

 Table of
Contents

Writing Excel Macros with VBA, 2nd Edition

By Steven Roman, Ph.D.

Publisher : O'Reilly

Pub Date : June 2002

ISBN : 0-596-00359-5

Pages : 560

To achieve the maximum control and flexibility from Microsoft Excel often requires
careful custom programming using the VBA (Visual Basic for Applications)
language. Writing Excel Macros with VBA, 2nd Edition offers a solid introduction to
writing VBA macros and programs, and will show you how to get more power at the
programming level: focusing on programming languages, the Visual Basic Editor,
handling code, and the Excel object model.

TE
AM
FL
Y

Team-Fly®

http://www.oreillynet.com/cs/catalog/view/au/254?x-t=book.view

 ii

Table of Content
Table of Content ... ii
Preface.. viii

Preface to the Second Edition... viii
The Book's Audience... x
Organization of This Book... x
The Book's Text and Sample Code.. xi
About the Code.. xi
Conventions in this Book .. xii
Obtaining the Sample Programs... xiii
How to Contact Us .. xiii
Acknowledgments ... xiii

Chapter 1. Introduction .. 1
1.1 Selecting Special Cells ... 1
1.2 Setting a Chart's Data Point Labels.. 2
1.3 Topics in Learning Excel Programming ... 4

Part I: The VBA Environment ... 6
Chapter 2. Preliminaries.. 7

2.1 What Is a Programming Language?... 7
2.2 Programming Style .. 8

Chapter 3. The Visual Basic Editor, Part I.. 13
3.1 The Project Window .. 13
3.2 The Properties Window .. 17
3.3 The Code Window ... 18
3.4 The Immediate Window.. 20
3.5 Arranging Windows ... 21

Chapter 4. The Visual Basic Editor, Part II .. 23
4.1 Navigating the IDE .. 23
4.2 Getting Help.. 25
4.3 Creating a Procedure .. 25
4.4 Run Time, Design Time, and Break Mode .. 26
4.5 Errors ... 27
4.6 Debugging .. 30
4.7 Macros... 35

Part II: The VBA Programming Language.. 38
Chapter 5. Variables, Data Types, and Constants ... 39

5.1 Comments... 39
5.2 Line Continuation... 39
5.3 Constants.. 39
5.4 Variables and Data Types.. 42
5.5 VBA Operators ... 57

Chapter 6. Functions and Subroutines ... 59
6.1 Calling Functions ... 59
6.2 Calling Subroutines ... 60
6.3 Parameters and Arguments ... 61
6.4 Exiting a Procedure ... 65
6.5 Public and Private Procedures .. 65

 iii

6.6 Project References.. 65
Chapter 7. Built-in Functions and Statements ... 67

7.1 The MsgBox Function ... 68
7.2 The InputBox Function.. 69
7.3 VBA String Functions.. 70
7.4 Miscellaneous Functions and Statements ... 74
7.5 Handling Errors in Code ... 77

Chapter 8. Control Statements .. 81
8.1 The If...Then Statement.. 81
8.2 The For Loop.. 81
8.3 The For Each Loop.. 83
8.4 The Do Loop... 84
8.5 The Select Case Statement ... 85
8.6 A Final Note on VBA ... 86

Part III: Excel Applications and the Excel Object Model .. 88
Chapter 9. Object Models ... 89

9.1 Objects, Properties, and Methods .. 89
9.2 Collection Objects.. 90
9.3 Object Model Hierarchies ... 92
9.4 Object Model Syntax ... 93
9.5 Object Variables .. 94

Chapter 10. Excel Applications .. 100
10.1 Providing Access to an Application's Features....................................... 100
10.2 Where to Store an Application .. 103
10.3 An Example Add-In ... 110

Chapter 11. Excel Events ... 113
11.1 The EnableEvents Property... 113
11.2 Events and the Excel Object Model ... 113
11.3 Accessing an Event Procedure ... 113
11.4 Worksheet Events ... 114
11.5 WorkBook Events.. 115
11.6 Chart Events .. 116
11.7 Application Events... 116
11.8 QueryTable Refresh Events .. 118

Chapter 12. Custom Menus and Toolbars ... 119
12.1 Menus and Toolbars: An Overview .. 119
12.2 The CommandBars Collection .. 121
12.3 Creating a New Menu Bar or Toolbar .. 123
12.4 Command-Bar Controls.. 124
12.5 Built-in Command-Bar-Control IDs ... 125
12.6 Example: Creating a Menu .. 128
12.7 Example: Creating a Toolbar... 129
12.8 Example: Adding an Item to an Existing Menu....................................... 131
12.9 Augmenting the SRXUtils Application .. 131

Chapter 13. Built-In Dialog Boxes ... 139
13.1 The Show Method ... 141

Chapter 14. Custom Dialog Boxes .. 143
14.1 What Is a UserForm Object? ... 143
14.2 Creating a UserForm Object.. 143
14.3 ActiveX Controls .. 144

 iv

14.4 Adding UserForm Code.. 145
14.5 Excel's Standard Controls.. 146
14.6 Example: The ActivateSheet Utility .. 147
14.7 ActiveX Controls on Worksheets .. 152

Chapter 15. The Excel Object Model .. 157
15.1 A Perspective on the Excel Object Model ... 157
15.2 Excel Enums .. 159
15.3 The VBA Object Browser ... 161

Chapter 16. The Application Object .. 163
16.1 Properties and Methods of the Application Object................................. 165
16.2 Children of the Application Object .. 189

Chapter 17. The Workbook Object.. 194
17.1 The Workbooks Collection ... 194
17.2 The Workbook Object ... 199
17.3 Children of the Workbook Object.. 206
17.4 Example: Sorting Sheets in a Workbook ... 208

Chapter 18. The Worksheet Object... 211
18.1 Properties and Methods of the Worksheet Object 211
18.2 Children of the Worksheet Object... 219
18.3 Protection in Excel XP .. 222
18.4 Example: Printing Sheets... 224

Chapter 19. The Range Object .. 229
19.1 The Range Object as a Collection.. 230
19.2 Defining a Range Object .. 231
19.3 Additional Members of the Range Object.. 237
19.4 Children of the Range Object .. 266
19.5 Example: Getting the Used Range ... 279
19.6 Example: Selecting Special Cells ... 280

Chapter 20. Pivot Tables .. 291
20.1 Pivot Tables.. 291
20.2 The PivotTable Wizard ... 293
20.3 The PivotTableWizard Method.. 296
20.4 The PivotTable Object .. 298
20.5 Properties and Methods of the PivotTable Object 303
20.6 Children of the PivotTable Object ... 317
20.7 The PivotField Object ... 317
20.8 The PivotCache Object .. 333
20.9 The PivotItem Object .. 334
20.10 PivotCell and PivotItemList Objects ... 338
20.11 Calculated Items and Calculated Fields .. 342
20.12 Example: Printing Pivot Tables ... 345

Chapter 21. The Chart Object .. 349
21.1 Chart Objects and ChartObject Objects .. 349
21.2 Creating a Chart .. 350
21.3 Chart Types.. 356
21.4 Children of the Chart Object .. 359
21.5 The Axes Collection .. 360
21.6 The Axis Object ... 363
21.7 The ChartArea Object... 373
21.8 The ChartGroup Object .. 374

 v

21.9 The ChartTitle Object.. 378
21.10 The DataTable Object .. 378
21.11 The Floor Object.. 379
21.12 The Legend Object ... 379
21.13 The PageSetup Object ... 381
21.14 The PlotArea Object ... 381
21.15 The Series Object ... 382
21.16 Properties and Methods of the Chart Object .. 388
21.17 Example: Scrolling Through Chart Types ... 392
21.18 Example: Printing Embedded Charts... 395
21.19 Example: Setting Data Series Labels .. 399

Chapter 22. Smart Tags .. 407
22.1 What Are Smart Tags? ... 407
22.2 SmartTagRecognizer Object ... 408
22.3 SmartTag Object ... 408
22.4 SmartTagAction Object .. 409
22.5 SmartTagOptions Object.. 410

Part IV: Appendixes ... 411
Appendix A. The Shape Object.. 412

A.1 What Is the Shape Object?.. 412
A.2 Z-Order ... 412
A.3 Creating Shapes.. 413
A.4 Diagram, DiagramNode, and DiagramNodeChildren Objects 420

Appendix B. Getting the Installed Printers ... 423
Appendix C. Command Bar Controls.. 426

C.1 Built-in Command-Bar Controls.. 426
Appendix D. Face IDs.. 444
Appendix E. Programming Excelfrom Another Application 450

E.1 Setting a Reference to the Excel Object Model 450
E.2 Getting a Reference to the Excel Application Object 450

Appendix F. High-Level and Low-Level Languages ... 454
F.1 BASIC.. 455
F.2 Visual Basic.. 456
F.3 C and C++ .. 457
F.4 Visual C++ .. 458
F.5 Pascal.. 459
F.6 FORTRAN .. 460
F.7 COBOL.. 460
F.8 LISP ... 461

Appendix G. New Objects in Excel XP ... 463
AllowEditRange Object .. 463
AutoRecover Object.. 463
CalculatedMember Object .. 464
CellFormat Object... 464
CustomProperty Object... 465
Diagram, DiagramNode and DiagramNodeChildren Objects 465
Error Object .. 466
ErrorCheckingOptions Object .. 468
Graphic Object .. 468
IRTDServer and IRTDUpdateEvent Objects.. 469

 vi

PivotCell and PivotItemList Objects .. 469
Protection Object .. 470
RTD Object ... 470
SmartTag Related Objects .. 471
Speech Object ... 471
SpellingOptions Object ... 473
Tab Object... 473
UsedObjects Object .. 473
UserAccessList andUserAccess Objects... 474
Watch Object .. 474

Colophon ... 476

 vii

Copyright © 2002, 1999 O'Reilly & Associates, Inc. All rights reserved.

Originally published under the title Writing Excel Macros.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks
of O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations appear in this book,
and O'Reilly & Associates, Inc. was aware of a trademark claim, the designations have been
printed in caps or initial caps. The association between the image of a blue jay and the topic of
Excel macros is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and the author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

http://safari.oreilly.com/
mailto:corporate@oreilly.com

 viii

Preface
As the title suggests, this book is for those who want to learn how to program Microsoft Excel
Version 8 (for Office 97) and Version 9 (for Office 2000).

We should begin by addressing the question, "Why would anyone want to program Microsoft
Excel?" The answer is simple: to get more power out of this formidable application. As you will
see, there are many things that you can do at the programming level that you cannot do at the user-
interface level—that is, with the menus and dialog boxes of Excel. Chapter 1 provides some
concrete examples of this.

This book provides an introduction to programming the Excel object model using Visual Basic for
Applications (VBA). However, it is not intended to be an encyclopedia of Excel programming.
The goal here is to acquaint you with the main points of Excel programming—enough so that you
can continue your education (as we all do) on your own. The goal is that after reading this book
you should not need to rely on any source other than the Excel VBA Help file or a good Excel
VBA reference book and a nice object browser (such as my Enhanced Object Browser, a coupon
for which is included in the back of this book).

It has been my experience that introductory programming books (and, sadly, most trade computer
books) tend to do a great deal of handholding. They cover concepts at a very slow pace by
padding them heavily with overblown examples and irrelevant anecdotes that only the author
could conceivably find amusing, making it difficult to ferret out the facts. Frankly, I find such
unprofessionalism incredibly infuriating. In my opinion, it does the reader a great disservice to
take perhaps 400 pages of information and pad it with another 600 pages of junk.

There is no doubt in my mind that we need more professionalism from our authors, but it is not
easy to find writers who have both the knowledge to write about a subject and the training (or
talent) to do so in a pedagogical manner. (I should hasten to add that there are a number of
excellent authors in this area—it's just that there are not nearly enough of them.) Moreover,
publishers tend to encourage the creation of 1000-plus page tomes because of the general feeling
among the publishers that a book must be physically wide enough to stand out on the bookshelf! I
shudder to think that this might, in fact, be true. (I am happy to say that O'Reilly has not
succumbed to this opinion.)

By contrast, Writing Excel Macros with VBA is not a book in which you will find much
handholding (nor will you find much handholding in any of my books). The book proceeds at a
relatively rapid pace from a general introduction to programming through an examination of the
Visual Basic for Applications programming language to an overview of the Excel object model.
Given the enormity of the subject, not everything is covered, nor should it be. Nevertheless, the
essentials of both the VBA language and the Excel object model are covered so that, when you
have finished the book, you will know enough about Excel VBA to begin creating effective
working programs.

I have tried to put my experience as a professor (about 20 years) and my experience writing books
(about 30 of them) to work here to create a true learning tool for my readers. Hopefully, this is a
book that can be read, perhaps more than once, and can also serve as a useful reference.

Preface to the Second Edition

 ix

With the recent release of Excel 10 (also called Excel XP), it was necessary to update my book.
Excel XP is mostly an evolutionary step forward from Excel 2000, but does have some interesting
new features worth special attention, such as support for text-to-speed and smart tags.

The Excel object model has 37 new objects, containing 266 new members. There are also 180 new
members of preexisting objects. In this book, I cover most of the central objects. Figure P-1 shows
most of the new objects in the Excel XP object hierarchy and where these objects occur in the
Excel XP object model. (This figure is taken from my program Object Model Browser. For more
information on this program, please visit my web site at http://www.romanpress.com.)

Figure P-1. New objects in the Excel XP object hierarchy

http://www.romanpress.com/

 x

The Book's Audience

As an introduction to programming in Excel VBA, the book is primarily addressed to two groups
of readers:

• Excel users who are not programmers but who would like to be. If you fall into this
category, it is probably because you have begun to appreciate the power of Excel and
want to take advantage of its more advanced features or just accomplish certain tasks
more easily.

• Excel users who are programmers (in virtually any language—Visual Basic, Visual Basic
for Applications, BASIC, C, C++, and so on) but who are not familiar with the Excel
object model. In this case, you can use Writing Excel Macros to brush up on some of the
details of the VBA language and learn about the Excel object model and how to program
it.

Organization of This Book

Writing Excel Macros consists of 21 chapters that can informally be divided into four parts
(excluding the introductory chapter). In addition, there are five appendixes.

Chapter 1 examines why you might want to learn programming and provides a few examples of
the kinds of problems that can best be solved through programming. Chapter 2 introduces
programming and the Visual Basic for Applications language.

Chapter 2 through Chapter 4 form the first part of the book. Chapter 3 and Chapter 4 examine the
Visual Basic Integrated Development Environment (IDE), which is the programming environment
used to develop Excel VBA applications.

The second part of the book consists of Chapter 5 through Chapter 8, which form an introduction
to the VBA language, the language component that is common to Microsoft Visual Basic and to
many of Microsoft's major applications, including Word, Excel, PowerPoint, and Access, as well
as to software from some other publishers. Individual chapters survey VBA's variables, data types,
and constants (Chapter 5), functions and subroutines (Chapter 6), intrinsic functions and
statements (Chapter 7), and control statements (Chapter 8).

The third part of the book is devoted to some general topics that are needed to create usable
examples of Excel applications and to the Excel object model itself. We begin with a discussion of
object models in general (Chapter 9). The succeeding chapters discuss what constitutes an Excel
application (Chapter 10), Excel events (Chapter 11), Excel menus and toolbars (Chapter 12), and
Excel dialog boxes, both built-in and custom (Chapter 13 and Chapter 14). (Those who have read
my book Learning Word Programming might notice that these topics came at the end of that book.
While I would have preferred this organization here as well, I could not construct meaningful
Excel examples without covering this material before discussing the Excel object model.)

The last chapters of the book are devoted to the Excel object model itself. This model determines
which elements of Excel (workbooks, worksheets, charts, cells, and so on) are accessible through
code and how they can be controlled programmatically. Chapter 15 gives an overview of the Excel
object model. Subsequent chapters are devoted to taking a closer look at some of the main objects
in the Excel object model, such as the Application object (Chapter 16), which represents the Excel
application itself; the Workbook object (Chapter 17), which represents an Excel workbook; the

 xi

Worksheet object (Chapter 18), which represents an Excel worksheet; the Range object (Chapter
19), which represent a collection of cells in a workbook; the PivotTable object (Chapter 20); and
the Chart object (Chapter 21). Chapter 22 covers Smart Tags. I have tried to include useful
examples at the end of most of these chapters.

The appendixes provide a diverse collection of supplementary material, including a discussion of
the Shape object, which can be used to add some interesting artwork to Excel sheets, determining
what printers are available on a user's system (this is not quite as easy as you might think), and
how to program Excel from other applications (such as Word, Access, or PowerPoint). There is
also an appendix containing a very brief overview of programming languages that is designed to
give you a perspective on where VBA fits into the great scheme of things.

The Book's Text and Sample Code

When reading this book, you will encounter many small programming examples to illustrate the
concepts. I prefer to use small coding examples, hopefully, just a few lines, to illustrate a point.

Personally, I seem to learn much more quickly and easily by tinkering with and tracing through
short program segments than by studying a long, detailed example. The difficulty in tinkering with
a long program is that changing a few lines can affect other portions of the code, to the point
where the program will no longer run. Then you have to waste time trying to figure out why it
won't run.

I encourage you to follow along with the code examples by typing them in yourself. (Nevertheless,
if you'd rather save yourself the typing, sample programs are available online; see Section P.7 later
in this Preface.) Also, I encourage you to experiment -- it is definitely the best way to learn.
However, to protect yourself, I strongly suggest that you use a throw-away workbook for your
experimenting.

One final comment about the sample code is worth making, particularly since this book and its
coding examples are intended to teach you how to write VBA programs for Microsoft Excel.
Generally speaking, there is somewhat of a horse-before-the-cart problem in trying to write about
a complicated object model, since it is almost impossible to give examples of one object and its
properties and methods without referring to other objects that may not yet have been discussed.
Frankly, I don't see any way to avoid this problem completely, so rather than try to rearrange the
material in an unnatural way, it seems better to simply proceed in an orderly fashion. Occasionally,
we will need to refer to objects that we have not yet discussed, but this should not cause any
serious problems, since most of these forward references are fairly obvious.

About the Code

The code in this book has been carefully tested by at least three individuals—myself, my editor
Ron Petrusha, and the technical reviewer, Matt Childs. Indeed, I have tested the code on more than
one machine (with different operating systems) and at more than one time (at least during the
writing of the book and during the final preparation for book production).

Unfortunately, all three of us have run into some deviations from expected behavior (that is, the
code doesn't seem to work as advertised, or work at all) as well as some inconsistencies in code

TE
AM
FL
Y

Team-Fly®

 xii

behavior (that is, it works differently on different systems or at different times). Indeed, there have
been occasions when one of us did not get the same results as the others with the same code and
the same data. Moreover, I have personally had trouble on occasion duplicating my own results
after a significant span of time!

I suppose that this shouldn't be entirely surprising considering the complexity of a program like
Excel and the fallibility of us all, but the number of such peccadilloes has prompted me to add this
caveat.

Offhand, I can think of two reasons for this behavior—whether it be real or just apparent—neither
of which is by any means an excuse:

• The state of documentation being what it is, there may be additional unmentioned
requirements or restrictions for some code to work properly, or even at all. As an example,
nowhere in the vast documentation—at least that I could find—does it say that we cannot
use the HasAxis method to put an axis on a chart before we have set the location of the
data for that axis! (This seems to me to be putting the cart before the horse, but that is not
the issue.) If we try to do so, the resulting error message simply says "Method 'HasAxis'
of object '_Chart' has failed." This is not much help in pinpointing the problem. Of course,
without being privy to this kind of information from the source, we must resort to
experimentation and guesswork. If this does not reveal the situation, it will appear that
the code simply does not work.

• Computers are not static. Whenever we install a new application, whether it be related to
Excel or not, there is a chance that a DLL or other system file will be replaced by a newer
file. Sadly, newer files are not always better. This could be the cause, but certainly not the
excuse, for inconsistent behavior over time.

The reason that I am bringing this up is to let you know that you may run into some
inconsistencies or deviations from expected behavior as well. I have tried to point out some of
these problems when they occur, but you may encounter others. Of course, one of our biggest
challenges (yours and mine) is to determine whether it is we who are making the mistake and not
the program. I will hasten to add that when I encounter a problem with code behavior, I am
usually (but not always) the one who is at fault. In fact, sometimes I must remind myself of my
students, who constantly say to me, "There is an error in the answers in the back of the textbook."
I have learned over 20 years of teaching that 99% of the time (but not 100% of the time), the error
is not in the book! Would that the software industry had this good a record!

I hope you enjoy this book. Please feel free to check out my web site at
http://www.romanpress.com.

Conventions in this Book

Throughout this book, we have used the following typographic conventions:

Constant width

indicates a language construct such as a language statement, a constant, or an expression.
Lines of code also appear in constant width, as do functions and method prototypes.

Italic

http://www.romanpress.com/

 xiii

represents intrinsic and application-defined functions, the names of system elements such
as directories and files, and Internet resources such as web documents and email
addresses. New terms are also italicized when they are first introduced.

Constant width italic

in prototypes or command syntax indicates replaceable parameter names, and in body text
indicates variable and parameter names.

Obtaining the Sample Programs

The sample programs presented in the book are available online from the Internet and can be
freely downloaded from our web site at http://www.oreilly.com/catalog/exlmacro2.

How to Contact Us

We have tested and verified all the information in this book to the best of our ability, but you may
find that features have changed (or even that we have made mistakes!). Please let us know about
any errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, where we list any errata, examples, and additional information.
You can access this page at:

http://www.oreilly.com/catalog/exlmacro2

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the O'Reilly
Network, see our web site at:

http://www.oreilly.com

Acknowledgments

http://www.oreilly.com/catalog/exlmacro2
http://www.oreilly.com/catalog/exlmacro2
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

 xiv

I would like to express my sincerest thanks to Ron Petrusha, my editor at O'Reilly. As with my
other books, Ron has been of considerable help. He is one of the best editors that I have worked
with over the last 17 years of book writing.

Also, I would like to thank Matt Childs for doing an all-important technical review of the book.

 1

Chapter 1. Introduction
Microsoft Excel is an application of enormous power and flexibility. But despite its powerful
feature set, there is a great deal that Excel either does not allow you to do or does not allow you to
do easily through its user interface. In these cases, we must turn to Excel programming.

Let me give you two examples that have come up in my consulting practice.

1.1 Selecting Special Cells

The Excel user interface does not have a built-in method for selecting worksheet cells based on
various criteria. For instance, there is no way to select all cells whose value is between 0 and 100
or all cells that contain a date later than January 1, 1998. There is also no way to select only those
cells in a given column that are different from their immediate predecessors. This can be very
useful when you have a sorted column and want to extract a set of unique values, as shown in
Figure 1-1.

