwo-element array for a given column is missing, then the column is parsed with the General
setting. For instance, the following value for Field I nfo causes the first column to be parsed as
text and the third column to be skipped:

Array(Array(1, 2), Array(3, 9))
All other columns will be parsed as general data.

Toillustrate, consider atext file with the following contents:

*John',""Smith","Serial Record",1/2/98
"Fred","Gwynn","Serials Order Dept',2/2/98
"Mary',"Davis","English Dept",3/5/98
"David","Johns",""Chemistry Dept',4/4/98

The code:

Workbooks.OpenText _
FileName:="d:\excel\temp.txt", _
Origin:=xIMSDOS, _

StartRow:=1, _
DataType:=xIDelimited, _
TextQualifier:=x1TextQualifierDoubleQuote, _
ConsecutiveDelimiter:=True, _
Comma:=True, _
FieldInfo:=Array(Array(l1, 2), _

Array(2, 2), Array(3, 2), Array(4, 6))

produces the worksheet shown in Figure 17-2. Note that the cellsin column D are formatted as
dates.

Figure 17-2. A comma-delimited text file opened in Excel

A B [+ | D
1 John Smith Sernal Record 142498
2 [Fred ZWTin Sarials Order Dept 212598
3 Mary Dianis English Dept A5MA8
4 David Johns Chemistry Dept 4/4/98

On the other hand, if DataType isxIFixedWidth, the first element of each two-element array
specifies the starting character position in the column (0 being the first character) and the second
element specifies the parse option (1-9) for the resulting column, as described earlier.

Toillustrate, consider the text file whose contents are as follows:

0-125-689
2-523-489
3-424-664

198

4-125-160
The code:

Workbooks.OpenText _
FileName:="d:\excel\temp.txt", _
Origin:=xIMSDOS, _

StartRow:=1, _
DataType:=xIFixedWidth, _
FieldInfo:=Array(Array(0, 2), _
Array(1, 9), Array(2, 2), Array(, 9), _
Array(6, 2))

produces the worksheet in Figure 17-3. (Note how we included arrays to skip the hyphens.)

Figure 17-3. A fixed-width text file opened in Excel

A, E o
1.0 125 Gad
2|2 523 43849
33 424 BE4
4 4 125 160

Finally, it isimportant to observe that the text file is opened in Excel, but not converted to an
Excel workbook file. To do so, we can invoke the SaveAs method, asin:

Application.ActiveSheet.SaveAs _
FileName:="d:\excel\temp.xlIs", _
FileFormat:=xIWorkbookNormal

17.2 The Workbook Object

A Workbook object represents an open Excel workbook. Aswe have discussed, Workbook
objects are stored in a Workbooks collection.

The Workbook object has atotal of 103 properties and methods, as shown in Table 17-1.

Table 17-1. Members of the Workbook object

|_CodeName IFullName RefreshAll
|_PrintOut<vo> IFullNameURL Encoded<v10> "RejectAllChanges
|_Protect<v10> HasMailer 'ReloadA s<v9>
_ReadOnlyRecommended<v10>|HasPassword RemovePersonal Information<v10>
_SaveAs<vi10> HasRoutingSlip RemoveUser
AcceptAllChanges HighlightChangesOnScreen Reply

\AcceptL abelsinFormulas HighlightChangesOptions ReplyAll

\Activate IHTMLProject<vo> 'ReplyWithChanges<v10>
ActiveChart IsAddin ResetColors

ActiveSheset Islnplace RevisionNumber
AddToFavorites KeepChangeHistory Route

199

\Application \Keywords 'Routed

Author Linkinfo RoutingSlip
AutoUpdateFreguency LinkSources RunAutoMacros
AutoUpdateSaveChanges ListChangesOnNewSheet Save

BreakLink<v10> Mailer SaveAs
BuiltinDocumentProperties |MergeWorkbook 'SaveCopyAs
(CalculationVersion<v9> 'Modules Saved

CanCheckln<v10> MultiUserEditing SavelinkValues
ChangeFileAccess Name shlt<vo>
ChangeHistoryDuration Names SendForReview<v10>
(ChangeL ink NewWindow 'SendMail

(Charts |OnSave 'SendMailer
Checkin<v10> OnSheetActivate SetLinkOnData

Close OnSheetDeactivate SetPasswordEncryptionOptions<v10>
CodeName OpenLinks Sheets

(Colors Parent 'ShowConflictHistory
|CommandBars |Password<v10> ‘ShowPivotTableFieldList<v10>
Comments PasswordEncryptionAlgorithm<v10> |SmartTagOptions<v10>
ConflictResolution PasswordEncryptionFileProperties<v10>|Styles

Container PasswordEncryptionKeyLength<v10> |Subject

CreateBackup PasswordEncryptionProvider<v10> TemplateRemoveExtData
Creator Path Title
CustomDocumentProperties Personal ViewListSettings Unprotect

CustomViews Personal ViewPrintSettings UnprotectSharing
Date1904 PivotCaches UpdateFromFile
DeleteNumberFormat PivotTableWizard UpdateLink
IDialogSheets \Post 'UpdateL inks<v10>
DisplayDrawingObjects PrecisionAsDisplayed UpdateRemoteReferences
Dummy16<v10> PrintOut UserControl
Dummy17<v10> PrintPreview UserStatus

EnableA utoRecover<v10> Protect VVBASigned<v9>
[EndReview<v10> ProtectSharing VBProject
[EnvelopeVisible<vg> ProtectStructure 'WebOptions<v9>
ExceldintiMacroSheets ProtectWindows WebPagePreview<vo>
ExceldMacroSheets PublishObjects<v9> Windows
ExclusiveAccess PurgeChangeHistoryNow Worksheets
FileFormat 'ReadOnly \WritePassword<v10>
[FollowHyperlink 'ReadOnlyRecommended \WriteReserved
IForwardMailer |Recheck SmartTags<v10> \WriteReservedBy

Several of the memberslisted in Table 17-1 exist solely to return the children of the Workbook
object. The children are shown in Figure 17-4.

Figure 17-4. Children of the Workbook object

200

=70 Warkhook
70 Chanrt
+ 71 Customvisws
7o Mailer
+ 74 Hames
7L PivotCaches
-7l PublishObjectsosd»
7o RowingSlip
+ 7l Sheets
10 SmarTa o
+ 71 Styles
7o WebOplionso.3
70 Window
T Windows
+ 70 Waorksheet

+

Table 17-2 gives the members of the Workbook object that return children.

Table 17-2. Members of Workbook that return children
Name ReturnType

ActiveChart Chart
\Application \Application
(Charts Sheets
CustomViews CustomViews
DiaogSheets Sheets
Excel4intlMacroSheets Sheets
ExceldMacroSheets Sheets
Mailer Mailer
Modules Sheets
Names Names
NewWindow Window
PivotCaches PivotCaches
IPublishObjects IPublishObjects
RoutingSlip RoutingSlip
Sheets Sheets
SmartTagOptions SmartTagOptions
Styles Styles
\WebOptions \WebOptions
\Windows 'Windows
\Worksheets Sheets

There are afew items worth noting about Table 17-2. First, the ActiveSheet property may return
either a Chart object or a Worksheet object, depending upon what type of object is currently active.

Second, the Charts, Sheets, and Worksheets properties all return a (different) Sheets collection. In
particular, the Charts object returns the Sheets collection that contains all of the chart sheetsin the
workbook. (This does not include charts that are embedded in worksheets.) The Worksheets
property returns the Sheets collection of all worksheets in the workbook. Finally, the Sheets
property returns the Sheets collection of all worksheets and chart sheets. Thisisarelatively rare
example of a collection that contains objects of more than one type. Note that there is no Sheet
object in the Excel object mode.

201

Let uslook at afew of the more commonly used members from Table 17-1.

17.2.1 Activate Method
This method activates the workbook. The syntax is straightforward, asin:

Workbooks(*"MyWorkBook') .Activate

Note that Workbooks is global, so we do not need to qualify it with the App I ication keyword.

17.2.2 Close Method

The Close method closes the workbook. Its syntax is:

WorkbookObject.Close(SaveChanges, FileName, RouteWorkbook)

Note that the Close method of the Workbook object has three parameters, unlike the Close method
of the Workbooks object, which has none.

The optional SaveChanges parameter is used to save changes to the workbook before closing. In
particular, if there are no changes to the workbook, the argument isignored. It is also ignored if
the workbook appears in other open windows. On the other hand, if there are changesto the
workbook and it does not appear in any other open windows, the argument takes effect.

In this case, if SaveChanges is True, the changes are saved. If thereis not yet afilename
associated with the workbook (that is, if it has not been previously saved), then the name givenin
FileName isused. If Fi leName isaso omitted, Excel will prompt the user for afilename. If
SaveChanges isFal se, changes are not saved. Finadly, if the SaveChanges argument is
omitted, Excel will display a dialog box asking whether the changes should be saved. In short, this
method behaves as you would hope.

The optional RouteWorkbook refersto routing issues; we refer the interested reader to the Excel
VBA help file for more information.

It isimportant to note that the Close method checks the Saved property of the workbook to
determine whether or not to prompt the user to save changes. If we set the Saved property to True,
then the Close method will simply close the workbook with no warning and without saving any
unsaved changes.

17.2.3 DisplayDrawingObjects Property

This property returns or sets a value indicating how shapes are displayed. It can be one of the
following XIDisplayShapes constants:

Enum XIDisplayShapes
XIDisplayShapes = -4104
xIPlaceholders = 2
xIHide = 3

End Enum

17.2.4 FileFormat Property (Read-Only Long)

This property returns the file format or type of the workbook. It can be one of the following
X1FileFormat constants:

202

Enum XIFileFormat
x1AddIn = 18
xICSV = 6
xICSVMac = 22
xICSVMSDOS = 24
xICSVWindows = 23
xICurrentPlatformText = -4158

xIDBF2 = 7
xIDBF3 = 8
xIDBF4 = 11
xIDIF = 9

x1Excel2 = 16
x1Excel2FarEast = 27
x1Excel3 = 29
x1Excel4 = 33
xIExcel4Workbook = 35
xIExcel5 = 39
x1Excel7 = 39
X1Excel9795 = 43
xIHtml = 44
xIIntlAddIn
xI'IntIMacro
XISYLK = 2
xITemplate = 17
xITextMac = 19
x1TextMSDOS = 21

26
25

xITextPrinter = 36
xITextWindows = 20
xlUnicodeText = 42

xIWebArchive = 45
xIWJ2wp1 = 14

xIWJ3 = 40
xIWJ3FJ3 = 41
xIWK1 = 5
XIWK1ALL = 31
XIWK1FMT = 30
xIWK3 = 15
XIWK3FM3 = 32
xIWK4 = 38
xIWKS = 4

xIWorkbookNormal = -4143
xIWorks2FarEast = 28

xIWQl = 34
XIXMLSpreadsheet = 46
End Enum

17.2.5 Name, FullName, and Path Properties

The Name property returns the name of the workbook, the Path property returns the path to the
workbook file, and FullName returns the fully qualified (path and filename) of the workbook file.
All of these properties are read-only.

Note that using the Path property without a qualifier is equivalent to:

Application.Path

and thus returns the path to Excel itself (rather than to aworkbook).

17.2.6 HasPassword Property (Read-Only Boolean)

203

This read-only property is True if the workbook has password protection. Note that a password
can be assigned as one of the parameters to the SaveA s method.

17.2.7 PrecisionAsDisplayed Property (R/W Boolean)
When this property is True, calculationsin the workbook will be done using only the precision of

the numbers as they are displayed, rather than as they are stored. Its default valueisFal se;
calculations are based on the values of numbers as they are stored.

17.2.8 PrintOut Method

The PrintOut method prints an entire workbook. (This method applies to a host of other objects as
well, such as Range, Worksheet, and Chart.) The syntax is:

WorkbookObject._PrintOut(From, To, Copies, _
Preview, ActivePrinter, PrintToFile, Collate)

Note that all of the parameters to this method are optional.

The From parameter specifies the page number of the first page to print, and the To parameter
specifies the last page to print. If omitted, the entire object (range, worksheet, etc.) is printed.

The Copies parameter specifies the number of copiesto print. The default is 1.

Set Preview to True to invoke print preview rather than printing immediately. The default is
False.

ActivePrinter setsthe name of the active printer. On the other hand, setting PrintToFile
to True causes Excel to print to afile. Excel will prompt the user for the name of the output file.
(Unfortunately, there is no way to specify the name of the output filein code.)

The Col Iate parameter should be set to True to collate multiple multipage copies.

17.2.9 PrintPreview Method

This method invokes Excel's print preview feature. Its syntax is:

WorkbookObject.PrintPreview

Note that the PrintPreview method applies to the same set of objects as the PrintOut method.

17.2.10 Protect Method

This method protects a workbook so that it cannot be modified. Its syntax is.
WorkbookObject._Protect(Password, Structure, Windows)
The method also applies to charts and worksheets, with a different syntax.

The optional Password parameter specifies a password (as a case-sensitive string). If this
argument is omitted, the workbook will not require a password to unprotect it.

204

Set the optional Structure parameter to True to protect the structure of the workbook—that is,
the relative position of the sheets in the workbook. The default valueis False.

Set the optional Windows parameter to True to protect the workbook windows. The default is
False.

17.2.11 ReadOnly Property (Read-Only Boolean)

This property is True if the workbook has been opened as read-only.

17.2.12 RefreshAll Method

This method refreshes all external data ranges and pivot tables in the workbook. The syntax is:
WorkbookObject._RefreshAll

17.2.13 Save Method

This method simply saves any changes to the workbook. Its syntax is:
WorkbookObject. Save

17.2.14 SaveAs Method

This method saves changes to a workbook in the specified file. The syntax is:

expression.SaveAs(Filename, FileFormat, Password, WriteResPassword, _
ReadOnlyRecommended, CreateBackup, AccessMode, ConflictResolution,

AddToMru, TextCodePage, TextVisuallLayout)

The Fi lename parameter specifies the filename to use for the newly saved disk file. If apathis
not included, Excel will use the current folder.

The Fi leFormat parameter specifies the file format to use when saving thefile. Itsvalueis one
of the XIFi leFormat constants described in our discussion of the FileFormat property.

The Password parameter specifies the password to use when saving the file and can be set to any
case-sensitive string of up to 15 characters.

TheWriteResPassword isastring that specifies the write-reservation password for thisfile. If
afileis saved with awrite-reservation password and this password is not supplied when thefileis
next opened, the file will be opened as read-only.

We can set the ReadOnllyRecommended parameter to True to display a message when the file
is opened, recommending that the file be opened as read-only.

Set the CreateBackup parameter to True to create a backup file.

The AccessMode and ConflictResolution parameters refer to sharing issues. We refer the
interested reader to the Excel VBA help file for details.

205

Set the AddToMru parameter to True to add the workbook to the list of recently used files. The
default valueisFal se.

The remaining parameters are not used in the U.S. English version of Excel.

17.2.15 SaveCopyAs Method

This method saves a copy of the workbook to a file but does not modify the open workbook itself.
The syntax is:

WorkbookObject.SaveCopyAs(Filename)

where Fi lename specifies the filename for the copy of the original file.

17.2.16 Saved Property (R/W Boolean)

This property is True if no changes have been made to the specified workbook since it was last
saved. Note that this property is read/write, which means we can set the property to True even if
the workbook has been changed since it was last saved. As discussed earlier, we can set this
property to True, then close a modified workbook without being prompted to save the current
changes.

17.3 Children of the Workbook Object

Figure 17-5 shows the children of the Workbook object. (Thisis arepeat of Figure 17-4.)

Figure 17-5. Children of the Workbook object

- 70 Workhaook
70 Chan
+ 71 Customvisws
7o Mailer
+ 74 Hames
T PivatCaches
+ -7l PublishOhjects<wis
7o RoutingSlip
¥ 7 Shesis
(= :
+ 7 Styles
7o WabOplions<w3»
7o Window
F -7 Windows
+ 70 Worksheet

+

Let ustake aquick look at some of these children. (We will discuss the Window, Worksheet, and
WorkbookEvents objects later in the book.)

17.3.1 The CustomView Object

The CustomViews property returns the CustomViews collection. Each CustomView object in this
collection represents a custom view of the workbook. CustomView objects are pretty
straightforward, so we will just consider an example. Look at the sheet shown in Figure 17-6.

206

Figure 17-6. Example of the CustomView object

A =3 C

1 Year ltemCode Cluantity
2 1997 20 30
3 1997 a0 &0
4 1997 12 a0
= 1983 1% i
B 1998 30 67
7 1998 44 78
Ly

Now suppose we use the Autofilter command to filter on the year, as shown in Figure 17-7.

Figure 17-7. A filtered view

A B C
1 Year j Iterm CGE‘ ua nhE
5 1998 15 56
& 1998 36 &7
7| 1998 44 78

The following code will give this custom view the name View1998:
ThisWorkbook.CustomViews.Add *'View1998"

Now we can display this view at any time with the code;
ThisWorkbook.CustomViews!View1998._Show

or:

strView = "Viewl1998"
ActiveWorkbook.CustomViews(strView) .Show

17.3.2 The Names Collection

As with the Application object, the Workbook object has a Names property that returns a Names
collection. This collection represents the Name objects associated with the workbook. For details
on Name objects, see Chapter 16.

17.3.3 The Sheets Collection

The Sheets property returns a Sheets collection that contains a Worksheet object for each
worksheet and a Chart object for each chartsheet in the workbook. We will discuss Worksheet
objects and Chart objects later in the book.

17.3.4 The Styles Collection and the Style Object

A Style object represents a set of formatting options for arange. Each workbook has a Styles
collection containing all Style objects for the workbook.

To apply astyle to arange, we simply write:
RangeObject.Style = StyleName

where Sty leName isthe name of astyle.

To create a Style object, use the Add method, whose syntax is:
WorkbookObject.Add(Name, BasedOn)

Note that the Add method returns the newly created Style object.

The Name parameter specifies the name of the style, and the optional BasedOn parameter
specifies a Range object that refersto a cell whose style is used as abasis for the new style. If this
argument is omitted, the newly created style is based on the Normal style.

Note that, according to the documentation, if a style with the specified name aready exists, the
Add method will redefine the existing style based on the cell specified in BasedOn. (However, on
my system, Excel issues an error message instead, so you should check this carefully.)

The properties of the Style object reflect the various formatting features, such as font name, font
size, number format, alignment, and so on. There are also several built-in styles, such as Normal,
Currency, and Percent. These built-in styles can be found in the Style name box of the Style dialog
box (under the Format menu).

Toillustrate, the following code creates a style and then appliesit to an arbitrary range of the
current worksheet:

Dim st As Style

" Delete style if it exists
For Each st In ActiveWorkbook.Styles

IT st_.Name = "Bordered"” Then st.Delete
Next

" Create style

With ActiveWorkbook.Styles.Add(Name:="Bordered')
-Borders(xITop) .LineStyle = xIDouble
-Borders(xIBottom).LineStyle = xIDouble
-Borders(xlLeft).LineStyle = xlIDouble
-Borders(xIRight) .LineStyle = xlIDouble

.Font.Bold = True
.Font.Name = "arial"”
_.Font.Size = 36

End With

" Apply style
Application.ActiveSheet.Range("'A1:B3'").Style = "Bordered"

17.4 Example: Sorting Sheets in a Workbook

Let usadd a new utility to our SRXUTtils application. If you work with workbooks that contain
many sheets (worksheets and chartsheets), then you may want to sort the sheets in alphabetical
order.

208

The basis for the code to order the sheetsis the Move method of the Worksheet and Chart objects.
Itssyntax is:

SheetsObject.Move(Before, After)
Of course, to use this method effectively, we need a sorted list of sheet names.
Thefirst step is to augment the DataSheet worksheet for SRXUtils by adding a new row for the

new utility, as shown in Figure 17-8. (The order of the rowsin this DataSheet is based on the
order in which we want the items to appear in the custom menu.)

Figure 17-8. Augmenting the DataSheet worksheet

- B E H

i O F &
Ltikty Drsction Froc Procsdure In Werthook W Eem SubMenu ten On Wkx Menu On Chart Wenu
Artrate Thest Fi_Eiiky Brivmi=Shest Th =i &Soivnls Shest Uil TRLY
|2 Frint chait Furi bl PriniCharts ETiri 1 Bl Embocidad S0 TALE
| & Prird P Tabkes Rl Eily PimdFie=iTidis FTife 1d &Pl T TRLE
£ Prnl Stwsk B ki FrmdShee= Sy it i
corf Sheets Rkt SoriEhests Thi =Rkt 550 Shaets TRE TALE

Next, we insert anew code module called basSortSheets, which will contain the code to
implement this utility.

We shall include two proceduresin basSortSheets. Thefirst procedure verifies that the user
really wants to sort the sheets. If so, it calls the second procedure, which does the work. The first
procedure is shown in Example 17-1. It displays the dialog box shown in Figure 17-8.

Example 17-1. The SortSheets Procedure

Sub SortSheets()
IT MsgBox(*'Sort the sheets in this workbook?", _
vbOKCancel + vbQuestion, "'Sort Sheets'™) = vbOK Then
SortAllSheets
End If
End Sub

The action takes place in the procedure shown in Example 17-2. The procedure first collects the
sheet namesin an array, then places the array in a new worksheet. It then uses the Sort method
(applied to a Range object, discussed in Chapter 19) to sort the names. Then, it refills the array
and finally, reorders the sheets using the Move method.

Example 17-2. The SortAllSheets Procedure

Sub SortAllSheets()
" Sort worksheets

Dim wb As Workbook

Dim ws As Worksheet

Dim rng As Range

Dim cSheets As Integer
Dim sSheets() As String
Dim 1 As Integer

Set wb = ActiveWorkbook
" Get true dimension for array

cSheets = wb.Sheets.Count
ReDim sSheets(1 To cSheets)

209

" Fill array with worksheet names
For i = 1 To cSheets

sSheets(i) = wb.Sheets(i).Name
Next

" Create new sheet and put names in first column
Set ws = wb.Worksheets.Add

For i = 1 To cSheets
ws.Cells(i, 1).Value = sSheets(i)
Next

" Sort column
ws.Columns(l) -Sort Keyl:=ws.Columns(1), _
Orderl:=xlAscending

" Refill array
For 1 = 1 To cSheets

sSheets(i) = ws.Cells(i, 1).vValue
Next

" Delete extraneous sheet
Application.DisplayAlerts
ws.Delete

Application.DisplayAlerts = True

False

" Reorder sheets by moving each one to the end
For 1 = 1 To cSheets
wb.Sheets(sSheets(i)) -Move After:=wb.Sheets(cSheets)
Next
End Sub

Once the code isinserted, you can save the SRXUtils.xls workbook as an add-in. Don't forget to
unload the add-in first, or Excel will complain.

210

Chapter 18. The Worksheet Object

A Worksheet object represents an Excel worksheet. Figure 18-1 shows that portion of the Excel
object model that relates directly to worksheets.

Figure 18-1. The Worksheet object

= 70 ‘Worksheet

F

+
+

+

T AutoFiter

U Charlbjects
T Comments
& Fropan
710 HFageBreaks
T Hypedinks
H Mames

7L OLEObjects
7o Outline

7o PageSelup
70 PwotTable
U FivorTables

?I:I"I'I'. 1=

T OuerTables
71 Bange

7l Scenarios
1 Shepes

u]

= ¢l

— 714 wPageBraaks

18.1 Properties and Methods of the Worksheet Object

Table 18-1 shows the members of the Worksheet object.

Table 18-1. Members of the Worksheet Object

_CheckSpelling<v9> DropDowns Previous
_CodeName EnableA utoFilter PrintOut
_DisplayRightToL eft<v9> EnableCalculation PrintPreview
_Evaluate EnableOutlining Protect
_PasteSpecial<v10> EnablePivotTable ProtectContents
_PrintOut<v9> EnableSelection ProtectDrawingObjects
_Protect<v10> Evauate Protection<v10>
_SaveAs<vi10> FilterMode ProtectionMode
Activate GroupBoxes ProtectScenarios
Application GroupObjects QueryTables

Arcs HPageBreaks Range

AutoFilter Hyperlinks Rectangles
AutoFilterMode Index ResetAllPageBreaks
Buttons Labels Rows

Calculate Lines SaveAs

Cdls ListBoxes Scenarios

211

ChartObjects Mail Envelope<v10> Scripts<vo>
CheckBoxes Move ScrollArea
CheckSpelling Name ScrollBars
Circlelnvalid Names Select
CircularReference Next SetBackgroundPicture
ClearArrows OLEObjects Shapes
ClearCircles OnCalculate ShowAllData
CodeName OnData ShowDataForm
Columns OnDoubleClick SmartTags<v10>
Comments OnEntry Spinners
ConsolidationFunction OnSheetActivate StandardHeight
ConsolidationOptions OnSheetDeactivate StandardWidth
ConsolidationSources OptionButtons Tab<v10>

Copy Outline TextBoxes
Creator Ovals TransitionExpEval
CustomProperties<v10> PageSetup TransitionFormEntry
Delete Parent Type
DisplayAutomaticPageBreaks Paste Unprotect
DisplayPageBreaks PasteSpecia UsedRange
DisplayRightTolL eft Pictures Visible
DrawingObjects PivotTables V PageBreaks
Drawings PivotTableWizard

Many of the membersin Table 18-1 exist solely to return the children of the Worksheet object.

These members and their return types are shown in Table 18-2.

Table 18-2. Members That Return Objects

Name ReturnType
Application Application
AutoFilter AutoFilter
Cdlls Range
CircularReference Range
Columns Range
Comments Comments
CustomProperties CustomProperties
HPageBreaks HPageBreaks
Hyperlinks Hyperlinks
Names Names
Outline Outline
PageSetup PageSetup
PivotTableWizard PivotTable
Protection Protection
QueryTables QueryTables
Range Range
Rows Range
Shapes Shapes

212

\SmartTags ‘SmartTags

Tab Tab
UsedRange Range
V PageBreaks V PageBreaks

Let us discuss some of the membersin Table 18-1.
Activate method
This method activates the worksheet, asin:

ThisWorkbook.Worksheets(*'Sheetl') _Activate
AutoFilterMode property

This property is True if the AutoFilter drop-down arrows are currently displayed on the
worksheet. (Also see the FilterM ode property, discussed later in this section). Note that
we can set this property to Fal se to remove the arrows, but we cannot set it to True. To
display the AutoFilter arrows, we use the AutoFilter method, which isdiscussed in

Chapter 19.

Calculate method

This method calculates al cellsin the worksheet. (Note that the method applies to
workbooks and specific ranges as well.) The syntax is simply:

WorksheetObject.Calculate

CodeName property

This property returns the code name for the worksheet (it also applies to workbook and
chart objects). The code name can be used in place of any expression that returns the
worksheet. The code name can also be set in the Properties window. It isreferred to as
(name) to distinguish it from the Name property.

To illustrate, suppose that we have a worksheet whose code name is SheetCodeName and
whose name is SheetName. Then the following are equivalent:

Worksheets(*'SheetName™) .Activate
SheetCodeName.Activate

Note that when we first create a worksheet, the name and code name are the same. The
two names can then be changed independently. However, the code name can be changed
only at design time; it cannot be changed with code at run time.

Copy method
The Copy method has multiple syntaxes. To copy aworksheet, we use the syntax:

WorksheetObject.Copy(Before, After)

where the optional Before parameter is the sheet before which the copied sheet will be
placed and the After parameter is the sheet after which the copied sheet will be placed.
(Only one of Before or After isalowed at onetime.)

213

Note that if neither Before nor After is specified, Excel will copy the worksheet to a
new workbook.

Toillustrate, the following code copies the active worksheet and places the copy at the
end of thelist of current worksheets:

ActiveSheet.Copy After:=Worksheets(Worksheets.Count)

Delete method
This method simply deletes the worksheet. The syntax is:
WorksheetObject.Delete

EnableCalculation property (R'W Boolean)
When this property is True, Excel automatically recal cul ates the worksheet when
necessary. Otherwise, the user must request a recal culation. Note that when this property
isfirst set to True, Excel will do arecalculation.

Evaluate method

The Evaluate method converts an Excel name to an object or avalue. We discussed the
details of this method in Chapter 16.

FilterMode property (Read-Only Boolean)
This property is True if the worksheet isin filter mode. Thus, for instance, if the
AutoFilter arrows are displayed but no filtering has taken place, then AutoFilterModeis
True whereas FilterMode is Fal se. Oncefiltering is actually performed, then
FilterModeis True. Put another way, the FilterM ode property indicates whether there are
hidden rows due to filtering.

Move method

The Move method moves the worksheet to another location in the workbook. The syntax
is:

WorksheetObject.Move(Before, After)

where the parameters have the same meaning asin the Copy method, discussed earlier in
this section.

Name property (R'W String)
This property returns or sets the name of the worksheet, as a string.
Names property

This property returns the Names collection representing all the worksheet-specific names.
For more on Name objects, see Chapter 16.

PasteSpecial method

214

This method pastes the contents of the Clipboard onto the worksheet, using a specified
format. The most commonly used syntax is simply:

WorksheetObject.PasteSpecial (Format)

where Format specifies the format of the data to paste, as a string. For instance, the
following code pastes data in Word document format (assuming that it exists on the
Clipboard):

ActiveSheet.PasteSpecial "Microsoft Word Document"

To learn the syntax of other Format strings, you can copy the desired object and then
check Excel's Paste Special dialog box.

Note that we must select the destination range before using the PasteSpecial method.
PrintOut method

The PrintOut method prints a worksheet. (The method aso applies to Workbook and
Range objects.) The syntax is:

WorksheetObject.PrintOut(From, To, Copies, _
Preview, ActivePrinter, PrintToFile, Collate)

Note that all of the parameters to this method are optional.

The From parameter specifies the page number of the first page to print, and the To
parameter specifies the last page to print. If omitted, the entire object (range, workshest,
etc.) is printed.

The Copies parameter specifies the number of copiesto print. The default is 1.

Set Preview to True to invoke print preview rather than printing immediately. The
defaultisFalse.

ActivePrinter setsthe name of the active printer.

Setting PrintToFi le to True causes Excel to print to afile. Excel will prompt the user
for the name of the output file. (Unfortunately, there is no way to specify the name of the
output filein code.)