Figure 1-1. Selecting unique values

I have been asked many times by clients if Excel provides a way to make such selections. After a
few such questions, I decided to write an Excel utility for this purpose. The dialog for this utility is
shown in Figure 1-2. With this utility, the user can select a match type (such as number, date, or
text) and a match criterion. If required, the user supplies one or two values for the match. This has
proven to be an extremely useful utility.

Figure 1-2. The Select Special utility

 2

In this book, we will develop a simpler version of this utility, whose dialog is shown in Figure 1-3.
This book will also supply you with the necessary knowledge to enhance this utility to something
similar to the utility shown in Figure 1-2.

Figure 1-3. Select Special dialog

1.2 Setting a Chart's Data Point Labels

As you may know, data labels can be edited individually by clicking twice (pausing in between
clicks) on a data label. This places the label in edit mode, as shown in Figure 1-4. Once in edit
mode, we can change the text of a data label (which breaks any links) or set a new link to a
worksheet cell. Accomplishing the same thing programmatically is also very easy. For instance,
the code:

 3

ActiveChart.SeriesCollection(1).DataLabels(2).Text =
"=MyChartSheet!R12C2"

sets the data label for the second data point to the value of cell B12. Note that the formula must be
in R1C1 notation. (We will explain the code in Chapter 21, so don't worry about the details now.)

Figure 1-4. A data label in edit mode

Unfortunately, however, Excel does not provide a simple way to link all of the data labels for a
data series with a worksheet range, beyond doing this one data label at a time. In Chapter 21, we
will create such a utility, the dialog for which is shown in Figure 1-5. This dialog provides a list of
all the data series for the selected chart. The user can select a data series and then define a range to
which the data labels will be linked or from which the values will be copied. If the cell values are
copied, no link is established, and so changes made to the range are not reflected in the chart.
There is also an option to control whether formatting is linked or copied.

Figure 1-5. Set Data Labels dialog

I hope that these illustrations have convinced you that Excel programming can at times be very
useful. Of course, you can do much more mundane things with Excel programs, such as
automating the printing of charts, sorting worksheets alphabetically, and so on.

 4

1.3 Topics in Learning Excel Programming

In general, the education of an Excel programmer breaks down into a few main categories, as
follows.

The Visual Basic Editor

First, you need to learn a bit about the environment in which Excel programming is done.
This is the so-called Visual Basic Editor or Excel VBA Integrated Development
Environment (IDE for short). We take care of this in Chapter 3 and Chapter 4.

The Basics of Programming in VBA

Next, you need to learn a bit about the basics of the programming language that Excel
uses. This language is called Visual Basic for Applications (VBA). Actually, VBA is used
not only by Microsoft Excel, but also by the other major components in the Microsoft
Office application suite: Access, Word, and PowerPoint. Any application that uses VBA
in this way is called a host application for VBA. (There are also a number of non-
Microsoft products that use VBA as their underlying programming language. Among the
most notable is Visio, a vector-based drawing program.) It is also used by the standalone
programming environment called Visual Basic (VB).

We will discuss the basics of the VBA programming language in Chapter 5 through
Chapter 8.

Object Models and the Excel Object Model

Each VBA host application (Word, Access, Excel, PowerPoint, Visual Basic)
supplements the basic VBA language by providing an object model to deal with the
objects that are particular to that application.

For instance, Excel VBA includes the Excel object model, which deals with such objects
as workbooks, worksheets, cells, rows, columns, ranges, charts, pivot tables, and so on.
On the other hand, the Word object model deals with such objects as documents,
templates, paragraphs, fonts, headers, tables, and so on. Access VBA includes two object
models, the Access object model and the DAO object model, that allow the programmer to
deal with such objects as database tables, queries, forms, and reports. (To learn more
about the Word, Access, and DAO object models, see my books Learning Word
Programming and Access Database Design and Programming, also published by
O'Reilly.)

Thus, an Excel programmer must be familiar with the general notion of an object model
and with the Excel object model in particular. We discuss object models in general in
Chapter 9, and our discussion of the Excel object model takes up most of the remainder of
the book.

Incidentally, the Excel object model is quite extensive—a close second to the Word object model
in size and complexity, with almost 200 different objects.

Lest you be too discouraged by the size of the Excel object model, I should point out that you only
need to be familiar with a handful of objects to program meaningfully in Excel VBA. In fact, as
we will see, the vast majority of the "action" is related to just seven objects: Application, Range,
WorksheetFunction, Workbook, Worksheet, PivotTable, and Chart.

 5

To help you get an overall two-dimensional picture of the Excel object model, as well as detailed
local views, I have written special object browser software. (The object browser comes with over
a dozen other object models as well.) For more information, please visit
http://www.romanpress.com.

Whether you are interested in Excel programming to be more efficient in your own work or to
make money writing Excel programs for others to use, I think you will enjoy the increased sense
of power that you get by knowing how to manipulate Excel at the programming level. And
because Excel programming involves accessing the Excel object model by using the Visual Basic
for Applications programming language—the same programming language used in Microsoft
Word, Access, and PowerPoint—after reading this book, you will be half-way to being a Word,
Access, and PowerPoint programmer as well!

http://www.romanpress.com/

 6

Part I: The VBA Environment
Chapter 2

Chapter 3

Chapter 4

 7

Chapter 2. Preliminaries
We begin with some general facts related to programming and programming languages that will
help to give the main subject matter of this book some perspective. After all, VBA is just one of
many programming languages, and anyone who wants to be a VBA programmer should have
some perspective on where VBA fits into the greater scheme of things. Rest assured, however, that
we will not dwell on side issues. The purpose of this chapter is to give a very brief overview of
programming and programming languages that will be of interest to readers who have not had any
programming experience, as well as to those who have.

2.1 What Is a Programming Language?

Simply put, a programming language is a very special and very restricted language that is
understood by the computer at some level. We can roughly divide programming languages into
three groups, based on the purpose of the language:

• Languages designed to manipulate the computer at a low level, that is, to manipulate the
operating system (Windows or DOS) or even the hardware itself, are called low-level
languages. An example is assembly language.

• Languages designed to create standalone applications, such as Microsoft Excel, are high-
level languages. Examples are BASIC, COBOL, FORTRAN, Pascal, C, C++, and Visual
Basic.

• Languages that are designed to manipulate an application program, such as Microsoft
Excel, are application-level languages. Examples are Excel VBA, Word VBA, and
PowerPoint VBA.

Those terms are not set in concrete and may be used differently by others. However, no one would
disagree that some languages are intended to be used at a lower level than others.

The computer world is full of programming languages—hundreds of them. In some cases,
languages are developed for specific computers. In other cases, languages are developed for
specific types of applications. Table 2-1 gives some examples of programming languages and their
general purposes.

Table 2-1. Some Programming Languages
Language General Purpose

ALGOL An attempt to design a universal language
BASIC A simple, easy-to-learn language designed for beginners
C, C++ A very powerful languages with excellent speed and control over the computer
COBOL A language for business programming
FORTRAN A language for scientific programming and number crunching
Lisp A language for list processing (used in artificial intelligence)
Pascal A language to teach students how to program "correctly"
SIMULA A language for simulating (or modeling) physical phenomena
Smalltalk A language for object-oriented programming
Visual Basic A version of BASIC designed for creating Windows applications
Visual C++ A version of C++ designed for creating Windows applications

TE
AM
FL
Y

Team-Fly®

 8

Programming languages vary quite a bit in their syntax. Some languages are much easier to read
than others (as are spoken languages). As a very simple example, Table 2-2 shows some ways that
different programming languages assign a value (in this case, 5) to a variable named X. Notice the
variation even in this simple task.

Table 2-2. Assignment in Various Languages
Language Assignment Statement

APL X <- 5
BASIC LET X = 5 or X = 5
BETA 5 -> X
C, C++ X = 5;
COBOL MOVE 5 TO X
FORTRAN X = 5
J X =. 5
LISP (SETQ X 5)
Pascal X := 5
Visual Basic X = 5

If you're interested in how Visual Basic compares with some of the other major programming
languages, Appendix F contains a short description of several languages, along with some
programming examples.

2.2 Programming Style

The issue of what constitutes good programming style is, of course, subjective, just as is the issue
of what constitutes good writing style. Probably the best way to learn good programming style is
to learn by example and to always keep the issue somewhere in the front of your mind while
programming.

This is not the place to enter into a detailed discussion of programming style. However, in my
opinion, the two most important maxims for good programming are:

• When in doubt, favor readability over cleverness or elegance.
• Fill your programs with lots of meaningful comments.

2.2.1 Comments

Let us take the second point first. It is not possible to overestimate the importance of adding
meaningful comments to your programs—at least any program with more than a few lines.

The problem is this: good programs are generally used many times during a reasonably long
lifetime, which may be measured in months or even years. Inevitably, a programmer will want to
return to his or her code to make changes (such as adding additional features) or to fix bugs.
However, despite all efforts, programming languages are not as easy to read as spoken languages.
It is just inevitable that a programmer will not understand (or perhaps not even recognize!) code
that was written several months or years earlier, and must rely on carefully written comments to
help reacquaint himself with the code. (This has happened to me more times that I would care to
recall.)

 9

Let me emphasize that commenting code is almost as much of an art as writing the code itself. I
have often seen comments similar to the following:

' Set x equal to 5
x = 5

This comment is pretty useless, since the actual code is self-explanatory. It simply wastes time and
space. (In a teaching tool, such as this book, you may find some comments that would otherwise
be left out of a professionally written program.)

A good test of the quality of your comments is to read just the comments (not the code) to see if
you get a good sense not only of what the program is designed to do, but also of the steps that are
used to accomplish the program's goal. For example, here are the comments from a short BASIC
program that appears in Appendix F:

' BASIC program to compute the average
' of a set of at most 100 numbers

' Ask for the number of numbers

' If Num is between 1 and 100 then proceed
 ' Loop to collect the numbers to average
 ' Ask for next number
 ' Add the number to the running sum
 ' Compute the average
 ' Display the average

2.2.2 Readability

Readability is also a subjective matter. What is readable to one person may not be readable to
another. In fact, it is probably fair to say that what is readable to the author of a program is likely
to be less readable to everyone else, at least to some degree. It is wise to keep this in mind when
you start programming (that is, assuming you want others to be able to read your programs).

One of the greatest offenders to code readability is the infamous GOTO statement, of which many
languages (including VBA) have some variety or other. It is not my intention to dwell upon the
GOTO statement, but it will help illustrate the issue of good programming style.

The GOTO statement is very simple—it just redirects program execution to another location. For
instance, the following BASIC code asks the user for a positive number. If the user enters a
nonpositive number, the GOTO portion of the code redirects execution to the first line of the
program (the label TryAgain). This causes the entire program to be executed again. In short, the
program will repeat until the user enters a positive number:

TryAgain:
INPUT "Enter a positive number: ", x
IF x <= 0 THEN GOTO TryAgain

While the previous example may not be good programming style, it is at least readable. However,
the following code is much more difficult to read:

TryAgain:
INPUT "Enter a number between 1 and 100: ", x
IF x > 100 THEN GOTO TooLarge
IF x <= 0 THEN GOTO TooSmall
PRINT "Your number is: ", x

 10

GOTO Done
TooLarge:
PRINT "Your number is too large"
GOTO TryAgain
TooSmall:
PRINT "Your number is too small"
GOTO TryAgain
Done:
END

Because we need to jump around in the program in order to follow the possible flows of execution,
this type of programming is sometimes referred to as spaghetti code. Imagine this style of
programming in a program that was thousands of lines long! The following version is much more
readable, although it is still not the best possible style:

TryAgain:
INPUT "Enter a number between 1 and 100: ", x
IF x > 100 THEN
 PRINT "Your number is too large"
 GOTO TryAgain
ELSEIF x <= 0 THEN
 PRINT "Your number is too small"
 GOTO TryAgain
END IF
PRINT "Your number is: ", x
END

The following code does the same job, but avoids the use of the GOTO statement altogether, and
would no doubt be considered better programming style by most programmers:

DO
 INPUT "Enter a number between 1 and 100: ", x
 IF x > 100 THEN
 PRINT "Your number is too large"
 ELSEIF x <= 0 THEN
 PRINT "Your number is too small"
 END IF
LOOP UNTIL x >= 1 AND x <= 100
PRINT "Your number is: ", x
END

Readability can also suffer at the hands of programmers who like to think that their code is
especially clever or elegant but, in reality, just turns out to be hard to read and error-prone. This is
especially easy to do when programming in the C language. For instance, as a very simple
example, consider the following three lines in C:

x = x + 1;
x = x + i;
i = i - 1;

The first line adds 1 to x , the second line adds i to x , and the third line subtracts 1 from i. This
code is certainly readable (if not terribly meaningful). However, it can also be written as:

x = ++x+i--;

This may be some programmer's idea of clever programming, but to me it is just obnoxious. This
is why a sagacious programmer always favors readability over cleverness or elegance.

 11

2.2.3 Modularity

Another major issue that relates to readability is that of modular programming. In the early days
of PC programming (in BASIC), most programs were written as a single code unit, sometimes
with many hundreds or even thousands of lines of code. It is not easy to follow such a program,
especially six months after it was written. Also, these programs tended to contain the same code
segments over and over, which is a waste of time and space.

The following BASIC example will illustrate the point. Line numbers have been added for
reference. (Don't worry too much about following each line of code. You can still follow the
discussion in any case.)

10 ' Program to reverse the letters in your name

20 ' Do first name
30 INPUT "Enter your first name: ", name$
40 reverse$ = ""
50 FOR i = LEN(name$) TO 1 STEP -1
60 reverse$ = reverse$ + MID$(name$, i, 1)
70 NEXT i
80 PRINT "First name reversed: " + reverse$

90 ' Do middle name
100 INPUT "Enter your middle name: ", name$
110 reverse$ = ""
120 FOR i = LEN(name$) TO 1 STEP -1
130 reverse$ = reverse$ + MID$(name$, i, 1)
140 NEXT i
150 PRINT "Middle name reversed: " + reverse$

160 ' Do last name
170 INPUT "Enter your last name: ", name$
180 reverse$ = ""
190 FOR i = LEN(name$) TO 1 STEP -1
200 reverse$ = reverse$ + MID$(name$, i, 1)
210 NEXT i
220 PRINT "Last name reversed: " + reverse$

Now, observe that lines 40-70, 110-140, and 180-210 (in bold) are identical. This is a waste of
space. A better approach would be to separate the code that does the reversing of a string name
into a separate code module and call upon that module thrice, as in the following example:

' Program to reverse your name

DECLARE FUNCTION Reverse$ (name$)

' Do first name
INPUT "Enter your first name: ", name$
PRINT "First name reversed: " + Reverse$(name$)

' Do middle name
INPUT "Enter your middle name: ", name$
PRINT "Middle name reversed: " + Reverse$(name$)

' Do last name
INPUT "Enter your last name: ", name$
PRINT "Last name reversed: " + Reverse$(name$)

The separate code module to reverse a string is:

 12

' Reverses a string
FUNCTION Reverse$ (aname$)
 Temp$ = ""
 FOR i = LEN(aname$) TO 1 STEP -1
 Temp$ = Temp$ + MID$(aname$, i, 1)
 NEXT i
 Reverse$ = Temp$
END FUNCTION

Of course, the saving in space is not great in this example, but you can imagine what would
happen if we replace the reversing procedure by one that requires several hundred lines of code
and if we want to perform this procedure a few hundred times in the main program. This
modularization could save thousands of lines of code.

There is another very important advantage to modular programming. If we decide to write another
program that requires reversing some strings, we can simply add our string-reversing code module
to the new program, without having to write any new code. Indeed, professional programmers
often compile custom code libraries containing useful code modules that can be slipped into new
applications when necessary.

It is hard to overestimate the importance of modular programming. Fortunately, as we will see,
VBA makes it easy to create modular programs.

Generally speaking, there are two main groups of code modules: functions and subroutines. The
difference between them is that functions return a value whereas subroutines do not. (Of course,
we may choose not to use the value returned from a function.) For instance, the Reverse function
described in the previous example returns the reversed string. On the other hand, the following
code module performs a service but does not return a value—it simply pauses a certain number of
seconds (given by sec):

SUB delay (sec)
 ' Get the current time
 StartTime = TIMER
 ' Enter a do-nothing loop for sec seconds
 DO
 LOOP UNTIL TIMER - StartTime > sec
END SUB

Functions and subroutines are extremely common in modern coding. Together, they are referred to
as procedures.

 13

Chapter 3. The Visual Basic Editor, Part I
The first step in becoming an Excel VBA programmer is to become familiar with the environment
in which Excel VBA programming is done. Each of the main Office applications has a
programming environment referred to as its Integrated Development Environment (IDE).
Microsoft also refers to this programming environment as the Visual Basic Editor.

Our plan in this chapter and Chapter 4 is to describe the major components of the Excel IDE. We
realize that you are probably anxious to get to some actual programming, but it is necessary to
gain some familiarity with the IDE before you can use it. Nevertheless, you may want to read
quickly through this chapter and the next and then refer back to them as needed.

In Office 97, the Word, Excel, and PowerPoint IDEs have the same appearance, shown in Figure
3-1. (Beginning with Office 2000, Microsoft Access also uses this IDE.) To start the Excel IDE,
simply choose Visual Basic Editor from the Macros submenu of the Tools menu, or hit Alt-F11.

Figure 3-1. The Excel VBA IDE

Let us take a look at some of the components of this IDE.

3.1 The Project Window

The window in the upper-left corner of the client area (below the toolbar) is called the Project
Explorer. Figure 3-2 shows a close-up of this window.

Figure 3-2. The Project Explorer

 14

Note that the Project Explorer has a treelike structure, similar to the Windows Explorer's folders
pane (the left-hand pane). Each entry in the Project Explorer is called a node. The top nodes, of
which there are two in Figure 3-2, represent the currently open Excel VBA projects (hence the
name Project Explorer). The view of each project can be expanded or contracted by clicking on
the small boxes (just as with Windows Explorer). Note that there is one project for each currently
open Excel workbook.

3.1.1 Project Names

Each project has a name, which the programmer can choose. The default name for a project is
VBAProject. The top node for each project is labeled:

ProjectName (WorkbookName)

where ProjectName is the name of the project and WorkbookName is the name of the Excel
workbook.

3.1.2 Project Contents

At the level immediately below the top (project) level, as Figure 3-2 shows, there are nodes named:

Microsoft Excel Objects
Forms
Modules
Classes

Under the Microsoft Excel Objects node, there is a node for each worksheet and chartsheet in the
workbook, as well as a special node called ThisWorkbook, which represents the workbook itself.
These nodes provide access to the code windows for each of these objects, where we can write our
code.

 15

Under the Forms node, there is a node for each form in the project. Forms are also called
UserForms or custom dialog boxes. We will discuss UserForms later in this chapter.

Under the Modules node, there is a node for each code module in the project. Code modules are
also called standard modules. We will discuss modules later in this chapter.

Under the Classes node, there is a node for each class module in the project. We will discuss
classes later in this chapter.

The main purpose of the Project Explorer is to allow us to navigate around the project.
Worksheets and UserForms have two components—a visible component (a worksheet or dialog)
and a code component. By right-clicking on a worksheet or UserForm node, we can choose to
view the object itself or the code component for that object. Standard modules and class modules
have only a code component, which we can view by double-clicking on the corresponding node.

Let us take a closer look at the various components of an Excel project.

3.1.2.1 The ThisWorkbook object

Under each node in the Project Explorer labeled Microsoft Excel Objects is a node labeled
ThisWorkbook. This node represents the project's workbook, along with the code component (also
called a code module) that stores event code for the workbook. (We can also place independent
procedures in the code component of a workbook module, but these are generally placed in a
standard module, discussed later in this chapter.)

Simply put, the purpose of events is to allow the VBA programmer to write code that will execute
whenever one of these events fires. Excel recognizes 19 events related to workbooks. We will
discuss these events in Chapter 11; you can take a quick peek at this chapter now if you are
curious. Some examples:

• The Open event, which occurs when the workbook is opened.
• The BeforeClose event, which occurs just before the workbook is closed.
• The NewSheet event, which occurs when a new worksheet is added to the workbook.
• The BeforePrint event, which occurs just before the workbook or anything in it is printed.

3.1.2.2 Sheet objects

Under each Microsoft Excel Objects node in the Project Explorer is a node for each sheet. (A
sheet is a worksheet or a chartsheet.) Each sheet node represents a worksheet or chartsheet's
visible component, along with the code component (also called a code module) that stores event
code for the sheet. We can also place independent procedures in the code component of a sheet
module, but these are generally placed in a standard module, discussed next.

Excel recognizes 7 events related to worksheets and 13 events related to chartsheets. We will
discuss these events in Chapter 11.

3.1.2.3 Standard modules

A module, also more clearly referred to as a standard module, is a code module that contains
general procedures (functions and subroutines). These procedures may be macros designed to be
run by the user, or they may be support programs used by other programs. (Remember our
discussion of modular programming.)

3.1.2.4 Class modules

 16

Class modules are code modules that contain code related to custom objects. As we will see, the
Excel object model has a great many built-in objects (almost 200), such as workbook objects,
worksheet objects, chart objects, font objects, and so on. It is also possible to create custom
objects and endow them with various properties. To do so, we would place the appropriate code
within a class module.

However, since creating custom objects is beyond the scope of this book, we will not be using
class modules. (For an introduction to object-oriented programming using VB, allow me to
suggest my book, Concepts of Object-Oriented Programming with Visual Basic, published by
Springer-Verlag, New York.)

3.1.2.5 UserForm objects

As you no doubt know, Excel contains a great many built-in dialog boxes. It is also possible to
create custom dialog boxes, also called forms or UserForms. This is done by creating UserForm
objects. Figure 3-3 shows the design environment for the Select Special UserForm that we
mentioned in Chapter 1.

Figure 3-3. A UserForm dialog box

The large window on the upper-center in Figure 3-3 contains the custom dialog box (named
dlgSelectSpecial) in its design mode. There is a floating Toolbox window on the right that
contains icons for various Windows controls.

To place a control on the dialog box, simply click on the icon in the Toolbox and then drag and
size a rectangle on the dialog box. This rectangle is replaced by the control of the same size as the
rectangle. The properties of the UserForm object or of any controls on the form can be changed by
selecting the object and making the changes in the Properties window, which we discuss in the
next section.

In addition to the form itself and its controls, a UserForm object contains code that the VBA
programmer writes in support of these objects. For instance, a command button has a Click event
that fires when the user clicks on the button. If we place such a button on the form, then we must
write the code that is run when the Click event fires; otherwise, clicking the button does nothing.

 17

For instance, the following is the code for the Close button's Click event in Figure 3-3. Note that
the Name property of the command button has been set to cmdClose :

Private Sub cmdClose_Click()
 Unload Me
End Sub

All this code does is unload the form.

Along with event code for a form and its controls, we can also include support procedures within
the UserForm object.

Don't worry if all this seems rather vague now. We will devote an entire chapter to creating
custom dialog boxes (that is, UserForm objects) later in the book and see several real-life
examples throughout the book.

3.2 The Properties Window

The Properties window (see Figure 3-1) displays the properties of an object and allows us to
change them.

When a standard module is selected in the Project window, the only property that appears in the
Properties window is the module's name. However, when a workbook, sheet, or UserForm is
selected in the Projects window, many of the object's properties appear in the Properties window,
as shown in Figure 3-4.

The Properties window can be used to change some of the properties of the object while no code is
running—that is, at design time. Note, however, that some properties are read-only and cannot be
changed. While most properties can be changed either at design time or run time, some properties
can only be changed at design time and some can only be changed at run time. Run-time
properties generally do not appear in the Properties window.

Figure 3-4. The Properties window

TE
AM
FL
Y

Team-Fly®

 18

3.3 The Code Window

The Code window displays the code that is associated with the selected item in the Project
window. To view this code, select the object in the Projects window and either choose Code from
the View menu or hit the F7 key. For objects with only a code component (no visual component),
you can just double-click on the item in the Projects window.

3.3.1 Procedure and Full-Module Views

Generally, a code module (standard, class, or UserForm) contains more than one procedure. The
IDE offers the choice between viewing one procedure at a time (called procedure view) or all
procedures at one time (called full-module view), with a horizontal line separating the procedures.
Each view has its advantages and disadvantages, and you will probably want to use both views at
different times. Unfortunately, Microsoft has not supplied a menu choice for selecting the view.
To change views, we need to click on the small buttons in the lower-left corner of the Code
window. (The default view can be set using the Editor tab of the Options dialog box.)

Incidentally, the default font for the module window is Courier, which has a rather thin looking
appearance and may be somewhat difficult to read. You may want to change the font to FixedSys
(on the Editor Format tab of the Options dialog, under the Tools menu), which is very readable.

3.3.2 The Object and Procedure List Boxes

At the top of the Code window, there are two drop-down list boxes (see Figure 3-1). The Object
box contains a list of the objects (such as forms and controls) that are associated with the current
project, and the Procedure box contains a list of all of the procedures associated with the object
selected in the Object box. The precise contents of these boxes varies depending on the type of
object selected in the Project Explorer.

 19

3.3.2.1 A workbook or sheet object

When a workbook or sheet object is selected in the Project window, the Object box contains only
two entries: general, for general procedures, and the object in question, either Workbook,
Worksheet, or Chart. When the object entry is selected, the Procedure box contains empty code
shells for the events that are relevant to that object. Figure 3-5 shows an example.

Figure 3-5. The events for a workbook object

If, for example, we choose the BeforeClose event in the Procedures box, Excel will create the
following code shell for this event and place the cursor within this procedure:

Private Sub Workbook_BeforeClose(Cancel As Boolean)

End Sub

3.3.2.2 A standard module

When a standard module is selected in the Project window, the Object box contains only the entry
General, and a Procedure box lists all of the procedures we have written for that module (if any).
Figure 3-6 shows the open Procedure box, with a list of the current procedures for a particular
module. The Declarations section is where we place variable declarations for module-level
variables —that is, for variables that we want to be available in every procedure within the
module. We will discuss this in detail in Chapter 5.

Figure 3-6. The Procedure box

3.3.2.3 A UserForm object

When a UserForm object is selected in the Project Explorer, the Object box contains a list of all of
the objects contained in the UserForm. For instance, Figure 3-7 shows the contents of the Object
box for the UserForm object in Figure 3-3. Note that there are entries for the various command
buttons (such as cmdClose), the various other controls, and even for the UserForm itself.

 20

Figure 3-7. The Object box

Figure 3-8 shows the contents of the Procedure box when the cmdClose object is selected in the
Object box. This list contains the names of the 13 different events that are associated with a
command button.

Figure 3-8. The Procedure box

For example, if we select Click, we will be placed within the Code window between the following
two lines, where we can write event code for the Click event of the cmdClose command button :

Private Sub cmdClose_Click()

End Sub

3.4 The Immediate Window

The Immediate window (see Figure 3-1) has two main functions. First, we can send output to this
window using the command Debug.Print. For instance, the following code will print whatever
text is currently in cell A1 of the active worksheet to the Immediate window:

Debug.Print ActiveSheet.Range("A1").Text

This provides a nice way to experiment with different code snippets.

The other main function of the Immediate window is to execute commands. For instance, by
selecting some text in the active document, switching to the Immediate window, and entering the
line shown in Figure 3-9, the selected text will be boldfaced (after hitting the Enter key to execute
the code).

 21

Figure 3-9. The Immediate Window

The Immediate window is an extremely valuable tool for debugging a program, and you will
probably use it often (as I do).

3.5 Arranging Windows

If you need more space for writing code, you can close the Properties window, the Project window,
and the Immediate window. On the other hand, if you are fortunate enough to have a large monitor,
you can split your screen as shown in Figure 3-10 to see the Excel VBA IDE and an Excel
workbook at the same time. Then you can trace through each line of your code and watch the
results in the workbook! (You can toggle between Excel and the IDE using the Alt-F11 key
combination.)

Figure 3-10. A split screen approach

3.5.1 Docking

Many of the windows in the IDE (including the Project, Properties, and Immediate windows) can
be in one of two states: docked or floating. The state can be set using the Docking tab on the
Options dialog box, which is shown in Figure 3-11.

Figure 3-11. The Docking options

 22

A docked window is one that is attached, or anchored, to an edge of another window or to one
edge of the client area of the main VBA window. When a dockable window is moved, it snaps to
an anchored position. On the other hand, a floating window can be placed anywhere on the screen.

 23

Chapter 4. The Visual Basic Editor, Part II
In this chapter, we conclude our discussion of the Visual Basic Editor. Again, let us remind the
reader that he or she may want to read quickly through this chapter and refer to it later as needed.

4.1 Navigating the IDE

If you prefer the keyboard to the mouse (as I do), then you may want to use keyboard shortcuts.
Here are some tips.

4.1.1 General Navigation

The following keyboard shortcuts are used for navigating the IDE:

F7

Go to the Code window.

F4

Go to the Properties window.

Ctrl-R

Go to the Project window.

Ctrl-G

Go to the Immediate window.

Alt-F11

Toggle between Excel and the VB IDE.

4.1.1.1 Navigating the code window at design time

Within the code window, the following keystrokes are very useful:

F1

Help on the item under the cursor.

Shift-F2

Go to the definition of the item under the cursor. (If the cursor is over a call to a function
or subroutine, hitting Shift-F2 sends you to the definition of that procedure.)

Ctrl-Shift-F2

 24

Return to the last position where editing took place.

4.1.1.2 Tracing code

The following keystrokes are useful when tracing through code (discussed in Section 4.6, later in
this chapter):

F8

Step into

Shift-F8

Step over

Ctrl-Shift-F8

Step out

Ctrl-F8

Run to cursor

F5

Run

Ctrl-Break

Break

Shift-F9

Quick watch

F9

Toggle breakpoint

Ctrl-Shift-F9

Clear all breakpoints

4.1.1.3 Bookmarks

It is also possible to insert bookmarks within code. A bookmark marks a location to which we can
return easily. To insert a bookmark, or to move to the next or previous bookmark, use the
Bookmarks submenu of the Edit menu. The presence of a bookmark is indicated by a small blue
square in the left margin of the code.

 25

4.2 Getting Help

If you are like me, you will probably make extensive use of Microsoft's Excel VBA help files
while programming. The simplest way to get help on an item is to place the cursor on that item
and hit the F1 key. This works not only for VBA language keywords but also for portions of the
VBA IDE.

Note that Microsoft provides multiple help files for Excel, the VBA language, and the Excel
object model. While this is quite reasonable, occasionally the help system gets a bit confused and
refuses to display the correct help file when we strike the F1 key. (I have not found a simple
resolution to this problem, other than shutting down Excel and the Visual Basic Editor along with
it.)

Note also that a standard installation of Microsoft Office does not install the VBA help files for
the various applications. Thus, you may need to run the Office setup program and install Excel
VBA help by selecting that option in the appropriate setup dialog box. (Do not confuse Excel help
with Excel VBA help.)

4.3 Creating a Procedure

There are two ways to create a new procedure (that is, a subroutine or a function) within a code
module. First, after selecting the correct project in the Project Explorer, we can select the
Procedure option from the Insert menu. This will produce the dialog box shown in Figure 4-1. Just
type in the name of the procedure and select Sub or Function (the Property choice is used with
custom objects in a class module). We will discuss the issue of public versus private procedures
and static variables later in this chapter.

Figure 4-1. The Add Procedure dialog box

A simpler alternative is to simply begin typing:

Sub SubName

or:

 26

Function FunctionName

in any code window (following the current End Sub or End Function statement, or in the
general declarations section). As soon as the Enter key is struck, Excel will move the line of code
to a new location and thereby create a new subroutine. (It will even add the appropriate ending—
End Sub or End Function.)

4.4 Run Time, Design Time, and Break Mode

The VBA IDE can be in any one of three modes: run mode, break mode, or design mode. When
the IDE is in design mode, we can write code or design a form.

Run mode occurs when a procedure is running. To run (or execute) a procedure, just place the
cursor anywhere within the procedure code and hit the F5 key (or select Run from the Run menu).
If a running procedure seems to be hanging, we can usually stop the procedure by hitting Ctrl-
Break (hold down the Control key and hit the Break key).

Break mode is entered when a running procedure stops because of either an error in the code or a
deliberate act on our part (described a bit later). In particular, if an error occurs, Excel will stop
execution and display an error dialog box, an example of which is shown in Figure 4-2.

Figure 4-2. An error message

Error dialog boxes offer a few options: end the procedure, get help (such as it may be) with the
problem, or enter break mode to debug the code. In the latter case, Excel will stop execution of the
procedure at the offending code and highlight that code in yellow. We will discuss the process of
debugging code a bit later.

Aside from encountering an error, there are several ways we can deliberately enter break mode for
debugging purposes:

• Hit the Ctrl-Break key and choose Debug from the resulting dialog box.
• Include a Stop statement in the code, which causes Excel to enter break mode.
• Insert a breakpoint on an existing line of executable code. This is done by placing the

cursor on that line and hitting the F9 function key (or using the Toggle Breakpoint option
on the Debug menu). Excel will place a red dot in the left margin in front of that line and
will stop execution when it reaches the line. You may enter more than one breakpoint in a
procedure. This is generally preferred over using the Stop statement, because
breakpoints are automatically removed when we close down the Visual Basic Editor, so
we don't need to remember to remove them, as we do with Stop statements.

• Set a watch statement that causes Excel to enter break mode if a certain condition
becomes true. We will discuss watch expressions a bit later.

 27

To exit from Break mode, choose Reset from the Run menu.

Note that the caption in the title bar of the VBA IDE indicates which mode is currently active. The
caption contains the word "[running]" when in run mode and "[break]" when in break mode.

4.5 Errors

In computer jargon, an error is referred to as a bug. In case you are interested in the origin of this
word, the story goes that when operating the first large-scale digital computer, called the Mark I,
an error was traced to a moth that had found its way into the hardware. Incidentally, the Mark I
(circa 1944) had 750,000 parts, was 51 feet long, and weighed over five tons. How about putting
that on your desktop? It also executed about one instruction every six seconds, as compared to
over 200 million instructions per second for a Pentium!

Errors can be grouped into three types based on when they occur—design time, compile time, or
run time.

4.5.1 Design-Time Errors

As the name implies, a design-time error occurs during the writing of code. Perhaps the nicest
feature of the Visual Basic Editor is that it can be instructed to watch as we type code and stop us
when we make a syntax error. This automatic syntax checking can be enabled or disabled in the
Options dialog box shown in Figure 4-3, but I strongly suggest that you keep it enabled.

Figure 4-3. The Options dialog box

Notice also that there are other settings related to the design-time environment, such has how far
to indent code in response to the Tab key. We will discuss some of these other settings a bit later.

To illustrate automatic syntax checking, Figure 4-4 shows what happens when we deliberately
enter the syntactically incorrect statement x == 5 and then attempt to move to another line. Note

TE
AM
FL
Y

Team-Fly®

 28

that Microsoft refers to this type of error as a compile error in the dialog box and perhaps we
should as well. However, it seems more descriptive to call it a design-time error or just a syntax
error.

Figure 4-4. A syntax error message

4.5.2 Compile-Time Errors

Before a program can be executed, it must be compiled, or translated into a language that the
computer can understand. The compilation process occurs automatically when we request that a
program be executed. We can also specifically request compilation by choosing the Compile
Project item under the Debug menu.

If Excel encounters an error while compiling code, it displays a compile error message. For
example, the code in Figure 4-5 contains a compile-time error. In particular, the first line:

Dim wb as Workbook

defines a variable of type Workbook to represent an Excel workbook. (We will go into all of this
in Chapter 17, so don't worry about the details now.) However, the second line:

Set wb = ActiveWorkbook.Name

attempts to assign the variable wb not to the active workbook, which would be legal, but to the
name of the active workbook. This error is not caught during design time because it is not a syntax
error. It is only at compile time, when Excel considers the statement in the context of the first
statement, that the error becomes evident.

Figure 4-5. A compilation error message

4.5.3 Run-Time Errors

 29

An error that occurs while a program is running is called a run-time error. Figure 4-6 illustrates a
run-time error and its corresponding error message. In this example, the code:

Workbooks.Open "d:\temp\ExistNot.xls"

attempts to open an Excel workbook that does not exist. Notice that this error message is actually
quite friendly—not only does it describe the error in clear terms (the file could not be found), but
it also offers some suggestions for eliminating the problem.

Figure 4-6. A run-time error message

4.5.4 Logical Errors

There is one more type of error that we should discuss, since it is the most insidious type of all. A
logical error can be defined as the production of an unexpected and incorrect result. As far as
Excel is concerned, there is no error, because Excel has no way of knowing what we intend. (Thus,
a logical error is not a run-time error, in the traditional sense, even though it does occur at run
time.)

To illustrate, the following code purports to compute the average of some numbers:

Dim x(3) As Integer
Dim Ave As Single
x(0) = 1
x(1) = 3
x(2) = 8
x(3) = 5
Ave = (x(0) + x(1) + x(2) + x(3)) / 3
MsgBox "Average is: " & Ave

The result is the message box shown in Figure 4-7. Unfortunately, it is incorrect. The penultimate
line in the preceding program should be:

Ave = (x(0) + x(1) + x(2) + x(3)) / 4

Note the 4 in the denominator, since there are 4 numbers to average. The correct average is 4.25.
Of course, Excel will not complain because it has no way of knowing whether we really want to
divide by 3.

Figure 4-7. The result of a logical error

 30

Precisely because Excel cannot warn us about logical errors, they are the most dangerous, because
we think that everything is correct.

4.6 Debugging

Invariably, you will encounter errors in your code. Design-time and compile-time errors are
relatively easy to deal with because Excel helps us out with error messages and by indicating the
offending code. Logical errors are much more difficult to detect and to fix. This is where
debugging plays a major role. The Excel IDE provides some very powerful ways to find bugs.

Debugging can be quite involved, and we could include a whole chapter on the subject. There are
even special software applications designed to assist in complex debugging tasks. However, for
most purposes, a few simple techniques are sufficient. In particular, Excel makes it easy to trace
through our programs, executing one line at a time, watching the effect of each line as it is
executed.

Let us try a very simple example, which you should follow along on your PC. If possible, you
should arrange your screen as in Figure 4-8. This will make it easier to follow the effects of the
code, since you won't need to switch back and forth between the Excel window and the Excel
VBA window. The code that we will trace is shown in Example 4-1. Note that lines beginning
with an apostrophe are comments that are ignored by Excel.

Figure 4-8. Top-and-bottom windows for easy debugging

 31

Example 4-1. A Simple Program to Trace

Sub Test()
 Dim ws As Worksheet
 Set ws = ActiveSheet

 ' Insert a value into cell A1
 ws.Cells(1, 1).Value = "sample"

 ' Make it bold
 ws.Cells(1, 1).Font.Bold = True

 ' Copy cell
 ws.Cells(1, 1).Copy

 ' Paste value only
 ws.Cells(2, 1).PasteSpecial Paste:=xlValues
End Sub

Make sure that an empty worksheet is active in Excel. Switch to the VBA IDE and place the
insertion point somewhere in the code. Then hit the F8 key once, which starts the tracing process.
(You can also choose Step Into from the Debug menu.)

Continue striking the F8 key, pausing between keystrokes to view the effect of each instruction in
the Excel window. (You can toggle between Excel and the IDE using Alt-F11.) As you trace
through this code, you will see the word "sample" entered into cell A1 of the active worksheet,
changed to appear in boldface, copied to the Clipboard, and pasted as normal text into the cell A2.
Then you can begin to see what Excel VBA programming is all about!

Let us discuss some of the tools that Excel provides for debugging code.

4.6.1 Tracing

The process of executing code one line at a time, as we did in the previous example, is referred to
as tracing or code stepping. Excel provides three options related to tracing: stepping into, stepping
over, and stepping out of. The difference between these methods refers to handling calls to other
procedures.

To illustrate the difference, consider the code shown in Example 4-2. In ProcedureA, the first
line of code sets the value of cell A1 of the active worksheet. The second line calls ProcedureB
and the third line boldfaces the contents of the cell. ProcedureB simply changes the size and
name of the font used in cell A1. Don't worry about the exact syntax of this code. The important
thing to notice is that the second line of ProcedureA calls ProcedureB.

Example 4-2. Sample Code for Tracing Methods

Sub ProcedureA()
 ActiveSheet.Cells(1, 1).Value = "sample"
 Call ProcedureB
 ActiveSheet.Cells(1, 1).Font.Bold = True
End Sub

Sub ProcedureB()
 ActiveSheet.Cells(1, 1).Font.Size = 24
 ActiveSheet.Cells(1, 1).Font.Name = "Arial"
End Sub

 32

4.6.1.1 Stepping into

Step Into executes code one statement (or instruction) at a time. If the statement being executed
calls another procedure, stepping into that statement simply transfers control to the first line in the
called procedure. For instance, with reference to the previous code, stepping into the line:

Call ProcedureB

in ProcedureA transfers control to the first line of ProcedureB :

ActiveSheet.Cells(1, 1).Font.Size = 24

Further tracing proceeds in ProcedureB. Once all of the lines of ProcedureB have been traced,
control returns to ProcedureA at the line immediately following the call to ProcedureB—that
is, at the line:

ActiveSheet.Cells(1, 1).Font.Bold = True

Step Into has another important use. If we choose Step Into while still in design mode, that is,
before any code is running, execution begins but break mode is entered before the first line of
code is actually executed. This is the proper way to begin tracing a program.

4.6.1.2 Step Over (Shift-F8 or choose Step Over from the Debug menu)

Step Over is similar to Step Into, except that if the current statement is a call to another procedure,
the entire called procedure is executed without stopping (rather than tracing through the called
procedure). Thus, for instance, stepping over the line:

Call ProcedureB

in the previous procedure executes ProcedureB and stops at the next line:

ActiveSheet.Cells(1, 1).Font.Bold = True

in ProcedureA. This is useful if we are certain that ProcedureB is not the cause of our
problem and we don't want to trace through that procedure line by line.

4.6.1.3 Step Out (Ctrl-Shift-F8 or choose Step Out from the Debug menu)

Step Out is intended to be used within a called procedure (such as ProcedureB). Step Out
executes the remaining lines of the called procedure and returns to the calling procedure (such as
ProcedureA). This is useful if we are in the middle of a called procedure and decide that we
don't need to trace any more of that procedure, but want to return to the calling procedure. (If you
trace into a called procedure by mistake, just do a Step Out to return to the calling procedure.)

4.6.1.4 Run To Cursor (Ctrl-F8 or choose Run To Cursor from the Debug menu)

If the Visual Basic Editor is in break mode, we may want to execute several lines of code at one
time. This can be done using the Run To Cursor feature. Simply place the cursor on the statement
immediately following the last line you want to execute and then execute Run To Cursor.

4.6.1.5 Set Next Statement (Ctrl-F9 or choose Set Next Statement from the Debug
menu)

 33

We can also change the flow of execution while in break mode by placing the cursor on the
statement that we want to execute next and selecting Set Next Statement. This will set the selected
statement as the next statement to execute, but will not execute it until we continue tracing.

4.6.1.6 Breaking out of Debug mode

When we no longer need to trace our code, we have two choices. To return to design mode, we
can choose Reset from the Run menu (there is no hotkey for this). To have Excel finish executing
the current program, we can hit F5 or choose Run from the Run menu.

4.6.2 Watching Expressions

It is often useful to watch the values of certain expressions or variables as we trace through a
program. Excel provides several ways to do this.

4.6.2.1 Quick Watch (Shift-F9)

This feature is used to quickly check the value of a variable or expression while in break mode.
We just place the insertion point over the variable name and hit Shift-F9 (or choose Quick Watch
from the Debug menu). For instance, Figure 4-9 shows the Quick Watch dialog box when the
expression x + 2 is selected in the code in Figure 4-10. According to Figure 4-9, at the time that
Quick Watch was invoked, the expression x + 2 had the value 8. Note that if we had just placed
the insertion point in front of the letter x, then Quick Watch would have reported the value of this
variable alone.

Figure 4-9. The Quick Watch window

Another way to quickly get values for expressions or variables is to enable Auto Data Tips on the
Editor tab of Excel VBA's Options dialog box. With this feature enabled, when we place the
mouse pointer over a variable or select an expression and place the mouse pointer over it, after a
slight delay, a small yellow window will appear containing the value of the variable or expression.
This is very useful!

4.6.2.2 The Locals and Watches windows

There are two special windows that aid in watching expressions: the Watches window and the
Locals window. These are shown in Figure 4-10.

Figure 4-10. The Locals and Watches windows

 34

The Locals window shows the values of all local variables. A local variable is a variable defined
within the current procedure, and is therefore not valid in any other procedure. (We will discuss
local variables in the next chapter.)

The Watches window shows all of the watches that we have set. A watch is a variable or
expression that we place in the Watch window. Excel automatically updates the expressions in the
Watch window after each line of code is executed and acts according to the type of watch defined,
as described in the following list.

To add a watch, choose Add Watch from the Debug menu. This will produce the dialog box
shown in Figure 4-11. We can then enter a variable or expression, such as x > 6, in the Expression
text box. Note that there are three types of watches:

• Watch Expression simply adds the expression to the Watches window, so we can watch
its value as code is executed. In this example, the value of the expression will be either
True or False, depending upon whether x is greater than 6.