The Col late parameter should be set to True to collate multiple multipage copies.
PrintPreview method

This method invokes Excel's print preview feature for the worksheet. Its syntax is:

WorksheetObject.PrintPreview

Protect method
This method protects a worksheet from modification. Its syntax is:

WorksheetObject.Protect(Password, DrawingObjects, _

215

Contents, Scenarios, UserlnterfaceOnly)
(Note that the syntax varies from the same method of the Workbook object.)

The optional Password parameter is a string that specifies a case-sensitive password for
the worksheet.

The optional DrawingOb jects parameter should be set to True to protect shapes. The
default valueisFalse.

The optional Contents parameter should be set to True, the default, to protect the cells
in the worksheet.

The optional Scenarios parameter should be set to True, the default, to protect
scenarios.

The Protect method allows independent protection of cells from changes by the user and
by code. In particular, if UserInterfaceOnly isset to True, then the user cannot
make changes to the worksheet, but changes can be made through code. On the other
hand, if User InterfaceOnly isFalse (the default), then neither the user nor the
programmer can alter the worksheet. Note that it is not the macros themselves that are
protected, as the help documentation seemsto indicate. Rather, the worksheet is protected
from the effect of the macros.

Note also that if the User InterfaceOnly argument is set to True when protecting a
worksheet and then the workbook is saved, the entire worksheet (not just the interface)
will be protected when the workbook is reopened. To unprotect the worksheet but
reenable user interface protection, we must reapply the Protect method with
UserinterfaceOnly setto True.

ProtectionMode property (Read-Only)

This property is True if user-interface-only protection is turned on (viathe Protect
method). Its default valueis False.

SaveAs method

This method saves changes to the worksheet in adifferent file. Its syntax is:

WorksheetObject.SaveAs(Filename, FileFormat, Password, _
WriteResPassword, ReadOnlyRecommended, CreateBackup, _
AddToMru, TextCodePage, TextVisuallLayout)

The Fi lename parameter specifies the filename to use for the newly saved disk file. If a
path is not included, Excel will use the current folder.

The Fi leFormat parameter specifies the file format to use when saving thefile. Its
valueisone of the X1Fi leFormat constants described in our discussion of the
FileFormat property in Chapter 17.

The Password parameter specifies the password to use when saving the file and can be
set to any case-sensitive string of up to 15 characters.

216

TheWriteResPassword parameter is astring that specifies the write-reservation
password for thisfile. If afileis saved with awrite-reservation password and this
password is not supplied when the file is next opened, the file will be opened as read-only.

We can set the ReadOnllyRecommended parameter to True to display a message when
the file is opened, recommending that the file be opened as read-only.

Set the CreateBackup parameter to True to create a backup file.

Set the AddToMru parameter to True to add the workbook to the list of recently used
files. The default valueis Fal se.

The remaining parameters are not used in the U.S. English version of Excel.
ScrollArea property

This property returns or sets the range where scrolling and cell selection is allowed. The
value should be an A1-style range reference. For instance, the code:

ActiveSheet.ScrollArea = "A1:B200"

allows cell selection and scrolling only within the range A1:B200. To remove any
restrictions on cell selection and scrolling, set this property to an empty string, asin:

ActiveSheet._ScrollArea = "
Note that setting the scroll area has nothing to do with freezing panes.
Select method

This method selects the worksheet. This is not the same as making it active through the
Activate method. In fact, severa sheets can be selected at one time (to delete them, for
instance). The syntax is:

WorksheetObject.Select(Replace)

where Replace isset to True to replace the current selection with the specified
worksheet, rather than including the worksheet in the current selection.

SetBackgroundPicture method
This method sets the background graphic for aworksheet (or chart). The syntax is:
WorksheetObject.SetBackgroundPicture(FileName)
where Fi leName is the name of the graphic file to use for the background.
ShowDataForm method

This method displays the data form associated with the worksheet. Note that for the
ShowDataForm method to work without generating an error, Excel must be ableto
determine that the current selection is part of alist. For information on the use of data
forms, see the Excel 8 help topic "Guidelines for creating alist on aworksheet" or the
Excel 9 help topic "About dataforms."

27

The syntax of this method isssmply:

WorksheetObject.ShowDataForm

Note that the procedure in which the ShowDataForm method is called will pause while
the data form is displayed. When the dataform is closed, the procedure will resume at the
line following the call to ShowDataForm. (In other words, the dataformis modal.)

Figure 18-2 illustrates the data form for aworksheet.

Figure 18-2. A data form

A =] C] E =] H
1 Year Size Cuantity
2 1998 15] 2 EdE3
g 14697 36 it vear: |[EEEHEEE - 1of3
2 1998 44 E Elze: 15 Men
% Curting: |2 il
T
- _ peewe |
9
0 m
11 Find Mt
12
13 criwsia
14
15 Close
16
17 5
18 J

Unprotect method

This method removes protection from aworksheet. It has no effect if the worksheet is not
protected. The syntax is:

WorksheetObject.Unprotect(Password)

where Password isthe password used to protect the worksheet (if any). If we omit this
argument for a sheet that is password-protected, Excel will prompt the user for the
password.

UsedRange property

This ostensibly very useful property returns a Range object that represents the smallest
rectangular region that encompasses any currently used cells.

Unfortunately, the UsedRange property has had arather rocky history in past versions of
Excel, and my experience is that the problems have not been completely resolved in Excel
97. (Unfortunately, | know of no single test to check the reliability of this property, and |
have not yet used Excel 9 long enough to make a definitive statement about this version.)
Thus, | strongly suggest that you use this method with caution, for it sometimes seems to
include cells that once had contents but have since been completely cleared.

218

At the end of Chapter 19, we will give an example function that can be used to compute
the correct used range.

Visible property
This property returns True if the worksheet is visible and Fal se otherwise. However, in
addition to setting this property to True or False, we can aso set this property to

xIVeryHidden, in which case the only way to make the worksheet visible is by setting
this property to True in code. Hence, the user cannot make the worksheet visible.

18.2 Children of the Worksheet Object

Let usdiscuss afew of the children of the Worksheet object. Others will be discussed in later
chapters.

Comments

The Comments property returns the Comments collection, which consists of all Comment
objects (comments) in the worksheet. We will discuss the Comment object in Chapter 19.

The Names collection

We discussed the Names collection and Name objects in Chapter 16, and so we refer the
reader to that earlier discussion.

The Outline object

Toillustrate Excel outlining using code, consider the worksheet shown in Figure 18-3.
Our godl isto produce the outline in Figure 18-4.

Figure 18-3. lllustrating Excel outlines

iy B [D

1 Coll ol _ol3

2 Rowd 78 33 22
3 Rowe 123 22 222
4 Bowsd 231 4 345
2 SubTotall 432 a9 530
T Rowd 223 23 454
8 Fowd 245 10 a3
9 Rowd 11 13 4
10 SubTotal2 &79 46 511
11

12 Total 1011 136 1101

Figure 18-4. The end result

219

ilz 3 A, B C B
1 Col Col? Col3 N
2 Rowf 78 33 23
3 Row? 123 22 222
4 |Rowsd 231 a4 345
- o SubTotall 432 89 580
6
7 Howd 223 23 454
8 RowSd 345 10 53
- | 8 |Rowd 11 13 4
- 10 SubTotal2 579 46 511
. il
- 12 Total 1011 135 1101

Thefirst step in obtaining the outline in Figure 18-4 isto set the properties of the Outline
object for this worksheet. The Outline property of the Worksheet object returns an
Ouitline object, so we begin with:

With ActiveSheet._Outline
-SummaryRow = xlIBelow
-AutomaticStyles = False

End With

Setting the SummaryRow property to x 1Be low tells Excel that our summary rows (the
subtotal and total rows) lie below the detailed data. Thus, Excel will place the
expansion/contraction buttons (the small buttons displaying minus signsin Figure 18-4) at
the appropriate rows.

Setting AutomaticStyles to Fall se prevents Excel from tampering with our formatting.
Otherwise, Excel would remove the boldfacing on the summary rows.

Asyou can seein Figure 18-4, we want to make the following groupings:

Rows 2-4
Rows 7-9
Rows 2-11

For this, we use the Group method of the Range object. In particular, the following code
accomplishes the desired grouping, resulting in Figure 18-4:

With ActiveSheet
-Rows(*'2:4") _Group
-Rows(*'7:9") .Group
-Rows(""'2:11") .Group

End With

Note that the SummaryColumn property of the Outline object governs the location of the
expansion/contraction buttons when columns grouped.

To expand or collapse levels, the user can click the small numbered buttons at the top of
the leftmost column in Figure 18-4. Clicking on button number X resultsin al levels
above X being completely expanded and all levels below and including X being
completely contracted. Thus, all rows at level X and above are made visible, but no levels
below X arevisible.

220

The same thing can be accomplished using the ShowLevels method of the Outline object,
whose syntax is:

OutlineObject.ShowLevels(RowLevels, ColumnLevels)
For instance, the code:

ActiveSheet.Outline.ShowLevels 2

is equivalent to clicking on the button labeled 2 and has the effect of showing all levels
above and including level 2, as pictured in Figure 18-5.

Figure 18-5. Outline collapsed to level 2

(2 3 A, B C L
1 ol Caol2 Cold
+ 5 SubTotal 432 89 590
. 6
+ 10 SubTotal2 579 46 511
: A
- 12 Total 1011 136 1101
The PageSetup object

The PageSetup object represents the page formatting (such as margins and paper size) of
an Excel worksheet. Each of the page-formatting options is set by setting a corresponding
property of the PageSetup object.

The PageSetup property of the Worksheet object returns the worksheet's PageSetup object.

The properties and methods of the PageSetup object are shown in Table 18-3. (All of the
itemsin Table 18-3 are properties except the PrintQuality method.) Most of the members
in Table 18-3 are self-explanatory (and hold no real surprises), so we will not discuss
them.

Table 18-3. Members of the PageSetup Object

Application FitToPagesWide PrintErrors<v10>
BlackAndWhite IFooterMargin PrintGridlines
BottomMargin HeaderMargin PrintHeadings
CenterFooter LeftFooter PrintNotes
CenterFooterPicture<v10> L eftFooterPicture<v10> PrintQuality
\CenterHeader L eftHeader PrintTitleColumns
\CenterHeaderPicture<v10> |LeftHeaderPicture<v10> |PrintTitleRows
CenterHorizontally LeftMargin RightFooter
CenterVertically Order RightFooterPicture<v10>
ChartSize Orientation RightHeader

Creator PaperSize RightHeaderPicture<v10>
Draft |Parent RightMargin
FirstPageNumber PrintArea TopMargin
FitToPagesTall PrintComments Zoom

Toillustrate, the following code sets some of the properties of the active worksheet:

221

With ActiveSheet.PageSetup
-LeftMargin = Application.InchesToPoints(1)
-RightMargin = Application.InchesToPoints(l)
-PrintTitleRows = "A1"
-PaperSize = xlPaperLetter

End With

Note the use of the InchesToPoints function, which is required if we want to express
unitsin inches, since most of the formatting properties require measurement in points.
Referring to Figure 18-6, the PrintTitleRows property will cause the word Report, which
liesin cell Al, to appear on each page of the printout.

Figure 18-6. A worksheet and the PrintTitleRows property

A B

1 Report

Cad D =

2
)
4
5
5]

o 4=

7]

18.3 Protection in Excel XP

Excel XP introduces some additional protection features, beginning with the Protection object,
which we discuss next.

18.3.1 The Protection Object

When you protect a worksheet, Excel permits you to specify that certain operations are still
permitted on unlocked cells. At the user level, this is done through the Protection dialog box. At
the programming level, it is done through the properties of the Protection object. Most of these
properties (listed below) are self-explanatory. Note that all of these properties except
AllowEditRanges are Boolean.

AllowDél etingColumns
AllowDeletingRows
AllowEditRanges
AllowFiltering
AllowFormattingCells
AllowFormattingColumns
AllowFormattingRows
AllowlnsertingColumns
AllowlnsertingHyperlinks
AllowlnsertingRows
AllowSorting
AllowUsingPivotTables

222

For example, if the AllowSorting property is True, then users can still sort unlocked cellsin a
protected worksheet.

The AllowEditRanges property returns an AllowEditRanges object, discussed separately in the
text.

18.3.2 The AllowEditRange Object

The AllowEditRange object allows a specified range of cells on aworksheet to be password
protected from editing. Once a range has been protected in this way, and the entire worksheet has
been protected, any attempt at editing cellsin that range will require the password.

Here is some code that assigns a password to arange on the active worksheet. It also demonstrates
the use of the AllowEditRanges collection.

Sub ProtectRange()
Dim ws As Worksheet
Dim 1 As Integer

Set ws = Application.ActiveSheet

" Remove protection
ws.Unprotect

" Delete all current protection ranges

"MsgBox ws.Protection.AllowEditRanges.Count

For i = 1 To ws.Protection.AllowEditRanges.Count
Debug.Print ws.Protection.AllowEditRanges(i).Title
ws.Protection_AllowEditRanges(i) .Delete

Next

" Add a protection range
ws.Protection.AllowEditRanges.Add

Title:="Headings", _

Range:=Range("'A1:A4""), _

Password:="hide"
" Protect sheet (else protection range is not enabled)

ws.Protect
End Sub

The properties of the AllowEditRange object are;
Range

Returns or sets the range associated with the AllowEditRange object.
Title

Returns or sets thetitle (i.e. name) of the range associated with the AllowEditRange
object.

Users

Returns the collection of UserAccessObjects associated with the AllowEditRange object.
For more on this, see the section on the UserA ccess object.

223

The methods of the AllowEditRange object are:
ChangePassword
Changes the password associated with the AllowEditRange object.
Delete
Deletes the AllowEditRange object.
Unprotect

Unprotects the workbook.

18.3.3 The UserAccess Objects

UserAccess objects allow certain users to access a protected range without requiring the password.
For instance, if your username is steve, then the following code will allow you to access protected
ranges:

Sub AddUser()
Dim ws As Worksheet
Dim ua As UserAccess
Set ws = Application.ActiveSheet
" NOTE: Sheet must be unprotected for this code to work!
ws.Unprotect

Set ua = ws.Protection.AllowEditRanges(1) .Users.Add(""'steve", True)
End Sub

Note that the worksheet must be unprotected for this code to run without error.

The UserAccess object has but three members: the AllowEdit Boolean property, the read-only
Name property, and the Delete method.

The UserAccessList collection holds the current UserAccess objects.

18.4 Example: Printing Sheets

We can now implement the PrintSheets feature of our SRXUtils application. Recall that at the
present time, this Print utility, located in the Print.utl add-in, simply displays a message box. To
implement this feature, we want the utility to first display a dialog box, as shownin Figure 18-7.
Thelist box contains alist of all sheets in the active workbook. The user can select one or more
sheets and hit the Print button to print these sheets.

Figure 18-7. Print sheets dialog

224

Print Shasls

Chartl i ;
...E.J.;I.é..r.z-u-u-- Ernt

Shestl

DataShest Cancel

The stepsto create the print utility are asfollows: all the action takes place in the Print.xls
workbook, so open this workbook. When the changes are finished, you will need to save Print.xIs
as Print.utl aswell. If Print.utl isloaded, the only way to unload it is to unload the add-in
SRXUtils.xla (if it isloaded) and close the workbook SRXUtils.xls (if it is open).

18.4.1 Create the UserForm

Create the dialog shown in Figure 18-7 in the Print.xIs workbook. Name the dialog
dIgPrintSheets and set its Caption property to "Print Sheets." Then change the
PrintSheets procedure to:

Public Sub PrintSheets()
dlgPrintSheets.Show

End Sub

ThedlgPrintSheets dialog has two command buttons and one list box:

dIgPrintSheets.Show

18.4.1.1 List box

Place alist box on the form asin Figure 18-7. Using the Properties window, set the properties

shown in Table 18-4.

Table 18-4. Nondefault Properties of the List Box

\ Property | Value
Name IstSheets

Tablndex 0

Multi Select frmMulti Sel ectExtended

When the Cancel property of the cmdCancel button is set to True, the button is "clicked” when
the user hits the Escape key. Thus, the Escape key will dismiss the print dialog.

The MultiSelect property is set to frmMul tiSelectExtended so that the user can use the
Control key to select multiple (possibly nonconsecutive) entries and the shift key to select multiple

consecutive entries.

The Tablndex property determines not only the order in which the controls are visited as the user
hits the Tab key, but also determines which control has theinitial focus. Since we want theinitia
focus to be on the list box, we set its tab index to 0.

18.4.1.2 Print button

Place a command button on the form asin Figure 18-7. Using the Properties window, set the
properties shown in Table 18-5.

225

Table 18-5. Nondefault Properties of the Print Button

Property Value
Name cmdPrint
Accelerator P
Caption Print
Tablndex 1

18.4.1.3 Cancel button

Place another command button on the form asin Figure 18-7. Using the Properties window, set
the properties shown in Table 18-6.

Table 18-6. Nondefault Properties of the Cancel Button

Property Value
Name cmdCancel
Accelerator C
Caption Cancel
Tablndex 2
Cance True

18.4.2 Create the Code Behind the UserForm
Now it istime to create the code behind these controls.
18.4.2.1 The Declarations section

The Declarations section of thed lgPrintSheets UserForm should contain declarations of the
module-level variables, as shown in Example 18-1.

Example 18-1. Module-Level Variable Declarations
Option Explicit

Dim cSheets As Integer

Dim sSheetNames() As String

18.4.2.2 Cancel button code

The Cancel button code is shown in Example 18-2.

Example 18-2. The cmdCancel_Click Event Handler

Private Sub cmdCancel_Click()
Unload Me
End Sub

18.4.2.3 Print button code

The Print button calls the main print procedure and then unloads the form; its source code is
shown in Example 18-3.

Example 18-3. The cmdPrint_Click Event Handler

226

Private Sub cmdPrint Click()
PrintSelectedSheets
Unload Me

End Sub

18.4.2.4 The Form's Initialize event

The Initialize event of the UserForm is the placeto fill the list box with alist of sheets. Our
application uses amodule-level array, sSheetNames, to hold the sheet names and a module-level
integer variable, cSheets, to hold the sheet count; both were defined in Example 18-1. Wefill
these variables in the Initialize event and then use the array to fill the list, as Example 18-4 shows.
The variables are used again in the main print procedure, which is why we have declared them at
the module level.

Note the use of the ReDim statement to redimension the arrays. This is necessary since we do not
know at the outset how many sheets there are in the workbook.

Example 18-4. The UserForm's Initialize Event Procedure

Private Sub UserForm_Initialize()
Dim ws As Object "Worksheet
ReDim sSheetNames(1l To 10)

IstSheets.Clear
cSheets = 0

For Each ws In ActiveWorkbook.Sheets
cSheets = cSheets + 1

" Redimension arrays if necessary
IT UBound(sSheetNames) < cSheets Then

ReDim Preserve sSheetNames(l To cSheets + 5)
End If

" Save name of sheet
sSheetNames(cSheets) = ws.Name

" Add sheet name to list box
IstSheets._Addltem sSheetNames(cSheets)
Next
End Sub

18.4.2.5 The PrintSheets procedure

The main printing procedure is shown in Example 18-5. Note that we have been careful to deal
with two special cases. First, there may not be any sheets in the workbook. Second, the user may
hit the Print button without selecting any sheetsin the list box.

It isimportant to note also that list boxes are 0-based, meaning that the first itemisitem O.
However, our arrays are 1-based (the first item isitem 1), so we must take this into account when
we move from a selection to an array member; to wit: selection i correspondsto array index i+1.

Example 18-5. The PrintSelectedSheets Procedure

Sub PrintSelectedSheets()
Dim 1 As Integer
Dim bNoneSelected As Boolean

bNoneSelected = True

IT cSheets = 0 Then
MsgBox "'No sheets in this workbook.", vbExclamation
Exit Sub
Else
For 1 = 0 To IstSheets.ListCount - 1
IT IstSheets.Selected(i) Then
bNoneSelected = False

" List box is O-based, arrays are 1l-based
ActiveWorkbook.Sheets(sSheetNames(i + 1)).PrintOut
End If
Next
End IFf

IT bNoneSelected Then
MsgBox '*No

sheets have been selected from the list box."™, vbExclamation
End If
End Sub

228

Chapter 19. The Range Object

The Range object is one of the workhorse objects in the Excel object model. Simply put, to work
with a portion of an Excel worksheet, we generally need to first identify that portion as a Range
object.

As Microsoft putsit, a Range object "Represents acell, arow, a column, a selection of cells
containing one or more contiguous blocks of cells, or a 3-D range.”

Table 19-1 shows the 158 members of the Range object.

Table 19-1. Members of the Range Object

_Default End Phonetic
~NewEnum EntireColumn Phonetics<vo>
|_PasteSpecial<v10> [EntireRow PivotCell<v10>
_PrintOut<v9> Errors<v10> PivotFied
Activate FillDown Pivotitem
AddComment FillLeft PivotTable
Addindent FillRight Precedents
\Address Fillup PrefixCharacter
\AddressLocal Find Previous
AdvancedFilter FindNext PrintOut
AllowEdit<v10> FindPrevious PrintPreview
Application Font QueryTable
\ApplyNames [FormatConditions \Range
\ApplyOutlineStyles Formula \ReadingOrder
Areas FormulaArray RemoveSubtotal
AutoComplete FormulaHidden Replace
AutoFill FormulalLabel Resize
\AutoFilter 'FormulaLocal 'Row

/AutoFit [FormulaR1C1 IRowDifferences
AutoFormat FormulaR1C1Loca RowHeight
AutoOutline FunctionWizard Rows
BorderAround Goal Seek Run

Borders Group Select
Calculate HasArray |SetPhonetic<v9>
Cells HasFormula Show
Characters Height ShowDependents
CheckSpelling Hidden ShowDetall
Clear Horizontal Alignment ShowErrors
|ClearComments Hyperlinks |ShowPrecedents
ClearContents ID<v9> ShrinkToFit
ClearFormats IndentLevel SmartTags<v10>
ClearNotes Insert Sort
ClearOutline Insertindent SortSpeciad
|Column Interior 'SoundNote

229

|ColumnDifferences Item | Speak<v10>
Columns Justify SpecialCells
ColumnWidth Left Style

Comment ListHeaderRows SubscribeTo
Consolidate ListNames Subtotal

|Copy LLocationInTable 'Summary
|CopyFromRecordset Locked Table
CopyPicture Merge Text

Count MergeArea TextToColumns
CreateNames MergeCells Top
CreatePublisher ‘Name \Ungroup

Creator NavigateArrow \UnMerge
CurrentArray Next UseStandardHeight
CurrentRegion NoteText UseStandardwWidth
Cut NumberFormat Validation
DataSeries 'NumberFormatL ocal \Value

Delete Offset \Value2
Dependents Orientation VerticalAlignment
DialogBox Outlinelevel Width
DirectDependents PageBreak Worksheet
DirectPrecedents Parent WrapText
DDirty<v10> Parse |

[EditionOptions PasteSpecial |

Our planin this chapter is first to explore ways of defining Range objects. Then we will discuss
many of the properties and methods of this object, asindicated in Table 19-1. Aswe have
mentioned, our goal is not to cover all aspects of the Excel object model, but to cover the main
portions of the model and to provide you with a sufficient foundation so that you can pick up

whatever else you may need by using the help system.

19.1 The Range Object as a Collection

The Range object is rather unusual in that it often acts like a collection object aswell asa
noncollection object. For instance, it has an Item method and a Count property. On the other hand,
the Range object has many more noncollection-type members than is typical of collection objects.
In particular, the average member count among all other collection objectsis 19, whereas the
Range object has 158 members.

Indeed, the Range object should be thought of as a collection object that can hold other Range
objects. Toillustrate, consider the following code:

Dim rng as Range

Set rng = Range('A1", "'C5").Cells
MsgBox rng.Count " displays 15
Set rng = Range(*'A1", "'C5").Rows

MsgBox rng.Count " displays 5

230

Set rng = Range(''A1", "'C5").Columns
MsgBox rng.Count " displays 3

In this code, we alternately set rng to the collection of all cells, rows, and columns of the range
A1:C5. In each case, MsgBox reports the correct number of items in the collection. Note that the
Excel model does not have a cell, row, or column object. Rather, these objects are Range objects;
that is, the members of rng are Range objects.

When we do not specify the member type, a Range object acts like a collection of cells. To
illustrate, observe that the code:

Dim rng As Range
Set rng = Range(*'A1", "'C5")
MsgBox rng.Count

MsgBox rng(6).Value

row-major order

displays the number of cellsin the range and then the value of cell 6 in that range (counted in row-
major order; that is, starting with the first row and counting from left to right). Also, the code:

Dim rng As Range

Dim oCell As Range

Set rng = Range('A1", "'C5")

For Each oCell In rng
Debug.Print oCell_Value

Next

will cycle through each cell in the range rng, printing cell values in the Immediate window.

19.2 Defining a Range Object

As witness to the importance of the Range object, there are atotal of 113 members (properties and

methods) throughout the Excel object model that return a Range object. This number dropsto 51
if we count only distinct member names, as shown in Table 19-2. (For instance, BottomRightCell

isaproperty of 21 different objects, asis TopLeftCell.)

Table 19-2. Excel Members That Return a Range Object

| Default [End Range
\ActiveCell [EntireColumn 'RangeSelection
BottomRightCell EntireRow RefersToRange
Cells Find Resize
ChangingCells FindNext ResultRange
CircularReference FindPrevious RowDifferences
|ColumnDifferences GetPivotData 'RowRange
ColumnRange Intersect Rows

Columns Item SourceRange
CurrentArray LabelRange SpeciaCells
CurrentRegion Location TableRangel
DataBodyRange MergeArea "TableRange2
Datal abelRange Next ThisCell
DataRange Offset TopLeftCell

231

\Dependents |PageRange 'Union

Destination PageRangeCells UsedRange
DirectDependents Precedents VisibleRange
DirectPrecedents Previous

Let ustake alook at some of the more prominent ways to define a Range object.

19.2.1 Range Property

The Range property applies to the Application, Range, and Worksheet objects. Note that:
Application.Range

isequivalent to:

ActiveSheet.Range

When Range is used without qualification within the code module of aworksheet, then it is
applied to that sheet. When Range is used without qualification in a code module for a workbook,
then it applies to the active worksheet in that workbook.

Thus, for example, if the following code appears in the code module for Sheet2:

Worksheets(1) -Activate
Range(''D1') .Value = "test"

then its execution first activates Sheetl, but still places the word "test” in cell D1 of Sheet2.
Because this makes code difficult to read, | suggest that you always qualify your use of the Range
property.

The Range property has two distinct syntaxes. The first syntax is:

object.Range(Name)

where Name is the name of the range. It must be an A1-style reference and can include the range
operator (a colon), the intersection operator (a space), or the union operator (a comma). Any dollar
signsin Name are ignored. We can a so use the name of a named range.

Toillustrate, here are some examples:

Range(*'A2')

Range("'A2:B3")

Range(*'A2:F3 A1:D5") " An intersection
Range("'A2:F3, A1:D5"™) " A union

Of course, we can use the ConvertFormula method to convert aformulafrom R1C1 styleto A1
style before applying the Range property, asin:

Range(Application.ConvertFormula("'R2C5:R6C9"", xIR1C1, xI1Al))

Finally, if TestRange isthe name of arange, then we may write:

Range(Application.Names("TestRange'))

232

or:
Range(Application.Names!TestRange)
to return thisrange.

The second syntax for the Range property is:
object.Range(Celll, Cell2)

Here Cel 11 isthe cell in the upper-left corner of the range and Cel 12 isthe cell in the lower-
right corner, asin:

Range(*'D4'", "F8')

Alternatively, Cel 11 and Cel 12 can be Range objects that represent arow or column. For
instance, the following returns the Range object that represents the second and third rows of the
active sheet:

Range(Rows(2), Rows(3))

It isimportant to note that when the Range property is applied to a Range object, all references are
relative to the upper-left corner cell in that range. For instance, if rng represents the second
column in the active sheet, then:

rng.-Range(*'A2')

isthe second cell in that column, and not cell A2 of the worksheet. Also, the expression:

rng.Range(*'B2'")

represents the (absolute) cell C2, because this cell isin the second column and second row from
cell B1 (which isthe upper-left cell intherange rng).

19.2.2 Cells Property

The Excel object model does not have an official Cells collection nor a Cell object. Nevertheless,
the cells property acts as though it returns such a collection as a Range object. For instance, the
following code returns 8:

Range("'Al1:B4'™) .Cells.Count

Incidentally, CelIs.Count returns 16,777,216 = 256 * 65536.

The Cells property applies to the Application, Range, and Worksheet objects (and is global).
When applied to the Worksheet object, it returns the Range object that represents all of the cells

on the worksheet. Moreover, the following are equivalent:

Cells
Application.Cells
ActiveSheet.Cells

When applied to a Range object, the Cells property simply returns the same object, and hence does
nothing.

233

The syntax:

cells(i,j)

returns the Range object representing the cell a row i and column j. Thus, for instance:
Cells(l,1)

isequivalent to:

Range("'A1™)

One advantage of the Cells property over the Range method is that the Cells property can accept
integer variables. For instance, the following code searches the first 100 rows of column 4 for the
first cell containing the word "test." If such a cell isfound, it is selected. If not, amessageis
displayed:

Dim r As Long
For r = 1 To 100
IT Cells(r, 4).Value = "test" Then
Cells(r, 4).Select
Exit For
End If
Next
ITf r = 101 then MsgBox '""No such cell."

It is aso possible to combine the Range and Cells properties in a useful way. For example,
consider the following code:

Dim r As Long
Dim rng As Range

With ActiveSheet
For r = 1 To 100
IT Cells(r, r).vValue <> """ Then
Set rng = _Range(.Cells(1, 1), .Cells(r, r))
Exit For
End If
Next
End With

rng.-Select

This code searches the diagonal cells (cells with the same row and column number) until it finds a
nonempty cell. It then sets rng to refer to the range consisting of the rectangle whose upper-left
corner is cell A1 and whose lower-right corner is the cell found in this search.

19.2.3 Column, Columns, Row, and Rows Properties

The Excel object model does not have an official Columns or Rows collection. However, the
Columns property does return a collection of Range objects, each of which represents a column.
Thus:

ActiveSheet.Columns(i)

234

is the Range object that refers to the ith column of the active worksheet (and is a collection of the
cellsin that column). Similarly:

ActiveSheet.Rows(i)
refersto the ith row of the active worksheet.