• Break When Value Is True asks Excel to stop execution and enter break mode whenever
the expression is true. In this example, VBA will break execution when x > 6 is true,
that is, when x becomes greater than 6.

• Break When Value Changes asks Excel to enter break mode when the value of the
expression changes in any way. (In this case, from True to False or vice-versa.)

Figure 4-11. The Add Watch dialog box

 35

Altogether, the various tracing modes and watch types provide a very powerful set of tools for
debugging code. I use them often!

4.7 Macros

In earlier days, a macro consisted of a series of keystrokes that was recorded and assigned to a hot
key. When a user invoked the hot key, the recording would play and the recorded keystrokes
would be executed.

These days, macros (at least for Microsoft Office) are much more sophisticated. In fact, an Excel
macro is just a special type of subroutine—one that does not have any parameters. (We will
discuss subroutines and parameters in Chapter 6.)

4.7.1 Recording Macros

Excel has the capability of recording very simple macros. When we ask Excel to record a macro
by selecting Macro Record New Macro from Excel's (not Excel VBA's) Tools menu, it takes
note of our keystrokes and converts them into a VBA subroutine (with no parameters).

For example, suppose we record a macro that does a find and replace, replacing the word "macro"
by the word "subroutine." When we look in the Projects window under the project in which the
macro was recorded, we will find a new subroutine in a standard code module:

Sub Macro1()
 '
 ' Macro1 Macro
 ' Macro recorded 9/13/98 by sr
 '
 '

 Cells.Replace What:="macro", Replacement:="subroutine", _

 36

 LookAt:=xlPart, SearchOrder:=xlByRows, MatchCase:=False
End Sub

This is the same code that we might have written in order to perform this find and replace
operation.

In certain situations, the macro recorder can serve as a very useful learning tool. If we can't figure
out how to code a certain action, we can record it in a macro and cut and paste the resulting code
into our own program. (In fact, you might want to try recording the creation of a pivot table.)

However, before you get too excited about this cut-and-paste approach to programming, we
should point out that it is not anywhere near the panacea one might hope. One problem is that the
macro recorder has a tendency to use ad hoc code rather than code that will work in a variety of
situations. For instance, recorded macro code will often refer to the current selection, which may
work at the time the macro was recorded but is not of much use in a general setting, because the
programmer cannot be sure what the current selection will be when the user invokes the code.

Another problem is that the macro recorder is only capable of recording very simple procedures.
Most useful Excel programs are far too complicated to be recorded automatically by the macro
recorder.

Finally, since the macro recorder does such a thorough job of translating our actions into code, it
tends to produce very bloated code, which often runs very slowly.

4.7.2 Running Macros

As you may know, to run a macro from the user interface, we just choose Macros from the Macro
submenu of the Tools menu (or hit Alt-F8). This displays the Macro dialog box shown in Figure
4-12. This dialog box lists all macros in the current workbook or in all workbooks. From here, we
can do several things, including running, editing, creating, or deleting macros. (Choosing Edit or
Create places us in the VB Editor.)

Figure 4-12. Excel's Macro dialog box

 37

We should also comment on what appears and does not appear in the Macro list box. All macros
that we write will appear in the Macros dialog box (as will all recorded macros). However, there
are a few variations. If we give the macro a unique name (within the context given in the "Macros
in" list box), then only the name of the macro will appear in the list box. If the name is not unique,
then it must be qualified by the name of the module in which the macro appears, as in:

Sheet5.ScrollChartTypes

in Figure 4-12. Unfortunately, the first version of a macro with a nonunique name is not qualified.
(Note the presence of another ScrollChartTypes macro in Figure 4-12.)

Note that we can prevent a macro procedure from appearing in the Macros list box by making the
procedure private, using the Private keyword, as in:

Private Sub HideThisMacro()

We will discuss Private and Public procedures in Chapter 6.

Finally, if you are like me, you will collect a great many macros over the years. As time goes by,
you may forget the names of some of these macros and thus have trouble finding a macro when
you need it. I would advise you to give some careful thought to creating a consistent naming
convention for macros. I begin the names of all macros with a word that categorizes the macro.
For instance, all of my macros that deal with worksheets begin with the letters Wks, as in:

Wks_Sort
Wks_Compare
Wks_Print

TE
AM
FL
Y

Team-Fly®

 38

Part II: The VBA Programming Language
Chapter 5

Chapter 6

Chapter 7

Chapter 8

 39

Chapter 5. Variables, Data Types, and Constants
In the next few chapters, we will discuss the basics of the VBA programming language, which
underlies all of the Microsoft Office programming environments. During our discussion, we will
consider many short coding examples. I hope that you will take the time to key in some of these
examples and experiment with them.

5.1 Comments

We have already discussed the fact that comments are important. Any text that follows an
apostrophe is considered a comment and is ignored by Excel. For example, the first line in the
following code is a comment, as is everything following the apostrophe on the third line:

' Declare a string variable
Dim WksName as String
WksName = Activesheet.Name ' Get name of active sheet

When debugging code, it is often useful to temporarily comment out lines of code so they will not
execute. The lines can subsequently be uncommented to restore them to active duty. The
CommentBlock and UncommentBlock buttons, which can be found on the Edit toolbar, will place
or remove comment marks from each currently selected line of code and are very useful for
commenting out several lines of code in one step. (Unfortunately, there are no keyboard shortcuts
for these commands, but they can be added to a menu and given menu accelerator keys.)

5.2 Line Continuation

The very nature of Excel VBA syntax often leads to long lines of code, which can be difficult to
read, especially if we need to scroll horizontally to see the entire line. For this reason, Microsoft
recently introduced a line-continuation character into VBA. This character is the underscore,
which must be preceded by a space and cannot be followed by any other characters (including
comments). For example, the following code:

ActiveSheet.Range("A1").Font.Bold = _
True

is treated as one line by Excel. It is important to note that a line continuation character cannot be
inserted in the middle of a literal string constant, which is enclosed in quotation marks.

5.3 Constants

The VBA language has two types of constants. A literal constant (also called a constant or literal)
is a specific value, such as a number, date, or text string, that does not change, and that is used
exactly as written. Note that string constants are enclosed in double quotation marks, as in
"Donna Smith" and date constants are enclosed between number signs, as in #1/1/96#.

For instance, the following code stores a date in the variable called dt:

 40

Dim dt As Date
dt = #1/2/97#

A symbolic constant (also sometimes referred to simply as a constant) is a name for a literal
constant.

To define or declare a symbolic constant in a program, we use the Const keyword, as in:

Const InvoicePath = "d:\Invoices\"

In this case, Excel will replace every instance of InvoicePath in our code with the string
"d:\Invoices\". Thus, InvoicePath is a constant, since it never changes value, but it is not
a literal constant, since it is not used as written.

The virtue of using symbolic constants is that, if we decide later to change "d:\Invoices\" to
"d:\OldInvoices\", we only need to change the definition of InvoicePath to:

Const InvoicePath = "d:\OldInvoices\"

rather than searching through the entire program for every occurrence of the phrase

"d:\Invoices\".

It is generally good programming practice to declare any symbolic constants at the beginning of
the procedure in which they are used (or in the Declarations section of a code module). This
improves readability and makes housekeeping simpler.

In addition to the symbolic constants that you can define using the Const statement, VBA has a
large number of built-in symbolic constants (about 700), whose names begin with the lowercase
letters vb. Excel VBA adds additional symbolic constants (1266 of them) that begin with the
letters xl. We will encounter many of these constants throughout the book.

Among the most commonly used VBA constants are vbCrLf, which is equivalent to a carriage
return followed by a line feed, and vbTab, which is equivalent to the tab character.

5.3.1 Enums

Microsoft has recently introduced a structure into VBA to categorize the plethora of symbolic
constants. This structure is called an enum , which is short for enumeration. A list of enums can be
obtained using my Object Model Browser software. For instance, among Excel's 152 enums, there
is one for the fill type used by the AutoFill method, defined as follows:

Enum XlAutoFillType
 xlFillDefault = 0
 xlFillCopy = 1
 xlFillSeries = 2
 xlFillFormats = 3
 xlFillValues = 4
 xlFillDays = 5
 xlFillWeekdays = 6
 xlFillMonths = 7
 xlFillYears = 8
 xlLinearTrend = 9
 xlGrowthTrend = 10
End Enum

 41

(The Excel documentation incorrectly refers to this enum as XlFillType.) Note that enum
names begin with the letters Xl (with an uppercase X).

Thus, the following line of code will autofill the first seven cells in the first row of the active sheet
with the days of the week, assuming that the first cell contains the word Monday:

ActiveSheet.Range("A1").AutoFill ActiveSheet.Range("A1:G1"),
xlFillDays

This is far more readable than:

ActiveSheet.Range("A1").AutoFill ActiveSheet.Range("A1:G1"), 5

Note that this enum is built in, so we do not need to add it to our programs in order to use these
symbolic constants. (We can create our own enums, but this is generally not necessary in Excel
VBA programming, since Excel has done such a good job of this for us.)

As another example, the built-in enum for the constant values that can be returned when the user
dismisses a message box (by clicking on a button) is:

Enum VbMsgBoxResult
 vbOK = 1
 vbCancel = 2
 vbAbort = 3
 vbRetry = 4
 vbIgnore = 5
 vbYes = 6
 vbNo = 7
End Enum

For instance, when the user hits the OK button on a dialog box (assuming it has one), VBA returns
the value vbOK. Certainly, it is a lot easier to remember that VBA will return the symbolic
constant vbOK than to remember that it will return the constant 1. (We will discuss how to get and
use this return value later.)

VBA also defines some symbolic constants that are used to set the types of buttons that will
appear on a message box. These are contained in the following enum (which includes some
additional constants not shown):

Enum VbMsgBoxStyle
 vbOKOnly = 0
 vbOKCancel = 1
 vbAbortRetryIgnore = 2
 vbYesNoCancel = 3
 vbYesNo = 4
 vbRetryCancel = 5
End Enum

To illustrate, consider the following code:

If MsgBox("Proceed?", vbOKCancel) = vbOK Then
 ' place code to execute when user hits OK button
Else
 ' place code to execute when user hits any other button
End If

 42

In the first line, the code MsgBox("Proceed?", vbOKCancel) causes Excel to display a
message box with an OK button and a Cancel button and the message "Proceed?", as shown in
Figure 5-1.

Figure 5-1. Example message box

If the user clicks the OK button, Excel will return the constant value vbOK; otherwise it will return
the value vbCancel. Thus, the If statement in the first line will distinguish between the two
responses. (We will discuss the If statement in detail in Chapter 8. Here, we are interested in the
role of symbolic constants.)

In case you are not yet convinced of the value of symbolic constants, consider the following enum
for color constants:

Enum ColorConstants
 vbBlack = 0
 vbBlue = 16711680
 vbMagenta = 16711935
 vbCyan = 16776960
 vbWhite = 16777215
 vbRed = 255
 vbGreen = 65280
 vbYellow = 65535
End Enum

Consider which you'd rather type, this:

ATextBox.ForeColor = vbBlue

or this:

ATextBox.ForeColor = 16711680

Need I say more?

5.4 Variables and Data Types

A variable can be thought of as a memory location that can hold values of a specific type. The
value in a variable may change during the life of the program—hence the name variable.

In VBA, each variable has a specific data type, which indicates which type of data it may hold.
For instance, a variable that holds text strings has a String data type and is called a string variable.
A variable that holds integers (whole numbers) has an Integer data type and is called an integer

 43

variable. For reference, Table 5-1 shows the complete set of VBA data types, along with the
amount of memory that they consume and their range of values. We will discuss a few of the more
commonly used data types in a moment.

Table 5-1. VBA Data Types
Type Size in Memory Range of Values

Byte 1 byte 0 to 255
Boolean 2 bytes True or False
Integer 2 bytes -32,768 to 32,767
Long (long integer) 4 bytes -2,147,483,648 to 2,147,483,647
Single(single-
precision real) 4 bytes Approximately -3.4E38 to 3.4E38

Double(double-
precision real) 8 bytes Approximately -1.8E308 to 4.9E324

Currency(scaled
integer) 8 bytes Approximately -922,337,203,685,477.5808

to 922,337,203,685,477.5807
Date 8 bytes 1/1/100 to 12/31/9999
Object 4 bytes Any Object reference.

String
Variable length:10 bytes +
string length;Fixed length:
string length

Variable length: <= about 2 billion (65,400
for Win 3.1) Fixed length: up to 65,400

Variant 16 bytes for numbers22 bytes
+ string length

Number: same as DoubleString: same as
String

User-defined Varies

5.4.1 Variable Declaration

To declare a variable means to define its data type. Variables are declared with the Dim keyword
(or with the keywords Private and Public, which we will discuss later in this chapter). Here
are some examples:

Dim Name As String
Dim Holiday As Date
Dim Age As Integer
Dim Height As Single
Dim Money As Currency
Dim wbk As Workbook
Dim ch As Chart

The general syntax of a variable declaration is:

Dim VariableName As DataType

If a particular variable is used without first declaring it, or if it is declared without mentioning a
data type, as in:

Dim Age

then VBA will treat the variable as having type Variant. As we can see from Table 5-1, this is
generally a waste of memory, since variants require more memory than most other types of
variables.

 44

For instance, an integer variable requires 2 bytes, whereas a variant that holds the same integer
requires 16 bytes, which is a waste of 14 bytes. It is not uncommon to have hundreds or even
thousands of variables in a complex program, and so the memory waste could be significant. For
this reason, it is a good idea to declare all variables.

Perhaps more importantly, much more overhead is involved in maintaining a Variant than its
corresponding String or Integer, for example. This in turn means that using Variants typically
results in worse performance than using an equivalent set of explicit data types.

We can place more than one declaration on a line to save space. For instance, the following line
declares three variables:

Dim Age As Integer, Name As String, Money As Currency

Note, however, that a declaration such as:

Dim Age, Height, Weight As Integer

is legal, but Age and Height are declared as Variants, not Integers. In other words, we must
specify the type for each variable explicitly.

It is also possible to tell VBA the type of the variable by appending a special character to the
variable name. In particular, VBA allows the type-declaration suffixes shown in Table 5-2. (I
personally dislike these suffixes, but they do save space.)

Table 5-2. Type-Declaration Suffixes
Suffix Type

% integer
& long
! single
double
@ currency
$ string

For instance, the following line declares a variable called Name$ of type String:

Dim Name$

We can then write:

Name$ = "Donna"

Finally, let us note that although Excel allows variable and constant declarations to be placed
anywhere within a procedure (before the item is used, that is), it is generally good programming
practice to place all such declarations at the beginning of the procedure. This improves code
readability and makes housekeeping much simpler.

5.4.2 The Importance of Explicit Variable Declaration

We have said that using the Variant data type generally wastes memory and often results in poorer
performance. There is an additional, even more important reason to declare all variables explicitly.
This has to do with making typing errors, which we all do from time to time. In particular, if we
accidentally misspell a variable name, VBA will think we mean to create a new variable!

 45

To illustrate how dangerous this can be, consider the NewBook procedure in Example 5-1, whose
purpose is to take the first open workbook, change its contents, ask the user for a name under
which to save the changed workbook, and then save the workbook under the new name.

Example 5-1. A Procedure with a Typo

Sub NewBook()
 Dim Wbk As Workbook
 Dim WbkName As String

 ' Get first open workbook
 Set Wbk = Workbooks(1)

 ' Get the workbook name
 WbkName = Wbk.Name

 ' Code to change the contents of the workbook
 ' goes here . . .

 ' Ask user for new name for document
 WkbName = InputBox("Enter name for workbook " & WbkName)

 ' Save the workbook
 Wbk.SaveAs WbkName
End Sub

Observe that there is a typographical error (the b and k are transposed) in the following line:

WkbName = InputBox("Enter name for workbook " & WbkName)

Since the variable WkbName is not declared, Excel will treat it as a new variable and give it the
Variant data type. Moreover, VBA will assume that we want the new filename to be assigned to
the variable WkbName, and will save the changed document under its original name, which is
stored in WbkName. Thus, we will lose the original workbook when it is inadvertently overwritten
without warning!

5.4.2.1 Option Explicit

To avoid the problem described in the previous example, we need a way to make Excel refuse to
run a program if it contains any variables that we have not explicitly declared. This is done simply
by placing the line:

Option Explicit

in the Declarations section of each code module. Since it is easy to forget to do this, VBA
provides an option called "Require Variable Declaration" in its Options dialog box. When this
option is selected, VBA automatically inserts the Option Explicit line for us. Therefore, I
strongly recommend that you enable this option.

Now let us briefly discuss some of the data types in Table 5-1.

5.4.3 Numeric Data Types

The numeric data types include Integer, Long, Single, Double, and Currency. A long is also
sometimes referred to as a long integer.

 46

5.4.4 Boolean Data Type

A Boolean variable is a variable that takes on one of two values: True or False. This is a very
useful data type that was only recently introduced into VBA. Prior to its introduction, VBA
recognized 0 as False and any nonzero value as True, and you may still see this usage in older
code.

5.4.5 String Data Type

A string is a sequence of characters. (An empty string has no characters, however.) A string may
contain ordinary text characters (letters, digits, and punctuation) as well as special control
characters such as vbCrLf (carriage return/line feed characters) or vbTab (tab character). As we
have seen, a string constant is enclosed within quotation marks. The empty string is denoted by a
pair of adjacent quotation marks, as in:

EmptyString = ""

There are two types of string variables in VBA: fixed-length and variable-length. A fixed-length
string variable is declared as follows:

Dim FixedStringVarName As String * StringLen

For instance, the following statement declares a fixed-length string of length 10 characters:

Dim sName As String * 10

Observe that the following code, which concatenates two strings:

Dim s As String * 10
s = "test"
Debug.Print s & "/"

and produces the output:

test /

This shows that the content of a fixed-length string is padded with spaces in order to reach the
correct length.

A variable-length string variable is a variable that can hold strings of varying lengths (at different
times, of course). Variable-length string variables are declared simply as:

Dim VariableStringVarName As String

As an example, the code:

Dim s As String
s = "test"
Debug.Print s & "/"
s = "another test"
Debug.Print s & "/"

produces the output:

 47

test/
another test/

Variable-length string variables are used much more often than fixed-length strings, although the
latter have some very specific and important uses (which we will not go into in this book).

5.4.6 Date Data Type

Variables of the Date data type require 8 bytes of storage and are actually stored as decimal
(floating-point) numbers that represent dates ranging from January 1, 100 to December 31, 9999
(no year 2000 problem here) and times from 0:00:00 to 23:59:59.

As discussed earlier, literal dates are enclosed within number signs, but when assigning a date to a
date variable, we can also use valid dates in string format. For example, the following are all valid
date/time assignments:

Dim dt As Date
dt = #1/2/98#
dt = "January 12, 2001"
dt = #1/1/95#
dt = #12:50:00 PM#
dt = #1/13/76 12:50:00 PM#

VBA has many functions that can manipulate dates and times. If you need to manipulate dates or
times in your programs, you should probably spend some time with the Excel VBA help file.
(Start by looking under "Date Data Type.")

5.4.7 Variant Data Type

The Variant data type provides a catch-all data type that is capable of holding data of any other
type except fixed-length string data and user-defined types. We have already noted the virtues and
vices of the Variant data type and discussed why variants should generally be avoided.

5.4.8 Excel Object Data Types

Excel VBA has a large number of additional data types that fall under the general category of
Object data type. We will see a complete list in the chapter on the Excel object model. To get the
feel for the types of objects in the Excel object model, here is a partial list of the more prominent
objects:

Chart-related objects:

Axis ChartTitle Legend Series
AxisTitle DataLabel LegendEntry SeriesCollection
Chart DataTable LegendKey TickLabels
ChartArea Floor PlotArea Walls
ChartColorFormat Gridlines Point

Pivot table-related objects:

PivotCache PivotField PivotFormula PivotItem PivotTable

TE
AM
FL
Y

Team-Fly®

 48

General objects:

Comment Font Range Workbook
FillFormat Outline Sheets Worksheet
Filter PageSetup Window WorksheetFunction

Thus, we can declare variables such as:

Dim wb As Workbook
Dim wks As Worksheet
Dim chrt As Chart
Dim ax As axis
Dim pf As PivotField

We will devote much of this book to studying the objects in the Excel object model, for it is
through these objects that we can manipulate Excel programmatically.

5.4.8.1 The generic As Object declaration

It is also possible to declare any Excel object using the generic object data type Object, as in the
following example:

Dim chrt As Object

While you may see this declaration from time to time, it is much less efficient than a specific
object declaration, such as:

Dim chrt As Chart

This is because Excel cannot tell what type of object the variable chrt refers to until the program
is running, so it must use some execution time to make this determination. This is referred to as
late binding and can make programs run significantly more slowly. (For more on late versus early
binding, see Appendix E.) Thus, generic object declarations should be avoided.

We will discuss object variables in some detail in Chapter 9. However, we should briefly discuss
the Set statement now, since it will appear from time to time in upcoming code examples.

5.4.8.2 The Set statement

Declaring object variables is done in the same way as declaring nonobject variables. For instance,
here are two variable declarations:

Dim int As Integer ' nonobject variable declaration
Dim chrt As Chart ' object variable declaration

On the other hand, when it comes to assigning a value to variables, the syntax differs for object
and nonobject variables. In particular, we must use the Set keyword when assigning a value to an
object variable. For example, the following line assigns the currently active Excel chart to the
variable chrt:

Set chrt = ActiveChart

 49

(If the currently active object is not a chart, then the variable chrt will be set to the special value
Nothing. We will discuss Nothing later.)

5.4.9 Arrays

An array variable is a collection of variables that use the same name, but are distinguished by an
index value. For instance, to store the first 100 cells in the first row of a worksheet, we could
declare an array variable as follows:

Dim Cell(1 To 100) As Range

(There is no Cell object in the Excel object model: a cell is a special Range object.) The array
variable is Cell. It has size 100. The lower bound of the array is 1 and the upper bound is 100.
Each of the following variables are Range variables (that is, variables of the object type Range):

Cell(1), Cell(2),..., Cell(100)

Note that if we omit the first index in the declaration, as in:

Dim Cell(100) As Range

then VBA will automatically set the first index to 0 and so the size of the array will be 101.

The virtue of declaring array variables is clear, since it would be very unpleasant to have to
declare 100 separate variables! In addition, as we will see, there are ways to work collectively
with all of the elements in an array, using a few simple programming constructs. For instance, the
following code boldfaces the values in each of the 100 cells along the diagonal of the active
worksheet:

For i = 1 To 100
 Set Cell(i) = Cells(i,i)
 Cell(i).Font.Bold = True
Next i

5.4.9.1 The dimension of an array

The Cell array defined in the previous example has dimension one. We can also define arrays of
more than one dimension. For instance, the array:

Dim Cell(1 To 10, 1 To 100) As Range

is a two-dimensional array, whose first index ranges from 1 to 10 and whose second index ranges
from 1 to 100. Thus, the array has size 10*100 = 1000.

5.4.9.2 Dynamic arrays

When an array is declared, as in:

Dim FileName(1 To 10) As String

the upper and lower bounds are both specified and so the size of the array is fixed. However, there
are many situations in which we do not know at declaration time how large an array we may need.
For this reason, VBA provides dynamic arrays and the ReDim statement.

 50

A dynamic array is declared with empty parentheses, as in:

Dim FileName() as String

Dynamic arrays can be sized (or resized) using the ReDim statement, as in:

ReDim FileName(1 to 10)

This same array can later be resized again, as in:

ReDim FileName(1 to 100)

Note that resizing an array will destroy its contents unless we use the Preserve keyword, as in:

ReDim Preserve FileName(1 to 200)

However, when Preserve is used, we can only change the upper bound of the array (and only
the last dimension in a multidimensional array).

5.4.9.3 The UBound function

The UBound function is used to return the current upper bound of an array. This is very useful in
determining when an array needs redimensioning. To illustrate, suppose we want to collect an
unknown number of filenames in an array named FileName. If the next file number is
iNextFile, the following code checks to see if the upper bound is less than iNextFile; if so,
it increases the upper bound of the array by 10, preserving its current contents, to make room for
the next filename:

If UBound(FileName) < iNextFile Then
 ReDim Preserve FileName(UBound(FileName) + 10)
End If

Note that redimensioning takes time, so it is wise to add some "working room" at the top to cut
down on the number of times the array must be redimensioned. This is why we added 10 to the
upper bound in this example, rather than just 1. (There is a trade-off here between the extra time it
takes to redimension and the extra space that may be wasted if we do not use the entire
redimensioned array.)

5.4.10 Variable Naming Conventions

VBA programs can get very complicated, and we can use all the help we can get in trying to make
them as readable as possible. In addition, as time goes on, the ideas behind the program begin to
fade, and we must rely on the code itself to refresh our memory. This is why adding copious
comments to a program is so important.

Another way to make programs more readable is to use a consistent naming convention for
constants, variables, procedure names, and other items. In general, a name should have two
properties. First, it should remind the reader of the purpose or function of the item. For instance,
suppose we want to assign Chart variables to several Excel charts. The code:

Dim chrt1 As Chart, chrt2 as Chart
Set chrt1 = Charts("Sales")
Set chrt2 = Charts("Transactions")

 51

is perfectly legal, but 1000 lines of code and six months later, will we remember which invoice is
chrt1 and which is chrt2 ? Since we went to the trouble of naming the charts in a descriptive
manner, we should do the same with the Chart variables, as in:

Dim chrtSales As Chart, chrtTrans as Chart
Set chrtSales = Charts("Sales")
Set chrtTrans = Charts("Transactions")

Of course, there are exceptions to all rules, but, in general, it is better to choose descriptive names
for variables (as well as other items that require naming, such as constants, procedures, controls,
forms, and code modules).

Second, a variable name should reflect something about the properties of the variable, such as its
data type. Many programmers use a convention in which the first few characters of a variable's
name indicate the data type of the variable. This is sometimes referred to as a Hungarian naming
convention, after the Hungarian programmer Charles Simonyi, who is credited with its invention.

Table 5-3 and Table 5-4 describe the naming convention that we will generally use for standard
and object variables, respectively. Of course, you are free to make changes for your own personal
use, but you should try to be reasonably consistent. These prefixes are intended to remind us of the
data type, but it is not easy to do this perfectly using only a couple of characters, and the longer
the prefix, the less likely it is that we will use it! (Note the c prefix for integers or longs. This is a
commonly used prefix when the variable is intended to count something.)

Table 5-3. Naming Convention for Standard Variables
Variable Prefix

Boolean b or f
Byte b or bt
Currency cur
Date dt
Double d or dbl
Integer i, c, or int
Long l, c, or lng
Single s or sng
String s or str
User-defined type u or ut
Variant v or var

Table 5-4. Naming Convention for Some Object Variables
Variable Prefix

Chart ch or chrt
Workbook wb or wbk
Worksheet ws or wks
Pivot Table pt or pvt
Font fnt
Range rng

In addition to a data type, every variable has a scope and a lifetime. Some programmers advocate
including a hint as to the scope of a variable in the prefix, using g for global and m for module
level. For example, the variable giSize is a global variable of type Integer. We will discuss the

 52

scope and lifetime of a variable next (but we will not generally include scope prefixes in variable
names).

5.4.11 Variable Scope

Variables and constants have a scope, which indicates where in the program the variable or
constant is recognized (or visible to the code). The scope of a variable or constant can be either
procedure-level (also called local), module-level private, or module-level public. The rules may
seem a bit involved at first, but they do make sense.

5.4.11.1 Procedure-level (local) variables

A local or procedure-level variable or constant is a variable or constant that is declared within a
procedure, as is the case with the variable LocalVar and the constant LocalConstant in
Figure 5-2. A local variable or constant is not visible outside of the procedure. Thus, for instance,
if we try to run ProcedureB in Figure 5-2, we will get the error message, "Variable not defined,"
and the name LocalVar will be highlighted.

Figure 5-2. Examples of variable scope

 53

One of the advantages of local variables is that we can use the same name in different procedures
without conflict, since each variable is visible only to its own procedure.

5.4.11.2 Module-level variables

A module-level variable (or constant) is one that is declared in the declarations section of a code
module (standard, class, or UserForm). Module-level variables and constants come in two flavors:
private and public.

Simply put, a module-level public variable (or constant) is available to all procedures in all of the
modules in the project, not just the module in which it is declared, whereas a module-level private
variable (or constant) is available only to the procedures in the module in which it was declared.

Public variables and constants are declared using the Public keyword, as in:

Public APubInt As Integer
Public Const APubConst = 7

 54

Private variables and constants are declared using the Private keyword, as in:

Private APrivateInt As Integer
Private Const APrivateConst = 7

The Dim keyword, when used at the module level, has the same scope as Private, but is not as
clear, so it should be avoided.

Public variables are also referred to as global variables, but this descriptive term is not de rigueur.

5.4.12 Variable Lifetime

Variables also have a lifetime. The difference between lifetime and scope is quite simple: lifetime
refers to how long (or when) the variable is valid (that is, retains a value) whereas scope refers to
where the variable is accessible or visible.

To illustrate the difference, consider the following procedure:

Sub ProcedureA()
 Dim LocalVar As Integer
 LocalVar = 0
 Call ProcedureB
 LocalVar = 1
End Sub

Note that LocalVar is a local variable. When the line:

Call ProcedureB

is executed, execution switches to ProcedureB. While the lines of ProcedureB are being
executed, the variable LocalVar is out of scope, since it is local to ProcedureA. But it is still
valid. In other words, the variable still exists and has a value, but it is simply not accessible to the
code in ProcedureB. In fact, ProcedureB could also have a local variable named LocalVar,
which would have nothing to do with the variable of the same name in ProcedureA.

Once ProcedureB has completed, execution continues in ProcedureA with the line:

LocalVar = 1

This is a valid instruction, since the variable LocalVar is back in scope.

Thus, the lifetime of the local variable LocalVar extends from the moment that ProcedureA is
entered to the moment that it is terminated, including the period during which ProcedureB is
being executed as a result of the call to this procedure, even though during that period, LocalVar
is out of scope.

Incidentally, you may notice that the Microsoft help files occasionally get the notions of scope and
visibility mixed up a bit. The creators of the files seem to understand the difference, but they don't
always use the terms correctly.

5.4.12.1 Static variables

To repeat, a variable may go in and out of scope and yet remain valid during that time—that is,
retain a value during that time. However, once the lifetime of a variable expires, the variable is

 55

destroyed and its value is lost. It is the lifetime that determines the existence of a variable; its
scope determines its visibility.

Thus, consider the following procedures:

Sub ProcedureA()
 Call ProcedureB
 Call ProcedureB
 Call ProcedureB
 Call ProcedureB
 Call ProcedureB
End Sub

Sub ProcedureB()
 Dim x As Integer
 x = 5
 . . .
End Sub

When ProcedureA is executed, it simply calls ProcedureB five times. Each time
ProcedureB is called, the local variable x is created anew and destroyed at the end of that call.
Thus, x is created and destroyed five times.

Normally, this is just want we want. However, there are times when we would like the lifetime of
a local variable to persist longer than the lifetime of the procedure in which it is declared. As an
example, we may want a procedure to do something special the first time it is called, but not
subsequent times. For instance, the following one-line macro changes the font of the selected cells
to Comic Sans:

Sub ToComic()
 Selection.Font.Name = "Comic Sans"
End Sub

Suppose, however, that we wish to warn the user that Comic Sans is a bit informal and ask if he or
she really wants to make this change. We don't want to make a pest of ourselves by asking every
time the user invokes this macro. What we need is a local variable with a "memory" that will
allow it to keep track of whether or not a particular call to ToComic is the first call or not. This is
done with a static variable.

A static variable is a local variable whose lifetime is the lifetime of the entire module, not just the
procedure in which it was declared. In fact, a static variable retains its value as long as the
document or template containing the code module is active (even if no code is running).

Thus, a static variable has the scope of a local variable, but the lifetime of a module-level variable.
C'est tout dire !

Consider now the modification of the preceding macro, which is shown in Example 5-2. The code
first declares a static Boolean variable called NotFirstTime. It may seem simpler to use a
variable called FirstTime, but there is a problem. Namely, Boolean variables are automatically
initialized as False, so the first time that the ToComic macro is run, FirstTime would be False,
which is not want we want. (We will discuss variable initialization a bit later.)

Example 5-2. ToComic() Modified to Use a Static Variable

Sub ToComic()
 ' Declare static Boolean variable

 56

 Static NotFirstTime As Boolean

 ' If first time, then ask for permission
 If NotFirstTime = False Then
 If MsgBox("Comic Sans is a bit informal. Proceed?", _
 vbYesNo) = vbYes Then

 ' Make the change
 Selection.Font.Name = "Comic Sans MS"
 End If

 ' No longer the first time
 NotFirstTime = True
 Else
 ' If not the first time, just make the change
 Selection.Font.Name = "Comic Sans MS"
 End If
End Sub

The If statement checks to see if the value of NotFirstTime is False, as it will be the first time
the procedure is called. In this case, a message box is displayed, as shown in Figure 5-3. If the
user chooses the Yes button, the font is changed. In either case, the static Boolean variable
NotFirstTime is set to True. Precisely because NotFirstTime is static, this value will be
retained even after the macro ends (but not if the document is closed).

Figure 5-3. Dialog that appears if the static NotFirstTime is false

The next time the macro is executed, the variable NotFirstTime will be True, and so the If
condition:

If NotFirstTime = False Then

will be False and the MsgBox function will not be executed. Instead, the Else code will execute.
This code just changes the font, without bothering the user with a message box.

Static variables are not used very often, but they can be quite useful at times.

It may have occurred to you that we could accomplish the same effect by using a module-level
private variable to keep a record of whether or not the macro has been called, instead of a static
local variable. However, it is considered better programming style to use the most restrictive scope
possible which, in this case, is a local variable with an "extended" lifetime. This helps prevent
accidental alteration of the variable in other portions of the code. (Remember that this code may
be part of a much larger code module, with a lot of things going on. It is better to hide the
NotFirstTime variable from this other code.)

5.4.13 Variable Initialization

When a procedure begins execution, all of its local variables are automatically initialized, that is,
given initial values. In general, however, it is not good programming practice to rely on this

 57

initialization, since it makes the program less readable and somewhat more prone to logical errors.
Thus, it is a good idea to initialize all local variables explicitly, as in the following example:

Sub Example()
 Dim x As Integer
 Dim s As String

 x = 0 ' Initialize x to 0
 s = "" ' Initialize s to empty string

 ' more code here . . .
End Sub

Note, however, that static variables cannot be initialized, since that defeats their purpose! Thus, it
is important to know the following rules that VBA uses for variable initialization (note also that
they are intuitive):

• Numeric variables (Integer, Long, Single, Double, Currency) are initialized to zero.
• A variable-length string is initialized to a zero-length (empty) string.
• A fixed-length string is filled with the character represented by the ASCII character code

0, or Chr(0).
• Variant variables are initialized to Empty.
• Object variables are initialized to Nothing.

The Nothing keyword actually has several related uses in Excel VBA. As we will see in Chapter
8, it is used to release an object variable. Also, it is used as a return value for some functions,
generally to indicate that some operation has failed. Finally, it is used to initialize object variables.

5.5 VBA Operators

VBA uses a handful of simple operators and relations, the most common of which are shown in
Table 5-5.

Table 5-5. VBA Operators and Relations
Type Name Symbol

Arithmetic Operators Addition +
 Subtraction -
 Multiplication *
 Division /
 Division with Integer result \
 Exponentiation ^
 Modulo Mod
String operator Concatenation &
Logical operators AND AND
 OR OR
 NOT NOT
Comparison relations Equal =
 Less than <

TE
AM
FL
Y

Team-Fly®

 58

 Greater than >
 Less than or equal to <=
 Greater than or equal to >=
 Not equal to <>

The Mod operator returns the remainder after division. For example:

8 Mod 3

returns 2, since the remainder after dividing 8 by 3 is 2.

To illustrate string concatenation, the expression:

"To be or " & "not to be"

is equivalent to:

"To be or not to be"

 59

Chapter 6. Functions and Subroutines
As we have seen, VBA allows two kinds of procedures: functions and subroutines. As a reminder,
the only difference between a function and a subroutine is that a function returns a value, whereas
a subroutine does not.

6.1 Calling Functions

A function declaration has the form:

[Public or Private] Function FunctionName(Param1 As DataType1, _
 Param2 As DataType2,...) As ReturnType

Note that we must declare the data types not only of each parameter to the function, but also of the
return type. Otherwise, VBA declares these items as variants.

We will discuss the optional keywords Public and Private later in this chapter, but you can
probably guess that they are used here to indicate the scope of the function, just as they are used in
variable declarations.

For example, the AddOne function in Example 6-1 adds 1 to the original value.

Example 6-1. The AddOne Function

Public Function AddOne(Value As Integer) As Integer
 AddOne = Value + 1
End Function

To use the return value of a function, we just place the call to the function within the expression,
in the location where we want the value. For instance, the code:

MsgBox "Adding 1 to 5 gives: " & AddOne(5)

produces the message box in Figure 6-1, where the expression AddOne (5) is replaced by the
return value of AddOne, which, in this case, is 6.

Figure 6-1. The message dialog displayed by Example 6-1

Note that, in general, any parameters to a function must be enclosed in parentheses within the
function call.

 60

In order to return a value from a function, we must assign the function's name to the return value
somewhere within the body of the function. Example 6-2 shows a slightly more complicated
example of a function.

Example 6-2. Assigning a Function's Return Value

Function ReturnCount() As Variant
 ' Return count of cells in current selection

 If TypeName(Selection) = "Range" Then
 ReturnCount = Selection.Count
 Else
 ReturnCount = "Not applicable"
 End If
End Function

This function returns a count of the number of cells in the current selection, provided that the
selection is a range of cells. If the selection is another type of object (such as a chart), the function
returns the words "Not applicable." Note that since the return value may be a number or a string,
we declare the return type as Variant. Note also that ReturnCount is assigned twice within the
body of the function. Its value, and hence the value of the function, is set differently depending
upon the value returned by the TypeName(Selection) function. Since these assignments are
mutually exclusive, only one of them will occur each time the function is called.

Because functions return values, you can't call them directly from the Macro dialog that appears
when you select Tools Macro Macros, nor can you assign them to an Excel toolbar or
menu through Excel's user interface. If you want to be able to call a function, you'll have to "wrap"
it in—that is, have it called by—a subroutine, the topic that we'll cover next.

6.2 Calling Subroutines

A subroutine declaration has the form:

[Public or Private] Sub SubroutineName(Param1 As DataType1, _
 Param2 As DataType2,...)

This is similar to the function declaration, with the notable absence of the As ReturnType
portion. (Note also the word Sub in place of Function .)

Since subroutines do not return a value, they cannot be used within an expression. To call a
subroutine named SubroutineA, we can write either:

Call SubroutineA(parameters, . . .)

or simply:

SubroutineA parameters, . . .

Note that any parameters must be enclosed in parentheses when using the Call keyword, but not
otherwise.

 61

6.3 Parameters and Arguments

Consider the following very simple subroutine, which does nothing more than display a message
box declaring a person's name:

Sub DisplayName(sName As String)
 MsgBox "My name is " & sName
End Sub

To call this subroutine, we would write, for example:

DisplayName "Wolfgang"

or:

Call DisplayName("Wolfgang")

The variable sName in the procedure declaration:

Sub DisplayName(sName As String)

is called a parameter of the procedure. The call to the procedure should contain a string variable
or a literal string that is represented by the variable sName in this procedure (but see the
discussion of optional parameters in the next section). The value used in place of the parameter
when we make the procedure call is called an argument. Thus, in the previous example, the
argument is the string "Wolfgang."

Note that many programmers fail to make a distinction between parameters and arguments, using
the names interchangeably. However, since a parameter is like a variable and an argument is like a
value of that variable, failing to make this distinction is like failing to distinguish between a
variable and its value!

6.3.1 Optional Arguments

In VBA, the arguments to a procedure may be specified as optional, using the Optional
keyword. (It makes no sense to say that a parameter is optional; it is the value that is optional.) To
illustrate, consider the procedure in Example 6-3, which simply changes the font name and font
size of the current selection:

Example 6-3. Using an Optional Argument

Sub ChangeFormatting(FontName As String, _
 Optional FontSize As Variant)

 ' Change font name
 Selection.Font.Name = FontName

 ' Change font size if argument is supplied
 If Not IsMissing(FontSize) Then
 Selection.Font.Size = CInt(FontSize)
 End If
End Sub

 62

The second parameter is declared with the Optional keyword. Because of this, we may call the
procedure with or without an argument for this parameter, as in:

ChangeFormatting("Arial Narrow", 24)

and:

ChangeFormatting("Arial Narrow")

Note that the IsMissing function is used in the body of the procedure to test whether the
argument is present. If the argument is present, then the font size is changed. Note also that we
declared the FontSize parameter as type Variant because IsMissing works only with
parameters of type Variant (unfortunately). Thus, we converted the Variant to type Integer using
the CInt function.

A procedure may have any number of optional arguments, but they must all come at the end of the
parameter list. Thus, for instance, the following declaration is not legal:

Sub ChangeFormatting(Optional FontName As String, FontSize As Single)

If we omit an optional argument in the middle of a list, we must include an empty space when
calling that procedure. For instance, if a procedure is declared as follows:

Sub ChangeFormatting(Optional FontName As String, _
 Optional FontSize As Single, _
 Optional FontBold as Boolean)

then a call to this procedure to set the font name to Arial and the boldfacing to True would look
like:

ChangeFormat "Arial", , True

To avoid confusion, we should point out that some built-in Excel procedures have optional
arguments and others do not. Of course, we can't leave out an argument unless the documentation
or declaration for the procedure specifically states that it's optional.

6.3.2 Named Arguments

Some VBA procedures can contain a large number of parameters. For example, one form of the
Excel SaveAs function has the declaration:

SaveAs (Filename As string, FileFormat As VARIANT, Password As VARIANT, _
 WriteResPassword As VARIANT, ReadOnlyRecommended As VARIANT, _
 CreateBackup As VARIANT, AddToMru As VARIANT, TextCodepage As _
 VARIANT, TextVisualLayout As VARIANT)

where all of the parameters are optional. Here is an example of a call to this procedure:

SaveAs "c:\temp\test.xls", , , , , True , , , True

Not very readable, is it?

The arguments shown in the previous call are said to be positional arguments because it is their
position that tells VBA which parameters they are intended to replace. This is why we need to
include space for missing arguments.

 63

However, VBA can also use named arguments, in which case the previous call would be written
as:

SaveAs FileName:="c:\temp\test.xls", _
 CreateBackup:=True, _
 AddToMru:=True

Note the special syntax for named arguments, in particular, the colon before the equal sign.

This function call is a great improvement over the positional argument version. In general, the
advantages of named arguments over positional arguments are threefold:

• Named arguments can improve readability and clarity.
• Blank spaces (separated by commas) are required for missing optional arguments when

using a positional declaration, but not when using named arguments.
• The order in which named arguments are listed is immaterial, which, of course, is not the

case for positional arguments.

Named arguments can improve readability quite a bit and are highly recommended. However,
they can require considerably more space, so for the short examples in this book, we usually will
not use them.

6.3.3 ByRef Versus ByVal Parameters

Parameters come in two flavors:ByRef and ByVal. Many programmers do not have a clear
understanding of these concepts, but they are very important and not that difficult to understand.

To explain the difference, consider the two procedures in Example 6-4. ProcedureA simply sets
the value of the module-level variable x to 5, displays that value, calls the procedure AddOne with
the argument x , and then displays the value of x again.

Example 6-4. Testing the ByVal and ByRef Keywords

Sub ProcedureA()
 x = 5 ' Set x to 5
 MsgBox x ' Display x
 Call AddOne(x) ' Call AddOne
 MsgBox x ' Display x again
End Sub

Sub AddOne(ByRef i As Integer)
 i = i + 1
End Sub

Note the presence of the ByRef keyword in the AddOne procedure declaration. This keyword
tells VBA to pass a reference to the variable x to the AddOne procedure. Therefore, the AddOne
procedure, in effect, replaces its parameter i by the variable x. As a result, the line:

i = i + 1

effectively becomes:

x = x + 1

So, after AddOne is called, the variable x has the value 6.

 64

On the other hand, suppose we change the AddOne procedure, replacing the keyword ByRef with
the keyword ByVal:

Sub AddOne(ByVal i As Integer)
 i = i + 1
End Sub

In this case, VBA does not pass a reference to the variable x, but rather it passes its value. Hence,
the variable i in AddOne simply takes on the value 5. Adding 1 to that value gives 6. Thus, i
equals 6, but the value of the argument x is not affected! Hence, both message boxes will display
the value 5 for x.

ByRef and ByVal both have their uses. When we want to change the value of an argument, we
must declare the corresponding parameter as ByRef, so that the called procedure has access to the
actual argument itself. This is the case in the previous example. Otherwise, the AddOne procedure
does absolutely nothing, since the local variable i is incremented, and it is destroyed immediately
afterwards, when the procedure ends.

On the other hand, when we pass an argument for informational purposes only, and we do not
want the argument to be altered, it should be passed by value, using the ByVal keyword. In this
way, the called procedure gets only the value of the argument.

To illustrate further, ProcedureA in Example 6-5 gets the text of the first cell and feeds it to the
CountCharacters function. The returned value (the number of characters in the active
document) is then displayed in a message box.