The Columns and Rows properties can also be used with a Range object. Perhaps the simplest way
to think of rng.Collumns isasthe collection of all columnsin the worksheet reindexed so that
column 1 isthe leftmost column that intersects the range rng. To support this statement, consider
the following code, whose results are shown in Figure 19-1:

Dim 1 As Integer
Dim rng As Range

Set rng = Range(''D1:E1, G1:11")
rng.Select

MsgBox "First column in range is " & rng.Column " Displays 4

MsgBox "*Column count is " & rng.-Columns.Count " Displays 2

For 1 = -(rng.Column - 2) To rng.Columns.Count + 1
rng.Columns(i) .Cells(l, 1).vValue = i

Next

Figure 19-1. A noncontiguous range

A B T D E | F G | H I
1 -2 -1] k)

2

Note that the range rng is selected in Figure 19-1 (and includes cell D1). The Column property of
a Range object returns the leftmost column that intersects the range. (Similarly, the Row property
returns the topmost row that intersects the range.) Hence, the first message box will display the
number 4.

Now, from the point of view of rng, Columns (1) is column number 4 of the worksheet (column
D). Hence, Columns (0) is column number 3 of the worksheet (column C) which, incidentally, is
not part of rng. Indeed, the first column of the worksheet is column number

-(rng.Column - 2)

which is precisely why we started the For loop at this value.

Next, observe that:

rng.Columns.Count

isequal to 2 (which isthe number displayed by the second message box). Thisis a bit unexpected.
However, for some reason, Microsoft designed the Count property of r ng.Columns to return
the number of columns that intersect only the leftmost area in the range, which isarea D1:E1. (We
will discuss areas a bit later.) Finally, note that:

rng.Columns(3)

is column F, which does not intersect the range at all.

235

As another illustration, consider the range selected in Figure 19-2. Thisrange is the union B4:C5,
E2:E7.

Figure 19-2. The range as a union

A R T P] e, E | F

Dim rng As Range

Set rng = Range(''B4:C5, E2:E7")
MsgBox rng.-Columns(l).Cells(l, 1).Value

The code:

displays a message box containing the x shown in cell B4 in Figure 19-2 because the indexesin
the Cells property are taken relative to the upper cell in the leftmost areain the range.

Note that we can use either integers or characters (in quotes) to denote a column, asin:
Columns(5)

and:

Columns(""E™)

We can also write, for instance:

Columns(**A:D")

to denote columns A through D. Similarly, we can denote multiple rows asin:
Rows(*'1:3")

Since asyntax such as:

Columns(**C:D", "G:H"™)

does not work, the Union method is often useful in connection with the Columns and Rows
methods. For instance, the code:

Dim rng As Range
Set rng = Union(Rows(3), Rows(5), Rows(7))
rng.-Select

selects the third, fifth, and seventh rows of the worksheet containing this code or of the active
worksheet if this codeisin aworkbook or standard code module.

236

19.2.4 Offset Property

The Offset property is used to return arange that is offset from a given range by a certain number
of rows and/or columns. The syntax is:

RangeObject.Offset(RowOffset, ColumnOffset)

where RowOffset isthe number of rows and ColumnOffset isthe number of columns by
which the range is to be offset. Note that both of these parameters are optional with default value O,
and both can be either positive, negative, or 0.

For instance, the following code searches the first 100 cells to the immediate right of cell D2 for
an empty cell (if you tire of the message boxes, smply press Ctrl-Break to halt macro execution):

Dim rng As Range
Dim 1 As Integer
Set rng = Range(''D2')
For i = 1 To 100
IT rng.Offset(0, i).Value = """ Then
MsgBox "'Found empty cell at offset ™ & i1 & " from cell D2"
End If
Next

19.3 Additional Members of the Range Object

Let us now take a quick look at some additional members of the Range object. (Please refer to
Table 19-1 for an indication of which members are discussed in this section.)

19.3.1 Activate Method

The Activate method will activate (or select) the range to which it is applied. The Activate method
applies to a variety of other objects besides the Range object, such as the Window object, the
Worksheet object, and the Workbook object.

19.3.2 AddComment Method

This method adds a Comment object (i.e., a comment) to the single-cell range. Its syntax is:

RangeObject.AddComment(Text)

where Text isthe text of the comment. For instance, the code:

Dim rng As Range

Dim ¢ As Comment

Set rng = Range(''B2')

Set ¢ = rng.AddComment(*'This is a comment'™)

adds a comment to cell B2 with the text "Thisisacomment.” Note that if RangeOb ject consists
of more than asingle cell, aruntime error results.

19.3.3 Address Property (Read-Only String)

The Address property returns the range reference of the Range object as a string. The syntax is:

RangeObject._Address(RowAbsolute, ColumnAbsolute, _
ReferenceStyle, External, RelativeTo)

RowAbsolute is set to True (the default) to return the row part of the reference as an absolute
reference. ColumnAbsolute isset to True (the default) to return the column part of the
reference as an absolute reference.

ReferenceStyle can be one of the XIReferenceStyle constants x1A1 or xIR1C1. The
default value isxI1A1.

Set the External parameter to True to return an external reference—that is, areferencethat is
qualified by the workbook and worksheet names and is thus valid outside the current worksheet.
The default value of Fal se returns areference that is not qualified and is therefore valid only
within the current worksheet.

Finally, theRelativeTo parameter is used when RowAbsolute and ColumnAbsolute are
False and ReferenceStyle isxIR1C1. In this case, we must include areference point (a cell)
to use for the relative addresses. Let us consider some examples to help clarify this property:

Set rng = Range(''B2')

rng.Address(ReferenceStyle:=x1A1) " Returns B2
rng.Address(ReferenceStyle:=x1A1, _

External :=True) " Returns
[Book1]Sheetl!B2
rng.Address(ReferenceStyle:=xIR1C1) " Returns R2C2

rng.Address(RowAbsolute:=False, _

ColumnAbsolute:=False, ReferenceStyle:=xIAl) ~ Returns B2
rng.-Address(RowAbsolute:=False, _

ColumnAbsolute:=False, ReferenceStyle:=xIR1C1,

RelativeTo:=Range(''D1")) " Returns R[11C[-2]
Set rng = Range(''B2:D5")
rng.Address(ReferenceStyle:=xI1Al) " Returns B2:D5
rng.-Address(ReferenceStyle:=xI1R1C1) " Returns R2C2:R5C4

rng.Address(RowAbsolute:=False, _

ColumnAbsolute:=False, ReferenceStyle:=xIAl) ~ Returns B2:D5
rng.Address(RowAbsolute:=False, _

ColumnAbsolute:=False, ReferenceStyle:=xIR1C1, _

RelativeTo:=Range(*'D1')) " Returns R[1]C[-
21:R[4]C

19.3.4 AutoFill Method
This important method performs an autofill on the cellsin the range. Its syntax is:
RangeObject._AutoFill(Destination, Type)

Here Destination isthe Range object whose cells are to be filled. The destination must include
the source range—that is, the range that contains the data to use for the autofill.

The optional Type parameter specifies the fill type. It can be one of the following

XTAutoFi I I Type constants (note that the Excel documentation refers to a nonexistent
XIFi 1 IType enum):

238

Enum XTAutoFillType
xIFillDefault = O
xIFillCopy = 1
xIFillSeries = 2
xIFillFormats = 3
xIFillvalues = 4
xIFillDays = 5
x1FillWeekdays
xIFillMonths =
xIFillYears =
xILinearTrend
x1GrowthTrend

End Enum

I 11 0o
~N ol
()}

If thisargument isxIFi I IDefault or is omitted, Excel will attempt to select the most
appropriate fill type, based on the source data.

Toillustrate, consider the code:
Range(""A1:B1') .AutoFill Range("'A1:K1'™)

which autofills cells C1 through K1 using the source datain cellsAl and B1. If Al contains 1 and
B1 contains 2, then this code will fill the destination cells with consecutive integers starting at 3
(in cell C1). Notethat cells Al and B1 are included in the destination range.

As another illustration, consider the worksheet in Figure 19-3, where cell B1 contains the formula:

=A1*Al
Figure 19-3. Worksheet to autofill range B1:B5
A, B
1 3 4
2| :

3]

)]

5 7

B
The code;

Range(*'B1'") .AutoFill Range(''B1:B5')
will produce the output shown in Figure 19-4.

Figure 19-4. Autofilling B1:B5 in Figure 19-3

A B
3 o
2 | 4 16
3 5 25
4 6 36
5 7 49

239

We should mention one source of potential problems with the AutoFill method. Apparently, when
AutoFill is executed, the formulain the source cell is copied, with changes, to other cells.
However, the value of the source cell is also copied, but without changes. Thus, if autocalculation
is off, the formulas in the autofilled cells will be correct but the values will be incorrect. To fix
this, just invoke the Cal culate method.

19.3.5 AutoFilter Method

The AutoFilter method has two syntaxes, corresponding to two distinct functions. The syntax:

RangeObject._AutoFilter

simply toggles the display of the AutoFilter drop-down arrows for the columns that are involved
in the range.

The syntax:
RangeObject._AutoFilter(Field, Criterial, Operator, Criteria2)
displays the AutoFilter arrows and filters alist using the AutoFilter feature.

The optional Field parameter isthe offset (as an integer, counting from the left) of the field on
which thefilter is based (the leftmost field isfield one).

Theoptional Criterial parameter isthe criteria (as a string). We can use "=" to find blank
fields, or "<>" to find nonblank fields. If this argument is omitted, the criteriais All. If Operator
(seethe following example) is set to x ITopl0ltems, then Criterial specifies, asan integer,
the number of items to display (this number need not be equal to 10).

The Operator parameter can be one of the following X1AutoFi I terOperator constants:

Enum XITAutoFilterOperator
xIAnd = 1
xI0r = 2
x1ToplOltems = 3
xIBottomlOltems = 4
x1ToplOPercent = 5
x1BottomlOPercent = 6
End Enum

If this parameter is set to xIAnd or x10r, thenwemust useCriterial andCriteria2to
construct the compound criteria.

Toillustrate, consider the worksheet shown in Figure 19-5.

Figure 19-5. A worksheet before autofiltering

240

A B

1 Mumber fear

2 1 1995
3 2 1996
4 3 1994
5 4 19497
G] 1995
7 G 1924
8 7 1943
Q 8 1994
10 a 19497
11 10 1998

The code:
Range("'A1:B5") .AutoFilter 2, 1997, xIOr, '1998"

will filter the range A1:B5 to show only those rowsin the range for either the year 1997 or 1998.
Note that it has no effect on the remaining rows of the worksheet. Hence, the result will be the
worksheet in Figure 19-5 with rows 3 and 4 missing.

Recall that the AutoFilterMode property of the Worksheet object is True if the AutoFilter drop-
down arrows are currently displayed on the worksheet. Note that we can set this property to
False to remove the arrows, but we cannot set it to True. (To display the AutoFilter arrows, use
the AutoFilter method.)

Recall aso that the FilterMode property is True if the worksheet isin filter mode. Thus, for
instance, if the AutoFilter arrows are displayed but no filtering has taken place, then
AutoFilterMode is True, whereas FilterMode is Fal se. Oncefiltering is actually performed, then
FilterModeis True.

19.3.6 AutoFit Method

This method changes the width of the columns or the height of the rows (depending upon the type
of range) to obtain the best fit for the range's contents. The syntax is:

RangeObject._AutoFit

where RangeObject refersto a Range object that consists of either one or more rows or one or
more columns (but not both). Otherwise, the method generates an error. If the range consists of
columns, then the column width is adjusted. If the range consists of rows, then the row height is
adjusted.

19.3.7 AutoFormat Method

This method automatically formats a range using a predefined format. The syntax is:

RangeObject.AutoFormat(Format, Number, Font, _
Alignment, Border, Pattern, Width)

All parameters of this method are optional. The Format parameter can be one of the following
XIRangeAutoFormat constants:

241

Enum XIRangeAutoFormat
xIRangeAutoFormat3DEffectsl =
x1RangeAutoFormat3DEffects2 =
x1RangeAutoFormatAccountingl
xIRangeAutoFormatAccounting2
xIRangeAutoFormatAccounting3
xIRangeAutoFormatAccounting4
xIRangeAutoFormatClassicl =
xIRangeAutoFormatClassic2 =
xIRangeAutoFormatClassic3 =
xIRangeAutoFormatClassicPiv
xIRangeAutoFormatColorl 7
x1RangeAutoFormatColor2
x1RangeAutoFormatColor3
xIRangeAutoFormatListl 10
xIRangeAutoFormatList2 11
xIRangeAutoFormatList3 = 12
x1RangeAutoFormatLocalFormatl
x1RangeAutoFormatLocalFormat2
xIRangeAutoFormatLocalFormat3
xIRangeAutoFormatLocalFormat4
xIRangeAutoFormatNone = -4142
xIRangeAutoFormatPTNone = 42
x1RangeAutoFormatReportl = 21
xIRangeAutoFormatReportl0 = 30

13
14
4
5
6
1

1
2
3
otTable = 31

9

15
16
19
20

xIRangeAutoFormatReport2 = 22
xIRangeAutoFormatReport3 = 23
x1RangeAutoFormatReport4 = 24
x1RangeAutoFormatReport5 = 25
xIRangeAutoFormatReport6 = 26
xIRangeAutoFormatReport7 = 27
xIRangeAutoFormatReport8 = 28
x1RangeAutoFormatReport9 = 29
xIRangeAutoFormatSimple -4154

xIRangeAutoFormatTablel = 32
xIRangeAutoFormatTablel0 = 41

xIRangeAutoFormatTable2 = 33
xIRangeAutoFormatTable3 = 34
xIRangeAutoFormatTable4 = 35
xIRangeAutoFormatTable5 = 36
xIRangeAutoFormatTable6 = 37
xIRangeAutoFormatTable7 = 38
xIRangeAutoFormatTable8 = 39
xIRangeAutoFormatTable9 = 40

End Enum
Note that the constants marked as not used are not used in the U.S. English version of Excel.

The other parameters are Boolean and should be set to True (the default values) to include the
corresponding format feature, as follows:

Number
Include number formats
Font

Include font formats

242

Alignment
Include alignment
Border
Include border formats
Pattern
Include pattern formats
width
Include column width and row height in the autoformat

Note that if the rangeis asingle cell, the AutoFormat method also formats the current region
containing the cell. (The CurrentRegion property and the current region are discussed in detail
later in this section.) Put another way, the following two statements are equivalent:

Cells("'A1™) .AutoFormat
Cells("'A1™) .CurrentRegion.AutoFormat

19.3.8 BorderAround Method

This method adds a border to arange and optionally sets the Color, LineStyle, and Weight
properties for the border. The syntax is:

RangeObject._BorderAround(LineStyle, Weight, Colorindex, Color)

The LineStyle parameter can be one of the following XILineStyle constants (note that the
Excel documentation refers to a nonexistent XIBorderLineStyle enum):

Enum XILineStyle

xILineStyleNone = -4142

xI1Double = -4119

xIDot = -4118

xIDash = -4115

xIContinuous = 1 " the default

xIDashDot = 4

xIDashDotDot = 5

xISlantDashDot
End Enum

13

The optional We i ght parameter specifies the border weight and can be one of the following
X1BorderWeight constants:

Enum XIBorderWeight
xIMedium = -4138
xIHairline = 1
xIThin = 2 " the default
xIThick = 4
End Enum

Note that the We i ght property isignored unlessthe LineStyle isxIContinuous or omitted.

243

The optional Color Index parameter specifies the border color, either as an index into the current
color palette or as one of the following X1Color Index constants:

Enum XIColorIndex
xIColorIndexNone = -4142
xIColorIndexAutomatic = -4105

End Enum

The optional Collor parameter also specifies the border color as an RGB value. Note that you
should specify at most one of the color parameters.

The technique for clearing a border is a bit unexpected. For instance, suppose we have set a border
with:

rng.BorderAround LineStyle:=xlDash

To clear this border, we might naturaly try:
rng.-BorderAround LineStyle:=xILineStyleNone
but this does nothing. Instead, we must write:
rng.-Borders._LineStyle = xlLineStyleNone

which clears the borders around each cell in the range separately.

19.3.9 Calculate Method

This method (which also applies to the Workbook and Worksheet objects) calculates all cellsin
the specified range. For instance, the code:

Worksheets(1) .Rows(2) .Calculate

will calculate all of the cellsin the second row of the first worksheet.

19.3.10 Clear Methods

Excel has several clear methods. In particular, the Clear method clears al contents, formulas, and
formatting from the cells in the given range. The ClearContents method clears only the contents
(values and/or formulas) from the cells in the range and leaves the formatting intact. The
ClearFormats method clears only the formatting from the cellsin the range.

19.3.11 ColumnDifferences and RowDifferences Methods

The ColumnDifferences method returns a Range object that represents all the cellsin the range
whose contents are different from certain comparison cells (there is one comparison cell in each
column). The syntax is:

RangeObject.ColumnDifferences(ComparisonCell)

where ComparisonCel I isarange object that represents asingle cell. The purpose of
ComparisonCell issimply to identify the row whose cells contain the comparison values.

Toillustrate, consider the following code, whose results are shown in Figure 19-6:

244

Dim rng As Range, rng2 As Range

Set rng = Range("'A1:D6")

Set rng2 = _
rng.ColumnDifferences(Comparison:=Range("'A1'"))

rng2.Select

Figure 19-6. The result of the ColumnDifferences method

o s - T R s he B e |
e I
X

=
¢ R
o Plc e o

R oon (B |G N =
=

Since the ComparisonCell iscell Al, thefirst cell of each column in the range contains the
comparison value. Thus, the cells that do not contain an "x" are selected in column A, the
nonblank cells are selected in column B, the cells that do not contain a"y" are selected in column
C and the cells that do not contain an "a" are selected in column D.

The RowDifferences method is the analog for rows of the ColumnDifferences method.

19.3.12 ColumnWidth and RowHeight Properties
The ColumnWidth property returns or sets the width of the columnsin the specified range.

Thereturn value isin units, each of which equals the width of one character in the Normal style.
For proportional fonts, the width of the character "0" (zero) is used.

Note that if the columnsin the range do not all have the same width, the ColumnWidth property
returnsNull .

The RowHeight property returns the height of all the rowsin the range, measured in points. Note
that if the rowsin the range do not all have the same height, the RowHeight property returnsNul I.

19.3.13 Width, Height, Top, and Left Properties

These properties return values for the entire range, in points. For instance, the Top property
returns the distance, in points, from the top of row 1 to the top of the first (leftmost) area of the
range.

Note that when applied to a column, the Width property returns the width, in points, of the column.
However, the relationship between Width and ColumnWidth can seem a bit strange at first.

For instance, the following code shows that a column of ColumnWidth 1 has Width 9.6 but a
column of ColumnWidth 2 has Width 15. (In my case, the Normal style is 10 point Arial.)
However, if the ColumnWidth property really measures the width of a column in units and the
Width property really measures the width of the same column in points, then doubling one of
these properties should doubl e the other!

Columns("A™) .ColumnWidth = 1
MsgBox Columns('A'™) .Width " Displays 9.6

245

Columns("A™) .ColumnWidth = 2

MsgBox Columns('A'™) .Width " Displays 15
Columns(""A'™) .ColumnWidth = 10
MsgBox Columns('A™) _Width " Displays 58.2

Fortunately, alittle high-school algebrareveals the truth here. It appears that the Width property
includes padding on the far right and the far |eft of the entire group of characters (next to the
column boundaries). To support this conclusion, let's do alittle algebra, which you can skip if it
UpPSELS youl.

Assume for amoment that the Width property includes not just the sum of the widths of the
ColumnWidth characters, but also an additional p points of padding on each side of the entire
group of characters. Thus, the formulafor Width is:

Width = 2*p + ColumnWidth*w

where w is the true width of asingle 0" character, in points. Thus, plugging in the values from the
first two examples in the previous code gives:

9.6 = 2*p + 1*w
15 = 2*p + 2*w

Subtracting the first equation from the second gives:

54 =w

Substituting this into the first equation and solving for p gives:
p=2.1

Thus, the formulafor a Normal style of 10 point Arid is:
Width = 4.2 + ColumnWidth*5.4

Now, for a ColumnWidth of 10, this gives:

Width = 4.2 + 10*5.4 = 58.2

Eurekal (Check the third examplein the previous code.)

Thus, we have verified (but not really proved) that the Width property measures not just the width
of each character but includes some padding on the sides of the column—in this case 2.1 points of
padding on each side.

19.3.14 Consolidate Method

This method combines (or consolidates) data from multiple ranges (perhaps on multiple
worksheets) into a single range on a single worksheet. Its syntax is:

RangeObject.Consolidate(Sources, Function, _
TopRow, LeftColumn, CreatelLinks)

Sources isthe source of the consolidation. It must be an array of referencesin R1C1-style
notation. The references must include the full path of the ranges to be consolidated. (Seethe
following example.)

246

Function isthe function used to combine the data. It can be one of the following
XIConsol idationFunction congtants. (The default valueis x1Average.)

Enum XIConsolidationFunction
xlAverage = -4106
xICount = -4112
XICountNums = -4113
xIMax = -4136
xIMin = -4139
xIProduct = -4149
x1StDev = -4155
x1StDevP = -4156
xISum = -4157
xlUnknown = 1000
xIVar = -4164
xIVarP = -4165

End Enum

TopRow should be set to True to consolidate the data based on column titles in the top row of the
consolidation ranges. Set the parameter to Fal se (the default) to consolidate data by position. In
other words, if TopRow is True, Excel will combine columns with the same heading, even if they
are not in the same position.

LeftColumn should be set to True to consolidate the data based on row titlesin the left column
of the consolidation ranges. Set the parameter to Fal se (the default) to consolidate data by
position.

CreateLinks should be set to True to have the consolidation use worksheet links. Set the
parameter to Fal se (the default) to have the consolidation copy the data.

Toillustrate, consider the worksheets in Figure 19-7 and Figure 19-8 (note the order of the
columns).

Figure 19-7. Sheet2 before consolidation

A B &
Jobn Mary Heniny

Figure 19-8. Sheet3 before consolidation

A B &
1 John Henmy Mary
2 10 20 a0
3 40 50 60
il

The code:

Worksheets("'Sheetl') .Range("'Al™) .Consolidate _
Sources:=Array("'Sheet2!R1C1:R3C3",

247

""Sheet3!1R1C1:R3C3"), Function:=xISum
will produce the results shown in Figure 19-9 (on Sheetl).
Figure 19-9. Sheetl after consolidation with TopRow set to False

A B C

1 22 33
44 35 66

| el | =

On the other hand, setting the TopRow property to True:

Worksheets(*'Sheet1') .Range(*'A1l™) .Consolidate _
Sources:=Array("'Sheet2!R1C1:R3C3", _
""Sheet3I1R1C1:R3C3"), Function:=xISum, _
TopRow:=True

produces the results shown in Figure 19-10, since the data is combined based on the namesin the
first row.

Figure 19-10. Sheetl with TopRow set to True

&, B C
John fary Herry
11 32 23
44 65 56

4 (00 b=

19.3.15 Copy and Cut Methods

As applied to the Range object, the Copy method has the syntax:
RangeObject.Copy(Destination)

where Destination isaRange object that specifies the new range to which the specified range
will be copied. If this argument is omitted, Excel will copy the range to the Clipboard. For
instance, the code:

Range(*'A1:C3'") .Copy Range(''D5')

copies the range A1:C3 to arange of like size whose upper-left corner is cell D5. Note that the
same rules apply here as when copying using Excel’'s user interface. In particular, if the destination
is more than a single cell, then it must have the same dimensions as the source range or else an
error will occur.

The Cut method has similar syntax:
RangeObject.Cut(Destination)

and cuts the range rather than copying it.

248

19.3.16 CopyFromRecordset Method

For those readers familiar with DAO, CopyFromRecordset is a very powerful method that copies
the contents of a DAO Recordset object onto aworksheet, beginning at the upper-left corner of the
specified range. Note that if the Recordset object contains fields with OLE objects in them, this
method fails.

Toillustrate, consider the following code, which requires that a reference to Microsoft DAO is set
in the References dialog box in the Excel VBA Tools menu:

Dim rs As Recordset

Set rs = _
DBEngine.OpenDatabase(*'d:\excel\excel .mdb™). _
OpenRecordset(*'Objects'™)

Range("'A1") .CopyFromRecordset(rs, 10, 10)

This code opens an Access database named d: \excel\excel.mdb, creates a recordset based on the
table named Ob jects, and then copies thefirst 10 columns of the first 10 rows of the recordset to
the current worksheet, starting at cell AL

Note that, in general, copying begins at the current row of the Recordset object (which in our
example isthefirst row, since we opened the recordset anew).

19.3.17 CreateNames Method

This method creates range names based on text labels in specified cells. The syntax is:
RangeObject.CreateNames(Top, Left, Bottom, Right)

The parameters are optional and have the default value of False. If one of the parametersis set to
True, then the corresponding row (Top or Bottom) or column (Left or Right) isused to
supply the names for the named ranges. If al of the parameters are Fal se, then Excel triesto
guess the location of the names. (I would generally advise against letting an application guess at
anything.)

Toillustrate, the following code, when applied to the sheet in Figure 19-8, will define three named
ranges.

Range("'A1:C3'") .CreateNames Top:=True

For instance, the range A2:A3 will be named John.

19.3.18 CurrentRegion Property

This useful property returns a Range object that represents the current region, which is the region
bound by the closest empty rows and columns. To illustrate, the following code, when applied to
the sheet in Figure 19-11, selects the rectangular region A2:C4:

ActiveCell .CurrentRegion.Select

Figure 19-11. lllustrating CurrentRegion

249

&, B | C B
1
2 1 2
3 | I
4 3 4
=]
& 5 & 7
-

19.3.19 Delete Method

This method deletes the cellsin the range. Its syntax is:

RangeObject.Delete(Shift)

The optional Shi ft parameter specifies how to shift cellsto replace the deleted cells. It can be
one of the following constants:

Enum XIDeleteShiftDirection
xIShiftUp = -4162
xIShiftToLeft = -4159

End Enum

If this argument is omitted, then Excel guesses based on the shape of the range. In view of this, |
would advise always including the argument. (Applications should not guess!)

19.3.20 Dependents and DirectDependents Properties

The Dependents property returns a Range object that represents al cells containing all the
dependents of acell. Toillustrate, consider Figure 19-12, where we have displayed the underlying
formulas in each cell.

Figure 19-12. lllustrating the Dependents property

A B ¢
141 =41
2 =A1*2

| 3 |
4 =A1%3
5
6 =51%2

The following code selects cells B1, B2, C4, and C6:
Range("'A1') .Dependents.Select
Note that C6 is not adirect dependent of A1l.

By contrast, the following line selects the direct dependents of cell A1, which are cellsB1, B2,
and C4:

Range("'A1l') .DirectDependents.Select

250

19.3.21 Precedents and DirectPrecedents Properties

These properties work just like the Dependents and DirectDependents properties, but in the
reverse direction. For instance, referring to Figure 19-12, the line:

Range(*'C6') .Precedents.Select
selectsthe cells B1 and A1, whereas the line;
Range(*'C6') .DirectPrecedents.Select

selectsthe cell B1.

19.3.22 End Property

This property returns a Range object that represents the cell at the "end" of the region that contains
the source range by mimicking a keystroke combination (see the following code). The syntax is:

RangeObject_End(Direction)

where RangeOb ject should be areference to asingle cell and Direction isone of the
following constants. (The keystroke combination is also given in the following code.)

Enum XIDirection

xlUp = -4162 " Ctrl-Up
xIToRight = -4161 " Ctrl-Right
xIToLeft = -4159 " Ctrl-Left
xIDown = -4121 " Ctrl-Down

End Enum
Thus, for instance, the code:
Range(*'C4'") .End(xIToRight) .Select

selects the rightmost cell in Row 4 for which al cells between that cell and cell C4 are nonempty
(that is, the cell immediately to the left of the first empty cell in row 4 following cell C4).

19.3.23 EntireColumn and EntireRow Properties

The EntireColumn property returns a Range object that represents the column or columns that
contain the specified range. The EntireRow property returns a Range object that represents the
row or rows that contain the specified range.

For instance, the code:
Range(*'A1:A3") .EntireRow.Select

selects the first three rows of the current worksheet.

19.3.24 Fill Methods

The Excel object model has four Fill methods: FillDown, FillUp, FillLeft, and FillRight. As
expected, these methods work similarly, so we will describe only FillDown.

251

The FillDown method fills down from the top cell or cellsin the specified range to the bottom of
the range. The contents, formulas, and formatting of the cell or cellsin the top row of arange are
copied into the rest of the rowsin the range. The syntax is:

RangeObject._FillDown

For instance, the code:

Range(*'B3:D5") .FillDown

will duplicate the values of cells B3 through B5 in cells C3 through C5 and D3 through D5.

19.3.25 Find Method

The Find method returns the first cell in a given range that satisfies a criterion. Note that the Find
method returns Nothing if no match isfound. In any case, it does not affect the selection or the
active cell.

The syntax of the Find method is:

RangeObject._Find(What, After, Lookln, LookAt, _
SearchOrder, SearchDirection, MatchCase, MatchByte)

Note that all of the parameters except What are optional.

The What parameter is the data to search for and can be a string or any other valid Excel datatype
(number, date, etc.).

The After parameter isthe cell after which the search should begin. (This would be the active
cell when doing a search from the user interface.) Thus, the cell referred to by After isthelast
cell searched. If the After argument is omitted, the search starts after the cell in the upper-left
corner of the range.

The Look In parameter is one of the following constants:

Enum XIFindLooklIn
xIValues = -4163

xIComments = -4144
xIFormulas = -4123
End Enum

The LookAt parameter is one of the following constants that determines whether the What value
must match the cell's entire contents or just any part of the cell's contents:

Enum XILookAt
xIWhole = 1
xIPart = 2

End Enum

The SearchOrder parameter is one of the following X1SearchOrder constants:

Enum XISearchOrder
xIByRows = 1
x1ByColumns = 2

End Enum

252

The SearchDirection parameter is one of the following XI1SearchDirection constants:

Enum XISearchDirection

xINext = 1 " Default
xIPrevious = 2
End Enum

The MatchCase parameter should be set to True to do a case-sensitive search; otherwise, the
search will be case-insensitive. (The MatchByte parameter is used only in the Far East version of
Microsoft Excel. See the help documentation for details.)