Example 6-5. Passing an Argument by Value

Sub ProcedureA()
 Dim sText As String
 sText = ActiveSheet.Cells(1,1).Text
 MsgBox CountCharacters(sText)
End Sub

Function CountCharacters(ByVal sTxt As String)
 CountCharacters = Len(sTxt)
End Function

Now, CountCharacters does not need to, and indeed should not, change the text. It only
counts the number of characters in the text. This is why we pass the argument by value. In this
way, the variable sTxt gets the value of the text in sText, that is, it gets a copy of the text.

To appreciate the importance of this, imagine for a moment that CountCharacters is replaced
by a procedure that contains hundreds or thousands of lines of code, written by someone else,
perhaps not as reliable as we are. Naturally, we do not want this procedure to change our text.
Rather than having to check the code for errors, all we need to do is notice that the sTxt
parameter is called by value, which tells us that the procedure does not even have access to our
text. Instead, it gets only a copy of the text.

There is one downside to passing arguments by value: it can take a lot of memory (and time). For
instance, in the previous example, VBA needs to make a copy of the text to pass to the parameter
sTxt.

Thus, we can summarize by saying that if we want the procedure to modify an argument, the
argument must be passed by reference. If not, the argument should be passed by value unless this

 65

will produce an unacceptable decrease in performance or unless we are very sure that it will not
get changed by accident.

It is important to note that VBA defaults to ByRef if we do not specify otherwise. This means that
the values of arguments are subject to change by the called procedure, unless we explicitly include
the keyword ByVal. Caveat scriptor !

6.4 Exiting a Procedure

VBA provides the Exit Sub and Exit Function statements, should we wish to exit from a
procedure before the procedure would terminate naturally. For instance, if the value of a parameter
is not suitable, we may want to issue a warning to the user and exit, as Example 6-6 shows.

Example 6-6. Using the Exit Sub Statement

Sub DisplayName(sName As String)
 If sName = "" then
 Msgbox "Please enter a name."
 Exit Sub
 End If
 MsgBox "Name entered is " & sName
End Sub

6.5 Public and Private Procedures

Just as variables and constants have a scope, so do procedures. We can declare a procedure using
the Public or Private keyword, as in:

Public Function AddOne(i As Integer) As Integer

or:

Private Function AddOne(i As Integer) As Integer

The difference is simple: a Private procedure can only be called from within the module in
which it is defined, whereas a Public procedure can be called from within any module in the
project.

Note that if the Public or Private keyword is omitted from a procedure declaration, then the
procedure is considered to be Public.

6.6 Project References

In order for code in one project to call a public procedure in another project, the calling project
must have a reference to the called project.

 66

Generally, a project that is associated with a workbook is interested only in procedures that lie in
that project. In fact, generally it would be bad programming practice to require a procedure in one
project to call a procedure in another project. Nonetheless, there may be occasions when this is
required. To add a reference to the calling project, we use the References dialog box (under the
Tools menu), shown in Figure 6-2.

Figure 6-2. The References dialog box

6.6.1 Fully Qualified Procedure Names

When we call a public procedure that lies in another module, there is a potential problem with
ambiguity, for there may be more than one public procedure with the same name in another
module. VBA will execute the first one it finds, and this may not be the one we had in mind!

The solution is to use a qualified procedure name, which has the form:

ModuleName.ProcedureName

For instance, if a public procedure named AddOne lies in a module named Utilities, then we can
call this procedure using the syntax:

Utilities.AddOne

If necessary, we can also specify the project name, using the syntax (don't forget to set the
reference first):

ProjectName.ModuleName.ProcedureName

It is important to note that ProjectName is the code name of the project, not the filename. (The
default code name is VBAProject.)

 67

Chapter 7. Built-in Functions and Statements
VBA has a large number of built-in functions and statements. For possible reference, Table 7-1
shows the VBA functions, and Table 7-2 shows the statements. We will take a look at a few of the
more commonly used functions and statements for programming Excel VBA in this chapter and
Chapter 8.

To help simplify the exposition, we will follow Microsoft's lead and use square brackets to
indicate optional parameters. Thus, for instance, the second parameter in the following procedure
is optional:

Sub ChangeFormat(FontName [, FontSize])

Note that we have also omitted the data type declarations, which will be discussed separately.

Table 7-1. VBA Functions[1]
Abs DoEvents IsEmpty Right
Array Environ IsError RightB
Asc EOF IsMissing Rnd
AscB Error IsNull Round*
AscW Exp IsNumeric RTrim
Atn FileAttr IsObject Second
CallByName* FileDateTime Join* Seek
Cbool FileLen Lbound Sgn
Cbyte Filter* Lcase Shell
Ccur Fix Left Sin
Cdate Format LeftB SLN
CDbl FormatCurrency* Len Space
Cdec FormatDateTime* LenB Spc
Choose FormatNumber* LoadPicture Split*
Chr FormatPercent* Loc Sqr
ChrB FreeFile LOF Str
ChrW FV Log StrComp
Cint GetAllSettings Ltrim StrConv
CLng GetAttr Mid String
Command GetAutoServerSettings MidB StrReverse*
Cos GetObject Minute Switch
CreateObject GetSetting MIRR SYD
CSng Hex Month Tab
CStr Hour MonthName* Tan
CurDir Iif MsgBox Time
Cvar IMEStatus Now Timer
CVDate Input Nper TimeSerial
CVErr InputB NPV TimeValue
Date InputBox Oct Trim
DateAdd InStr Partition TypeName
DateDiff InStrB Pmt UBound

TE
AM
FL
Y

Team-Fly®

 68

DatePart InstrRev* PPmt UCase
DateSerial Int PV Val
DateValue Ipmt QBColor VarType
Day IRR Rate WeekdayWeekdayName*
DDB IsArray Replace* Year
Dir IsDate RGB

[1] Items marked with an asterisk (*) are for Office 9/10 only.

7.1 The MsgBox Function

We have been using the MsgBox function unofficially for some time now. Let us introduce it
officially. The MsgBox function is used to display a message and wait for the user to respond by
pushing a button. The most commonly used syntax is:

MsgBox(prompt [, buttons] [, title])

This is not the function's complete syntax. There are some additional optional parameters related
to help contexts that you can look up in the help documentation.

prompt is a String parameter containing the message to be displayed in the dialog box. Note that
a multiline message can be created by interspersing the vbCrLf constant within the message.

buttons is a Long parameter giving the sum of values that specify various properties of the
message box. These properties are the number and type of buttons to display, the icon style to use,
the identity of the default button, and the modality of the message box. (A system modal dialog
box remains on top of all currently open windows and captures the input focus systemwide,
whereas an application modal dialog box remains on top of the application's windows only and
captures the application's focus.) The various values of Buttons that we can sum are shown in
Table 7-2. (They are officially defined in the VbMsgBoxStyle enum.)

Table 7-2. The MsgBox Buttons Argument Values
Purpose Constant Value Description

Button types vbOKOnly 0 Display OK button only
 vbOKCancel 1 Display OK and Cancel buttons
 vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons
 vbYesNoCancel 3 Display Yes, No, and Cancel buttons
 vbYesNo 4 Display Yes and No buttons
 vbRetryCancel 5 Display Retry and Cancel buttons
Icon types vbCritical 16 Display Critical Message icon
 vbQuestion 32 Display Warning Query icon
 vbExclamation 48 Display Warning Message icon
 vbInformation 64 Display Information Message icon
Default button vbDefaultButton1 0 First button is default
 vbDefaultButton2 256 Second button is default
 vbDefaultButton3 512 Third button is default
 vbDefaultButton4 768 Fourth button is default

 69

Modality vbApplicationModal 0 Application modal message box
 vbSystemModal 4096 System modal message box

For instance, the code:

MsgBox "Proceed?", vbQuestion + vbYesNo

displays the message box shown in Figure 7-1, which includes a question mark icon and two
command buttons, labeled Yes and No.

Figure 7-1. A MsgBox dialog box

The title parameter is a string expression that is displayed in the title bar of the dialog box. If
we omit this argument, then "Microsoft Excel" will be displayed, as in Figure 7-1.

The MsgBox function returns a number indicating which button was selected. These return values
are given in Table 7-3. (They are officially defined in the VbMsgBoxResult enum.)

Table 7-3. MsgBox Return Values
Constant Value Description

vbOK 1 OK button pressed
vbCancel 2 Cancel button pressed
vbAbort 3 Abort button pressed
vbRetry 4 Retry button pressed
vbIgnore 5 Ignore button pressed
vbYes 6 Yes button pressed
vbNo 7 No button pressed

7.2 The InputBox Function

The InputBox function is designed to get input from the user. The most commonly used (but not
the complete) syntax is:

InputBox(prompt [, title] [, default])

where prompt is the message in the input box, title is the title for the input box, and default
is the default value that is displayed in the text box. For instance, the code:

sName = InputBox("Enter your name.", "Name", "Albert")

produces the dialog box in Figure 7-2.

 70

Figure 7-2. An InputBox dialog box

The InputBox function returns the string that the user enters into the text box. Thus, in our
example, the string variable sName will contain this string.

Note that if we want a number from the user, we can still use the InputBox function and simply
convert the returned string (such as "12.55") to a number (12.55) using the Val function,
discussed later in the chapter.

7.3 VBA String Functions

Here are a handful of useful functions that apply to strings (both constants and variables):

The Len function

The Len function returns the length of a string—that is, the number of characters in the
string. Thus, the code:

Len("January Invoice")

returns the number 15.

The UCase and LCase functions

These functions return an all uppercase or all lowercase version of the string argument.
The syntax is:

UCase(string)
LCase(string)

For instance:

MsgBox UCase("Donna")

will display the string DONNA.

The Left, Right, and Mid functions

These functions return a portion of a string. In particular:

Left(string, number)

 71

returns the leftmost number characters in string, and:

Right(string, number)

returns the rightmost number characters in string. For instance:

MsgBox Right("Donna Smith", 5)

displays the string Smith.

The syntax for Mid is:

Mid(string, start, length)

This function returns the first length number of characters of string, starting at
character number start. For instance:

Mid("Library.xls",9,3)

returns the string xls. If the length parameter is missing, as in:

Mid("Library.xls",9)

the function will return the rest of the string, starting at start.

The InStr, InStrRev functions

The syntax for the very useful InStr function is:

Instr(Start, StringToSearch, StringToFind)

The return value is the position, beginning at Start, of the first occurrence of
StringToFind within StringToSearch. If Start is missing, then the function starts
searching at the beginning of StringToSearch. For instance:

MsgBox Instr(1, "Donna Smith", "Smith")

displays the number 7, because "Smith" begins at the seventh position in the string
"Donna Smith."

The InStrRev function is analogous to InStr but searches backwards through the
StringToSearch string.

The Replace function

This very useful function (not available in Excel 97) is used to replace a substring in a
string by another string. For instance, the code:

MsgBox Replace("the car is red", "red", "blue")

displays the string "the car is blue".

The Str and Val functions

 72

The Str function converts a number to a string. For instance:

Str(123)

returns the string 123. Conversely, the Val function converts a string that represents a
number into a number (so that we can do arithmetic with it, for instance). For example:

Val("4.5")

returns the number 4.5 and:

Val("1234 Main Street")

returns the number 1234. Note, however, that Val does not recognize dollar signs or
commas. Thus:

Val($12.00)

returns 0, not 12.00.

The Trim, LTrim, and RTrim functions

The LTrim function removes leading spaces from a string. Similarly, RTrim removes
trailing spaces, and Trim removes both leading and trailing spaces. Thus:

Trim(" extra ")

returns the string extra.

The String and Space functions

The String function provides a way to quickly create a string that consists of a single
character repeated a number of times. For instance:

sText = String(25, "B")

sets sText to a string consisting of 25 Bs. The Space function returns a string consisting
of a given number of spaces. For instance:

sText = Space(25)

sets sText to a string consisting of 25 spaces.

The Like operator and StrCmp function

The Like operator is very useful for comparing two strings. Of course, we can use the
equal sign, as in:

string1 = string2

which is true when the two strings are identical. However, Like will also make a case-
insensitive comparison or allow the use of pattern matching. The expression:

 73

string Like pattern

returns True if string fits pattern, and False otherwise. (Actually, the expression
can also return Null.) We will describe pattern in a moment.

The type of string comparison that the Like operator uses depends upon the setting of the
Option Compare statement. There are two possibilities, one of which should be placed
in the Declarations section of a module (in the same place as Option Explicit):

Option Compare Binary
Option Compare Text

Note that the default is Option Compare Binary.

Under Option Compare Binary, string comparison is in the order given by the ANSI
character code, as shown here:

A < B < . . . < Z < a < b < . . . < z < À < . . . < Ø < à < . . . < ø

Under Option Compare Text, string comparison is based on a case-insensitive sort
order (determined by your PC's locale setting). This gives a sort order as shown here:

A = a < À = à < B = b < . . . < Z = z < Ø = ø

By the way, the last item in the Text sort order is the "]" character, with ANSI value 91.
This is useful to know if you want to place an item last in alphabetical order—just
surround it with square brackets.

The pattern-matching features of the Like operator allow the use of wildcard characters,
character lists, or character ranges. For example:

?

Matches any single character

*

Matches zero or more characters

matches any single digit (0-9)

[charlist]

Matches any single character in charlist

[!charlist]

Matches any single character not in charlist

For more details, check the VBA help file.

 74

The StrCmp function also compares two strings. Its syntax is:

StrComp(string1, string2 [, compare])

and it returns a value indicating whether string1 is equal to, greater than, or less than
string2. For more details, check the VBA help file.

7.4 Miscellaneous Functions and Statements

Of the wealth of functions offered by the VBA language, we'll focus on the Is... functions to
determine an attribute of a variable or object, the conversion functions, and two functions, IIf
and Switch, that return a conditional result.

7.4.1 The Is Functions

VBA has several Is functions that return Boolean values indicating whether or not a certain
condition holds. We have already discussed the IsMissing function in connection with optional
arguments. Here are some additional Is functions.

7.4.1.1 The IsDate function

This function indicates whether an expression can be converted to a date. It also applies to a cell,
in which case it evaluates the contents of the cell. If the contents represent a valid date, the
function returns True. For instance, the code:

IsDate(Range("F3"))

will return True if the contents of cell F3 represent a date.

7.4.1.2 The IsEmpty function

This function indicates whether a variable has been initialized or whether a worksheet cell is
empty. For example, the code:

If IsEmpty(Range("A1")) Then . . .

tests whether or not cell A1 is empty.

7.4.1.3 The IsNull function

This function is used to test whether a variable is Null (that is, contains no data). Note that code
such as:

If var = Null Then

will always return False because most expressions that involve Null automatically return
False. The proper way to determine if the variable var is Null is to write:

If IsNull(var) Then

7.4.1.4 The IsNumeric function

 75

This function indicates whether an expression can be evaluated as a number or whether a cell
contains a value that can be evaluated as a number. For instance, if cell A1 contains the data 123
(even if this cell is formatted as text), then the condition in:

If IsNumeric(Range("A1")) Then

will evaluate to True. On the other hand, if the cell contains the data 123 Main Street, then the
condition will evaluate to False.

7.4.2 The Immediate If Function

The Immediate If function has the syntax:

IIf(Expression, TruePart, FalsePart)

If Expression is True, then the function returns TruePart. If Expression is False, the
function returns FalsePart. For instance, the following code displays a dialog indicating
whether or not the first row in the active worksheet is empty:

Dim rng As Range
Set rng = ActiveSheet.Rows(1)
MsgBox IIf(IsEmpty(ActiveSheet.Cells(1, 1)), _
 "Cell is empty", "Cell is not empty")

It is very important to note that the Immediate If function always evaluates both TruePart and
FalsePart, even though it returns only one of them. Hence, we must be careful about
undesirable side effects. For example, the following code will produce a division by zero error
because even though the IIf function returns 1/x only when x is not equal to 0, the expression
1/x is evaluated in all cases, including when x is equal to 0:

x = 0
y = IIf(x = 0, x ^ 2, 1 / x)

7.4.3 The Switch Function

The syntax of the Switch function is:

Switch(expr1, value1, expr2, value2, ... , exprn, valuen)

where exprn and valuen are expressions. Note that there need only be one expression-value
pair, but the function is more meaningful if there are at least two such pairs.

The Switch function evaluates each expression exprn. When it encounters the first True
expression, it returns the corresponding value. As with the IIf function, Switch always
evaluates all of the expressions. If none of the expressions is True, the function returns Null. This
can be tested with the IsNull function.

The procedure in Example 7-1 displays the type of file based on its extension: Template,
Workbook, or Add-in.

Example 7-1. The Switch Function

Sub ShowFileType(FileExt As String)
 Dim FileType As Variant

 76

 FileType = Switch(FileExt = "xlt", "Template", _
 FileExt = "xls", "Workbook", _
 FileExt = "xla", "Addin")

 ' Display result
 If Not IsNull(FileType) Then
 MsgBox FileType
 Else
 MsgBox "Unrecognized type"
 End If
End Sub

There is one subtlety in this code. Since the Switch function can return a Null value, we cannot
assign the return value to a String variable, as we might first try to do:

Dim FileType As String

FileType = Switch(FileExt = "xlt", "Template", _
 FileExt = "xls", "Workbook", _
 FileExt = "xla", "Addin")

This will not produce an error unless FileExt is not "xlt," "xls," or "xla," in which case we will
get the very annoying error message, "Invalid use of Null." The solution is to declare FileType
as a Variant, which can hold any data type, including no data type, which is indicated by the Null
keyword. (This issue can also be avoided by using a Select Case statement, discussed in
Chapter 8.)

7.4.4 Units Conversions

The InchesToPoints function converts a measurement given in inches to one given in points.
The reason this is important is that many Excel values need to be given (or are returned) in points,
but most of us prefer to think in inches (there are 72 points in one inch).

This applies especially to positioning properties, such as Top and Left. For instance, the Top
property of a ChartObject specifies the location of the top of the chart object, measured in points,
from Row 1 of the worksheet. Thus, to set this value to .25 inches, we would write:

ActiveChart.ChartObject.Top = InchesToPoints(.25)

There is also a PointsToInches function that is useful for displaying the return value of a
function in inches when the function returns the value in points.

7.4.5 The Beep Statement

This simple statement, whose syntax is:

Beep

sounds a single tone through the computer's speakers. It can be useful (when used with restraint) if
we want to get the user's attention. However, there is a caveat: the results are dependent upon the
computer's hardware and so the statement may not produce a sound at all! Thus, if you use this
statement in your code, be sure to warn the user. (It is possible, and probably better in general, to
use the Excel status bar to display messages to the user that do not interfere with execution of a
program. This is done using the StatusBar property of the Application object.)

 77

7.5 Handling Errors in Code

We discussed the various types of errors in Chapter 3, but we have scrupulously avoided the
question of how to handle run-time errors in code. Indeed, VBA provides several tools for
handling errors (On Error, Resume, the Err object, and so on), and we could include an entire
chapter on the subject in this book.

Proper error handling is extremely important. Indeed, if you are, or intend to become, a
professional application developer, you should familiarize yourself with error-handling procedures.

On the other hand, if your intention is to produce Excel VBA code for your own personal use, the
reasons for adding error-handling routines are somewhat mitigated. When an error occurs within
one of your own programs, VBA will stop execution, display an error message, and highlight the
offending code. This should enable you to debug the application and fix the problem. (It would be
unreasonable to expect another user of your program to debug your code, however.)

Let us undertake a brief discussion of the highlights of error handling. (For more details, may I
suggest my book Concepts of Object-Oriented Programming in Visual Basic, published by
Springer-Verlag. It has a detailed chapter on error handling.)

7.5.1 The On Error Goto Label Statement

The On Error statement tells VBA what to do when a run-time error occurs. The most common
form of the statement is:

On Error GoTo label

where label is a label. For instance, consider the following code:

Sub example()
 On Error GoTo ERR_EXAMPLE

 MsgBox Selection.Cells.Count
 Exit Sub

 ERR_EXAMPLE:
 MsgBox Err.Description, vbCritical
 Exit Sub
End Sub

The purpose of this procedure is simply to display the number of cells in the current selection.
When the current selection is a worksheet range, the Cells property returns the collection of cells
in the selection and the Count property then returns the number of cells.

However, if the current selection is not a worksheet range (it might be a drawing object or a chart,
for instance), then the Cells property fails. To deal with this possibility in a friendly manner, we
add some error checking. The line:

On Error GoTo ERR_EXAMPLE

tells VBA to move execution to the label ERR_EXAMPLE if an error occurs. The code following
this label is called the error-handling code. If an error should occur, the next line executed is the

TE
AM
FL
Y

Team-Fly®

 78

MsgBox line, in which case the dialog in Figure 7-3 will be displayed. This message gives a
description of the error, obtained from the Error object, which we discuss in the next section.

Figure 7-3. An error dialog

It is important to note the line just before the ERR_EXAMPLE label:

Exit Sub

Without this statement, the error-handling code will always be executed, even when there is no
error! Omitting this line is a common mistake. Note also that labels always end with a colon.

7.5.2 The Error Object

The error object, Err object, belongs to the VBA object model. The most important properties of
this object are:

Number

The VBA error number

Source

The name of the current VBA project

Description

A description of the error

Note that the Clear method of the Err object will clear all of the properties of the Err object,
setting its Number property to 0 (which indicates the absence of an error).

7.5.3 The On Error GoTo 0 Statement

The statement:

On Error GoTo 0

turns off any previous On Error GoTo label statements. Any error occurring subsequently will
be handled by VBA in its own inimitable way.

7.5.4 The On Error Resume Next Statement

The syntax:

 79

On Error Resume Next

tells VBA to continue executing the code immediately following the line that caused the error.
There are two important uses for this form of On Error. The first is to cause VBA to ignore an
error. For instance, the code:

Sub example()
 On Error Resume Next
 MsgBox Selection.Cells.Count
End Sub

will report the cell count when the selection is a worksheet range and do nothing when the
selection is not a worksheet range.

Another important use for the On Error Resume Next syntax is for in-line error checking,
where we check for errors immediately following the line that may have caused an error. For
instance, another way to handle errors in the previous example is:

Sub example()
 On Error Resume Next
 MsgBox Selection.Cells.Count
 If Err.Number <> 0 Then
 MsgBox Err.Description, vbCritical
 End If
End Sub

7.5.5 The Resume Statement

It is also possible to include the Resume statement in the error-handling portion of the code. This
will cause VBA to resume execution at the line that follows the one that caused the error. Thus,
the previous code is equivalent to the following:

Sub example()
 On Error GoTo ERR_EXAMPLE
 MsgBox Selection.Cells.Count
 Exit Sub

 ERR_EXAMPLE:
 MsgBox Err.Description, vbCritical
 Resume Next
End Sub

There are three variations on the Resume statement:

• Resume
• Resume Next
• Resume ALabel

The first version will cause VBA to resume with the line that caused the error. This is useful if
your error-handling code actually repairs the error condition and you want the line that caused the
original error to be executed again.