There are several things to note about the Find method:

e Thevauesof the LooklIn , LookAt, SearchOrder, MatchCase, and MatchByte
parameters (but not the SearchDi rection parameter) are saved each time the Find
method isinvoked and are then reused for the next call to this method. Note also that
setting these arguments changes the corresponding settings in Excel's Find dialog box,
and, conversely, changing the settings in the Find dialog box changes the values of these
parameters. Thisimplies that we cannot rely on the values of these parameters, since the
user may have changed them through the Find dialog box. Hence, it is important to
specify each of these arguments for each call to the Find method.

e TheFindNext and FindPrevious methods (described in the next section) can be used to
repeat a search.

e When a search reaches the end of the specified search range, it wraps around to the
beginning of the range. If you do not want this behavior, consider using a different range.

e Tofind cellsthat match more complicated search criteria, such as those involving
wildcard matches, we must use a more manual approach, such as cycling through the cells
in the range with a For Each loop and using the Li ke operator. For instance, the
following code searchesfor al cellsin the range A1:C5 whose contents begin with an
"A" and sets the font for these cells to bold (note the use of the evaluation operator to
denote the range A1:C5):

Dim c As Range
For Each c In [Al:C5]
If c.Value Like "A*" Then
c.Font.Bold = True
End If
Next

19.3.26 FindNext and FindPrevious Methods

The FindNext method continues a search that was started with the Find method, returning the next
cell that matches the criteria. The syntax is:

RangeObject.FindNext(After)

The After parameter must be specified or the search will begin at the upper-l€eft corner of the
range. Thus, FindNext is the same as Find, except that it uses all of the parameters (except After)
that were set by the previous use of the Find method.

To continue the search from the last cell found, use that cell asthe After argument. For instance,
the following code searches for al cellsin the top row that contain the value 0 and removes the
value:

Dim ¢ As Range

253

Dim sFirstHit As String " Address of first hit
With Rows(1)
Set ¢ = _Find(0, Lookln:=xIValues)
IT Not c Is Nothing Then
sFirstHit = c.Address
Do
" Change cell contents
c.vValue = "

* find next cell
Set ¢ = _FindNext(c)
Loop Whille Not c Is Nothing
End If
End With

The FindPrevious method has the syntax:
RangeObject._FindPrevious(Before)
and works just like the FindNext method, but searches backward in the range starting with the cell

before the cell referred to by the Before parameter (with wrap around from the beginning of the
range to the end).

19.3.27 Formula and FormulaR1C1 Properties

The Formula property returns or sets the formula or value for each cell in the range. The formula
must be expressed in Al-style notation, and must include aleading equal sign.

For instance, the line:

Range(*'Al™) .Formula = "=Sum(A2:A3)"

setsthe formulain cell Al. Theline:

Range(*'Al:C1'") .Formula = "=Sum(A2:A3)"

places the formulain cells A1:C1, but because the formula uses relative references, these
references will be atered as usual. If we want to put the exact same formulain each cell, we must

use an array, asin:

Range(*'Al:C1") .Formula = _
Array("'=Sum(A2:A3)", "=Sum(A2:A3)", "=Sum(A2:A3)"")

We can aso return an array using the Formula property. To illustrate, consider the worksheet in
Figure 19-13. The code:

Dim a As Variant
a = Range("'Al1:C2"™) .Formula

sets the Variant variable a to an array, so that, for instance, a(2,3) = 7. Note that the Formula
property returns a Variant, so that a must be declared asa Variant.

Figure 19-13. lllustrating the Formula property

254

1 Z 3 4
2 5] T
3

If acell contains a constant, the Formula property returns that constant. We can also assignh a
constant to a cell by writing, for example:

Range(""A1"™) .Formula = 1

If the cell is empty, then the Formula property returns an empty string. If the cell contains a
formula, then the Formula method returns the formula as a string, as it would be displayed in the
formula bar (including the equal sign).

If we set the Formula property (or the Vaue property) of a cell to adate, then Excel checksto see
whether that cell is aready formatted with one of the date or time formats. If not, Excel usesthe
default short date format.

The FormulaR1CL1 property is the analog to the Formula property but accepts and returns formulas
in R1C1 style.

19.3.28 FormulaArray Property

The FormulaArray property returns or sets an array formula, which must bein R1C1 style, for a
range. To illustrate, consider the worksheet shown in Figure 19-14. The code:

Range(*'A9:C11") .FormulaArray = "=A1:C3 + A5:C7"
produced the values in cells A9:C11 in Figure 19-14. The formula on the left says to add the
contents of each cell in the uppermost 3-by-3 array to the corresponding cell in the middle 3-by-3

array, and place the result in the corresponding cell in the lower 3-by-3 array.

Figure 19-14. lllustrating the FormulaArray property

A B C
1 1 2 3
2 4 5 6
3 7 3 9
il
5 10 11 12
6 13 14 15

| 16 17 18
8
9 11 3 15
10 17 19 21
11 23 25 27

Note aso that the code:
Debug.Print Range(*'A9") .FormulaArray

prints the array formula:

255

=A1:C3 + A5:C7
19.3.29 FormulaHidden Property (R/W Boolean)

This property returns or sets the Hidden state (True or False) for the formulain the cell to
which it isapplied. Thisis equivalent to setting the Hidden check box in the Protection tab of the
Format Cells dialog.

Note that thisis not the same as the Hidden property, which appliesto ranges that consist of entire
rows (or entire columns) and determines whether or not those rows (or columns) are hidden from
view.

19.3.30 HasFormula Property (Read-Only)

This property returns True if all cellsin the range contain formulas; it returns Fal se if none of
the cellsin the range contains aformulaand Nul I otherwise.

19.3.31 HorizontalAlignment Property

The Horizontal Alignment property returns or sets the horizontal alignment of al cellsin the range.
The value can be one of the following constants:

Enum XIHALign
xIHAlignRight = -4152
xIHAlignLeft = -4131
xIHAlignJustify = -4130
xIHAlignDistributed = -4117 *for Far East Excel
xIHAlignCenter = -4108
xIHAlignGeneral = 1
xIHALignFill = 5
xIHAlignCenterAcrossSelection = 7
End Enum

Note especially the x IHAlignCenterAcrossSelection constant, which is very useful for
aligning atitle across multiple cells.

19.3.32 IndentLevel Property and Insertindent Method

The IndentLevel property returns or sets the |eft indent for each cell in the range and can be any
integer between 0 and 15. All other settings cause an error. Presumably, indents are useful for
aligning the contents of cells or for formatting text.

For instance, to set the indent level of cell Al to 10, we can write:
Range(*'Al™) . IndentLevel = 10

Unfortunately, the documentation does not specify how big an indent unit is, but we can still use
indent unitsin arelative way. Presumably, an indent level of 2 istwice that of an indent level of 1.

An aternative is to use the Insertindent method, with the syntax:

RangeObject. Insertindent(InsertAmount)

256

where InsertAmount isan integer between 0 and 15. However, in this case, the InsertAmount
parameter specifies the amount to change the current indent for the range.

19.3.33 Insert Method

This method inserts acell or range of cellsinto the worksheet, shifting existing cells to make room.
The syntax is:

RangeObject. Insert(Shift)
where Shift can be one of the XI InsertShiftDirection constants;

Enum XIlInsertShiftDirection
xIShiftToRight = -4161
xIShiftbown = -4121

End Enum

If the Shift argument is omitted, Excel will decide upon the shift direction based on the shape of
the range. (As with other cases when Excel will guess, | recommend against allowing it to do so.)

19.3.34 Locked Property

This property returns the Locked status of the cellsin the range or can be used to lock the range.
The property returns Nul I if the range contains both locked and unlocked cells.

19.3.35 Merge-Related Methods and Properties

It is quite common to create a merged cell (that is, asingle cell created by combining several
adjacent cells) for use as atitle or heading, for instance.

The Merge method creates amerged cell from the specified range. The syntax is:
RangeObject.Merge(Across)

where Across isan optional Variant that should be set to True to merge the cellsin each row of
the range into asingle cell per row or Fal se (the default) to merge al cellsin al rowsinto a
single cell. Note that when the individual cells contain data, the merged cell will contain only the
data from the upper-left cell. Hence, the datain al other cells will be lost.

The UnMerge method separates a merged areainto individual cells. Its syntax is:

RangeObject.UnMerge

Note that aslong asRangeOb ject contains any of the cells within a merged range, even if it
does not contain all merged cells or if it contains additional cells not in the merged area, the
method will unmerge the merged range. Note that calling the UnMerge method on arange that
does not contain merged cells has no effect and does not produce a runtime error.

The MergeArea property applies only to ranges that consist of asingle cell (otherwise an error
occurs). The property returns a Range object representing the merged range containing that cell
(or the cell itself if it is not part of a merged range).

Ul
~

The MergeCells property returns True if the specified range is contained within a merged range
of cells. The property returns Nul I if the specified range contains cells that are within a merged
range as well as cells that lie outside the merged range.

19.3.36 Next and Previous Properties

When applied to a Range object, the Next property returns the cell that would be made active by
striking the

TAB

key, although it does not actually select that cell. Thus, on an unprotected sheet, this
property returns the cell immediately to the right of the upper-left cell in the range. On
a protected sheet, this property returns the next unlocked cell.

Similarly, the Previous property emulates the Shift-Tab key by returning the appropriate cell (also
without selecting the cell).

19.3.37 NumberFormat Property

This property returns or sets the number-formatting string for the cells in the range. Note that the
property will return Null I if the cellsin the range do not all have the same number format.

One of the simplest ways to determine the desired formatting string isto record an Excel macro
and use the Format dialog. Y ou can then inspect the macro code for the correct formatting string.

19.3.38 Parse Method

This method parses the data in a column (or portion thereof) and distributes the contents of the
range to fill adjacent columns. The syntax is:

RangeObject._Parse(ParseLine, Destination)
where RangeOb ject can be no more than one column wide.

The ParseL ine parameter isastring containing left and right brackets to indicate where the data
in the cells in the column should be split. For example, the string:

Dxxx] [xxx]

causes the Parse method to insert the first three characters from each cell into the first column of
the destination range, skip the fourth character, and then insert the next three charactersinto the
second column. Any additional characters (beyond the first six) are not included in the destination.
This makes the Parse method most useful for parsing fixed-length data (each cell has data of the
same length).

The Destination parameter is a Range object that represents the upper-left corner of the

destination range for the parsed data. If this argument is omitted, Excel will parse the datain place;
that is, it will use the source column as the first destination column.

19.3.39 PasteSpecial Method

This method pastes data from the Clipboard into the specified range. The syntax is:

258

RangeObject.PasteSpecial (Paste, Operation, SkipBlanks, Transpose)

The Paste parameter indicates what will be pasted and is one of the following X1PasteType
constants:

Enum XIPasteType
xIPasteValues = -4163
xIPasteComments = -4144
xIPasteFormulas -4123
xIPasteFormats = -4122
xIPasteAll = -4104 " Default
x1PasteAllExceptBorders = 6
End Enum

The optional Operation parameter specifies a paste operation and can be one of the following
XIPasteSpecialOperation constants:

Enum XIPasteSpecialOperation
xIPasteSpecialOperationNone = -4142 " Default
xIPasteSpecialOperationAdd = 2
xIPasteSpecialOperationSubtract
xI1PasteSpecialOperationMultiply
xIPasteSpecialOperationDivide =

End Enum

3
4

o

The SkipBlanks parameter should be set to True to skip pasting blank cells from the Clipboard.
Toillustrate, suppose that the cell on the Clipboard that is destined to be pasted into cell D5 is
blank. If SkipBlanks isFalse (the default), then whatever isin D5 before the paste operation
will be overwritten when the blank cell is pasted, so D5 will then be empty. However, if
SkipBlank isTrue, the blank cell will not be pasted into D5 and so the contents of D5 will not
be disturbed.

The optional Transpose parameter can be set to True to transpose rows and columns when the
rangeis pasted. The default valueis Fal se.

19.3.40 PrintOut Method

The PrintOut method prints arange. (This method applies to a host of other objects aswell, such
as Worksheet, Workbook, and Chart.) The syntax is:

RangeObject.PrintOut(From, To, Copies, Preview,
ActivePrinter, PrintToFile, Collate)

Note that all of the parameters to this method are optional.

The From parameter specifies the page number of the first page to print, and the To parameter
specifies the last page to print. If omitted, the entire object (range, worksheet, etc.) is printed.

The Copies parameter specifies the number of copiesto print. The default is 1.

Set Preview to True to invoke print preview rather than printing immediately. The default is
False. ActivePrinter setsthe name of the active printer.

259

Setting PrintToFile to True causes Excel to print to afile. Excel will prompt the user for the
name of the output file. (Unfortunately, there is no way to specify the name of the output filein
code!)

The Col late parameter should be set to True to collate multiple multipage copies.

19.3.41 PrintPreview Method

This method invokes Excel's print preview feature for the given range (this method applies to the
same list of objects as the PrintOut method). Its syntax is:

RangeObject._PrintPreview

19.3.42 Replace Method

This method finds and replaces specified datain all cellsin arange. It has no effect on the
selection or the active cell. The syntax is:

RangeObject._Replace(What, Replacement, LookAt, _
SearchOrder, MatchCase, MatchByte)

The What parameter is the data to search for, and the Replacement parameter isthe
replacement data. These data can be strings or any other valid Excel data types (numbers, dates,
etc.).

The LookAt parameter is one of the following constants that determines whether the What value
must match the cell's entire contents or just any part of the cell's contents:

Enum XILookAt
xIWhole = 1
xIPart = 2

End Enum

The SearchOrder parameter is one of the following X1SearchOrder constants:

Enum XISearchOrder
xIByRows = 1
xIByColumns = 2

End Enum

The MatchCase parameter should be set to True to do a case-sensitive search (the default is
False). The MatchByte parameter isused only in the Far East version of Microsoft Excel. See
the help documentation for details.

Note that the values of the LookAt, SearchOrder, MatchCase, and MatchByte parameters
are saved each time the Find method is invoked and then reused for the next call to this method.
Note aso that setting these arguments changes the corresponding settings in Excel's Find dialog
box, and conversely, changing the settings in the Find dialog box changes the values of these
parameters. Thisimplies that we cannot rely on the values of these parameters, since the user may
have changed them through the Find dialog box. Hence, it isimportant to specify each of these
arguments for each call to the Find method.

If the contents of the What argument are found at least once, the Replace method returns True.

260

19.3.43 Select Method

This method selects the given range. Actually, the Select method applies to a whopping 81
different Excel objects. For the Range object, its syntax is:

RangeObject.Select

Note that this method selects arange of cells, whereas the Activate method activates asingle cell.
19.3.44 ShrinkToFit Property

This property can be set to True to tell Excel to shrink the font size of all text in the range so that
the text fits the available column width. It also returns True if ShrinkToFit is set for al cellsin
therange, False if itisturned off for al cellsin the range, or Nul I if some cells have
ShrinkToFit turned on and others have ShrinkToFit turned off.

19.3.45 Sort Method

This method sorts a range or the current region when the specified range contains only one cell. It
can aso be used to sort apivot table. The syntax is:

RangeObject.Sort(Keyl, Orderl, Key2, Type, Order2, Key3, Order3, _
Header, OrderCustom, MatchCase, Orientation, SortMethod, _
IgnoreControlCharacters, IgnoreDiacritics, IgnoreKashida)

Sorting can take place based on up to three keys, denoted by Key1, Key2, and Key3. These
parameters can be expressed as text (arange name) or a Range object. The corresponding Order
parameter can be set to one of the following values:

Enum XISortOrder
xlAscending = 1 " Default
xIDescending = 2

End Enum

The optional Type parameter is used only when sorting pivot tables.

The optional Header parameter specifies whether the first row contains headers, in which case
they are not included in the sort. The Header parameter can be one of the following values:

Enum XIYesNoGuess

xIGuess = 0

xlYes = 1

xINo = 2 " Default
End Enum

The optional OrderCustom parameter is an integer offset into the list of custom sort orders.
However, Microsoft seems not to have documented this further, so it seems best to simply omit
this argument, in which caseit is assumed to be Normal (which sounds good).

The optional MatchCase parameter should be set to True to do a case-sensitive sort and Fal se
(the default) to do a sort that is not case-sensitive. For instance, suppose that cell A1 contains the
text "AAA" and cell A2 containsthetext "aaa." The code:

Range(""Al:A2'").Sort Keyl:=Cells(1, 1), MatchCase:=True

261

will swap the contents of these two cells, but the code;
Range(""A1:A2'") _Sort Keyl:=Cells(1, 1), MatchCase:=False
will not.

The optional Orientation parameter determines whether the sort is done by row or by column.
It can assume either of the values in the following enum:

Enum XISortOrientation
x1SortColumns = 1
xI1SortRows = 2

End Enum

For instance:
Range("'A1:B2'") .Sort Keyl:=Rows(1l), Orientation:=x1SortColumns
sorts the columnsin the range A1:B2 using the first row for the sort key.

Therest of the parameters are not used in the U.S. English version of Excel. The SortMethod
parameter is not documented, but it has a default value x IPinY in, whatever that means.

19.3.46 SpecialCells Method

This method returns a Range object that represents all the cells that match a specified type and
value. The syntax is:

RangeObject.SpecialCells(Type, Value)

The Type parameter specifies the type of cellsto include from RangeObject. It can be one of
the following XICel 1 Type constants:

Enum XICellType
xICelITypeComments = -4144 "Cells with comments
x1CellTypeFormulas = -4123 "Cells with formulas

xI1CellTypeConstants = 2 "Cells with constants
xICellTypeBlanks = 4 "Blank cells
xICellTypeLastCell = 11 "Last cell in range
xICellTypeVisible = 12 “"All visible cells

End Enum

For instance, the code:

Range("'A1:D10") .SpecialCells(xICellTypeBlanks) .Select
selects al blank cellsin therange A1:D10.

The optional Value parameter applies when the Type parameter is either
xICellTypeConstants or xICel ITypeFormulas and identifies more specifically the type
of cell to return. In these cases, the Value parameter can be set to one of, or asum of, the
following constants:

Enum XISpecialCellsvalue
XINumbers = 1

262

xITextValues = 2

xlLogical = 4

xIErrors = 16
End Enum

For instance, the code:

Range("'A1:D10") .SpecialCells(xICellTypeConstants,
xITextValues) .Select

selects only the cells with text (as opposed to numbers) within the range A1:D10.

19.3.47 TextToColumns Method

This method parses a column (or columns) of cells that contain text into several columns. The
syntax is:

RangeObject.TextToColumns(Destination, DataType, _
TextQualifier, ConsecutiveDelimiter, Tab, Semicolon, _
Comma, Space, Other, OtherChar, FieldInfo)

Note that all of the parameters to this method are optional.

The Destination parameter is a Range object that specifies where to put the results of the
conversion. If the Range object represents more than a single cell, then the starting point for the
destination is the upper-left cell in that range.

The DataType parameter specifies the format of the text to be split into columns. It can be one of
the following XITextParsingType constants:

Enum XITextParsingType
xIDelimited = 1 " Default
xIFixedWidth = 2

End Enum

The TextQual i fier parameter is the text quaifier. It can be one of the following
XITextQualifier constants:

Enum XITextQualifier
xITextQualifierNone = -4142
xITextQualifierDoubleQuote
xITextQualifierSingleQuote

End Enum

1 " Default

I
N

The ConsecutiveDel imiter parameter should be set to True to have Excel consider
consecutive delimiters as one delimiter. The default valueis Fal se.

There are several parameters that require that the DataType be xIDel imited and, when set to

True, indicate that Excel should use the corresponding character as the text delimiter. They are
described in the following list (all default values are Fal se):

Tab

Set to True to use the tab character as delimiter.

263

Semicolon
Set to True to use a semicolon as delimiter.
Comma
Set to True to use acomma as delimiter.
Space
Set to True to use a space as delimiter.
Other
Set to True to use a character that is specified by the OtherChar argument as delimiter.

When Other isTrue, OtherChar specifiesthe delimiter character. If OtherChar contains
more than one character, only the first character is used.

TheFieldInfo parameter isan array containing parse information for the individual source
columns. The interpretation of FieldInfo depends on the value of DataType.

When DataType isxIDel imited, the FieldInfo argument should be an array whose sizeis
the same as (or smaller than—see Table 19-3) the number of columns of converted data. The first
element of atwo-element array is the column number (starting with the number 1), and the second
element is one of the numbersin Table 19-3 that specifies how the column is parsed.

Table 19-3. FieldInfo Values for xIDelimited Text

Code Description
1 General
2 Text
3 MDY date
4 DMY date
5 YMD date
6 MYD date
7 IDYM date
8 \YDM date
9 Skip the column

If atwo-element array for a given column is missing, then the column is parsed with the General
setting. For instance, the following value for Field I nfo causes the first column to be parsed as
text and the third column to be skipped:

Array(Array(1, 2), Array(3, 9))

All other columns will be parsed as general data.

Toillustrate, consider the sheet shown in Figure 19-15. The code:

Range(*'A1:A3") .TextToColumns _

Destination:=Range(''B1'), _
DataType:=xIDelimited, _

264

ConsecutiveDelimiter:=True, Comma:=True, _
FieldInfo:=Array(Array(1, 2), Array(2, 3))

produces the second and third columns of Figure 19-15. Note that the cellsin column C are
formatted as dates.

Figure 19-15. A worksheet with text to be parsed in A1:A3

A =] C |
1 book, 12/4/98 book 12/4/98
2 racord, 1/17/98 record 1117798
3 lcar, 11/2/98 car 11,2093

On the other hand, if DataType isxIFixedWidth, the first element of each two-element array
specifies the starting character position in the column (0 being the first character) and the second
element specifies the parse option (1-9) for the resulting column, as described previoudly.

Toillustrate, consider the worksheet in Figure 19-16. The code:

Range(""A1:A3") .TextToColumns _
Destination:=Range("'B1'), _
DataType:=xIFixedWidth, _
FieldInfo:=Array(Array(0, 2), _

Array(1, 9), Array(2, 2), Array(, 9), _
Array(6, 2))

parses the first column of Figure 19-16 into the remaining columns. (Note how we included arrays
to skip the hyphens.)

Figure 19-16. A worksheet with fixed-width data to be parsed in A1:A3

A B = B

1 1-234-567 1 234 567
2 2435878 12 425 678

3 5-444-865 5 A il

19.3.48 Value Property

The Value property returns the value of the specified cell. If the cell is empty, Value returns an
empty string. This can be tested in either of the following ways:

IT Range("'A1'™) = """ Then .
or:

IT IsEmpty(Range(**A1™)) Then .

If the Range object contains more than one cell, the Value property returns a two-dimensional
array. For instance, referring to Figure 19-16, the code:

Dim v As Variant

v = Range("'A1:A3") .Value
Debug.Print IsArray(v)

265

Debug.Print v(2, 1) " row 2, col 1
will print:

True
2-435-678

19.3.49 WrapText Property

This property returns or sets the value that tells Excel whether to wrap text in the cells. It will
return Null I if the specified range contains some cells that wrap text and others that do not. Note
that Excel will change the row height of the range, if necessary, to accommodate the text when
wrapped.

19.4 Children of the Range Object

The children of the Range object are shown in Figure 19-17.

Figure 19-17. Children of the Range object

-7 Pange
T Areas
T Borders
Tl Chearacters
7o Comment
R E
7o Font
T FarmetCondtions
T Hypedinks
T0O Interior
72 Phonetic
T Phonetcsos9»
o
7o PvotField
7o Puotltam
7o PuwotTable
7o OuenyTable
T Range
+-74
70 Soundhote
7o Yalidation
£ 7o Worksheat

- - [

Ho#

-

Corresponding to each of these children is a property of the Range object that returns the child.
For instance, the PivotField property of the Range object returns a PivotField child object.

Let ustake alook at the children of the Range object.
19.4.1 The Areas Collection

An areaisacontiguous (that is, connected) block of cellsin aworksheet. There is no Area object
in the Excel object model. Instead, areas are Range objects.

266

However, every range is made up of one or more areas, and the collection of all Range objects that
represent these areas is the Areas collection for the range. To illustrate, consider Figure 19-18,
which isthe result of calling the following code:

Dim rng As Range

Set rng = ActiveSheet._Cells.SpecialCells(_
xI1CellTypeConstants, xINumbers)

rng.Select

Note that three distinct areas are selected.

Figure 19-18. A range with three areas

e DO ey e - e » ey

We can clear the second area by writing:

—4|m|l‘.‘l‘l|l!'- L [y | =

rng.Areas(2) .Clear
Thiswill clear the cells C4 and D4. (Areas is a 1-based collection.)

It strikes me as a bit risky to refer to an individual area by index. However, it is perfectly safe to
cycle through all areas using a For loop such as:

Dim rng As Range, r As Range

Set rng = ActiveSheet.Celis.SpecialCells(_
xICelITypeConstants, XxINumbers)

For Each r In rng.Areas
Debug.Print r.Cells._Count

Next

19.4.2 The Borders Collection

Every range has a set of borders. For instance, the bottom border consists of the bottom borders of
all of the cells that one would encounter by looking up at the range from the bottom of the
worksheet. (Imagine moving up each column of the sheet until you encounter acell in the range.)
For example, the bottom border of the range:

Range(*'al:b4, d2:e2™)

isshown asadark linein Figure 19-19.

Figure 19-19. Illustrating the Border object

Mo e k=

The Borders property of the Range object returns a Borders collection for the range. This
collection contains several Border objects, indexed by the following constants:

Enum XIBorderslIndex
xIDiagonalDown = 5
xIDiagonalUp = 6
x1EdgeLeft = 7
x1EdgeTop = 8
x1EdgeBottom = 9
xI1EdgeRight = 10
xIInsideVertical = 11
xlInsideHorizontal = 12

End Enum

(The Excel help documentation refers to these as X1BorderType constants.)

To illustrate, the following code sets the interior color of the range shown in Figure 19-19to a
gray scale and sets the bottom border to thick red (shown as black in the figure). Note the use of
nested Wi th statements:

With Range('al:b4, d2:e2')
-Interior.Color = RGB(196, 196, 196)
With _Borders(xIEdgeBottom)

-Weight = x1Thick
-Color = RGB(255, 0, 0)
End With
End With

Figure 19-20 shows the results of changing the constant x1EdgeBottom to xIDiagonalDown,
while Figure 19-21 shows the results of changing the constant to xI InsideVertical.

Figure 19-20. The xIDiagonalDown constant

A B c | D E

Figure 19-21. The xlIinsideVertical constant

A B i O E

1 4 | kD =

268

19.4.3 The Border Object
The most interesting properties and methods of the Border object are described in this section.
19.4.3.1 Color property

This property returns or sets the primary color of the border. It can also be applied to the Borders
collection to set al vertical and horizontal lines for the borders at the same time. (The property
also applies to Font objects and Interior objects.)

For instance, the following code has the effect shown in Figure 19-22:

With Range(*'al:b4, d2:e2')
-Interior.Color = RGB(196, 196, 196)
With .Borders

-Weight = x1Thick
-Color = RGB(255, 0, 0)
End With
End With

Figure 19-22. Assigning the Colors property of the Borders collection

e - e e O [

1 8 L R =

To set acolor value, we use the RGB color function, which has the form:

RGB(red, green, blue)

where red, green, and blue are integers between 0 and 255, inclusive, that represent the
strength of the respective color component. Table 19-4 gives some common color values.

Table 19-4. Some Common Colors

Color Red Green Blue
Black 0 0 0
Blue 0 0 255
Green 0 255 0
(Cyan 0 255 255
Red 255 0 0
Magenta 255 0 255
Yelow 255 255 0
White 255 255 255

To use agrayscale, set the red, green, and blue components equally. For instance:

RGB(196, 196, 196)

269

will produce a 25% grayscale. (The larger the numbers, the closer to white.) Unfortunately, Excel
rounds all grayscale settings to one of the following:

0% (white)
25%

40%

50%

80%

100% (black)

Y ou can see this by running the following code:

Dim r As Integer
For r =1 To 25
Cells(r, 1).Interior.Color = _
RGB(255 - 10 * r, 255 - 10 * r, 255 - 10 * r)
Cells(r, 2).value = 255 - 10 * r
Next

If you want to use grayscales often, consider adding the following constant declarations to a code
module. (The numbers on the right are RGB values.)

Public Const Gray25 = 12632256
Public Const Gray40 = 9868950
Public Const Gray50 = 8421504
Public Const Gray80 = 3355443

19.4.3.2 Colorindex property

This property sets the color by using an index into a color palette. There is no way to do justice to
thisin ablack and white book, so | suggest you take alook at this property in Excel's help
documentation, where there is a color picture. However, you can set this property to one of the
following X1Color Index constants as well:

Enum XIColorIndex

xIColorIndexNone = -4142 " no interior fill
xIColorIndexAutomatic = -4105 " automatic Ffill
End Enum

19.4.3.3 LineStyle property

The LineStyle property returns or sets the line style for the border. It can be one of the following
XILineStyle constants.

Enum XILineStyle
xILineStyleNone = -4142
xI1Double = -4119
xIDot = -4118
xIDash = -4115
xIContinuous = 1
xIDashDot = 4
xIDashDotDot = 5
xISlantDashDot

End Enum

13

These values speak pretty much for themselves.

270

19.4.3.4 Weight property

The Weight property returns or sets the weight of the border. It can be one of the following
XIBorderWeight constants.

Enum XIBorderWeight
xIMedium = -4138
xIHairline = 1
xIThin = 2
xIThick = 4

End Enum

19.4.4 The Characters Object

The Characters object represents a contiguous sequence of text characters. The main purpose of
the Characters object is to modify a portion of atext string. The syntax is:

RangeObject.Characters(start, length)

where start isthe start character number and Iength isthe number of characters. To illustrate,
the following code boldfaces the first word in acell:

Dim rng As Range
Set rng = Range(*'A1"™)
rng.Characters(1, InStr(rng.-Value, "™ ") - 1)_Font.Bold = True

Theresult is shown in Figure 19-23.

Figure 19-23. Boldfacing the first word of a cell

A2,
1 This is aiest

19.4.5 The Comment Object

Recall that the AddComment method of the Range object is used to add a comment to arange.
Once the comment has been added, a corresponding Comment object is created. Each comment
object belongs to the Comments collection of the Worksheet object.

Toillustrate, the following code creates acomment in cell Al if it does not already exist. It then
sets the text and makes the comment visible for approximately three seconds. Note the use of the
DoEvents statement to ensure that Windows has the opportunity to display the comment before
entering the Do loop. (Y ou might want to try this code without the DoEvents statement. On my
system, the comment is not displayed.) Note aso that the Timer function returns the number of
seconds since midnight (so there is a potential problem if the three-second interval happensto
occur at midnight).

Dim tm As Single
tm = Timer

IT Range('A1"™).Comment Is Nothing Then
Range(*'Al") .AddComment "‘comment™
End If

Range(""A1') .Comment.Text "Created: " & Now

271

Range(*'Al"™) .Comment._Visible = True

DoEvents
Do: Loop Until Timer - tm > 3
Range(*'Al™) .Comment._Visible = False

19.4.6 The Font Object

The Font property of a Range object returns a Font object. Font objects are used to control the
characteristics of the font (font name, size, color, and so on) used in the range.

The properties of the Font object are shown in Table 19-5.

Table 19-5. Properties of the Font Object

Application FontStyle Size
Background Italic Strikethrough
Bold ‘Name 'Subscript
Color OutlineFont Superscript
Colorlndex Parent Underline
Creator Shadow

Recall that the Characters property can be used to format portions of text.

19.4.7 The FormatConditions Collection

Excel alows usto apply conditional formatting to acell (or arange of cells). A conditional format
isaformat that is applied if and only if certain conditions are met by the contents of the cell. For
instance, we may want to make a number red if it is negative, black if it is positive, or greeniif itis
0. Thisrequires three conditional formats.

The FormatConditions property of a Range object returns a FormatConditions collection that can
contain up to three FormatCondition objects, each of which represents a conditional format.

The Add method of the FormatConditions collection is used to add FormatCondition objects to the
collection. However, attempting to add more than three such objects will generate an error. The
syntax for the Add method is:

FormatConditionsObject.Add(Type, Operator, Formulal, Formula2)

Therequired Type parameter specifies whether the conditional format is based on the value in the
cell or an expression. It can be either of the following XIFormatConditionType constants:

Enum XIFormatConditionType
xICellvalue = 1
xIExpression = 2

End Enum

When Type isxICel IValue, the Operator parameter specifies the operator to use with that
value. If Type isxlExpression, the Operator argument isignored. The value of Operator
is one of the following constants:

Enum XIFormatConditionOperator
xIBetween = 1

272

xINotBetween = 2
xIEqual = 3
xINotEqual = 4
xIGreater = 5
xlLess = 6
xIGreaterEqual = 7
xlLessEqual = 8
End Enum

If Type isxICellValue, then Formulal and Formula2 give the comparison values used with
Operator and the cell value. Note that Formulla2 is used only with the x IBetween and
xINotBetween constants.

For example, the following code sets the interior color of acell in the range A1:C4 to 25%
grayscale if the number is between 0 and 10 (inclusive) and to white otherwise. The results are
shown in Figure 19-24. Note that we first cleared all conditional formatting before creating new
FormatCondition objects. Note also that an empty cell istreated asiif it contains a 0.

Dim rng As Range
Dim 1 As Integer
Set rng = Range(''A1:C4™)

" Clear all existing formats

For i1 = rng.-FormatConditions.Count To 1 Step -1
rng.FormatConditions(i) .Delete

Next

With rng
.FormatConditions.Add xICellValue, xIBetween, 0, 10
-FormatConditions(1).Interior.Color = RGB(196, 196, 196)
.FormatConditions.Add xICellvValue, xINotBetween, 0, 10
-FormatConditions(2).Interior.Color = RGB(255, 255, 255)
End With

Figure 19-24. A conditionally formatted range

A, B C

P 3 100

i (k=
1
L

When Type isxlExpression, Formula2 isignored, and Formulal givesthe formulaor
expression that determines the condition. This parameter can be a constant, a string, a cell
reference, or aformula. To illustrate, the following code sets the interior color based on whether
cells Al and A2 contain the same value:

Dim rng As Range

Dim 1 As Integer

Set rng = Range(""Al:A2"™)

" Clear all existing formats

For i1 = rng.-FormatConditions.Count To 1 Step -1
rng.FormatConditions(i) .Delete

Next

With rng

273

-.FormatConditions.Add xlExpression, , _
Range(*'Al™) .Value = Range(*'A2') .Value

-FormatConditions(l).Interior.Color = _
RGB(0, 0, 255)

-.FormatConditions.Add xlExpression, , _
Range("'Al"™) .Value <> Range('A2') .Value

-FormatConditions(2).Interior.Color = _
RGB(255, 0, 0)

End With

As the previous examples show, the actual formatting is done by setting some of the properties of
children of the FormatCondition object. In particular, the Borders, Font, and Interior properties
return child objects of the same name, whose properties can be set to indicate the desired
formatting.

Note finally that an existing FormatCondition object can be deleted using the Del ete method of the
FormatConditions collection, and it can be changed using the Modify method of the
FormatCondition object. The Modify method has the syntax:
FormatConditionObject.Modify(Type, Operator, Formulal, Formula2)

where the parameters are identical to those of the Add method.

19.4.8 The Interior Object

The Interior object represents the characteristics of the interior region of acell (or range of cells).
The Interior object has only a handful of properties (and no methods), as described in this section.

19.4.8.1 Color and ColorIindex properties

These properties are analogous to the properties by the same name of the Borders object,
discussed earlier. They set theinterior of acell (or cells) to the color specified.

19.4.8.2 Pattern property

This property returns or sets the interior pattern. It can be one of the following X1Pattern
constants:

Enum XIPattern
xIPatternVertical = -4166
xIPatternUp = -4162
xIPatternNone = -4142

xIPatternHorizontal = -4128
xIPatternGray75 = -4126
xIPatternGray50 = -4125
xIPatternGray25 = -4124

xIPatternDown = -4121
xIPatternAutomatic = -4105
xIPatternSolid = 1
xIPatternChecker = 9
xIPatternSemiGray75 = 10
xIPatternLightHorizontal = 11
xIPatternLightVertical = 12
xIPatternLightDown = 13
xIPatternLightUp = 14
xIPatternGrid = 15
xIPatternCrissCross = 16

274

xIPatternGrayl6 = 17
xIPatternGray8 = 18
End Enum

Note that this provides another way to access grayscales.
19.4.8.3 PatternColor and PatternColorindex properties
These properties set the color (or color index) of the pattern used to fill the interior of a cell. For

more on setting color and color indexes, please see the discussion of the Color and Colorindex
properties of the Border object.

19.4.9 The PivotField, Pivotitem, and PivotTable Objects

These objects relate to PivotTable objects and will be discussed in Chapter 20.

19.4.10 The QueryTable Object

A QueryTable object represents aworksheet table that is built from data returned from an externa
data source, such as Microsoft SQL Server or a Microsoft Access database. We will not discuss
QueryTable objects in this book. (There are better ways to retrieve data from an external source.)

19.4.11 The Validation Object

A Validation object is used to enforce data validation on a cell or range of cells. The Validation
property of the Range object returns a Validation object, whose properties can be returned or set.
Note that there is no Validations collection.

Data validation involves three parts: the actua validation, an input message that can be displayed
when acell is activated, and an error message that can be displayed if the data entered isinvalid.

The methods of the Validation object are Add, Delete, and Modify. To add validation to arange,
use the Add method, whose syntax is:

ValidationObject._Add(Type, AlertStyle, Operator, Formulal, Formula2)

Note the similarity between the parameters of the Add method of the Validation object and the
Add method of the FormatConditions object.

Therequired Type parameter specifies the type of data allowed and can be one of the following
XIDVType constants:

Enum XIDVType
xlvalidatelnputOnly = 0
xIVal idateWholeNumber =
xIValidateDecimal = 2

1

xIValidateList = 3
xIvValidateDate = 4
xIValidateTime = 5

xlValidateTextLength = 6
xIValidateCustom = 7
End Enum

275

The xIVal idate InputOnly constant causes Excel to treat all data as valid. This value should
be used when we want to display an input message (described later in this section), but not invoke
data validation.

The optional AlertStyle parameter specifies the buttons that will appear on the error dialog
box that is displayed if the data entered isinvalid. It can be one of the following
XIDVAlertStyle constants.

Enum XIDVAlertStyle
xIvValidAlertStop = 1
xIvValidAlertWarning = 2
xlvalidAlertinformation = 3

End Enum

The meanings of these constants are as follows:
xlValidAlertinformation

OK and Cancel buttons
x1ValidAlertStop

Retry and Cancel buttons
xIValidAlertWarning

Yes, No, and Cancel buttons

The optional Operator parameter isthe operator used in the validation, and can be any one of
the XIFormatConditionOperator constants.

Enum XIFormatConditionOperator
xI1Between = 1
xINotBetween = 2
xIEqual = 3
xINotEqual = 4
xIGreater = 5
xlLess = 6
x1GreaterEqual = 7
xlLessEqual = 8
End Enum

The Formullal parameter specifies the first part of the data-validation equation and Formula2
specifies the second part when Operator isxIBetween or xINotBetween.

To understand this rather complex object, it is best to look at the corresponding dialog boxesin the
Excel user interface. Figure 19-25 shows the Settings tab of the Validation dialog box.

Figure 19-25. The Settings tab of the Data Validation dialog

276

Data Validation E

Semnqg] Input Message l Erroe Alart |

Yalidatian criteria
&b
|1ﬂ-'|'n:r|E number ﬂ ¥ lgrare blank
Data:

|I:|eh'feen j

[inimwum:
5 i
Magimum;

[3

r Apply these changes to all other calls with the same settings

Clear all Ok, | Carcel

This dialog corresponds to setting:

Type:=xIVal idateWholeNumber
Operator:=xIBetween
Formulal:="5"
Formula2:="10"

IgnoreBlank = True

Y ou can learn more about the Type constants by clicking on the ? button in the Data Validation
dialog and then clicking on the Allow drop-down iist box. Note that the other controls on the tab
in Figure 19-25 will change depending upon the value selected in the Allow drop-down box.

The Input Message tab is shown in Figure 19-26. The values in this dialog correspond to
properties of the Validation object. In particular, we have:

Showlnput = True
InputTitle = "Input:"
InputMessage = "Input a number"

Figure 19-26. The Input Message tab of the Data Validation dialog

277

Data Valhdation E

¥ Show input message when call i salkacted
\When cell is selacted, show this input message:
Titie:
ITnput:

Input message:
Input a rumber J

Clear sl (a4 | Cancel |

Figure 19-27 shows the Error Alert tab. This dialog corresponds to the following properties of the
Validation object:

ShowError = True
ErrorTitle = "Error:"
ErrorMessage = ""This is an error"

Figure 19-27. The Error Alert tab of the Data Validation dialog

Data Valdaton E

Input Meszsage Error Alert l

Settings

W {Shaw error alert after nvali data [s entered|
\When ugser enters invalid data, show this error alect:
Style: Title:
hwanwg _:J |Error:

Error messape:

ﬁ This is a erroe J
=

Clear all Ok | Cancel |

We can now put al of the pieces together to show how to set up data validation for arange of cells.
Note that the first order of businessisto delete any old validation:

With Range(*'A1:D4') .Validation

-Delete

-Add Type:=xIValidateWholeNumber,
AlertStyle:=xlVvValidAlertStop, _
Operator:=x1Between, _
Formulal:="5", Formula2:="10"

-IgnoreBlank = True

-Showlnput = True

-InputTitle = “Input:™

-InputMessage = "lnput a number"

278

.ShowError = True

-ErrorTitle = "Error:"
-ErrorMessage = "This is a error"
End With

19.5 Example: Getting the Used Range

Aswe mentioned in Chapter 18, the UsedRange method seems to have some problems, in that it
does not always return what we would consider to be the currently used range, that is the smallest
rectangular region of cellsthat contains all cellsthat currently have data. In any case, if you, too,
have trouble with the UsedRange method, the following function can be used in its place. Note
that the function GetUsedRange does assume that Excel's UsedRange method returns a superset
of the correct used range.

The operation of GetUsedRange is straightforward. Asits source code in Example 19-1 shows,
the function starts with Excdl's used range, determines the coordinates (row and column numbers)
of the upper-left and lower-right corners of this range, and then proceeds to shrink thisrangeif it
contains rows or columnsthat are blank. This is determined by using the Excel CountA
worksheet function, which counts the number of nonempty cells.

Example 19-1. The GetUsedRange Function

Function GetUsedRange(ws As Worksheet) As Range
" Assumes that Excel®"s UsedRange gives a superset
" of the real used range.

Dim s As String, X As Integer

Dim rng As Range

Dim rlFixed As Integer, clFixed As Integer
Dim r2Fixed As Integer, c2Fixed As Integer
Dim 1 As Integer

Dim rl1 As Integer, cl As Integer

Dim r2 As Integer, c2 As Integer

Set GetUsedRange = Nothing

" Start with Excel®s used range
Set rng = ws.UsedRange

" Get bounding cells for Excel®s used range
" That is, Cells(rl,cl) to Cells(r2,c2)

rl = rng.-Row

r2 = rng-Rows.Count + r1 - 1

cl = rng-Column

c2 = rng-Columns.Count + c1 - 1

" Save existing values

riFixed = ril1
clFixed = cl1
r2Fixed = r2
c2Fixed = c2

" Check rows from top down for all blanks.
" If found, shrink rows.
For 1 = 1 To r2Fixed - rlFixed + 1
IT Application.CountA(rng.Rows(i)) = 0 Then

279

empty row -- reduce
rl=r1+1
Else
" nonempty row, get out
Exit For
End If
Next

" Repeat for columns from left to right
For i = 1 To c2Fixed - clFixed + 1
IT Application.CountA(rng.Columns(i)) = 0 Then

cl=cl+1
Else

Exit For
End If

Next
" Reset the range
Set rng = _
ws.Range(ws.Cells(rl, cl), ws.Cells(r2, c2))

" Start again

riFixed = ril1
clFixed = cl1
r2Fixed = r2
c2Fixed = c2

" Do rows from bottom up
For 1 = r2Fixed - rilFixed + 1 To 1 Step -1
IT Application.CountA(rng.Rows(i)) = 0 Then

r2=r2 -1
Else

Exit For
End If

Next

" Repeat for columns from right to left
For 1 = c2Fixed - clFixed + 1 To 1 Step -1
IT Application.CountA(rng.Columns(i)) = 0 Then

c2 =c2 -1
Else

Exit For
End If

Next

Set GetUsedRange = _
ws.Range(ws.Cells(rl, cl), ws.Cells(r2, c2))
End Function

19.6 Example: Selecting Special Cells

The Excel user interface does not have a built-in method for selecting worksheet cells based on
various criteria. For instance, there is no way to select all cells whose value is between 0 and 100,
or al cellsthat contain a date later than January 1, 1998. Thereis also no way to select only those
cellsin agiven column whose value is different from the value of the preceding cell. This can be
very useful when you have a sorted column and want to extract a set of unique values, as shown in

Figure 19-28.

280

Figure 19-28. Selecting unique values

12 [Derver |

12 Derver
14 Derver
15 Dernver

17 Los Angales

REY o vork
19 Mew rork

200 Mews York

21 Mew York

22 |\ Mew Yoarl

23 |

24 Portland

26 | Seattle

We will develop asmall utility (and add it to the SRXUTtils application) that can make a selection
based on some simple criteria. Y ou may want to enhance this utility by adding more criteria.

Thefirst step is to augment the DataSheet for SRX Utils by adding a new row for the new utility,
as shown in Figure 19-29. (The order of the rowsin this DataSheet is based on the order in which
we want the items to appear in the custom menu.)

Figure 19-29. Augmenting the DataSheet worksheet

'y f i f | [
LEdiy Onietien Prod Pro sdurs In Workok Menu e SubMenu fbess On Weks Menu On Chart Meew
ACTelle Shasl ¢

Funl iy Fos L Bt A BRI Siwedl THiE (=
ol Rk Fror®Chart Frird s fEnnt Embesidnd &0ty L TrE
= Funl iy PrinFisciTaies Frintu EFvnd Tackss TRLE TRLE
Funlakny Promiznesis. Frintus £ THiE L
Tl 1] T i o crarikb o CAseer Bnscisl T § FagSF
FunL Nty St heeds ThisWeptkbon 2%0r] Sheat THLE TRLE

19.6.1 Designing the Utility
To keep our utility relatively simple, we will implement the following selection criteria

Select cell if preceding cdll is different
Select cell if preceding cell isthe same
Select empty cells

Select nonempty cells

The search range for the selection operation, that is, the area to which the selection criteriawill be
applied, isthe current selection on the active worksheet. Note that we will need to verify that this
is aselection of worksheet cells and not, say, a chart. For the first two criteria, this range must be
either asingle row or a single column or a portion thereof. For the last two criteria, the search
range can be any selection of cells.

Asacourtesy to the user, if the current selection isjust asingle cell, the utility will default to the
used range for the last two criteria (empty or nonempty) and to the used portion of the column
containing the active cell for the first two criteria (same and different).

281

Asabonus, we aso include afeature that enlarges the current selection by including the entire
row (or column) containing each selected cell. For instance, applying this to the worksheet in
Figure 19-28 will select rows 12, 16, 18, 23, and 25.

19.6.2 Designing the Dialog

Now that our game plan has be mapped out, we can design and construct the dialog. The final
product is shown in Figure 19-30. It isa UserForm called d1gSelectSpecial, and its Caption
property should be set to "Select Special."

Figure 19-30. Select Special dialog

Asto the operation of the utility, the user will first select one of the mutually exclusive options
under Select Cells If. The actual search range is displayed at the bottom of the dialog.

Here are some of the highlights of this form design. We suggest you read on before creating your
own form.

19.6.2.1 The Frame control

A frame control is used to group other controls. Thisis often done just to group controls that have
asimilar purpose. However, in the case of option buttons, it has a more profound effect. Namely,
the option buttonsin a single frame are mutually exclusive, which means that if the user selects
one option button, the others are automatically unselected.

To ensure that the option buttons are really inside the frame and not merely on top of it, make sure
the frame is selected when you click on the OptionButton control icon in the Toolbox. Then create

the option button inside the frame. Also, if you decide to copy and paste the additional option
buttons, make sure that the frame is selected when you choose the Paste command.

19.6.2.2 Control names
The control names were chosen to conform to my naming convention. Their names are:
e fraType (frame)

e optDifferent
e optSame

282

e OptEmpty

e cmdSelect

e cmdCancel

e cmdUndo

e cmdCompleteRows

e cmdCompleteColumns
e IblSearchRange

Y ou will not need to set many control properties beyond the Name property and the Accelerator
property (indicated for each control in Figure 19-30 by an underscore in its caption). Be sure to set
the WordWrap property of the IblSearchRange label to False so that the label will occupy
only asingleline. Also, set the TabStop property of IblSearchRange to False.

19.6.2.3 Tab Order

It isimportant whenever designing a custom dialog to set the tab order of al controls properly.
There is nothing less professional than having the focus jump around randomly when the user
repeatedly hits the Tab key! The simplest way to set the correct tab order isto use the Tab Order
dialog box, available from the View menu and shown in Figure 19-31. Y ou can use this dialog to
get an overall view of the current tab order and to change that order, if desired. Remember that the
control with tab order O will receive the focus when the dialog isfirst displayed. Y ou will need to
display the Tab Order dialog twice: once while the entire dialog is selected and once while the
frame control is selected (to see the tab orders of the option buttons).

Figure 19-31. The Tab Order dialog

Tab Order
Teb Order
'

cmdClose

fraTwpe 4
crmdCompleteRows Cence|

crnd CompleteColurmns

crndUndo

IblSearchRange Move Lp

hanie Diawn

19.6.2.4 Some final tips

We should remark that the VB editor's Format menu has some very useful itemsfor aligning and
resizing controls on a UserForm to give your forms a more professional look. Y ou should
definitely do some exploration of this menu. Another useful trick isto copy and paste controls.
This produces controls of identical size and preserves other properties as well. (Of course, some
properties, such as the Name property or the position properties, are not preserved.)

19.6.3 Writing the Code
Now that the dialog is created, we can start writing the code.

In the basMain standard module, place the code that displays the Select Special dialog box.
However, it is possible that the current selection in the active worksheet is not a collection of cells.
It could be a drawing object or chart, for instance. In this case, we want to issue a message stating

283

that the current selection isinappropriate for the SelectSpecial utility and not to bother displaying
the dialog. The code in Example 19-2 (which should be stored in basMain) will do the job.

Example 19-2. The SelectSpecial Procedure

Sub SelectSpecial ()
" Check for valid selection
IT TypeName(Selection) <> "Range' Then
MsgBox "'Selection must be a range of worksheet cells.",
vbCritical
Else
dlgSelectSpecial .Show
End IF
End Sub

Note that we use the TypeName function. When applied to an object, asin:
TypeName(ObjectVariable)
the function will return the name of the object.

Next, we need a couple of module-level declarations, shown in Example 19-3, in the form's code
module.

Example 19-3. dlgSelectSpecial Module-Level Declarations

Option Explicit

" These are used by more than one procedure
Dim rngSearch As Range

Dim rngForUndo As Range

The Initialize event of the form is the place to initialize the controls. As Example 19-4 shows, we
first want to disable some command buttons and fill the IblSearchRange label. We also can
set the module-level variables here.

Example 19-4. The Initialize Event Procedure

Private Sub UserForm_Initialize()
cmdSelect_Enabled = False
cmdUndo.Enabled = False
IblSearchRange.Caption = "Search Range: Nothing"

Set rngSearch = Selection

Set rngForUndo = rngSearch
End Sub

The Close button simply unloads the form; its source code is shown in Example 19-5.

Example 19-5. The cmdClose_Click Event Procedure

Private Sub cmdClose Click()
Unload Me
End Sub

Incidentally, you can test out your progress so far (and later) by running the Initialize event. Just
place the cursor in this event and hit F5.

284

The Undo button returns the selection to its origina state, which is saved in the module-level
variable rngForuUndo. Its source code is shown in Example 19-6.

Example 19-6. The cmdUndo_Click Event Procedure

Private Sub cmdundo_Click()

IT Not rngForUndo Is Nothing Then
rngForUndo.Select
cmdUndo.Enabled = False

End If

End Sub

The first thing the user will do after the dialog is displayed is choose an option from the frame at
the top. This choice will determinein part the search range. Also, some choices require amore
restrictive search range. To react to the user's choice, we call a procedure called
GetSearchRange whenever an option button is selected. The code to handle the option buttons
is shown in Example 19-7.

Example 19-7. Event Handlers for the Option Buttons

Private Sub optDifferent Click()
GetSearchRange
End Sub

Private Sub optEmpty Click()
GetSearchRange
End Sub

Private Sub optNotEmpty Click()
GetSearchRange
End Sub

Private Sub optSame Click()
GetSearchRange
End Sub

The GetSearchRange procedure is shown in Example 19-8.

Example 19-8. The GetSearchRange Procedure

Private Sub GetSearchRange()
" Set search range based on choice of search type.
" If Different or Same, validate range
" If single cell, change to:
- used column for Different or Same match
- used range for Empty or Not Empty match
" We know that rngSearch is a range of cells.
Disables Select button if not a valid range.

Dim cColumns As Integer, cRows As Integer
cmdSelect.Enabled = True * May be temporary
IT optDifferent Or optSame Then

" Search range must be (portion of)

" a single row or column

cColumns = rngSearch.Columns.Count

285

cRows = rngSearch.Rows.Count

IT rngSearch_Areas.Count > 1 Or _
(cColumns <> 1 And cRows <> 1) Then
IblSearchRange.Caption = "Requires (portion of) single
column or row."
cmdSelect.Enabled = False
Exit Sub
End If

" If single cell then expand to used portion of column
IT cColumns = 1 And cRows = 1 Then
Set rngSearch = Application.Intersect(_
rngSearch._EntireColumn, ActiveSheet.UsedRange)
End If
ElselT optEmpty Or optNotEmpty Then
" IT selection is single cell then expand to used range
IT rngSearch_.Cells.Count = 1 Then
Set rngSearch = ActiveSheet.UsedRange
End If
End If

IblSearchRange.Caption = '"Search Range: " & _
rngSearch.Address(RowAbsolute:=False, ColumnAbsolute:=False)

End Sub

When the user hits the Select button, the action begins, based on the user's selection. Thus, we
should call adifferent procedure based on which option button is selected. After the new selection
is made, the Select button is disabled. Since the CompleteRows and CompleteColumns features
are still available, however, we do not want to dismiss the main dialog. The code to handle the
Select button is shown in Example 19-9.

Example 19-9. The cmdSelect_Click Event Procedure

Private Sub cmdSelect Click()
" Read option buttons and
" call appropriate procedure

IT optDifferent Then
SelectlifDifferent

Elself optSame Then
SelectlfSame

Elself optEmpty Then
SelectIfEmpty

ElselT optNotEmpty Then
SelectIfNotEmpty

End If

cmdSelect.Enabled = False
End Sub

The SelectIfDifferent procedureis shownin Example 19-10. It basically searches through
the rngSearch range, looking for cells whose contents differ from the previous cell. Since we do
not know whether the range is a column or row (or portion thereof), it is easier to use adouble
For loop. However, it would be a bit more efficient to split the code into two cases (cColumns =
1 and cRows = 1). Note that the first cell needs a bit of specia attention, since we want to include
it in the selection. The selection is accumulated in a Range object variable called rngMatch,
using the Union function. However, we always need to consider the possibility that rngMatch is

286

currently equal to Nothing, in which case the Uniion function will (unfortunately) return
Nothing. In other words:

Application.Union(Something, Nothing) = Nothing
Example 19-10. The SelectlfDifferent Procedure

Private Sub SelectlfDifferent()
Dim rngMatch As Range
Dim vCellValue As Variant
Dim vPreviousCellValue As Variant
Dim cMatches As Integer
Dim oCell As Object
Dim cRows As Integer, cColumns As Integer
Dim r As Integer, c As Integer

" Get row and column count (one of which is 1)
cColumns = rngSearch.Columns.Count
cRows = rngSearch._Rows.Count

" Start search
cMatches = 0
Set rngMatch = Nothing

For r = 1 To cRows
For ¢ = 1 To cColumns
Set oCell = rngSearch.Cells(r, ¢)
vCellvalue = oCell.Value
vCellValue = CStr(vCellValue)

ITr =1And c =1 Then
" Include first celi
IT rngMatch Is Nothing Then
Set rngMatch = oCell
Else
Set rngMatch = Application.Union(rngMatch, oCell)
End If

cMatches = cMatches + 1
" Save value for next comparison
vPreviousCel lValue = vCellValue

Else
" Do comparison with previous cell
vCellValue = rngSearch.Cells(r, c).Value
vCellValue = CStr(vCellValue)

IT vCellValue <> vPreviousCellValue Then
IT rngMatch Is Nothing Then
Set rngMatch = oCell
Else
Set rngMatch = Application.Union(rngMatch, oCell)
End If

cMatches = cMatches + 1
End If

" Save value for next comparion
vPreviousCellValue = vCellvalue
End If
Next " column

IkuﬂBTﬁf”

Next " row

" Select the range
If cMatches > 0 Then
rngMatch.Select
cmdUndo.Enabled = False
Else
MsgBox "'No matching cells. Selection will not be changed.",
vbiInformation
cmdUndo.Enabled = False
End If
End Sub

The SelectlfSame procedure, which is shown in Example 19-11, isvery similar to the
SelectlIfDifferent procedure. One significant difference is that we do not include the first
cell.

Example 19-11. The SelectlfSame Procedure

Private Sub SelectlfSame()

Dim rngMatch As Range

Dim vCellValue As Variant

Dim vPreviousCellValue As Variant

Dim cMatches As Integer

Dim oCell As Object

Dim cRows As Integer, cColumns As Integer
Dim r As Integer, c As Integer

" Get row and column count (one of which is 1)
cColumns = rngSearch.Columns.Count
cRows = rngSearch.Rows.Count

" Start search
cMatches = 0
Set rngMatch = Nothing

For r

= 1 To cRows
For c = 1

To cColumns

Set oCell = rngSearch.Cells(r, ¢)
vCellValue = oCell.Value
vCellValue = CStr(vCellValue)

ITr=1And c =1 Then
" Save First value for next comparion
vPreviousCellValue = vCellVvalue

Else
" Do comparison with previous cell
vCellValue = rngSearch.Cells(r, c).Value
vCellValue = CStr(vCellvalue)
IT vCellValue = vPreviousCellValue Then

IT rngMatch Is Nothing Then
Set rngMatch = oCell

Else
Set rngMatch = Application.Union(rngMatch, oCell)
End If
cMatches = cMatches + 1
End IFf

" Save value for next comparion

288

vPreviousCellValue = vCellvalue
End If
Next " column
Next * row

" Select the range
IT cMatches > 0 Then
rngMatch.Select
cmdUndo.Enabled = False
Else
MsgBox "'No matching cells. Selection will not be changed.",
vbiInformation
cmdUndo.Enabled = False
End IFf

End Sub

The SelectlfEmpty and SelectlfNotEmpty procedures are almost identical.
SelectIfEmpty isshownin Example 19-12.

Example 19-12. The SelectlfEmpty Procedure

Private Sub SelectlfEmpty()
Dim rngMatch As Range
Dim cMatches As Integer
Dim oCell As Object
Dim cRows As Integer, cColumns As Integer
Dim r As Integer, c As Integer

" Get row and column count (one of which is 1)
cColumns = rngSearch.Columns.Count
cRows = rngSearch.Rows.Count

" Start search
cMatches = 0
Set rngMatch = Nothing

For r = 1 To cRows
For ¢ = 1 To cColumns
Set oCell = rngSearch.Cells(r, ¢)
IT IsEmpty(oCell) Then
IT rngMatch Is Nothing Then
Set rngMatch = oCell

Else
Set rngMatch = Application._Union(rngMatch, oCell)
End IFf
cMatches = cMatches + 1
End IFf

Next " column
Next " row

" Select the range
If cMatches > 0 Then
rngMatch.Select
cmdUndo.Enabled = False
Else
MsgBox "'No matching cells. Selection will not be changed.",
vbInformation
cmdUndo.Enabled = False

289

End If
End Sub

To get the SelectIfNotEmpty procedure, just changetheline:
IT IsEmpty(oCell) Then
to:

IT Not IsEmpty(oCell) Then

Finally, the CompleteColumns and Comp leteRows procedures are called from the
corresponding command-button Click events and are very similar. CompleteColumns isshown
in Example 19-13.