To illustrate, the procedure in Example 7-2 is designed to open a workbook named a:\test.xls. If it
does not exist, an error will occur. The error-handling code gives the user a chance to enter a new
workbook name, in which case we want to execute the Open method again. Hence the use of the
Resume statement.

 80

Example 7-2. Error Handling with the Resume Statement

Sub test()
 Dim sNew As String
 sNew = "a:\test.xls"

 On Error GoTo ERR_DISK
 Workbooks.Open sNew
 Exit Sub

 ERR_DISK:
 If Err.Number = 1004 Then
 sNew = InputBox("Cannot find file. Enter new location or
leave blank to
 If sNew <> "" Then
 Resume
 Else
 Exit Sub
 End If
 End If
End Sub

The third variation:

Resume ALabel

causes VBA to resume execution at the line labeled ALabel.

 81

Chapter 8. Control Statements
We conclude our discussion of the VBA language with a discussion of the main VBA control
statements, which are statements that affect the flow of control (or flow of execution) in a program.

8.1 The If...Then Statement

The If...Then statement is used for conditional control. The syntax is:

If Condition Then
 ' statements go here . . .
ElseIf AnotherCondition Then
 ' more statements go here . . .
Else
 ' more statements go here . . .
End If

Note that we may include more than one

ElseIf part and that both the ElseIf part(s) and the Else part are optional. We can also
squeeze all parts of this statement onto a single line, which is generally only a good idea when the
ElseIf and Else parts are missing. As an example, the following code deletes the current
selection in the active worksheet if it contains more than one cell:

If Selection.Count > 1 Then Selection.Delete

The following example changes the color of the current selection based upon its location—
selected cells in odd-numbered rows are colored red, those in even-numbered rows are colored
blue:

Dim oCell As Range
For Each oCell In Selection.Cells
 If (oCell.Row Mod 2) = 1 Then
 ' odd
 oCell.Interior.ColorIndex = 3 ' red
 Else
 ' even
 oCell.Interior.ColorIndex = 5 ' blue
 End If
Next

8.2 The For Loop

The For...Next statement provides a method for repeatedly looping through a block of code
(that is, one or more lines of code). This loop is naturally referred to as a For loop. The basic
syntax is:

For counter = start To end
 ' block of code goes here . . .

 82

Next counter

The first time that the block of code is executed, the variable counter (called the loop variable
for the For loop) is given the value start. Each subsequent time that the block of code is
executed, the loop variable counter is incremented by 1. When counter exceeds the value end,
the block of code is no longer executed. Thus, the code block is executed a total of end - start +
1 times, each time with a different value of counter.

Note that we can omit the word counter in the last line of a For loop (replacing Next
counter with just Next). This may cause the For loop to execute a bit more quickly, but it also
detracts a bit from readability.

To illustrate, the following code loops through the collection of all cells in the current selection. If
a cell has a date in it, then the font color is changed to red:

Dim i As Integer
Dim oCell As Range

For i = 1 To Selection.Count
 ' Get the next cell
 Set oCell = Selection.Cells(i)

 ' Color it if a date
 If IsDate(oCell) Then
 oCell.Font.ColorIndex = 3
 End If
Next i

For loops are often used to initialize an array. For instance, the following code assigns a value of
0 to each of the 11 variables iArray (0) through iArray (10):

For i = 0 To 10
 iArray(i) = 0
Next i

Note that the loop variable counter will usually appear within the block of code, as it does in
this array initialization example, but this is not a requirement. However, if it does appear, we need
to be very careful not to change its value, since that will certainly mess up the For loop. (VBA
automatically increments the loop variable each time through the loop, so we should leave it
alone.)

8.2.1 Exit For

VBA provides the Exit For statement to exit a For loop prematurely. For instance, the code in
Example 8-1 finds the first nonempty cell in the first row of the active worksheet. If none exists, a
message is displayed. Note the use of a Boolean variable to keep track of the existence question.

Example 8-1. Finding the First Nonempty Cell

Sub FindFirstNonEmpty()
 Dim oCell As Range
 Dim bNone As Boolean

 bNone = True
 For Each oCell In ActiveSheet.Rows(1).Cells

 83

 If Not IsEmpty(oCell) Then
 oCell.Select
 bNone = False
 Exit For
 End If
 Next

 If bNone Then MsgBox "No nonempty cells in row 1", vbInformation
End Sub

We can also control the step size and direction for the counter in a For loop using the Step
keyword. For instance, in the following code, the counter i is incremented by 2 each time the
block of code is executed:

For i = 1 to 10 Step 2
 ' code block goes here
Next i

The following loop counts down from 10 to 1 in increments of -1. This can be useful when we
want to examine a collection (such as the cells in a row or column) from the bottom up:

For i = 10 to 1 Step -1
 ' code block goes here
Next i

8.3 The For Each Loop

The For Each loop is a variation on the For loop that was designed to iterate through a
collection of objects (as well as through elements in an array) and is generally much more efficient
than using the traditional For loop. The general syntax is:

For ObjectVar In CollectionName
 ' block of code goes here . . .
Next ObjectVar

where ObjectVar is a variable of the same object type as the objects within the collection. The
code block will execute once for each object in the collection.

The FindFirstNonEmpty procedure shown in Example 8-1 illustrates the For Each loop.

Thus, when iterating through a collection of objects, we have two choices:

For Each object in Collection
 ' code block here
Next object

or:

For i = 1 to Collection.Count
 ' code block here
Next i

 84

It is important to keep in mind that the For Each loop can be much faster than the For loop when
dealing with collections of Excel objects. Thus, except for small collections, it is the preferred
method.

8.4 The Do Loop

The Do loop has several variations. To describe these variations, we use the notation:

{While | Until}

to represent either the word While or the word Until, but not both. With this in mind, here are
the possible syntaxes for the Do loop:

Do {While | Until} condition
 ' code block here
Loop

or:

Do
 ' code block here
Loop {While | Until} condition

Actually, there is a fifth possibility, because we can dispense with condition completely and
write:

Do
 ' code block here
Loop

Some of these variations are actually quite subtle. For instance, the following code cycles through
the cells in the first row of the active worksheet as long as the cells are nonempty:

i = 1
Do While IsEmpty(ActiveSheet.Rows(1).Cells(i))
 i = i + 1
Loop
ActiveSheet.Rows(1).Cells(i).Select

(This code will cause some problems if the first row has no nonempty cells, but let's not worry
about that now.) Consider also the following code, whose purpose is similar:

i = 1
Do
 i = i + 1
Loop While Not IsEmpty(ActiveSheet.Rows(1).Cells(i))
ActiveSheet.Rows(1).Cells(i).Select

The difference between these two versions is that, in the first case, the IsEmpty condition is
checked immediately, before any code within the Do loop is executed. Thus, if the first cell is
empty, the condition will fail, no code will be executed within the Do loop, and so this cell will be
selected (as it should be).

 85

On the other hand, in the second case, the condition is checked at the end of each loop, so the loop
will execute the first time, even if the first cell is empty.

Just as the For loop has an Exit For statement for terminating the loop, a Do loop as an Exit
Do statement for exiting the Do loop.

8.5 The Select Case Statement

As we have seen, the If . . . Then . . . construct is used to perform different tasks based
on different possibilities. An alternative construct that is often more readable is the Select Case
statement, whose syntax is:

Select Case testexpression
 Case value1
 ' statements to execute if testexpression = value1
 Case value2
 ' statements to execute if testexpression = value2
 . . .

 Case Else
 ' statements to execute otherwise
End Select

Note that the Case Else part is optional. To illustrate, the following code is the Select Case
version of Example 7-1 in Chapter 7, (see the discussion of the Switch function) that displays the
type of a file based on its extension. I think you will agree that this is a bit more readable than the
previous version:

Sub ShowFileType(FileExt As String)
 Dim FileType As Variant

 Select Case FileExt
 Case "xlt"
 FileType = "Template"
 Case "xls"
 FileType = "Worksheet"
 Case "xla", "utl"
 FileType = "Addin"
 Case Else
 FileType = "unknown"
 End Select

 ' Display result
 MsgBox FileType
End Sub

Note the penultimate case statement:

Case "xla", "utl"

VBA allows us to place more than one condition in a case statement, separated by commas. This
is useful when more than one case produces the same result.

 86

8.6 A Final Note on VBA

There is a lot more to the VBA language than we have covered here. In fact, the VBA reference
manual is about 300 pages long. However, we have covered the main points needed to begin Excel
VBA programming.[1]

[1] If you'd like a good reference guide to the VBA language, see VB & VBA in a Nutshell: The Language,
written by Paul Lomax and published by O'Reilly & Associates.

Actually, many Excel VBA programming tasks require only a small portion of VBA's features and
you will probably find yourself wrestling much more with Excel's object model than with the
VBA language itself.

We conclude our discussion of the VBA language per se with a brief outline of topics for further
study, which you can do using the VBA help files.

8.6.1 File-Related Functions

VBA has a large number of functions related to file and directory housekeeping. Table 8-1
contains a selection of them.

Table 8-1. Some VBA File and Directory Functions
Function Description

Dir Find a file with a certain name.
FileLen Get the length of a file.
FileTimeDate Get the date stamp of a file.
FileCopy Copy a file.
Kill Delete a file.
Name Rename a file or directory.
RmDir Delete a directory.
MkDir Make a new directory.

In addition to the file-related functions in Table 8-1, there may be times when it is useful to create
new text files to store data. VBA provides a number of functions for this purpose, headed by the
Open statement, whose (simplified) syntax is:

Open pathname For mode As [#]filenumber

Once a file has been opened, we can read or write to it.

8.6.2 Date- and Time-Related Functions

VBA has a large number of functions related to manipulating dates and times. Table 8-2 contains
a selection.

Table 8-2. Some Date- and Time-Related Functions
Function Description

Date, Now, Time Get the current date or time.

 87

DateAdd, DateDiff, DatePart Perform date calculations.
DateSerial, DateValue Return a date.
TimeSerial, TimeValue Return a time.
Date, Time Set the date or time.
Timer Time a process.

8.6.3 The Format Function

The Format function is used to format strings, numbers, and dates. Table 8-3 gives a few
examples.

Table 8-3. Format Function Examples
Expression Return value

Format(Date, "Long Date") Thursday, April 30, 1998
Format(Time, "Long Time") 5:03:47 PM
Format(Date, "mm/dd/yy hh:mm:ss AMPM") 04/30/98 12:00:00 AM
Format(1234.5, "$##,##0.00") $1,234.50
Format("HELLO", "<") "hello"

TE
AM
FL
Y

Team-Fly®

 88

Part III: Excel Applications and the Excel Object
Model
Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20

Chapter 21

Chapter 22

 89

Chapter 9. Object Models
In this chapter, we present a general overview of object models and the syntax used to manipulate
them in code.

As we have discussed, VBA is the programming language that underlies several important
Windows applications, including Microsoft Excel, Word, Access, PowerPoint, Visual Basic, and,
in Office 2000, Outlook. Any application that uses VBA in this way is called a host application.
We also discussed the fact that each host application enhances VBA by providing an object model
(perhaps more than one) to deal with the objects that are particular to that application.

Microsoft provides over a dozen different object models for its Office application suite and related
products. These include object models for Excel, Word, Access, DAO (Data Access Objects),
Outlook, PowerPoint, Binder, Graph, Forms, VBA, VB, ASP (Active Server Pages), and more. Of
course, our interest in this book is with the Excel object model, and we will devote most of the rest
of the book to describing the major portions of this model. (We will also discuss a portion of the
Office object model in the chapter on customizing Excel menus and toolbars.)

9.1 Objects, Properties, and Methods

In the parlance of VBA programming, an object is something that is identified by its properties
and its methods. For example, workbooks, worksheets, charts, and fonts are all examples of
objects in the Excel object model. Actually, the Excel object model contains 192 different objects,
including several hidden and obsolete ones.

9.1.1 Properties

The term property is used in the present context in pretty much the same way that it is used in
everyday English; it is a trait or attribute or characteristic of an object. For instance, a Worksheet
object has 55 properties, among which are Cells, Name, ProtectionMode, and UsedRange. A
property's value can be any valid data type, such as Integer, Single, String, or even another object
type.

When the value of a property has type Integer, for instance, we will refer to the property as an
integer property. Integer properties are quite common, and so Microsoft has defined a large
number of built-in enums (152, to be exact, with 1266 individual constants) to give symbolic
names to these property values. For instance, the Calculation property of the Application object
can take on any of the values in the enum defined by:

Enum XlCalculation
 xlCalculationManual = -4135
 xlCalculationAutomatic = -4105
 xlCalculationSemiautomatic = 2
End Enum

If a property's value is an object, it is referred to as an object property. For instance, a Workbook
object has an ActiveChart property that returns a Chart object. Of course, the Chart object has its
own set of properties and methods.

 90

Because a Chart object can be obtained from a Workbook object, we refer to Chart as a child
object of Workbook and Workbook as a parent of Chart. We will have more to say about this
parent-child relationship a bit later.

9.1.2 Methods

A method of an object is an action that can be performed on (or on behalf of) the object. For
instance, a Worksheet object has a Protect method that causes the worksheet to be protected.

In programming terms, the properties and methods of an object are just built-in functions or
subroutines. It is important to emphasize that the distinction between property and method is one
of intent and is often made somewhat arbitrarily. (In fact, the Item member is sometimes classified
as a property and sometimes as a method, depending upon the object in question; it appears that
even Microsoft has trouble making up its collective mind from time to time.)

The properties and methods of an object are collectively referred to as the object's members. This
should not be confused with an object's children.

9.2 Collection Objects

In programming with the Excel object model (or indeed any object model), it is common to have a
great many objects "alive" at the same time. For instance, each cell within the current selection is
an object (a Range object), as is each row and column in each open worksheet. Hence, at any
given time, there are thousands of objects in existence. To manage these objects, the designers of
an object model generally include a special type of object called a collection object.

As the name implies, collection objects represent collections of objects—generally objects of a
single type. For instance, the Excel object model has a collection object called Rows that
represents the set of all rows in the worksheet in question (as Range objects). It is customary to
say that the Rows collection object contains the rows in the sheet, so we will use this terminology
as well. There is one Rows collection for each open worksheet.

Collection objects are generally just called collections, but it is very important to remember that a
collection is just a special type of object. As we will see, the properties and methods of a
Collection object are specifically designed to manage the collection.

We can generally spot a collection object by the fact that its name is the plural of the name of the
objects contained within the collection. For instance, the Worksheets collection contains
Worksheet objects. However, in some cases, this naming convention is not followed. For instance,
the Rows collection contains Range objects. In the Excel object model, there are no Cell, Row, or
Column objects. These are all represented by Range objects. We will devote an entire chapter
(Chapter 19) to the important Range object.

Collections are extremely common in the Office object models. In fact, almost one-half of all of
the objects in the Excel object model are collections! Table 9-1 shows some of the more
commonly used collections in the Excel object model.

Table 9-1. Some Excel Collection Objects
Areas FormatConditions SeriesCollection
Axes LegendEntries Sheets
Borders Names Windows

 91

ChartObjects PivotFields Workbooks
Charts PivotTables Worksheets
DataLabels Points
Filters Range

We emphasize the fact that a collection is just a special type of object. Indeed, the properties and
methods of a Collection object are specifically designed to manage the collection. Accordingly,
the basic requirements for a collection object are:

• A property called Count that returns the number of objects in the collection. This is a
read-only property; that is, it cannot be set by the programmer. It is automatically updated
by VBA itself.

• A method called Add (or something similar, such as AddNew) that allows the
programmer to add a new object to the collection.

• A method called Remove, Close, or Delete, or something similar, that allows the
programmer to remove an object from the collection.

• A method called Item that permits the programmer to access any particular object in the
collection. The item is usually identified either by name or by an index number.

Note that these basic requirements are not hard and fast. Some collection objects may not
implement all of these members, and many implement additional members. For instance, the
Areas and Borders collections do not have an Add method, since we are not allowed to add objects
to these collections. We can only manipulate the properties of these collections.

Some Excel collections are considerably more complicated than others, since they have several
properties and methods that relate specifically to the type of object they contain. For instance, the
Sheets collection has 10 properties and 8 methods. Several of these members, such as the PrintOut
method, are included specifically so that they can operate on all of the sheets in the collection at
the same time. (A sheet is either a worksheet or a chartsheet.)

9.2.1 The Base of a Collection

Note that collections can be either 0-based or 1-based. In a 0-based collection, the first member
has index 0, and in a 1-based collection, the first member has index 1. Most, but not all,
collections in the Excel object model and in VBA itself are 1-based. However, some older
collections tend to be 0-based. (I guess that Microsoft got a lot of complaints about 0-based
collections so they decided to switch.)

It is important to determine the base of any collection before trying to access members by index.
This can be done by checking the help system (sometimes) or trying some sample code. For
instance, the code:

For i = 1 To Selection.Cells.Count
 Debug.Print Selection.Cells(i).Value
Next i

is correct, since the Cells collection is 1-based. However, the UserForms collection, which
represents all currently loaded user forms in Excel, is 0-based, so the code:

For i = 1 To UserForms.Count
 Debug.Print UserForms(i).Name
Next i

will produce an error. The correct code is:

 92

For i = 0 To UserForms.Count - 1
 Debug.Print UserForms(i).Name
Next i

(Note that this reports the number of loaded forms in the project.)

9.3 Object Model Hierarchies

The fact that one object's properties and methods can return another object, thus creating the
concept of child objects, is of paramount importance, for it adds a very useful structure to the
object model.

It seems by looking at the literature that there is not total agreement on when one object is
considered a child of another object. For our purposes, if object A has a property or method that
returns object B, then we will consider object B to be a child of object A and object A to be a
parent of object B. For example, the Range object has a Font property, which returns a Font object.
Hence, Font is a child of Range and Range is a parent of Font. The Font object is also a child of
the ChartArea object, which represents the chart area within an Excel chart. (We will discuss this
object in Chapter 21.) In fact, an object may have many parents and many children.

It is important not to take the parent-child analogy too literally. For instance, the object hierarchy
is full of circular parent-child relationships. As an example, Range is a child of Worksheet and
Worksheet is a child of Range. Indeed, in most object models, most objects have a property that
returns the top object of the model. In the Excel object model, almost every object has an
Application property that returns the Application object, which is the top object in the Excel object
model. This provides a quick way to return to the top of the object hierarchy. Hence, almost every
object in the object model is a parent of the top object!

The object hierarchy of an object model is often pictured in a tree-like structure. A small portion
of the Excel object model is shown in Figure 9-1.

Figure 9-1. A small portion of the Excel object model (the tag <vX> means that the
object is new in version X of Excel)

 93

9.4 Object Model Syntax

It is time that we formally discuss the basic syntax that is used when programming with an object
model.

The general syntax for referring to an object's properties and methods is very simple. If objVar is
an object variable that refers to a particular object and AProperty is a property of this object,
then we can access this property (for reading or for changing) using the syntax:

objVar.AProperty(any required parameters)

For instance, the following code sets the font name property of the first row in the active
worksheet:

' Declare object variable
Dim rng As Range

' Set rng to refer to first row
Set rng = ActiveSheet.Rows(1)

' Set font name
rng.Font.Name = "Arial"

Note that the last line of code actually invokes two properties; the Font property of rng returns a
Font object, whose Name property is set to Arial.

If AMethod is a method for this object, then we can invoke that method with the syntax:

 94

objVar.AMethod(any required parameters)

Note that this syntax is quite similar to the syntax used to call an ordinary VBA subroutine or
function, except that here we require qualification with the name of the variable that points to the
object whose property or method is being called.

For instance, continuing the previous code, we can apply the CheckSpelling method to the row
referred to by rng as follows:

rng.CheckSpelling

We could include the name of a custom dictionary as a parameter to this method.

9.5 Object Variables

To access a property of an object, or to invoke a method, we can generally take two approaches:
direct or indirect. The indirect approach uses an object variable—that is, a variable that has an
object data type—whereas the direct approach does not.

For instance, to set the Bold property of the Font object for the first row in the active worksheet,
we can take a direct approach, as in:

ActiveSheet.Rows(1).Font.Bold = True

Alternatively, we can assign an object variable. Here are two possibilities:

Dim rng As Range
Set rng = ActiveSheet.Rows(1)
rng.Font.Bold = True

Dim fnt As Font
Set fnt = ActiveSheet.Rows(1).Font
fnt.Bold = True

Object variables are more important than they might seem at first. The most obvious reason for
their use is that they can improve code readability when we need to refer to the same object more
than once. For instance, instead of writing:

ActiveSheet.Rows(1).Font.Bold = True
ActiveSheet.Rows(1).Font.Italic = True
ActiveSheet.Rows(1).Font.Underline = False
ActiveSheet.Rows(1).Font.Size = 12
ActiveSheet.Rows(1).Font.Name = "Arial"

we can use a Font variable to improve readability as follows:

Dim fnt As Font
Set fnt = ActiveSheet.Rows(1).Font

fnt.Bold = True
fnt.Italic = True
fnt.Underline = False
fnt.Size = 12
fnt.Name = "Arial"

 95

9.5.1 The With Statement

In fact, VBA provides a With statement to handle just the situation in the previous example,
which could be written as follows:

Dim fnt As Font
Set fnt = ActiveSheet.Rows(1).Font
With fnt
 .Bold = True
 .Italic = True
 .Underline = False
 .Size = 12
 .Name = "Arial"
End With

The general syntax of the With statement is:

With object
 ' statements go here
End With

where the statements generally refer to the object, but do not require qualification using the
object's name, as in the previous example.

9.5.2 Object Variables Save Execution Time

The main reason that objec t variables are important is not to improve readability, but to save
execution time. In particular, to execute each of the five lines in the first version of the previous
code, VBA needs to resolve the references to the various Excel objects ActiveSheet, Rows(1), and
Font. That is, VBA needs to "climb down" the Excel object model. This takes time.

However, in the code that uses an object variable of type Font, VBA only needs to resolve these
references once. Therefore, the second version runs much more quickly. This difference can be
very noticeable when there are hundreds or thousands of references to resolve.

9.5.3 An Object Variable Is a Pointer

There are some very important differences between object variables and nonobject variables, such
as those of type Integer, Single, or String. As we have mentioned, a nonobject variable can be
thought of as a name for a location in the computer's memory that holds some data. For instance,
in the code:

Dim iVar As Integer
iVar = 123

the variable iVar is a 4-byte memory location that holds the integer value 123. This can be
pictured as in Figure 9-2. (Actually, the 4-byte memory location holds the value 123 in binary
format, but that is not relevant to our discussion.)