Example 19-13. The cmdCompleteColumns_Click Procedure

Private Sub cmdCompleteColumns_Click()
" For each selected cell, select the entire column

Dim oCell As Object
Dim rngNew As Range

Set rngNew = Nothing

For Each oCell In Selection
IT rngNew Is Nothing Then
Set rngNew = oCell.EntireColumn
Else
Set rngNew = Union(rngNew, oCell_EntireColumn)
End If
Next

rngNew.Select
cmdUndo.Enabled = True
End Sub

To get CompleteRows, just replace EntireColumn by EntireRow in two places.

290

Chapter 20. Pivot Tables

In this chapter, we take alook at pivot tables and how to create and format them using code.

20.1 Pivot Tables

While we are assuming that the reader is familiar with the basics of Excel, it probably would not
hurt to review the concept of a pivot table (or PivotTable) quickly.

PivotTables are one of the most powerful featuresin Excel. They are designed to accomplish three
main tasks:

e Import external data
e Aggregate data; for example, sum, count, or average the data
e Display the datain interesting ways

PivotTables can use data from external sources, as well as from one or more Excel tables. For
instance, the data for a PivotTable can come from an Access database. However, setting up Excel
to import external data requires that the appropriate data source drivers be installed on the user's
computer. Moreover, there are significant limitations on Excel's ability to import data through
PivotTables. For instance, al strings are limited to alength of 255 characters, which makes using
SQL to define a data source much more difficult.

All in all, importing data using a PivotTable can be problematic. Furthermore, we aways have the
option of importing the required data directly to an Excel worksheet (using a variety of more
sophisticated methods, such as DAO and the GetRows method) and then creating the PivotTable
from the worksheet. Accordingly, we will restrict our discussion to using Excel data asthe
PivotTable source.

Table 20-1, which represents sales from afictitious fast food company that has both company and
franchise stores, shows the first half of the data that we will use to build our pivot table. The actual
source table is an Excel worksheet that contains twice the number of rows as Table 20-1, the
additional rows being the analogous data for the year 1997. (Thus, the first column in the
remainder of the table contains the year 1997.)

Table 20-1. Source Data for PivotTable (for 1998)

Year | Period | StoreCode Store City Store Type | Transactions Sales

1998 |1 BO-1 BOSTON Company 3881 $6,248.00
11998 |1 IBO-2 'BOSTON Company 13789 1$5,722.00
11998 |1 IBO-3 'BOSTON Company 13877 1$6,278.00
1998 |1 BO-4 BOSTON Company 3862 $6,123.00
1998 |1 BO-5 BOSTON Franchise |4013 $6,861.00
1998 |1 BO-6 BOSTON Franchise [3620 $5,039.00
11998 |2 BO-1 'BOSTON Company 13948 1$6,468.00
11998 |2 IBO-2 'BOSTON Company 13878 1$6,301.00
1998 |2 BO-3 BOSTON Company 13911 $6,390.00
1998 |2 BO-4 BOSTON Company 13926 $6,438.00
1998 |2 BO-5 BOSTON Franchise ~ [3990 $6,767.00

291

11998 |2 IBO-6 BOSTON Franchise 13615 '$5,091.00
1998 |3 BO-1 BOSTON Company [3936 $6,307.00
1998 |3 BO-2 BOSTON Company [3857 $6,153.00
1998 |3 BO-3 BOSTON Company [3898 $6,319.00
1998 |3 BO-4 BOSTON Company [3949 $6,453.00
11998 |3 IBO-5 'BOSTON Franchise 3617 '$5,052.00
11998 |3 IBO-6 'BOSTON Franchise 3624 '$5,111.00
1998 |4 BO-1 BOSTON Company [3853 $6,021.00
1998 |4 BO-2 BOSTON Company [3891 $6,333.00
1998 |4 BO-3 BOSTON Company [3892 $6,289.00
11998 |4 BO-4 'BOSTON Company 13966 $6,571.00
11998 |4 BO-5 'BOSTON Franchise [3595 1$4,945.00
1998 |4 BO-6 BOSTON Franchise 3611 $5,051.00
1998 |1 LA-1 LOSANGELES |Franchise [8259 $29,267.00
1998 |1 LA-2 LOSANGELES |Company |9140 $31,947.00
11998 |1 ILA-3 ILOSANGELES |Company (9727 1$35,405.00
11998 |1 LA-4 ILOSANGELES |Franchise |9494 $33,830.00
1998 |1 LA-5 LOSANGELES |Franchise |10644 $39,971.00
1998 |1 LA-6 LOSANGELES |Franchise |10649 $40,077.00
1998 |2 LA-1 LOSANGELES |Franchise |9066 $32,595.00
1998 |2 LA-2 LOSANGELES |Company |9789 $35,217.00
11998 |2 ILA-3 LOSANGELES |Company (9814 1$35,455.00
1998 |2 LA-4 LOSANGELES |Franchise |9917 $35,926.00
1998 |2 LA-5 LOSANGELES |Franchise |10617 $39,424.00
1998 |2 LA-6 LOSANGELES |Franchise |10190 $38,387.00
1998 |3 LA-1 LOSANGELES |Franchise |9531 $33,966.00
11998 |3 ILA-2 LOSANGELES |Company (9698 1$34,419.00
1998 |3 LA-3 LOSANGELES |Company |9771 $34,494.00
1998 |3 LA-4 LOSANGELES |Franchise |10232 $37,315.00
1998 |3 LA-5 LOSANGELES |Franchise |10561 $39,141.00
1998 |3 LA-6 LOSANGELES |Franchise |10924 $41,938.00
11998 |4 ILA-1 ILOSANGELES |Franchise 19310 1$33,202.00
11998 |4 ILA-2 ILOSANGELES |Company (9496 1$33,910.00
1998 |4 LA-3 LOSANGELES |Company |9596 $34,500.00
1998 |4 LA-4 LOSANGELES |Franchise |10050 $37,274.00
1998 |4 LA-5 LOSANGELES |Franchise |10440 $38,304.00
11998 |4 LA-6 ILOSANGELES Franchise 10778 $40,965.00
11998 |1 INY-1 INEW Y ORK Company 16390 $19,890.00
1998 |1 NY-2 NEW Y ORK Franchise 7016 $22,229.00
1998 |1 NY-3 NEW Y ORK Franchise 7293 $24,077.00
1998 |1 NY-4 NEW Y ORK Company 7037 $22,704.00
11998 |1 INY-5 INEW Y ORK Franchise |7815 1$26,962.00
11998 |1 INY-6 INEW Y ORK Franchise |6935 1$22,925.00
1998 |2 NY-1 NEW Y ORK Company (6954 $22,389.00
1998 |2 NY-2 NEW Y ORK Franchise 7531 $25,324.00
1998 |2 NY-3 NEW Y ORK Franchise 7486 $24,753.00

292

11998 2 INY-4 NEW Y ORK Company |7285 1$24,112.00

1998 |2 NY-5 NEW Y ORK Franchise |7749 $26,325.00
1998 |2 NY-6 NEW Y ORK Franchise (6881 $23,123.00
1998 [3 NY-1 NEW Y ORK Company |7256 $23,330.00
1998 [3 NY-2 NEW Y ORK Franchise |7330 $24,258.00
11998 |3 INY-3 INEW Y ORK Franchise |7212 1$23,386.00
11998 |3 INY-4 INEW Y ORK Company |7480 1$24,619.00
1998 |3 NY-5 NEW Y ORK Franchise |6771 $22,189.00
1998 [3 NY-6 NEW Y ORK Franchise 6954 $23,188.00
1998 |4 NY-1 NEW Y ORK Company |7086 $22,703.00
11998 |4 INY-2 INEW Y ORK Franchise |7275 1$24,245.00
11998 |4 INY-3 INEW Y ORK Franchise |7121 1$23,025.00
1998 |4 NY-4 NEW Y ORK Company |7562 $25,329.00
1998 |4 NY-5 NEW Y ORK Franchise |6569 $20,845.00
1998 |4 NY-6 NEW Y ORK Franchise (6973 $23,220.00

The Period column in Table 20-1 is the time period. For simplicity, we consider only four time
periods. The Store Code column gives the store code, used to uniquely identify a store. The Store
City gives the city in which the store is located. The Store Type column indicates whether the
store is owned by the company or is franchised. The Transactions column gives the number of
transactions for that time period. The Sales column gives the total sales for that store during that
period.

Note that there is one, and only one, row for each time period/store code. (In database language,
the time period/store code forms a key for the data.)

Our godl isto create aPivotTable from the datain Table 20-1. Of course, before creating a
PivotTable, we need to identify the type of aggregate datain which we are interested. Clearly, we
want total sales and transaction counts. The question is: "Over what groupings?’

The best approach isfirst to identify the most refined (or smallest) grouping for the aggregate data.
In this case, it is store type/store location/time period. For example, we want the total sales for all
company storesin New Y ork during period 1.

In addition, we will want aggregates for larger groupings—for example, total sales for all
company storesin New Y ork over all periods and total salesfor New Y ork.

Finally, we want separate totals for the years 1998 and 1997.

20.2 The PivotTable Wizard

Let usfirst walk through the PivotTable wizard to create our PivotTable. Then we will create the
same PivotTable using code.

Thefirst step isto select the source data and start the wizard by selecting PivotTable Report under
the Data menu. Thiswill produce thefirst wizard dialog, as shown in Figure 20-1. (These figures
are for Excel 97 and 2000. The Excel XP wizard has a somewhat different appearance.)

Figure 20-1. Step 1 in the PivotTable wizard

293

PrvotTable Wizard - Step 1 of 4

VWhere s the data that you want to analyze?

* Pirosoft Excel list or database]
™ External data source

" Multiple consolidation ranges
————— C anoter PivotTable

z) Cancel | et > | Finish

Note that this dialog allows us to select the data source for the PivotTable data. Clicking the Next
button produces the dialog in Figure 20-2.

Figure 20-2. Step 2 in the PivotTable wizard

PirvotTable Wizard - Step 2 of 4

\Where iz the data that you want to uss?

Range: [EIDEEICCR | oo,
Cancel | < Back | Ment: = I Einish |

Since we selected the correct source range before starting the wizard, Excel has correctly
identified that range in Figure 20-2, so we can simply hit the Next button, which produces the

dialog in Figure 20-3.

Figure 20-3. Step 3 in the PivotTable wizard

PivofTable Wizard - Step 3 of 4
[P
L] — = Corstrct your PivalTablke by dragang
=) e field buttons on the right o the
diagram on tha left

PAGE COLLM | F'EfII:II.'I

RO DATA

294

Thisdialog is where we format the PivotTable by deciding which columns of the original source
table become pages in the PivotTable, which become rows, which become columns, and which
become data (for aggregation). The procedure is to drag the buttons on the right to the proper
location—row, column, page, or data. (We want one page for each of the two years.)

For our example, we drag the buttons to the locations shown in Figure 20-4. Note that the only
button not used is Store Code. Thisfield isthe aggregate field, that is, we will sum over al store
codes.

Figure 20-4. Step 4 in the PivotTable wizard

FivolTable Wizard - Step 1 of 4

Corstruct your PivotTable by dragging
the field buttons an the right o the
Llid'J arn on the left

i

T

| ‘Yaar | Sales I
o Period | coLumn od
- Store Ci
e
C (5 !
i SumofSsls | Store City
RO DATA
Store Tvp
Transact

carcel | <gak [Chemz] Enen |

Clicking the Next button takes us to the dialog in Figure 20-5, where we choose the location for
the PivotTable. We choose a new worksheet.

Figure 20-5. Step 5 in the PivotTable wizard

PivolTable Wizard - Step 4 of 4

Whare do you want o put the PivotTable?

& plew worksheat
" Existing warksheet

I h

Click Finish to create your PhotTabke.

Carcel Optins... < Back | _Ersh |

Clicking the Finish button produces the PivotTable in Figure 20-6.

Figure 20-6. The PivotTable

295

- B (s D E | =] H
1 Yaar ||'.2JI:I - |
2
2 Pariod |
4 Siore City| Store Typd Data 1 2 k] 4| Grand Tote
5 BOSTOW |Compeary |Sum of Transactons | J8248 28714 28672 28602 14236
B sum of Salss A46TE AGOZT 4G2E6 46223 184054
¥ Franchise|Sum of Transactons | 13993 13042 132275 130 L4420
g sum of Sales 1S M738 18632 18325 ey
B BOSTOM Sum of Trénsachons 42247 42655 41847 41812 TOHEDE
10 | BOSTON Sum of Sales B GEGRE B4BEE S4545 284506
11 [LOS ANGY Company |Sum of Transactons | 34535 35838 35592 3500 141219
12 Sum of Sales 1224758 129564 126340 125418 S4E00
15 Franchise|Sum of Transachons | 71533 72047 75849 74302 84541
14 Sum of Saes 262431 265274 ITEEIS ITASE 10B4561
158 [LOE ANGELES Sum of Transactions 106171 102885 111311 102353 A35TED
A6 LS AMGELES Sum of Sales 585000 2097838 ADGGES 200043(1580361
AT |MEVWY YO Company [Sum of Transactions | 24616 26104 27015 26854 104589
18 Sum of Sales TENED BS251 B790% BE05E 2502
19 Franchiza|Sum of Transactons | 53273 54351 51822 51218 210664
20 Sum of Sales 176353 182461 170537 167446 GOETOT
21 |[MNEW YORK Sum of Transacbhons 77680 80455 TEE3T TadvZ 215252
23 NEW YORK Sum of Zaks 2040442 2BIT12 258442 255004 1AE 00
23 Tola Sum of Transachons 22E301 231985 232095 229277 S19662
24 Total Sum of Sales TOGGAS T34216 728035 720001 JEA00ST

Note that the page button is labeled Y ear. Selecting one of All, 1998, or 1997 from the drop-down
list box next to this button will confine the data to that selection. Thus, the pivot table has three
pages: 1997, 1998, and combined (or All).

Note also that the columns are labeled by periods and the rows are labeled by both Store City and
Store Type, as requested. In addition, Excel has created anew field called Data that is used as row
labels. In this case, Excel correctly guessed that we want sums, but if Excel had guessed
incorrectly we could make a change manually.

In summary, we can see that the main components of a pivot table are the pages, rows, columns,
and datafields.

Rather than pursue further development of this PivotTable using the Excel interface, let us now
switch to using code.

20.3 The PivotTableWizard Method

To create a PivotTable through code, we use the PivotTableWizard method of the Worksheet
object or the PivotTable object. Contrary to what you might assume, the PivotTableWizard

method does not start the PivotTable wizard. Rather, it is used to create a PivotTable when applied
to the Worksheet object or to modify an existing PivotTable when applied to the PivotTable object.

The syntax is:

expression.PivotTableWizard(SourceType, SourceData, TableDestination, _
TableName, RowGrand, ColumnGrand, SaveData, HasAutoFormat, _
AutoPage, Reserved, BackgroundQuery, OptimizeCache, _
PageFieldOrder, ageFieldWrapCount, ReadData, Connection)

where expression returns either a Worksheet object or a PivotTable object. Asyou might
expect, the parameters of the PivotTableWizard method correspond to settings in the PivotTable
wizard. On the other hand, the PivotTableWizard method cannot do everything that the PivotTable

296

wizard can do. For instance, it cannot be used to specify the row, column, and data fields. (We
will see how to do that a bit later.) Put another way, the PivotTableWizard method sets the
properties of an empty PivotTable.

Let us go over some of the more important parameters to the PivotTableWizard method.

The optional SourceType parameter specifies the source of the PivotTable data and can be one
of the following X1PivotTableSourceType constants:

Enum XIPivotTableSourceType
xIPivotTable = -4148
xIDatabase = 1
xIExternal = 2
xIConsolidation = 3

End Enum

These directly correspond to the first dialog of the PivotTable wizard, as shown in Figure 20-1.

If we specify avalue for SourceType, then we must also specify avalue for SourceData. If
we specify neither, Excel uses the source type xIDatabase and the source data from a named
range called Database. If this named range does not exist, Excel uses the current region if the
current selection isin arange of more than 10 cells that contain data. Otherwise, the method will
fail. All inal, thisrule is sufficiently complicated to warrant always specifying these parameters.

The SourceData parameter specifies the data for the PivotTable. It can be a Range object, an
array of ranges, or atext constant that represents the name of another PivotTable. For external data,
this must be atwo-element array, the first element of which is the connection string specifying the
ODBC source for the data, and the second element of which isthe SQL query string used to get
the data.

The TableDestination parameter is a Range object specifying where the PivotTable should
be placed. It can include aworksheet qualifier to specify the worksheet upon which to place the
pivot table as well.

The TableName parameter is a string that specifies the name of the new PivotTable.

The RowGrand parameter should be set to True to show grand totals for rowsin the PivotTable.
Similarly, the ColumnGrand parameter should be set to True to show grand totals for columns
in the PivotTable.

The SaveData parameter should be set to True to save datawith the PivotTable. If itisFalse,
then only the PivotTable definition is saved.

HasAutoFormat isset to True to have Excel automatically format the PivotTable whenever it is
refreshed or whenever any fields are moved.

The PageFieldOrder and PageFieldWrapCount parameters are meaningful only when
there is more than one page field, in which case these parameters specify where the page field
buttons and concomitant drop-down list boxes are placed relative to one ancther. The
PageFieldOrder parameter can be either xIDownThenOver (the default) or
x0verThenDown. For instance, if there were three page fields, then the setting:

PageFieldOrder = xIDownThenOver
PageFieldWrapCount = 2

would arrange the page fields as in Figure 20-7. This pivot table isonly for illustration of the page
field order. It was created from the original pivot table by moving the row fields to page fields.
Note also that setting PageFieldOrder to x10verThenDown would simply reverse the
positions of Store City and Store Type.

Figure 20-7. lllustrating page field order

A E C O E F
1
2 |Year ol IStore Type [120) |
3 |Stors City 1Al -
4
& Pariod |
6 |Data 1 2 3 4| zrand Total
T Zum of Transactons 22ea01 FE1A9G 2320595 FRATT S1486549
8 | Zum of Sales 75545 734216 725985 720001 2890057

The following code ostensibly creates the PivotTable in Figure 20-6 at the location of the active
cel:

ActiveSheet.PivotTableWizard _
SourceType:=xIDatabase, _
SourceData:=""Source"IR1C1:R145C7", _
TableName:="Sales&Trans"

In fact, the results of executing this code are shown in Figure 20-8. The reason nothing much
seems to have happened isthat, as we mentioned earlier, the PivotTableWizard method does not
allow usto specify which fields are page, row, column, and data fields. The table in Figure 20-8 is
an empty PivotTable.

Figure 20-8. An empty PivotTable

A, B
1 Total
2 Total

20.4 The PivotTable Object

To understand better what must be done next, we must discuss the PivotTable object and its
various child collection objects.

Invoking the PivotTableWizard method has created a PivotTable object named Sales& Trans for us.
All PivotTable objects have a PivotFields collection, accessed through the PivotFields property.
Thus, the code:

Dim pf As PivotField

For Each pf In _

ActiveSheet.PivotTables("'Sales&Trans') .PivotFields
Debug.Print pf.Name

Next

produces the following list of pivot fields:

298

Year

Period

Store Code
Store City
Store Type
Transactions
Sales

Now, each PivotField object can have a designation that specifies whether thisfield isto be used
asarow field, acolumn field, a pagefield, or adatafield. This designation is referred to asits
orientation.

It turns out that there is more than one way to set the orientation of a pivot field. One approach is

to set the pivot field's Orientation property, and another approach isto use the AddFields method.

Unfortunately, neither of these methods is sufficiently documented, so some experimentationisin
order.

Asto the Orientation property approach, consider the code in Example 20-1, which sets both the
Orientation and Position properties. We will discuss the subtleties of this code after you have
looked at it.

Example 20-1. The CreatePivotFields Procedure

Sub CreatePivotFields()
" Assume source for pivot table
" is in sheet named "Source®

ActiveSheet.PivotTableWizard _
SourceType:=xIDatabase, _
SourceData:=""Source"IR1C1:R145C7", _
TableName:=""PivotTablel"

With ActiveSheet.PivotTables(*'Sales&Trans'™)
Debug.-Print "'Before all:"
ShowFields

-PivotFields('Year'™) .Orientation = xlIPageField
-PivotFields("'Year') .Position = 1

-PivotFields('Store City").Orientation = xIRowField
-PivotFields('Store City").Position = 1

-PivotFields('Store Type"™).Orientation = xIRowField
-PivotFields('Store Type').Position = 2

-PivotFields(*'Period™) .Orientation = xIColumnField

Debug.-Print "'Before data fields:"
ShowFields

With .PivotFields("'Transactions')
.Orientation = xlIDataField
.Position = 1

End With

With .PivotFields(''Sales™)
.Orientation = xlIDataField
.Position = 2

End With

299

Debug.Print
Debug.-Print "After data fields:"

ShowFields

-PivotFields("'Data"™) -Orientation = xIRowField
-PivotFields(''Data') .Position = 3
End With
End Sub

The ShowFields procedure used in CreatePivotFields isshown in Example 20-2; it
simply prints (to the Immediate window) alist of al pivot fields and is very useful for
experimenting or debugging.

Example 20-2. The ShowFields Procedure

Sub ShowFields(Q)
Dim pf As PivotField

Debug.Print "*PivotFields:"

For Each pf In _
ActiveSheet._PivotTables(*'Sales&Trans'™) .PivotFields
Debug.-Print pf.Name
Next

Debug.-Print "*RowFields:"

For Each pf In _
ActiveSheet.PivotTables("'Sales&Trans') .RowFields
Debug.Print pf.Name
Next

Debug.-Print "*ColFields:"

For Each pf In _
ActiveSheet._PivotTables('Sales&Trans'™) .ColumnFields
Debug.-Print pf.Name
Next

Debug.Print "*DataFields:"

For Each pf In _
ActiveSheet._PivotTables('Sales&Trans') .DataFields
Debug.Print pf.Name
Next
End Sub

Running CreatePivotFields results in the following display to the Immediate window:

Before all:
*PivotFields:
Year

Period

Store Code
Store City
Store Type
Transactions
Sales

300

*RowFields:
*ColFields:
*DataFields:

Before data fields:
*PivotFields:
Year

Period

Store Code
Store City
Store Type
Transactions
Sales
*RowFields:
Store City
Store Type
*ColFields:
Period
*DataFields:

After data fields:
*PivotFields:

Year

Period

Store Code

Store City

Store Type
Transactions
Sales

Data

*RowFields:

Store City

Store Type

Data

*ColFields:

Period
*DataFields:

Sum of Transactions
Sum of Sales

The first thing we notice from thislist is that the specid pivot field called Datais created by Excel
only after the Transactions and Sales fields are assigned the x IDataField orientation. This
statement is further supported by the fact that if we move the last two lines of code;

-PivotFields('Data') .Orientation = xIRowField
-PivotFields(''Data') .Position = 3

to just before the Wi th block related to the Transactions field, Excel will issue an error message
when we try to run the code, stopping at the line:

-PivotFields("'Data"™) -Orientation = xIRowField
because it cannot set the Orientation property of the nonexistent Data field.

Next, we observe that, with respect to Row, Column, and Page fields, Excel simply adds the pivot
fields to the appropriate collections. However, with respect to Datafields, Excel creates new field
objects called Sum of Transactions and Sum of Sales that are considered data fields but not pivot-
table fields!

301

20.4.1 Naming Data Fields

We should make a few remarks about naming data fields. It isimportant to note that if the name of
adatafield has not been changed but we make a change to the aggregate function, say from Sum
to Average, then Excel will automatically rename the data field, in this case from Sum of Sales
to Average of Sales. However, once we set a new name for the data field, Excel will not
rename it when we change the aggregate function.

We can rename a data field simply by setting its Name property. However, even though Data
fields do not seem to belong to the PivotFields collection, we cannot use the name of apivot field
for adatafield. For instance, we cannot rename Sum of Transactions to Transactions
since thisis already taken by the pivot field. (Trying to do so will produce an error.) Thus, in
designing the source table for the pivot table, we should choose a column heading that we do not
want to use in the pivot tablel

20.4.2 The Complete Code

For reference, let us put together the code required to create the pivot table in Figure 20-6; it is
shown in Example 20-3.

Example 20-3. The CreatePivot Procedure

Sub CreatePivot()
" Create pivot table at active cell
" Assumes that the source table is in sheet called Source

ActiveSheet.PivotTableWizard _
SourceType:=xIDatabase, _
SourceData:=""Company Both®"!R1C1:R145C7", _
TableName:="Sales&Trans"

" Assign field orientations and data fields

With ActiveSheet.PivotTables("'Sales&Trans'™)
-PivotFields("Year'™) .Orientation = xlIPageField
-PivotFields("'Year'™) .Position = 1

-PivotFields('Store City').Orientation =
xIRowField
-PivotFields('Store City').Position = 1

-PivotFields('Store Type"™).Orientation =
xIRowField
-PivotFields('Store Type').Position = 2

-PivotFields("'Period') .Orientation =
xIColumnField

With .PivotFields("'Transactions')
.Orientation = xlDataField
.Position = 1

End With

With .PivotFields(''Sales™)
.Orientation = xlDataField
.Position = 2

End With

-PivotFields("'Data") -Orientation = xIRowField

302

-PivotFields(''Data'") .Position = 3
End With
End Sub

Anather approach to assigning orientation for the pivot fields is to use the AddFiel ds method of
the PivotTable object. We can use this method for al but datafields. The syntax is:

PivotTableObject.AddFields(RowFields, _
ColumnFields, PageFields, AddToTable)

The optional RowFields parameter can specify either a single pivot-field name or an array of
pivot-field names to be added as rows, and similarly for the ColumnFields and PageFields
parameters.

It isimportant to note that any invocation of the AddFields method will replace al existing fields
of the given type (row, column, or page) with the fields designated by the parameters of the
method. To increment rather than replace existing fields, we must set the AddToTab le parameter
to True.

The aternative to CreatePivot shown in Example 20-4 uses the AddFields method for row,
column, and page fields. Note that this is shorter than the previous procedure. (It is aso the
approach taken by Excel itself when we record a macro that creates this pivot table.)

Example 20-4. Creating a Pivot Table Using the AddFields Method

Sub CreatePivot2()
" Create pivot table at active cell
" Assumes that the source table is in sheet called Source

ActiveSheet.PivotTableWizard _
SourceType:=xIDatabase, _
SourceData:=""Source"IR1C1:R145C7", _
TableName:="Sales&Trans2"

ActiveSheet._PivotTables(*'Sales&Trans2') _.AddFields _
RowFields:=Array(‘'Store City", "Store Type'), _
ColumnFields:="Period"”, _

PageFields:="Year"

With ActiveSheet.PivotTables('Sales&Trans2™)
With _PivotFields("'Transactions')
-Orientation = xlIDataField
-Position = 1
End With

With _PivotFields(''Sales™)
.Orientation = xlIDataField
.Position = 2

End With

End With
End Sub

20.5 Properties and Methods of the PivotTable Object

303

The members of the PivotTable object are shown in Table 20-2. Well discuss the most important

of these members by their funct

ion.

Table 20-2. Members of the PivotTable Object

_Default ErrorString PrintTitles<vo>
_PivotSelect<v10> Format<v9> RefreshDate

AddDataField<v10> GetData RefreshName

AddFields GetPivotData<v10> RefreshTable

\Application \GrandTotal Name<v9> 'Repeat!temsOnEachPrintedPage<v9>
Cachelndex HasAutoFormat RowFields

CalculatedFields HiddenFields RowGrand

CalculatedM embers<v10> InnerDetail RowRange

ColumnFields ListFormulas SaveData

|ColumnGrand Manual Update 'SelectionMode

|ColumnRange MDX<v10> ‘ShowCellBackgroundFromOLAP<v10>
CreateCubeFile<v10> Mergel abels ShowPageMultipleltemL abel <v10>
Creator Name ShowPages

CubeFields<v9> NullString SmallGrid<v9>

DataBodyRange \PageFieldOrder 'SourceData

DataFields |PageFields 'Subtotal HiddenPagel tems

Datal abelRange PageFieldStyle TableRangel
DataPivotField<v10> PagekFi el dWrapCount TableRange2
DisplayEmptyColumn<v10> |PageRange TableStyle
DisplayEmptyRow<v10> |PageRangeCells Tag

DisplayErrorString Parent "Total sAnnotation<v9>
Displaylmmediateltems<v10> |PivotCache Update

DisplayNull String PivotFields V acatedStyle

Dummy15<v10> PivotFormulas Value

EnableDataV alueEditing<v10>|PivotSel ect Version<v10>

[EnableDrilldown IPivotSelection ViewCal cul atedM embers<v10>
EnableFieldDialog PivotSelectionStandard<v10>|VisibleFields
EnableFieldList<v10> PivotTableWizard Visual Total s<v10>

EnableWizard PreserveFormatting

20.5.1 Returning a Fields Collection

Several of the members of the PivotTable object are designed to return a fields collection.

20.5.1.1 ColumnFields property

This property returns the collection of all column fields, using the syntax:

PivotTableObject.cCol

umnFields

Alternatively, we can return selected column fields using the syntax:

PivotTableObject.ColumnFields(Index)

304

where Index iseither asingle index (the index number of the desired field) or an array of indexes.
20.5.1.2 DataFields property

This property returns the collection of all data fields, using the syntax:
PivotTableObject.DataFields

Alternatively, we can return selected data fields using the syntax:
PivotTableObject.DataFields(Index)

where Index iseither asingle index (the index number of the desired field) or an array of indexes.
20.5.1.3 HiddenFields property

Aswewill see, apivot field can be hidden by setting its orientation to x IHidden. The
HiddenFields property returns the collection of all hidden fields, using the syntax:

PivotTableObject.HiddenFields

Alternatively, we can return selected hidden fields using the syntax:
PivotTableObject.HiddenFields(Index)

where Index is either asingle index (the index number of the desired field) or an array of indexes.
20.5.1.4 PageFields property

The PageFields property returns the collection of all page fields, using the syntax:
PivotTableObject.PageFields

Alternatively, we can return selected page fields using the syntax:
PivotTableObject.PageFields(Index)

where Index iseither asingle index (the index number of the desired field) or an array of indexes.
20.5.1.5 PivotFields property

The PivotFields property returns the collection of all pivot fields, using the syntax:
PivotTableObject.PivotFields

Alternatively, we can return selected pivot fields using the syntax:
PivotTableObject.PivotFields(Index)

where Index iseither asingle index (the index number of the desired field) or an array of indexes.

20.5.1.6 RowFields property

305

The RowFields property returns the collection of all row fields, using the syntax:
PivotTableObject.RowFields

Alternatively, we can return selected row fields using the syntax:
PivotTableObject.RowFields(Index)

where Index iseither asingle index (the index number of the desired field) or an array of indexes.
20.5.1.7 VisibleFields property

The VisibleFields property returns the collection of al visible fields, using the syntax:
PivotTableObject.VvisibleFields

Alternatively, we can return selected visible fields using the syntax:
PivotTableObject.VvisibleFields(Index)

where Index iseither asingle index (the index number of the desired field) or an array of indexes.

20.5.2 Totals-Related Members
The PivotTable object has two properties that affect the display of totals.
ColumnGrand property (R/W Boolean)

When this property is True, the PivotTable shows grand column totals.
RowGrand property (R'W Boolean)

When this property is True, the PivotTable shows grand row totals.

Toillustrate, referring to the pivot table in Figure 20-6, the code:

ActiveSheet._PivotTables('Sales&Trans'™). _
ColumnGrand = False

ActiveSheet.PivotTables("'Sales&Trans'™). _
RowGrand = False

produces the pivot table in Figure 20-9, with no grand totals.

Figure 20-9. No grand totals

306

1 | Year ey

2 |

2 Pariod |

4 Store Citv |Store Type|Data 1 2 3 4
5 BOSTON |Company |Sum of Transactions | 28248 28714 28672 28602
fi Sum of Sales 44676 46927 46256 46223
if Franchize |Sum of Transactions | 13982 13842 12275 132210
) Sum of Sales 21816 21739 18632 18325
8 BOSTOM Sum of Transactons 42241 42656 41987 41812
10 BOSTOM Sum of Sales G434 GOGE6 64588 64545
11 LOS AMGECompany | Sum of Transactions | 34588 35838 35602 25001
13 Sum of Sales 123478 129564 126340 1254135
13 Franchise Som of Transachons | M1982 0 f2847 /58190 743202
14 Sum of Sales 262431 268274 279325 27453
18 LOS ANGELES Sum of Transactions 106171 108885 1112311 108393
16 LOS AMNGELES Sum of Sales 385900 307228 ADSEES 390040
17 HEW YOR|Company | Sum of Transactions | 24616 26104 27015 26854
18 Sum of Sales TE0EY 85251 §7905 BE0SS
19 Franchise |Sum of Transactions | 53272 54251 51822 51218
20 Sum of Sales 176352 182481 170537 167446
21 |[NEW YORK Sum of Transactions Troge a0d4sh TEEAT TE0T2
22 |MEW YORK Sum of Sales 294442 267712 298442 255504

We can also suppress the display of individual pivot-field totals, such as the totals for Store City in
Figure 20-9. Thisis a property of the particular PivotField object, so we will discuss it when we
discuss this object later in the chapter. As a preview, however, the display of field totalsis
governed by the Subtotals property of the PivotField object. For instance, the following code turns
off al field totalsin Figure 20-9:

Dim 1 As Integer

For 1 =1 To 12
ActiveSheet.PivotTables("'Sales&Trans'™). _
PivotFields(''Store City').Subtotals(i) = False

Next

(There are 12 types of totals, and we must turn them all off.) This produces the pivot tablein
Figure 20-10.

Figure 20-10. No totals at all

A B i] E F G
1 |Year [y -|
2
3 Period |
4 Store City | Store Type |Data 1 2 3 4
5 BOSTOM |Compsny (Sumof Transacions| 28245 28714 28672 26602
i] Sum of Sales 4678 46927 46256 46223
T Franchise |Sum of Transacions| 139833 13842 13279 13210
g Sum of Sales 21816 21730 18632 18325
9 Lo AMCGE Company |Sum of Transaclions | 24938 35938 35602 25001
10 Sum of Sales 123475 123564 126240 125418
11 Franchise |Sum of Transachons| 71583 72247 75619 74392
12 Sum of Sales 262431 268374 2709325 274531
12 |[MEW YOR| Company |Sum of Transactions | 24616 2681048 27015 26854
14 sum of Sales TEOES 85357 G7O05 BS0sg
15 Franchise |Sum of Transaciions| 53273 543517 51822 51218
16 Sum of Sales 1TEISE 182467 170537 167446

YkaBOTﬁfm

20.5.3 Returning a Portion of a PivotTable

Several of the members of the PivotTable object are designed to return a portion of the pivot table
as aRange object. They are asfollows.

20.5.3.1 ColumnRange property

This property returns a Range object that represents the column area in the pivot table. Figure 20-
11 illustrates the column range.

Figure 20-11. The ColumnRange range

A E C oo E e s
Year |ia +|

|Period

1
2
3
4 |Store City | Store Type |Data

g BOSTOM |Company [Sum af Transactions| 28248 28714 Z8672 28602
i

)

g

9

Sum of Sales 44678 46927 46256 46223

Franchise |[sum of Transachons| 13893 13942 12272 132710

Zum of Sales 21816 21729 18632 18325

LOS AMGHCompany [Sum of Transachons| 245538 35033 25692 35001

10 Sum of Sales 1233478 120564 1268340 125418
11 Franchise (Sum of Transachons| 71583 72047 TSE19 74392
12 Sum of Sales 262431 JBBR2TA 279325 2TAS3
12 NEW YOR|Company [Sum of Trensactions | 24816 268104 27015 26854
14 Sum of Sales TEDES 85251 BT905 83058
19 Franchise |[Zum of Transachions| 93273 94351 91822 91218

16 Sum of Sales 1TE2S0 152461 170537 167446

20.5.3.2 DataBodyRange property

This property returns a Range object that represents the PivotTable's data area. Figure 20-12
shows the results of selecting the DataBodyRange.

Figure 20-12. The DataBodyRange range

A B c - e P e B |
1 vear Jtan |
2
3 Period |
4 Shore City |Store Type |Data 1 2 3 4
§ |BOSTON [Company |[Sum of Transactions || 28248
3 Sum of Sales
T Franchise |[Dum of Transachons
3 Sum of Sales
& |LOS ANGHCompany |[Sum of Transactions
10 Sum of Sales
11 Franchise |Sum of Transactions
12 Sum of Sales
13 |MEWVY YOR|Comparny [Sum of Transachons
14 sum of Sales
16 Franchise |[Zum of Transachons
16 Sum of Sales |

20.5.3.3 DataLabelRange property

308

This read-only property returns a Range object that represents the labels for the PivotTable data
fields. Figure 20-13 illustrates Datal_abel Range.

Figure 20-13. The DataLabelRange range

A B [+ | D E F &
1 Year iy =]
2
3 Feriod |
4 | Store Ciby | Stora Type [Cata 1 2 3 4
6 |BOSTON |(Company 288 28714 28677 286072
6 44676 45027 46256 46223
7 Franchiss 13983 13942 13275 13210
g 21816 21/39 1863 185389
8 |LOS AMGEHCompany 245558 45038 2568z 35001
10 123478 128564 126340 125415
11 Franchiss TIS83 72047 TSE100 743492
12 262431 268274 279325 274531
13 |MNEW Y OR|Company 24816 25104 27015 26554
14 TE029 85251 57805 32053
15 Franchise 53273 54351 51822 51218
16 176352 182461 170537 167446

20.5.3.4 PageRange and PageRangeCells properties

The PageRange property returns a Range object that represents the PivotTable's page area. Thisis
the smallest rectangular region containing all page field-related cells.

The PageRangeCells property returns a Range object that represents just the cellsin the
PivotTable containing the page-field buttons and item drop-down lists. Figure 20-14 and Figure
20-15 illustrate the difference.

Figure 20-14. The PageRange range

1
2 |Year
3 |
4
5 Period |
B Data 1 2 2 4| Erand Total
T Sumof Transachons 226301 231995 232095 229277 19689
B Sum of Sales TOEEAS 134216 TrEaGs T20001 2EA0057
Figure 20-15. The PageRangeCells range
1
3
4
5 Period |
6 |Dala 1 i 3 d| Grand Tatal
T | Zum of Transactons 226301 231996 232085 229277 9155649
& Sum of Sales TGRS T34 MG 7 rE0ns 7001 ZEGE0ST

20.5.3.5 RowRange property

309

This property returns a Range object that represents the PivotTable's row area. Figure 20-16

illustrates the row area.

Figure 20-16. The RowRange range

c |

|Period

2

4

I |1
1 76248

44675

28714
46927

28602
45233

13553

| 21516

13842
21738

13210
15325

358G

[123478

35938
128564

126340

35001
125418

71583
262431

T2047
268274

TEE1D
27a5325

T4202

274521

24676
78089

26104
85251

27015
87905

25854
58058

=351

3 152461

21822

170557

31218
167446

20.5.3.6 TableRangel property

This property returns a Range object that represents the entire PivotTable except the page fields.
Thisisillustrated in Figure 20-17.

Figure 20-17. The TableRangel range

A

Year

1
2
a
4
-]
(2]
7
]

8

10
11
12
13
14
16
16

E o

20.5.3.7 TableRange2 property

This property returns a Range object that represents the entire PivotTable, including the page
fields. Thisisillustrated in Figure 20-18.

Figure 20-18. The TableRange2 range

310

20.5.4 PivotSelect and PivotSelection
The PivotSelect method selects part of a PivotTable. The syntax is:
PivotTableObject.PivotSelect(Name, Mode)

The Mode parameter specifies the selection mode and can be one of the following
XIPTSelectionMode constants:

Enum XIPTSelectionMode
xIDataAndLabel = 0
xlLabelOnly = 1
xIDataOnly
x10rigin
xIBlanks
x1Button
xIFirstRow

End Enum

I n
= h~wil

256 " Excel 9 only

The Name parameter specifies the selection in what Microsoft refers to as "standard PivotTable
selection format.” Unfortunately, the documentation does not tell us what this means, saying
instead, "A string expression used to specify part of a PivotTable. The easiest way to understand
the required syntax isto turn on the macro recorder, select cellsin the PivotTable, and then study
the resulting code.” There is more on this, and we refer the reader to the Excel VBA help
documentation (start by looking up the PivotSelect topic).

o let us consider some examples, al of which are based on the pivot table in Figure 20-10.
However, to illustrate the Name property and to shorten the figures a bit, we will rename the data
field "Sum of Transactions' to "Trans' and "Sum of Sales" to "Sale" using the following code:

Sub Rename()
" To shorten the names of the data fields

ActiveSheet._PivotTables("Sales&Trans'™) . _
DataFields('Sum of Transactions'™).Name = "Trans"

ActiveSheet._PivotTables('Sales&Trans'™). _

DataFields(*'Sum of Sales')._Name = "Sale"
End Sub

311

This also emphasizes a point we made earlier. Namely, we would like to rename the " Sum of
Sales' field to "Sales" but there is a column in the source table by that name, so Excel will not let
us use the name for adatafield. Thus, we are stuck with "Sale." Now back to business.

The following code selects the entire pivot table:

ActiveSheet.PivotTables('Sales&Trans'™). _
PivotSelect "', xlIDataAndLabel

The following code selects the Store Type label area (pivot-field label and pivot-item labels):

ActiveSheet._PivotTables('Sales&Trans'™). _
PivotSelect ""Store Type"[All]", xlLabelOnly

The following code selects dl data and labels related to the Company pivot item:

ActiveSheet._PivotTables('Sales&Trans'™). _
PivotSelect "'Company', xlIDataAndLabel

The following code selects the cells shown in Figure 20-19:

ActiveSheet.PivotTables("'Sales&Trans'™). _
PivotSelect "Company BOSTON", xIDataAndLabel

Figure 20-19. Selecting the company label and data for Boston

A B C Dl e G|
1 | Year =T -
7]
3 Period |
4 Store City

i‘aos—ow 18672
& . 45927 46256) 46215
i Franchuse Treans | 13993 13942 133798 13210
g Sdle 21816 21738 18632 18325
9 LOS ANGELES |Company Trans | 24566 35030 25802 35001
10 Sale 123478 120564 126340 125418
11 Frenchise Trans | 71583 72947 75619 74382
12 Sale 252431 268274 379325 274531
13 NEW YORK Compary Trans | 24616 25104 27015 J6854
14 Sale | 78089 859251 E7005 88033
15 Franchise Trans | 53273 54351 51822 51M%
15 Sale | 176353 132461 170537 167446

On the other hand, by reversing the words Company and BOSTON:

ActiveSheet._PivotTables('Sales&Trans'™). _
PivotSelect ""BOSTON Company', xIDataAndLabel

we get the selection in Figure 20-20, which does not include the Company label!

Figure 20-20. Reversing the word order to select company data for Boston only

312

A Ei [o | B | F | & |
1 |¥ear [-|
2
3 Fanod |
4 Stare Ciby Store Type Crata 1 2 & -
5 |BOSTOM Company Trans || 28248
e B
I Franchiza Trams | 13383 13842 13275 12210
b3 Sale | MMB16 MTAD 18832 18325
9 LS AMGELES | Company Trans | 24588 25038 35602 35001
10 Sale | 123478 120564 126240 125418
11 Franchise Trans | 715983 72947 TH619 T4392
12 Sale | 262431 2GR2T4 270325 2T4R3
13 [HMEW Y ORK COrmpary Trans | 24516 26904 27015 26854
14 Saks TEOES 85251 BTL0S SEDSE
15 Franchise Trans | 53273 5843581 51822 S12135
16 Sale | 1TE3S3 18ME1 170587 167446

The following code selects cell E12 of the pivot table in Figure 20-10:

ActiveSheet._PivotTables(*'Sales&Trans') .PivotSelect _
""LOS ANGELES*® Franchise "Sale® "2"'", xIDataOnly

The following code selects the labels and data for Boston and New Y ork:

ActiveSheet._PivotTables('Sales&Trans'™). _
PivotSelect ' “Store City"[BOSTON, *NEW YORK®*]", xIDataAndLabel

If we replace the commawith a colon:

ActiveSheet.PivotTables("'Sales&Trans'™). _
PivotSelect '"Store City"[BOSTON:*NEW YORK®"]", xIDataAndLabel

then al items from Boston to New Y ork (that is, all items) are selected.

The PivotSelection property returns or sets the PivotTable selection, again in standard PivotTable
selection format. Setting this property is equivalent to calling the PivotSelect method with th e
Mode argument set to xIDataAndLabel.

20.5.5 Additional Members of the PivotTable Object
Let ustake alook at some additional members of the PivotTable object.
20.5.5.1 AddFields method

We have seen this method in action earlier in this chapter.

20.5.5.2 CalculatedFields method

It is possible to add calculated fieldsto a pivot table. These are fields that are not part of the
original source data, but instead are calculated from source fields using a formula.

The CalculatedFields method returns the Cal culatedFields collection of all calculated fields. To
add a new calculated field, we use the Add method of the CalculatedFields collection. The syntax
is:

CalculatedFieldsObject.Add(Name, Formula)

313

where Name is the name of the field and Formula isthe formulafor the field.

Toillustrate, the following code creates a calculated field and displaysit in the pivot table from
Figure 20-10. The results are shown in Figure 20-21.

With ActiveSheet._PivotTables('Sales&Trans'™). _
CalculatedFields.Add(*""Average', _
"= Sales/Transactions'™)
.Orientation = xlIDataField
-Name = "Avg Check™
-NumberFormat = "##_#"

End With
Figure 20-21. lllustrating a calculated field
B B gl e e e
1 Year Jtan =]
2
2 Pariod |
4 EStora Ciby |Store Type |Data 1 2 3 4
5 BOSTOM |Company |[Trans 28248 28714 28672 28602
Bl Sale 446578 46927 4B256 46223
T Awg Check 16 1.6 1.6 1.6
8 Franchise |Trans 12993 13242 13275 13210
L2} Sale 21816 21739 18632 18325
10 Ay Chaeck 16 1.6 1.4 1.4
11 LOS ANGHCompany | Trans 34588 35938 35692 35001
12 Sale 123478 129564 126340 125418
13 Ay Check 36 3.6 35 36
14 Franchizse |Trans 71583 7247 TLE19 74392
15 Sale FE2431 288274 279325 274531
18 Mg Check 37 a7 a7 37
17 MEW YOR Company | Trans 2616 26104 27015 26854
18 Sale T8OE9 85251 87905 G&8038
14 Ayig Check 3.2 3.3 33 33
20 Franchise |Trans 52273 54351 51822 51218
21 Sale 176353 182461 170537 167446
22 A Checl 33 24 33 3.3
79,

We should make a brief remark about the arithmetic of the calculated field. The calculated field is
computed directly from the data in the pivot table. The source datais not involved directly. Thisis
why we did not specify an aggregate function for the calculated field. (Such afunction would have
been ignored.) Thus, for instance, the value in cell D7 is obtained by dividing the valuein cell D6
by the valuein cell D5.

Finally, we note that the ListFormulas method can be used to create alist of all calculated fields
on a separate worksheet.

20.5.5.3 Errors-related properties

When the DisplayErrorString property is True, the PivotTable displays a custom error string in
cellsthat contain errors. (The default value is Fal se.) Asthe Excel help file observes, this
property is particularly useful for suppressing divide-by-zero errors.

314

The ErrorString property can be used to set the string that is displayed in cells that contain errors
when DisplayErrorString is True. (The default value is an empty string.)

20.5.5.4 Null-related properties

When the DisplayNull String property is True, the PivotTable displays a custom string in cells
that contain null values. (The default valueis True.)

The NullString property can be used to set the custom string for such cells. (The default valueis
an empty string.)

20.5.5.5 EnableDrillDown property

One of the features of a PivotTableisthe DrillDown feature. To illustrate, if we double-click on a
data cell, such as cell D5 in the pivot table of Figure 20-10, Excel will create a new workshest, as
shown in Figure 20-22. Thisworksheet shows the original source rows that contribute to the value
in the double-clicked cell D5. (Note that the rows are complete, although the Sales column does
not contribute to cell D5.)

Figure 20-22. lllustrating DrillDown

A B c D E F =
1 Year Period Store Code Store City Store Type Transactions Sales
2 | 1938 | BO-1 BOSTOMN Company 3881 6248
3 | 1998 | BO-2 BOSTON Company 3789 or22
4 198s 1 BO-3 BOSTOM Company 3BTT BET3
5 | 1998 1 BO-4 BOSTOM Company 3BE2 6123
6 | 1997 1 BO-4 BOSTOM Company axe 5102
T 1947 1 B80-2 BOSTOM Company 3230 8231
g 1997 180-2 BOSTOM Company 3157 4768
81947 1 B8C-1 BOSTOMN Company 3234 5206

By now you have probably guessed that the read-write Boolean property EnableDrillDownis used
to enable or to disable this feature for the pivot table.

20.5.5.6 Formatting properties and methods

The read-write HasAutoFormat property is True (its default value) if the PivotTableis
automatically formatted when it is refreshed or when some of its fields are moved.

The labels for the rows, columns, subtotals, and totalsin Figure 20-6 are not merged with adjacent

blank cells. (The borders are adjusted so it may appear so, however.) To merge the labels with
adjacent blank cells, we can set the Mergelabels property to True.

The read-write PreserveFormatting property is True (its default value) if PivotTable formatting is
preserved when the PivotTableis refreshed or recal culated by operations such as pivoting, sorting,
or changing page-field items.

The TableStyle property returns or sets the style name (as a string) used in the PivotTable body.
The default value isanull string, so no style is applied.

20.5.5.7 Refreshing a pivot table

315

When the ManualUpdate property is True, the PivotTable is recalculated only at the user's
request. The default valueis Fal se.

The RefreshTable method refreshes the PivotTable from the origina source data. The method
returns True if it is successful.

The RefreshDate property returns the date on which the PivotTable or pivot cache was last
refreshed. It isread-only.

The RefreshName property returns the user name of the person who last refreshed the PivotTable
data or pivot cache.

20.5.5.8 PageField-related properties
As discussed earlier in the chapter, the PageFieldOrder property returns or sets the order in which
page fields are added to the PivotTable layout. It can be one of the following X10rder constants:

xIDownThenOver or x10verThenDown. The default constant is x IDownThenOver

Recall aso that the PageFiel dWrapCount property returns or sets the number of PivotTable page
fieldsin each column or row.

The PageFieldStyle property returns or sets the style used in the page field area.
20.5.5.9 Name property

This property returns or sets the name of the pivot table as a string.

20.5.5.10 SaveData property (R/W Boolean)

When this property is True, its default value, data for the PivotTable is saved with the workbook.
If itisFalse, only the PivotTable definition is saved.

20.5.5.11 ShowPages method

This method creates a new PivotTable for each item in the specified page field. Each new
PivotTableis created on a new worksheet. The syntax is:

PivotTableObject.ShowPages(PageField)
For instance, if we apply this method to the pivot table in Figure 20-10 with the code:
ActiveSheet._PivotTables('Sales&Trans') .ShowPages ''Year"

we will get two new worksheets. One worksheet, named 1997, will contain the original pivot table,
but with the Y ear page field set to 1997. The other worksheet will contain the same pivot table
with the Y ear field set to 1998. (We can still change the Y ear field on any of the pivot tables. In
other words, each pivot table contains the datafor all of the Y ear field values.)

20.5.5.12 SourceData property

This read-only property returns the data source for the PivotTable. For instance, when that source
isasingle Excel worksheet, the SourceData method returns a string describing the source range.
The code:

316

debug.print ActiveSheet.PivotTables(*'Sales&Trans').SourceData
returns the string:

"Company Both"!R1C1:R145C7

20.6 Children of the PivotTable Object

The children of the PivotTable object are shown in Figure 20-23.

Figure 20-23. Children of the PivotTable object

=70 PwalTable
=T CalculatadFields
70 PwotFisld
=7 Ml
To I]
= - TH CubeFialdses9s
=70 CubeFieldes93

= TU FivotFialds
To PvotTeble
70 Treeview“ontrolo9

— 7o PuwaotCache
4+ 70 PhwofTabla
= 7o PunotField
= TU Calculateditems
+ - 7o Fivotliem
= 78 CubeFieldeas
TH FratFields
70 TreeviewControle.dy
- 70 ProtFigld
= TH Calculatediams
7o Prottem
70 CubeFiglded
70 FiotField
- T Fivotllems
7o ProtField
7L Range
- 7T Frothtems
79 FivoiField
T Fange
— 7 PivatFields
7o PwotTahle
— 7l PivatFammulas
7o FvotFommule
+ 74 Range

20.7 The PivotField Object

The properties and methods of the PivotField object are shown in Table 20-3.

Table 20-3. Members of the PivotField Object

| Default CurrentPageName<v9> LayoutPageBreak<v9>

IkuBlT@f“

\AddPageltem<v10> \DatabaseSort<v10> LayoutSubtotal L ocation<v9>
Application DataRange MemoryUsed
AutoShow DataType Name
AutoShowCount Delete NumberFormat
AutoShowField DragToColumn Orientation
/AutoShowRange DragToData<v9> Parent
/AutoShowType DragToHide ParentField

AutoSort DragToPage Parentltems
AutoSortField DragToRow Pivotltems
AutoSortOrder DrilledDown<v9> Position

BaseField [EnableltemSel ection<v10> PropertyOrder<v10>
|Baseltem Formula PropertyParentField<v10>
Calculateditems Function ServerBased
Calculation GroupLevel ShowAllltems
Caption<v9o> Hiddenltems SourceName
ChildField HiddenltemsList<v10> ‘StandardFormula<v10>
Childitems IsCalculated 'Subtotal Name<v9>
Creator IsMemberProperty<v10> Subtotals
CubeField<vo> LabelRange TotalLevels
CurrentPage LayoutBlankLine<v9> Vaue

CurrentPagel ist<v10> LayoutForm<v9> Visibleltems

Let ustake alook at some of these members.

20.7.1 AutoShow-Related Members

The AutoShow method is used to restrict the display of pivot itemsfor a given pivot field. The

syntax is.

PivotFieldObject.AutoShow(Type, Range, Count, Field)

All parameters are required for this method.

The Type parameter has two possible values: x 1Automati c activates the remaining parameters
and, thereby, causes the restrictions to take effect, and x IManual disables the remaining
parameters and causes Excel to remove any restrictions caused by a previous call to this method
with Type egqual to xIAutomatic.

The other parameters can be described by the following sentence: restrict pivot items to the top
(Range =xITop) or bottom (Range =xIBottom) Count pivot items based on thevaluein

pivot field Field.

Thus, for instance, referring to Figure 20-10, the code:

ActiveSheet._PivotTables(*'Sales&Trans'™). _
PivotFields(''Store Type').AutoShow
xlAutomatic, xI1Top, 1, "Sale"

showsthetop (Range =x1Top and Count=1) Store Type based on the value of Sale. The result
is shown in Figure 20-24.

318

Figure 20-24. lllustrating AutoShow

A E % 3] E s]
1 Year Ay |
2
3 Period |
4 Store Ciky Store Typd Data 1 2 3 4
5 BOSTON Company |Trans | 23248 28714 28672 28602
B Sale | 44678 48937 46256 463223
7 LOS AMGELEjFranchise |Trans| 71583 72947 75619 74392
B Sale | 262431 268274 279325 74531
8 MEWW YORK |Franchise |Trans| 53273 543571 51822 51218
10 Sale | 176353 182487 170537 167448

Asyou can see, the top sales in Boston are from the company stores, whereas the top salesin the
other cities are in franchise stores.

The same code as the previous but with Type set to xIManual will remove the restrictions and
restore the original pivot table:

ActiveSheet.PivotTables('Sales&Trans'™). _
PivotFields(''Store Type'").AutoShow _
xIManual, xITop, 1, "Sale"

The following properties are associated with AutoShow:
AutoShowCount property

The read-only AutoShowCount property returns the number of items that are
automatically shown in the pivot field (thisis the Count parameter of the AutoShow
method).

AutoShowField property

This read-only property returns the name of the data field used to determine which items
are shown (thisisthe Field parameter of the AutoShow method).

AutoShowRange property

This read-only property returns xITop or xIBottom. Thisisthe value of the Range
parameter of the AutoShow method.

AutoShowType property

This read-only property returns x IAutomatic if AutoShow isenabled for the pivot field
and xIManual if AutoShow isdisabled.

20.7.2 Sorting Pivot Fields
The AutoSort method sets the automatic field-sorting rules for the pivot field. The syntax is:

PivotFieldObject.AutoSort(Order, Field)

319

The Order parameter specifies the sort order and is one of the following constants:

Enum XISortOrder
xlAscending = 1
xIDescending = 2

End Enum

It can also be set to x IManual to disable automatic sorting. The Field parameter is the name of
thefield to use as the sort key.

For instance, referring to Figure 20-10, the code:

ActiveSheet._PivotTables('Sales&Trans'™). _
PivotFields(''Store Type'").AutoSort _
xlAscending, ''Sale"

sorts by Sale and produces the results shown in Figure 20-25. Note the order of the Store Type
items for Boston as compared to the other cities.

Figure 20-25. lllustrating AutoSort

A B I D E F G
1 | Year ey |
2
3 Period |
4 | Store City Store Type |Data 1 2 2 4
5 BOSTON Franchise |Trans| 13993 13942 13275 13210
i Sale 21816 21730 18632 1832%
7 Company |Trans| 28248 28714 28672 28802
8 Sale 44678 46927 46256 46223
9 LOS ANGELEYCompany |Trans| 34588 35338 25602 25001
10 Sale | 123478 120564 126340 125418
11 Franchise |Trans| 71583 72947 75619 743202
12 Sale | 262431 268274 279225 274531
13 NEW YORK |[Company |Trans| 24616 26104 27015 26854
14 Sale TE0E9 55251 87905 88058
15 Franchize |Trans| 93273 54351 51822 51218
16 Sale [176353 182461 170537 167446

A=z

The read-only AutoSortFeld property returns the name of the key field and the AutoSortOrder
property returns the sort order of the pivot field (x1Ascending, xIDescending, or
xIManual).

20.7.3 The Fundamental Properties

The PivotField object has a handful of basic properties that you will almost always want to set.
20.7.3.1 Function property

This property applies only to data fields and returns or sets the aggregate function used to
summarize the pivot field. It can be one of the following X1ConsolidationFunction

constants:

Enum XIConsolidationFunction

320

xIVarP = -4165
xIVar = -4164

xISum = -4157
x1StDevP = -4156
x1StDev = -4155
xIProduct = -4149
xIMin = -4139

xIMax = -4136
XICountNums = -4113
xICount = -4112

xlAverage = -4106
xlUnknown = 1000 " Excel 9 only
End Enum

20.7.3.2 NumberFormat property

This property applies only to data fields and returns or sets the formatting string for the object.
Note that it will return Null I if &l cellsin the specified range do not have the same number format.
Thisis aread-write string property.

20.7.3.3 Orientation property

This property returns or sets the orientation of the pivot field. It can be set to one of the following
values:

Enum XIPivotFieldOrientation
xIHidden = 0
xIRowField = 1
xIColumnField 2
xlPageField =
xIDataField =

End Enum

3
4

20.7.3.4 Position property

This read-write property returns or sets the position of the pivot field among al pivot fields in the
same area (row, column, page, or data).

20.7.4 Selecting Ranges

The PivotField object has two properties related to selecting portions of the pivot table related to
thefield.

20.7.4.1 DataRange property

This property returns a Range object representing the value area associated with the given
PivotField. Toillustrate, the code:

ActiveSheet.PivotTables("'Sales&Trans'™). _
PivotFields(''Store Type'). _
DataRange.Select

resultsin Figure 20-26.

Figure 20-26. DataRange for Store Type

321

A, B e 8] E F z
1 Year A -
2
3 Period |
4 Store City |Store Type |Data 1 2 2 4
5 |BOSTON 28248 28714 28872 28602
6 44678 46027 AB2E56 46222
7 12293 13042 13275 13210
8 21816 21739 18632 18325
8 (L3 AMGELES |ellgyetsla 24538 35938 35692 3500
10 1234758 125564 126340 125418
11 71583 72047 74619 T4392
12 262431 268274 2T9325 274531
13 [MEWY YORK 2616 26704 27015 26854
14 7a0ag 85251 BT905 24058
15 53273 54351 51822 91218
16 176353 182467 170537 167446

20.7.4.2 LabelRange property

The Label Range property returns a Range object that represents the label cells for the PivotField.
To illustrate, the code:

ActiveSheet._PivotTables('Sales&Trans'™). _
PivotFields(''Store Type™). _
LabelRange.Select

will select just the cell containing the button |abeled Store Type in Figure 20-26.

20.7.5 Dragging Pivot Fields

The PivotField object has some properties that can prevent the user from moving the field. They
are asfollows (all default values are True):

DragToColumn property
Set to Fal se to prevent the field from being dragged to the column area.
DragToHide property

Set to Fal se to prevent the field from being hidden by being dragged off of the pivot
table.

DragToPage property
Set to Fal se to prevent the field from being dragged to the page field area.
DragToRow property

Set to Fal se to prevent the field from being dragged to the row field area.

20.7.6 Name, Value, and SourceName Properties

322

The read-write Name property returns or sets the name of the PivotField. Thisisthe value that
appearsin the label for that field. The Value property is the same as the Name property.

The read-only SourceName property returns the name of the field in the original source data. This
may differ from the value of the Name property if the Name property has been changed.

20.7.7 Grouping

Excel aso lets us group (and ungroup) the data for a selection of pivot itemsinto a single new
pivot item. Thisis done using the Group and Ungroup methods of the Range object. Note that
these methods apply to the Range object, not the PivotField or Pivotltem objects.

The Group method has two syntaxes, but we will ook at only the more flexible of the two. (For all
of the details on the Group method, we refer the interested reader to the Excel help documentation.)

Let uslook at an example. Referring as usual to the pivot table in Figure 20-10, the following code
selects al labels and data for Boston and New Y ork and then groups this data into a single group.
The group is then renamed Eastern. The results are shown in Figure 20-27. Observe that Excel
creates both a new pivot field and anew pivot item. The pivot field is called Store City2 and
contains the existing Los Angeles pivot item along with a new pivot item, which would have been
given the name Groupl by Excel if we had not specified the name Eastern.

With ActiveSheet.PivotTables("'Sales&Trans'™)
-PivotSelect ""Store City"[BOSTON, "New York®"]', xlDataAndLabel
Set rng = Selection
rng.Group
-PivotFields('Store City2")._Pivotltems(l). Name = "Eastern"
-PivotSelect "Eastern', xlDataAndLabel

End With
Figure 20-27. lllustrating the Group method
A B C O E F G H
1 Year [t 1) -|
Z
3 Pariod |
4 Store City2 Store City | Store | Data 1 2 3 4
= Eastarn BOSTON |CompdTrans| 28248 28714 28672 23602
3] Sale | 44678 46927 46256 46223
T Franc|Trans| 12993 13242 13275 13210
] oale 21816 21729 18632 18325
a MEWY YORMCompd Trans | 24616 26104 27015 26854
10 Sale | TE038 85251 §TO0S 9E0SE
11 Franc| Trans | 53273 54351 51822 51218
12 Sale | 176353 182461 170537 167446
13 LOS AMNGELES [LOS ANGEL Compd Trans | 34558 35835 25697 35001
14 Sale | 123478 120564 126340 125418
15 FranclTrans| 71583 72047 735619 74392
16 Sale [262431 268274 JTA325 274531

20.7.8 Data Field Calculation

Normally, data fields show a value based on the Function property of the field. On the other hand,
Excel also permits us to change the meaning of the value that is displayed in adata field.

323

20.7.8.1 Calculation property

Thisis done by setting the Calculation property for the data field. (The property applies only to
datafields.) The possible values of this property are given by the following enum:

Enum XIPivotFieldCalculation
xINoAdditionalCalculation = -4143
xIDifferenceFrom = 2
xIPercentOf = 3
xIPercentDifferenceFrom = 4
xIRunningTotal = 5
xIPercentOfRow = 6
xIPercentOfCollumn = 7
xIPercentOfTotal = 8
xIIndex = 9

End Enum

As you can see from these constants, the idea is to replace the raw value in the data field by atype
of relative value. (We will see an example in a moment.)

Note that for some values of Calculation, additional information is required. In particular, if
Calculation isequal to xIDi fferenceFrom, xIPercentDifferenceFrom, or
xIPercentOf, then we must specify the following two properties:

BaseField property

This property, which applies only to data fields, returns or sets the field upon which the
datafield calculation is based.

Baseltem property

This property, which applies only to data fields, returns or setsthe item in the base data
field used for the calculation.

20.7.8.2 Calculations not requiring a BaseField/Baseltem
The Calculation values that do not require a BaseField/Baseltem pair are:
xIRunningTotal

Keeps arunning total of all values, going down the rows of the table.
xIPercentOfRow

Each cell isreplaced by that cell's percentage of the sum of the valuesin that cell's row
(for the given data field).

XIPercentOfColumn

Each cell isreplaced by that cell's percentage of the sum of the valuesin that cell's
column (for the given data field).

xIPercentOfTotal

324

Each cell isreplaced by that cell's percentage of the sum of the valuesin the entire table
(for the given data field).

The formulato computethevaluein acell is:
new value = (current value * grand total) / (row total * column total)
Figures 20-28 through 20-31 illustrate these calculations, starting with the pivot table in Figure

20-10. Note that the percent calculations require that the grand row and column totals be displayed.
The code for Figure 20-28 is:

ActiveSheet._PivotTables('Sales&Trans'™). _
PivotFields('Sale'™) .Calculation = xIRunningTotal

Referring to Figure 20-28, cell D6 contains sales for Boston, cell D10 contains total sales for
Boston and Los Angeles, and cell D14 contains total sales for Boston, Los Angeles, and New

Y ork. (I have had reports that the Cal culation property does not always work properly. For some
reason, it may simply cause the relevant cellsto fill with Excel's infamous #N/A symbols. Indeed,
| have had this same experience at times, but | have not been able to figure out why.)

Figure 20-28. Calculation = xIRunningTotal

A, B C D E F =
vear|(All) v|

1

2

3 Period |

4 | Storg|Store Type |Data 1 2 2 4
£ BOSTCompany |Trans| 28248 28714 28672 28602
]

7

]

9

Sale | 44678 46027 46256 462723
Franchise |Trans| 13993 13942 13275 13210
Sala 21816 21739 186322 18325
LOS {Company |Trans | 34583 35038 356092 33001

10 Sale (168126 176491 172596 1716441
11 Franchise |Trans| 71583 72947 735619 74342
12 Sale 284247 200013 297957 202856
132 MEW|Company |Trans | 24616 26104 27015 26854
14 Sale 246245 261742 260501 259699
15 Franchise |Trans| 53273 54351 51822 51218
16 Sale (460800 472474 465494 460302

The code for Figure 20-29 is:

ActiveSheet.PivotTables('Sales&Trans'™). _
PivotFields(*'Sale'™) .Calculation = xIPercentOfRow

Figure 20-29. Calculation = xIPercentOfRow

325

A B c 8] E F £ H
1 Year | -/
2
3 Period |
4 | Stare City Share Type |Data 1 2 3 4| Zrand Total
5 |BOSTON Franchise |Trans| 13993 13842 13275 1310 54420
B Sale |37 10% 37.00% 23.14% 2276%| 100.00%
7 Company |Trans| 28248 28714 28672 289602 114235
g Sale |24 27% 2540% 35 13% 25 11%) 10000%
8 |LOS ANGELEjCompany |Trans| 34588 35935 35892 35001 141219
10 Sale |22 46% 2567% 2503% 2 85%| 100.00%
1 Franchise (Trans| 71583 72947 75619 74392 234541
12 Sale |24 20% 34.74% 25 TH% 2531%| 100.00%
13 WEW YORK [Company [Trans| 24816 25104 27015 26054 104589
14 Sale |3301% 3513% 2591% 2595%| 100.00%
15 Franchise |Trans| 5932732 54351 51822 5118 210664
16 Sale [2531% 2619% 24 47% 2403%| 100.00%
The code for Figure 20-30is:
ActiveSheet.PivotTables('Sales&Trans'™). _
PivotFields(''Sale'™) .Calculation = xIPercentOfColumn
Figure 20-30. Calculation = xIPercentOfColumn
A B C] E F €] H
1 Year|(All) -
2
3 Period |
4 | Stord Store Type [Data 1 7 3 4| Grand Total
5 BOS|Company | Trans 2aMs 28714 28672 28802 114235
6 Sale 632% 630% B35% G642% B.37%
T Franchise (Trans| 13993 13342 13272 13210 4420
8 Sale 200% 206% 256 255 2. 70%
9 LOS|Company (Trans| 34588 35038 35692 35001 11213
i Sale | 1T4TH 1T ES% 1T 33% 1742% 17.47%
11 Franchise [Trans| 71583 72947 75619 74302 204541
12 Sake | 37 13% 26.54% 3B 32% 38 13% 37.53%
13 NEW| Comparny |Trans HE18 2104 27015 26854 104589
14 Sale | 1105% 1161% 1208% 12 73% 11 74%
15 Franchize |Trans 53273 43 21822 51218 210664
16 Sale | 2495% 2485% 2339% 23 36% 24 1%
17 Tatal Trans JURE0T 231996 32095 FRGITT 219663
18 Total Zals 100.00% 100.00% 10000% 100.00%] 100.00%
The code for Figure 20-31 is:
ActiveSheet._PivotTables('Sales&Trans'™). _
PivotFields('Sale') .Calculation = xIPercentOfTotal

Figure 20-31. Calculation = xIPercentOfTotal

326

A 5] e O E F G H
1 Year|tal) |
2
3 Period |
4 Elare[Store Type | Data 1 2 3 4|zrand Taotal
6 BOS|Company |Trans| 28248 28714 28672 28602 114236
6 Sala 155% 162% 160% 1.60% i 37%
T Franchise |Trans| 13993 13842 13275 13210 54420
a8 Sale | 0.75% 0.75% 0.64% 0.63% 2.759%
9 LOS |Company |Trans| 34588 35038 35692 35001 1412149
10 Sale | 4 27% 448% 437% 434% 17 47%
11 Franchise |[Trans| 71583 72047 75619 74332 294541
12 Sale | 908% 9.28% 967% 9.50% 37.53%
13 WEW|Company |Trans | 24616 261704 27015 26854 104584
14 Sale | 2T0% 2 95% 3049% 3 08% 11 T4%
15 Franchise |[Trans| 53273 54351 51822 51218 210664
16 Sale | B10% B.31% 590% 579% 24 1%
17 Total Trans 226301 231996 232085 229277 919669
18 Total Sale 24 46% 25 400 25.22% 24.91%| 100.00%

20.7.8.3 Calculations requiring a BaseField/Baseltem

The procedure for making calculations with a BaseField/Baseltem is not explained very well in
the documentation, so let us see if we can clear it up by first considering an example. Consider the
code:

With ActiveSheet._PivotTables('Sales&Trans'™). _
PivotFields('Sale™)
-Calculation = xIDifferenceFrom
.BaseField = "'Store City"
-Baseltem = ""Boston"
End With

Referring to Figure 20-32, we have reproduced our usua pivot table (from Figure 20-10) with
several changes. First, we removed the Trans values, since they are not relevant to our example.
We have also replaced the Sale values for the given BaseField and Baseltem by symbols (b1-b8).
Finally, we replaced the other Sale values with number signs, since we do not care about the
actual values.

Figure 20-32. lllustrating a calculation

A, & = O E F €]
1 Period |
2 Shore City | Store Twpd Data 1 2 3 4
3 BOSTOM |(Comparny | Trans
4 Sale b1 b2 b3 b4
] Franchise| Trans
] Sale b5 [+1:3 bT b8
T LS AMGECompany | Trans
B Sale & | |# |#
9 Franchise| Trans |
10 Sale # |2 & l#
11 MEWY YORCompany | Trans |
12 Sale # | l# ¢
13 Franchise|Trans |
14 Sale # |4 |# |#

TmBZ—Tfy v

Now, thetrick in seeing how the calculations are made is to fix a value for the fields other than the
base field—in our case the Store Type and Period. Consider, for instance, the values:

Store Type = "'Company"’
Period = 1

The Sale data cells corresponding to these values are grayed in Figure 20-32. One of these cells
(cell D4) isthe baseitem cell. For this Store Type/Period combination, a calculation is made using
the value in this cell asthe base value. In our casg, it isthe x1Di fferenceFrom calculation that
is being made. Hence, the base value is subtracted from the valuesin al three grayed cells. This
givesthetablein Figure 20-33. Note that the base value is even subtracted from itself, giving 0.
Thisis done for each Store Type/Period combination, as shown in Figure 20-33.

Figure 20-33. The finished calculation

A B 5 D E F G
1 Perind |
2 Shore City|Store TypgData 1 2 3 4
3 BOSTOM |Company |Trans
4 Sale 0 0 0 0
=] Franchise|Trans
i Sale 0 0 0 0
7 LOS ANGHCompany | Trans
o Sala = #-b #ba Al
G Franchise|Trans
10 Sale #- #-hi #h7 #-hi
11 [NEW YORCompany |Trans
12 Sale #h1 #=h2 #h3 #bd
13 Franchise|Trans
14 Sale #hG #bE #07 #bE

The formulas for the Calculation property that require BaseField/Baseltem values are:
xIDifferenceFrom

- base value
x1PercentOf

#/base value (expressed as a percent)
xIPercentDifferenceFrom

(# - base value)/base value (expressed as a percent)

Toillustrate, Figure 20-34 shows the actual effect of the earlier code on Figure 20-10:

With ActiveSheet.PivotTables('Sales&Trans'™). _
PivotFields(''Sale™)
.Calculation = xIDifferenceFrom
-BaseField = "'Store City"
-Baseltem = "Boston"
End With Figure 20-10.

Figure 20-34. lllustrating the Calculation property

328

A B C D E F €]
1 vear|ian) |+|
2
2 Period |
4 Store| Store Type |Data 1 2 3 4
5 |[BOS1Company |Trans| 28248 28714 28672 28602
B Sale
7 Franchise |Trans| 13993 13042 43275 13210
a Sale
9 Los{Company |Trans| 345338 35935 35692 335001
10 Sala 78300 82637 80084 79195
11 Franchise |Trans| 71583 72047 75619 74342
12 Sale | 2406815 246535 2608292 256206
12 MNEW|Company |Trans | 24616 26104 27015 26354
14 Sala 33411 38324 41649 41835
15 Franchise |Trans| 53273 54351 51822 512128
16 Sale [154537 180722 151205 149121

20.7.9 CurrentPage Property

This property returns or sets the current page. It is only valid for page fields. Note that the
property should be set either to the name of the page field or to "All" to show all pages.

20.7.10 DataType Property

This read-only property returns a constant that describes the type of datain the pivot field. It can
be one of the following XIPivotFieldDataType constants:

Enum XIPivotFieldDataType
xIText = -4158
XINumber = -4145
xIDate = 2

End Enum

20.7.11 Hiddenltems and Visibleltems Properties

The Hiddenltems property returns the Pivotltems collection of al hidden Pivotltem objects, using
the syntax:

PivotFieldObject.Hiddenltems

It can also return asingle or an array of hidden Pivotltem objects using the syntax:

PivotFieldObject.Hiddenltems(Index)
where Index isasingleindex or an array of indexes.

Similarly, the Visibleltems property returns a Pivotitems collection of all visible Pivotltem objects
or asingle or an array of such objects. The syntax is the same as for the Hiddenltems property.

20.7.12 MemoryUsed Property

329

This read-only property returns the amount of memory currently being used by the PivotField (it
also applies to Pivotltem objects) as a Long integer.

20.7.13 ServerBased Property

This read-write Boolean property applies to page fields only and is used with (generally very large)
external data sources. It is True when the PivotTable's data source is external and only the items
matching the page-field selection are retrieved.

By setting this property to True, the pivot cache (discussed later in the chapter) needs to
accommodate only the data for a single page field. This may be important, or even necessary,
when the external data sourceislarge. The trade-off is that each time the page field is changed,
there may be a delay while Excel requeries the original source data to retrieve data on the new
page field.

Note that there are some circumstances under which this property cannot be set to True:

Thefield is grouped.

The data sourceis not external .

The cache is used by more than one PivotTable.

The field has a data type that cannot be server-based (such as amemo field or an OLE
object).

20.7.14 ShowAllltems Property

This read-write Boolean property is True if dl itemsin the PivotTable are displayed. The default
valueis False, in which case the pivot items that do not contribute to the data fields are not
displayed. Note that this property corresponds to the "Show items with no data" check box on
Excel's PivotTable Field dialog box.

To illustrate, suppose we add a single row to our source table:

1998 1 BO-1 BOSTON AStoreType 1000 $10000.00

This row creates a new store type but adds data only for Boston. The resulting pivot table will
have the default appearance shown in Figure 20-35. Since ShowAllltemsis False, thereare no

rows for the new store type corresponding to Los Angeles or New Y ork.

Figure 20-35. ShowAllltems = False

330

On the other hand, the code:

ActiveSheet.PivotTables("'Sales&Trans'™). _
PivotFields(''Store Type').ShowAllltems = True

will produce the pivot table shown in Figure 20-36.

Figure 20-36. ShowAllltems = True

331

A B C D E F e}
1 Year|(al |
2
3 Period |
4 | Storg| Store Type |Data 1 2 3 4
5 BOS AStoreType | Trans 1000
& Sale 10000
7 Company | Trans| 28248 28714 28672 28802
8 Sale | 44678 46927 46256 46223
| Franchise |Trans| 13993 13942 13275 13210
10 Sale 21816 21739 18632 18325
11 LOS JCompany |[Trans | 34588 35038 35692 25001
12 Sale | 1223478 120564 126340 125418
13 Franchise |Trans| 71583 72547 75619 743492
14 Sale | 262431 268274 279325 274531
15 MEW|Company [Trans| 24616 26104 27015 268854
16 Sale JEB089 85251 87405 88058
17 Franchise |Trans| 53273 54351 51822 51218
18| Sale | 176353 182461 170537 167446
1Q

20.7.15 Subtotals Method

) B & D = F G
1 Year|ian - |
2
3 Period |
4 | Slorg|Store Type |Data 1 2 3 4
5 BOS1AStoreTyps | Trans 1000
6 Sale | 10000
¥ Company |Trans| 28248 28714 28672 28602
g Sale | 44878 48927 45356 46223
2] Franchise |Trans| 13883 13242 13275 13210
10 Sale | 21816 21739 18632 18325
11 LOS {AStoreType [Trans
42 Sale
13 Company |[Trans| 24588 35835 33692 35001
14 Sale [122478 129564 126340 125418
15 Franchise |Trans| 715832 72847 75619 74342
16 Sale | 262431 268274 279335 274531
17 NEW|AStoreType | Trans
18 Sale
14 Company |Trans | 24616 26104 27015 26854
20 Sale | J80DBS 85251 87905 38058
21 Franchise |Trans| 53273 54251 21822 51118
22 Sale | 176353 182461 170537 167448

This method returns or sets the display of a particular type of subtotal for the specified pivot field.
Itisvalid for all fields other than datafields. The syntax is:

PivotFieldObject.Subtotals(lndex)

where the optional Index parameter indicates the type of subtotal and is a number from Table 20-4.

Table 20-4. Values for the Subtotals Method's Index Parameter

Index

Subtotal Type

Automatic

Sum

Count

Average

Max

Min

Product

Count Nums

OO NOO ORI WIN|PF

StdDev

[y
o

StdDevp

=
[N

Var

=
N

Varp

For instance, the following code requests a display of subtotals for both Sum and Count:

332

ActiveSheet.PivotTables(''Sales&Trans').

PivotFields(''Store City").Subtotals(2) = True
ActiveSheet._PivotTables(*'Sales&Trans'™). _
PivotFields(''Store City").Subtotals(3) = True

We can a so set the Subtotals property to an array of 12 Boolean values to set multiple subtotals.
For instance, the following code displays al subtotals:

ActiveSheet.PivotTables('Sales&Trans').
PivotFields(''Store City"). _
Subtotals = Array(False, True, True, True, True, _
True, True, True, True, True, True, True)

Note that we set Automatic to False in thisarray, sinceif Automatic is set to True, then al
other values are set to Fal se (thus providing a quick way to set all subtotalsto False).

If this argument is omitted, the Subtotals method returns an array containing a Boolean value for
each subtotal.

20.8 The PivotCache Object

Pivot tables can manipulate the source datain a variety of ways, and this can require agreat deal
of processing power. For maximum efficiency, the data for a pivot table isfirst stored in memory
inwhat is referred to as apivot cache. The pivot table, itself, actually provides various views of
the pivot cache. This allows manipulation of the data without the need to access the origina
source further which might, after all, be an external data source.

The PivotCache object represents a pivot table's cache. It is returned by the PivotCache method of
the PivotTable object. Let us take alook at some of the main properties and methods of the
PivotCache object.

20.8.1 Refreshing a Pivot Cache
The Refresh method refreshes both the pivot cache and the pivot table.

However, we can prevent a pivot table from being refreshed, either through the user interface (the
Refresh data menu item on the PivotTable menu) or through code, by setting the EnableRefresh
property to False.

The read-write Boolean RefreshOnFileOpen property is True if the PivotTable cacheis
automatically updated each time the workbook is opened by the user. The default valueis Fal se.
Note that this property isignored if the EnableRefresh property is set to False. Note aso that the
PivotTable cacheis not automatically refreshed when the workbook is opened through code, even
if RefreshOnFileOpenisTrue.

The RefreshDate property returns the date on which the pivot cache was last refreshed, and the
RefreshName property returns the name of the user who last refreshed the cache.

20.8.2 MemoryUsed Property

The read-only MemoryUsed property appliesto either a PivotCache object or a PivotField object
and returns the amount of memory currently being used by the cache, in bytes.

333

20.8.3 OptimizeCache Property

Cache optimization is used with large or complex source data. It will ow theinitial construction
of the cache. This read-write Boolean property can be used to set cache optimization.
Unfortunately, the precise consequences of cache optimization are not made clear in the
documentation, leaving usto usetrial and error to decide whether it should be employed. Perhaps
the best strategy is to leave this property set to its default (Fal se) unless performance seems to be
aproblem.

20.8.4 RecordCount Property

This read-only property returns the number of recordsin the PivotTable cache.

20.8.5 SourceData Property

This property returns the data source for the PivotTable, as we discussed in the section on the
PivotTable object.

20.8.6 Sql Property

This read-write string property returns or sets the SQL query string used with an ODBC data
source.

20.9 The Pivotltem Object

A Pivotltem is aunique value of aPivotField. Toillustrate, consider the following code:

Dim pi As Pivotltem
For Each pi In _
ActiveSheet._PivotTables('Sales&Trans'™). _
PivotFields('Store City").Pivotltems
Debug.-Print pi.Name
Next

That code will print the list:

BOSTON
LOS ANGELES
NEW YORK

which contains the distinct Store City values from the Store City pivot field.

The Pivotltems method of the PivotField object returns Pivotltem objects. The syntax:
PivotFieldObject.Pivotltems

returns the collection of all Pivotltem objects for that PivotField. The syntax:

PivotFieldObject.Pivotltems(Index)

334

can return a single Pivotltem object or an array of Pivotltem objects (by setting Index to an array
of indexes).

Table 20-5 shows the properties and methods of the Pivotltem object. Let us take alook at some
of these members. Note that several of the members of the PivotField object also apply to the
Pivotltem object.

Table 20-5. Members of the Pivotltem Object

\Application IsCal culated |Position
Childlitems LabelRange \RecordCount
Creator Name ShowDetail
DataRange Parent SourceName
Delete Parentltem Vaue
[Formula |ParentShowDetail \Visible

20.9.1 DataRange Property

This property returns a Range object representing the data area associated with the given
Pivotitem. To illustrate, the code:

ActiveSheet.PivotTables("'Sales&Trans'™). _
PivotFields(''Store Type™). _
Pivotltems(*'Company') .DataRange.Select

resultsin Figure 20-37.

Figure 20-37. DataRange for Store Type = Company

A B C o T e o] e e e < v |
1 |Year (2l v |
2
3 Peariad |
4 Store City otore Type |Data 1 2 3 4
5 |BOSTOM Compary |Trans | 282458
[Sale
7 Franchise |(Trans| 129293 123942 12275 13210
g Sale 21816 21739 18632 18325
8 |LOS ANGELEJCompany |Trans (e 35938| 35692 35001
10 Sale | | _ | 125418]
11 Franchise |Trans| 71583 72047 75619 74392
12 Sale 262431 268274 279325 274531
13 |MEVW YORK |Comparry Tran5 LY [27015]
14 Sale Z08Y | B925 27005 BEUSE
15 Franchise |(Trans| 53273 54331 51822 51218
16 Sale | 176353 182461 170537 167446

20.9.2 LabelRange Property

The Label Range property returns a Range object that represents the label cells for the Pivotltem.
Figure 20-38 illustrates the results of the code:

ActiveSheet.PivotTables("'Sales&Trans'™). _

335

PivotFields(''Store Type'). _
Pivotltems(""Company') .LabelRange.Select

Figure 20-38. LabelRange for Store Type = Company

fa) B C D E & £
Year |[AHJ -
Fariod |
Store City Store Type |Data 1 2 3 4

BOSTOM Company |(Trans| 28248 28714 J8E72 28602
Sale | 44678 46927 46256 46223
Franchise (Trans| 13993 13842 13275 13210
Sale 21818 21739 18632 18325
LS AMGELE Trans| 34588 35028 356022 35001

Sale | 123478 120564 126340 125418
Franchise |Trans| 71583 72847 75619 74382
Sale | 262431 268274 279325 274531
MEVY Y ORK Trans| 246816 26104 27015 26854

Sale Tans9 25251 87905 88052
Franchise |Trans| 53273 54251 51822 51218
Sale [176353 182461 170537 167446

—_ s | | o |

20.9.3 IsCalculated Property

This property returns True if the pivot item is a calculated item. We discuss calculated items later
in the chapter.

20.9.4 Name, Value, and SourceName Properties

The read-write Name property returns or sets the name of the Pivotltem. Thisisthe value that
appearsin the label for that item. The Vaue property is the same as the Name property.

The read-only SourceName property returns the name of the item in the original source data. This
may differ from the value of the Name property if the Name property has been changed.

20.9.5 Position Property
The Position property returns or sets the position of the pivot item. For instance, the code:

ActiveSheet.PivotTables("'Sales&Trans'™). _
PivotFields(''Store Type'). _
Pivotltems("'Franchise') .Position

returns the number 2, since Franchise is the second pivot item in the pivot table (see Figure 20-10).
Moreover, we can reverse the positions of Company and Franchise by setting the Position of the
Franchise pivot item to 1, asfollows:

ActiveSheet.PivotTables("'Sales&Trans'™). _
PivotFields(''Store Type™). _
Pivotltems("'Franchise') .Position = 1

20.9.6 RecordCount Property

336

This read-only property returns the number of records in the PivotTable cache that contain the
pivot item. For instance, the code:

ActiveSheet.PivotTables("'Sales&Trans'™). _
PivotFields(''Store Type'). _
Pivotltems("'Franchise') .RecordCount

will return the number 80 because there are 80 rows in the source table (and, hence, the pivot
cache) that involve the Franchise store type.

20.9.7 ShowDetail Property

When this read-write property is set to True, the pivot item is shown in detail; if it is Fal se, the
Pivotitem is hidden. To illustrate, consider, as usual, the pivot table in Figure 20-10. The code:

ActiveSheet._PivotTables(*'Sales&Trans'™). _
PivotFields(''Store City"). _
Pivotltems('Boston') .ShowDetail = False

resultsin the pivot table in Figure 20-39. Aswe can see, the Transactions and Sales for Boston are
summed over all (both) store types (Company and Franchise).

Figure 20-39. lllustrating ShowDetalil

A B e B E E e
1 | Year [y]
2
3 Period |
4 Etore City |St|:ure Type |Data 1 2 3 4
5 BOSTOM Trans| 42241 42656 41947 41812
5] Sale: GE494 GBB666 G4588 64548
T LOS AMGELES |Company |Trans| 34588 35038 35602 35001
8 Sale |123478 129564 126340 125418
9 Franchise |Trans| 71583 72847 75619 74392
10 Sale |262431 268274 279325 274531
11 NEW YORK Compary |Trans | 24616 26104 27015 26854
12 Sale TEOBS 85251 87905 &8058
13 Franchise |Trans| 53273 54351 51822 51218
14 Sale [176353 182461 170537 167446

Unfortunately, there seems to be a problem when the ShowDetail method is applied to inner pivot
items. For instance, the code;

ActiveSheet._PivotTables(*'Sales&Trans'™). _
PivotFields(''Store Type'). _
Pivotltems('Company').ShowDetail = False

does seem to set the ShowDetail property to Fal se, as can be verified by the code:

MsgBox ActiveSheet.PivotTables("Sales&Trans'™).
PivotFields(''Store Type™). _
Pivotltems(*'Company') .ShowDetail

7103371y“

However, the pivot table does not reflect this change! (At least this happens on the two systems on
which | have run this code. Y ou should check this carefully on any system on which you intend to
run this code. A similar problem occurs with the Subtotals property as well.)

As another example, the following code toggles the display of details for the Boston pivot item:

With ActiveSheet.PivotTables('Sales&Trans'™). _
PivotFields(''Store City").Pivotltems(''Boston'™)
.ShowDetail = Not .ShowDetail
End With

The ShowDetail property also applies to the Range object, even when the range lies inside a pivot
table. To illustrate, the following code will also produce the pivot tablein Figure 20-39:

ActiveSheet.PivotTables(''Sales&Trans').
PivotSelect ""Boston', xIDat