Figure 9-2. Integer variables in memory

 96

Further, if we were to write:

Dim iVar2 As Integer
iVar2 = iVar
iVar2 = 567

we would not expect the last line of code to have any effect upon the value of the variable iVar,
which should still be 123. This is because iVar and iVar2 represent different areas of memory,
as pictured in Figure 9-2.

However, an object variable is not the name of a memory location that holds the object. Rather, an
object variable is the name of a memory location that holds the address of the memory location
that holds the object, as shown in Figure 9-3. Put another way, the object variable holds a
reference to or points to the object. For this reason, it is an example of a pointer variable, or
simply a pointer. In Figure 9-3, the object variable rng points to an object of type Range, namely,
the first column in the active sheet.

Figure 9-3. An object variable in memory

The code that goes with Figure 9-3 is:

Dim rng as Range
Set rng = ActiveSheet.Columns(1)

One of the consequences of the fact that object variables are pointers is that more than one object
variable can point to (or refer to) the same object, as in:

Dim rng as Range
Dim rng2 as Range
Set rng = ActiveSheet.Columns(1)
Set rng2 = rng

This code creates the situation pictured in Figure 9-4.

Figure 9-4. Two object variables referencing the same object

We emphasize that while rng and rng2 are different object variables, they hold the same value
and so, point to the same object. Thus, we can change the first column using either of these object
variables.

It is important when programming with objects to keep very careful track of all object variables
and what they are referencing. Furthermore, it is generally not a good idea to have more than one
object variable pointing to the same object (as in Figure 9-4) unless there is a compelling reason to
do so. It is very easy to change the object using one object variable (say rng) and then later use
the other variable (rng2), thinking it refers to the unchanged object.

 97

9.5.4 Freeing an Object Variable: the Nothing Keyword

To free an object variable so that it no longer points to anything, we use the Nothing keyword, as
in:

Set rng2 = Nothing

It is good programming practice to free object variables when they are no longer needed, since this
can save resources. An object variable is also set to Nothing automatically when its lifetime
expires.

Note that once an object no longer has any references to it, the object will automatically be
destroyed by VBA, thus freeing up its resources (memory). However, all references to the object
must be freed before the object is destroyed. This is another reason not to point more than one
object variable at the same object if possible.

9.5.5 The Is Operator

To compare the values of two ordinary variables, Var1 and Var2, we would just write:

If Var1 = Var2 Then . . .

However, the syntax for comparing two object variables to see if they refer to the same object is
special (as is the syntax for setting the value of an object variable—using the Set statement). It is
done using the Is operator:

If rng Is rng2 then . . .

Similarly, to test whether or not an object variable has been set to Nothing, we write:

If rng Is Nothing Then . . .

Be advised that there is a problem with the Is operator in the current version of VBA. This
problem exists in the version of VBA used by Office 97 and Office 2000. (Microsoft has
acknowledged the problem.) For example, the code:

Dim Wks As Worksheet
Dim Wks2 As Worksheet

Set Wks = ActiveSheet
Set Wks2 = ActiveSheet

MsgBox Wks Is Wks2

will correctly display the value True. However, the analogous code:

Dim rng As Range
Dim rng2 As Range

Set rng = ActiveSheet.Rows(1)
Set rng2 = ActiveSheet.Rows(1)

MsgBox rng Is rng2

incorrectly displays the value False. If we change the penultimate line to:

TE
AM
FL
Y

Team-Fly®

 98

Set rng2 = rng

then the message box correctly displays True.

9.5.6 Default Members

In most object models, many objects have a default member (property or method) that is invoked
when a property or method is expected but we do not specify one. For instance, in the Microsoft
Word object model, the default member for the Range object is the Text property. Hence, the
VBA Word code:

Dim rng As Range
Set rng = ActiveDocument.Words(1)
rng = "Donna"

sets the first word in the active document to Donna, since Word applies the default property in the
last line, effectively replacing it with:

rng.Text = "Donna"

Unfortunately, neither the Excel VBA documentation nor the Excel object model make an effort
to identify the default members of Excel objects. Accordingly, my suggestion is to avoid the issue
when programming Excel.

In any case, default members tend to make code less readable, and for this reason, I generally
avoid them. One notable exception is for a collection object. It is generally the case that the
default member of a collection object is the Item method. Hence, for instance, we can refer to the
fourth cell in the current selection by:

Selection.Cells(4)

rather than by the more clumsy:

Selection.Cells.Item(4)

Since this use of the default member is not likely to cause any confusion, we will use it.

9.5.7 Global Members

Many of the properties and methods of the Application object can be used without qualifying them
with the word Application. These are called global members . For instance, the Selection
property is global, and so we can write:

Selection.Cells.Count

instead of:

Application.Selection.Cells.Count

To identify the global members, the Excel object model has a special object called the Global
object. This object is not used directly—its purpose is simply to identify the global members of
the object model. Note that the members of the Global object form a proper subset of the members
of the Application object (which means that not all of the members of the Application object are
global).

 99

Table 9-2 lists the (nonhidden) global members of the Excel object model

Table 9-2. Excel global members
_Evaluate CommandBars Parent
_Run2 Creator Range
ActiveCell DDEAppReturnCode Rows
ActiveChart DDEExecute Run
ActiveDialog DDEInitiate Selection
ActiveMenuBar DDEPoke SendKeys
ActivePrinter DDERequest Sheets
ActiveSheet DDETerminate ShortcutMenus
ActiveWindow DialogSheets ThisWorkbook
ActiveWorkbook Evaluate Toolbars
AddIns Excel4IntlMacroSheets Union
Application Excel4MacroSheets Windows
Assistant ExecuteExcel4Macro Workbooks
Calculate Intersect WorksheetFunction
Cells MenuBars Worksheets
Charts Modules
Columns Names

 100

Chapter 10. Excel Applications
Simply put, we can define an Office application to be an Office "document" (for instance, an
Access database, Excel workbook, Word document, Word template, or PowerPoint presentation)
that contains some special customization. This customization usually takes the form of a
combination of VBA procedures and menu and/or toolbar customizations and is generally
designed to simplify or automate certain tasks. It may provide utilities, which are programs for
performing a specific task, such as printing or sorting.

This may seem like a fairly liberal definition. For instance, if we add a single custom menu item to
a Word template that simply adds a closing (Sincerely yours, etc.) to the end of a Word document,
we could consider this template to be a Word application. However, it is doubtful that we could
get anyone to buy this Word application!

The point we want to emphasize is that an Office application is quite different from a traditional
Windows application, such as Excel itself. Traditional Windows applications are built around a
main executable file. In the case of Excel, this file is called excel.exe. Of course, a complex
application like Excel involves many additional supporting files, such as additional executables,
help files, object library files, resource files, information files, ActiveX control files, and the
ubiquitous DLL files.

On the other hand, Office applications do not revolve around standalone executable files. Rather,
they are created within an Office document. In particular, an Access application is created within
an Access database, an Excel application is created within an Excel workbook, a Word application
is created within a Word document, and a PowerPoint application is created within a PowerPoint
presentation. Office applications can be created within Office templates or add-ins as well.

This raises a whole new set of issues related to the distribution of Office applications. In
developing an Office application for distribution, we must immediately deal with two issues.
Where do we put the code for this application, and what means do we provide the user to invoke
the features of the application? The first issue is complicated by whether we will allow the user to
have access to the application's code and data or not.

The answers to these questions depend, not surprisingly, on the nature of the application.

10.1 Providing Access to an Application's Features

I recently created an Excel application for a well-known fast food company. The company wanted
to send out data on sales and other things to its field offices, in the form of a rather complicated
Excel pivot table. They wanted the field personnel to be able to filter the pivot table by various
means (thus creating smaller pivot tables) as well as generate a variety of charts showing different
views of the data. (The complete application involved other features, but this will illustrate the
point.)

In particular, the main pivot table contains several types of data (sales, transaction counts, and so
on) for several Designated Marketing Areas (DMAs) and store types (company, franchise, or
both). One feature of the application is a chart-creating utility for this data. But where should the
code for this feature go and how should the field personnel be given access to this charting utility?

Since the charting utility directly involves the pivot table, it seems reasonable in this case to
simply place a command button labeled Make Chart(s) directly on the pivot table worksheet.

 101

When the user clicks the button, a dialog box such as the one shown in Figure 10-1 appears,
allowing the user to make various selections and then create the chart or charts.

Figure 10-1. Dialog for a charting utility

In general, there are several possible options for providing access to the charting utility, that is, for
displaying the dialog box in Figure 10-1 (or, for that matter, for providing access to any macro):

• Select it from the Macro dialog by choosing Tools Macro Macros. The Macro
dialog was discussed in Chapter 4. This is the most efficient method for a user who writes
macros and wants to run one quickly (and it provides an easy method to run many of the
very short examples presented in this book). But since the dialog displays only the names
of macros to be run, it's not suitable for a user who is unfamiliar with the macros, nor is it
a very efficient method of running frequently used macros.

• Run or display it automatically when a workbook opens by attaching code to one of
Excel's events, in this case the Open event. Events are discussed in detail in Chapter 11.

• Place a button directly on the worksheet.
• Place a button on an existing Excel toolbar. This can be done programmatically (a topic

discussed in Chapter 12) or through the user interface (see Section 10.1.2 later in this
section).

• Create a new toolbar and add the button to it, either programmatically or through the user
interface. For information on the latter, see Section 10.1.1 later in this section.

• Add a menu item to an existing Excel menu, either programmatically or through the user
interface.

• Create a new menu bar and add a menu item, either programmatically or through the user
interface.

In this case, since we did not want the user to be able to invoke the chart-printing utility unless the
worksheet containing the pivot table was active, we opted for the button on the worksheet
approach. This is not to say, however, that the other approaches would not work.

On the other hand, if the utility in question has wider applicability, then it would probably make
more sense to use a toolbar or add a menu item. (I much prefer menu items over toolbar buttons,
because they are easily invoked using the keyboard and don't get in the way of other windows.)

 102

Indeed, an application that has many features might benefit from a dedicated toolbar or menu bar
or a dedicated popup menu on, say, the main Excel worksheet and chart menu bars.

In short, the decision as to how to provide access to the features of an Office application depends
on several things, including the complexity of the application, the scope of its features, and
personal preferences.

10.1.1 Working with Toolbars and Menus Interactively

Whether we choose to place a command button for a macro on an existing Excel toolbar or on a
custom toolbar of our own making, we may need to specify, using the Excel user interface, when
the toolbar in question will be displayed. We can create a new toolbar and display or hide existing
toolbars by selecting the Customize option from the Tools menu. The Toolbars tab for the
Customize dialog box is shown in Figure 10-2.

Figure 10-2. The Toolbars tab of the Customize dialog

To create a new toolbar, simply click the New button. Excel opens the New Toolbar dialog, which
prompts us for a name for the toolbar. After we assign it a unique name, Excel will create the
toolbar, list it in the Toolbars list box, and display the toolbar. We can then populate the toolbar
with buttons.

To display or hide existing toolbars, we simply check or uncheck their boxes in the Toolbars list
box.

We can also create a new submenu, which can then be added to an existing menu or toolbar. To do
this, we select the Commands tab of the Customize dialog (see Figure 10-3), then select the New
Menu option in the Categories list box. Click on the New Menu item in the Commands list box
and drag it to the appropriate menu or toolbar. Finally, we right-click on the new menu and enter
its caption in the context menu's Name field.

Figure 10-3. The Commands tab of the Customize dialog

 103

10.1.2 Assigning Macros to Menus and Toolbars

Excel also allows us to assign macros to existing menus and toolbars, which is also done from the
Commands tab of the Customize dialog shown in Figure 10-3.

Although many users find the Commands tab, and the menu and toolbar customization features in
Office, to be confusing and intimidating, they are actually quite simple if we keep the following in
mind: ordinarily, menus and toolbars are in run mode. In this mode, selecting a menu item or a
toolbar button causes the corresponding action to be performed. On the other hand, whenever the
Customize dialog is visible, menus and toolbars are in edit mode. While in edit mode, clicking on
a menu item or button has an entirely different effect. In particular, right-clicking on a menu item
displays a menu with the item's properties. Also, we can move, delete, or add items to a menu
simply by dragging and dropping these items!

Since edit mode is active whenever the Customize dialog is visible, you
should be very careful not to inadvertently drag a menu item (or toolbar
button) off of a menu (or toolbar), because this will delete that item from
the menu (or toolbar).

So, to assign a macro to a toolbar or menu item, make sure the Customize dialog is visible, select
Macros in the Categories list (see Figure 10-3), and drag the macro from the Commands list to the
appropriate location on the menu or toolbar. That's it.

It is worth pointing out that customizing menus and toolbars through the Customize dialog, as we
have just described, may be the right way to proceed for developers, but it also may be too much
to ask a client to perform this customization himself. The alternative is to create the custom object
programmatically, as discussed in Chapter 12. This is something you will need to judge for
yourself.

10.2 Where to Store an Application

In the case of the Excel application for the aforementioned fast food company, all of the data for
the application is contained in a single workbook. Since none of this data needs to be hidden from
the user, it is reasonable to distribute the code and any concomitant data for the application
directly in the workbook that contains the data (the pivot table). This makes the workbook totally

 104

self-contained and eliminates the need for an installation procedure. All the main office needs to
do is email the workbook to its field offices. There are several possibilities here, however:

• Store the application and its data in the document in which it will be used. This is suitable
for a standalone application like the one shown in Figure 10-1. It is also suitable for small
macros, such as those contained in code fragments throughout this book, that we want to
run just to see how some Excel VBA feature is implemented.

• Store the application and its data in an Excel template. This is suitable, of course, when
the template will serve as the basis of multiple spreadsheets.

• Store the application and its data in a hidden Excel workbook in Excel's startup directory.
• Store the application and its data in an Excel add-in.

Each of these choices has its advantages and disadvantages, which, incidentally, vary among the
Office applications. For instance, templates are much more useful in Word than in Excel, and add-
ins are more useful in Excel than in Access. In any case, our interest here is in Excel.

10.2.1 The Excel Startup Folder

When Excel loads, it automatically loads any spreadsheets stored in its startup and alternate
startup folders. The default location of the startup folder is usually a subfolder of the main Excel
folder named XlStart. By default, there is no alternate startup folder, although one can be defined
using the General tab of the Options dialog; to open it, select Options from the Tools menu.

Because the contents of these folders are opened at startup as ordinary workbooks, their macros
are easily accessible to all other Excel workbooks. This makes them ideal as a storage location for
macros. The only drawback is that Excel actually opens the spreadsheets stored in these
directories; to prevent this, they should be hidden by selecting the Hide option from Excel's
Window menu (not the Format menu) when the spreadsheet to be hidden is active.

Macros that are stored in the startup and alternate startup folders are available from the Macro
dialog, and we can assign them to toolbars and menus through the Excel user interface, as well as
programmatically. (On the other hand, an add-in, which is discussed later in this chapter, does not
make its subroutines directly accessible to other Excel workbooks, but instead requires that they
be assigned to toolbar or menu items programmatically.)

A workbook stored in either of these folders is an excellent choice for a library of macros that you
want to be globally available to your spreadsheets. It is also suitable for developing Excel macros
for others to use, although Excel add-ins (which are discussed in Section 10.2.3 later in this
chapter) provide greater flexibility and control, and are much more suitable for macros intended
for distribution.

We will assume in this book that you want to store macros in an add-in. As we will see, there are
clear advantages to using add-ins. Moreover, this will give us a chance to discuss how add-ins are
created in Excel. However, you can feel free to place the example macros in a spreadsheet that is
kept in the startup or alternate startup folder.

10.2.2 Excel Templates

The purpose of an Excel template is to provide a starting place for a new workbook, worksheet,
chart, or code module. Creating a template is easy. We simply create a new workbook and save it
as a template using the Save As command.

For instance, suppose we start a new workbook and enter the number 123 in the first cell of the
first sheet. Then we save the workbook in the templates directory (more on this later) as a template
called test.xlt. When we next invoke the New command from the File menu, Excel will display a

 105

New dialog with an icon for our template, as shown in Figure 10-4. When we select the test.xlt
icon, Excel will create a new workbook and copy the data from the template into the workbook.

Figure 10-4. The New dialog showing template icons

It is very important to note that the data (and other things such as formatting) as well as macros
are actually copied to the workbook, after which all connection between the template and the new
workbook is severed. This is quite different from the way that Microsoft Word uses templates. A
Word template remains attached to the document. Certain changes, such as the addition of styles
or macros, can be saved either in the template or in the document itself, but Word never copies
macros from a template into a document. Also, several templates can be opened at one time (the
so-called global templates), each of which may affect the document. Word templates are dynamic;
Excel templates are static.

This reduces the usefulness of Excel templates considerably, for if we create a template that
contains lots of code, for instance, then each workbook that is based on that template will contain
its own copy of that code. This can be a major waste of space and can also make it very difficult to
maintain and upgrade the code. For these reasons, I generally avoid using Excel templates
whenever possible.

For the record, however, we should note that the following items are transferred to a new
workbook or worksheet that is based on a template:

• The number and type of sheets in a workbook
• Cell and sheet formats set using the Format menu
• Cell styles
• Page formats and print-area settings for each sheet
• Cell contents
• Worksheet graphics
• Custom toolbars, macros, hyperlinks, and ActiveX controls on forms; custom toolbars

must be attached to the template
• Protected and hidden areas of the workbook
• Workbook calculation options and window display options set using the Options

command on the Tools menu

We should also note that Excel supports several types of special templates called autotemplates.
They are templates with the following names:

• Book.xlt
• Sheet.xlt
• Chart.xlt
• Dialog.xlt
• Module.xlt
• Macro.xlt (for Excel version 4 macros)

 106

When the Book.xlt template is stored in the XlStart subdirectory, Excel bases all new workbooks
on this template when you select the Workbook icon in the New dialog (see Figure 10-2).

If you want new worksheets to have a special format, then you can create a template named
Sheet.xlt and place it in the XlStart folder. Then every time the Insert Worksheet menu item is
invoked, Excel will make copies of all of the worksheets in the Sheet.xlt template and place them
in the current workbook. Note that this can be more than one sheet if there is more than one sheet
in Sheet.xlt.

By now you get the idea. The other autotemplates work similarly.

It is also important to know that all of the Office applications use the same default directory for
templates. Hence, this directory may contain Word, Excel, PowerPoint, and Access templates. But
Word is the only Office application (as of Office 97) that provides a way for the user to change
this directory (from the File Locations tab of the Options dialog under the Word Tools menu). It
follows that, changing this directory using Word will change it for all Office applications!

10.2.3 Excel Add-Ins

An Excel add-in is a special type of workbook that is usually saved with an .xla file extension.
(We will discuss how to create add-ins later in this section.) An add-in can be connected to Excel
by checking its check box in the Add-Ins dialog (see Figure 10-5), which is displayed by selecting
Add-Ins from the Tools menu.

Figure 10-5. The Add-Ins dialog

Once an add-in is connected, it remains so (even if Excel is closed and reopened) until the check
box in the Add-Ins dialog is unchecked. When connected, an add-in's functionality (VBA
procedures) is accessible from any Excel workbook. Thus, it is truly an extension of Excel.

Typically, an add-in contains code that creates new menu items or toolbar items that provide the
user with access to the procedures in the add-in. This code is placed in the Workbook_Open event
of the add-in so that the menus (or toolbars) are created/customized as soon as the add-in is
connected. (We will see examples of this soon.)

10.2.3.1 Creating an add-in

 107

Creating an add-in is a simple process. It begins with an Excel workbook, say SRXUtils.xls. (This
stands for Steven Roman's Excel Utilities.) The workbook, of course, contains a number of macros.
To create an add-in from the workbook, follow these steps:

1. Compile the project using Excel's VBA Editor.

When the code in any VBA procedure is edited and then executed, Excel must first
compile the code; that is, translate the code into a language that the computer can
understand. This is why there may be a slight delay the first time code is executed.
Subsequent execution of the same code does not require compilation unless the code has
been changed since the previous compilation. To compile the code in SRXUtils.xls, select
the Compile option from the Debug menu.

2. Set a few worksheet properties and a few project properties.

We should also set a few properties for the add-in. When SRXUtils.xls is the active
workbook in Excel, choose the Properties option from the Excel File menu and then
display the Summary tab, as shown in Figure 10-6. The Title is the string that will be used
in the Add-Ins dialog, shown in Figure 10-7. The Comments will be shown at the bottom
of the Add-Ins dialog. Therefore, you should fill in both of these sections in the Properties
dialog, as shown in Figure 10-6.

Figure 10-6. Add-in properties

Figure 10-7. The Add-Ins dialog

TE
AM
FL
Y

Team-Fly®

 108

Next, we use Excel's VBA Editor to set the properties of the VBA project. In the Project
Explorer of the VBA Editor, select the project whose filename is SRXUtils.xls. Then
choose Properties from the Tools menu to display the dialog. Fill in the project name and
description as shown in Figure 10-8.

Figure 10-8. VBA project properties

3. Protect the code from viewing.

To protect the code in an Excel workbook from unauthorized viewing, we can use the
VBA Project Properties dialog. Selecting the dialog's Protection tab, we get the dialog
shown in Figure 10-9. Checking "Lock project for viewing" and entering a password
protects the code from viewing (and from alteration). The project will still appear in the
VBIDE Project window, but Excel will not allow the user to expand the tree for this
project without the password.

Figure 10-9. Protection tab

 109

4. Save the workbook as an add-in in a directory of your choice.

Select the Save As option from the File menu, select "Microsoft Excel Add-In (*.xla)"
from the "Save as type" drop-down list, navigate to the directory in which you'd like to
save the file, enter the filename in the "File name" drop-down list box (in our example,
it's SRXUtils.xla) and press the Save button.

Every Excel workbook has a property called IsAddIn. When this property is True, Excel
considers the workbook to be an add-in. One of the consequences of this is that the
workbook becomes invisible, so we cannot simply set the IsAddIn property and then save
the project as an XLA file, since its workbook will be inaccessible from the Excel user
interface. Fortunately, Microsoft realized this and arranged it so that when we save the
file as an add-in using the Save As dialog and choosing xla in the "Save as type" drop-
down listbox, Excel will automatically change the IsAddIn property value to True. (We
can change the value to False as discussed later, in the section, Section 10.2.3.3.)

10.2.3.2 Characteristics of an add-in

An add-in has the following characteristics that set it apart from ordinary Excel workbooks:

• The workbook window and any worksheets in an add-in are hidden from view. The
intention is that the creator of the add-in can use worksheets to store supporting data for
the add-in. However, this data should not be visible to the user of the add-in. In fact, an
add-in is designed to be transparent to the user; both the code and any supporting data are
hidden from the user. Thus, if you want your add-in to expose worksheets to the user,
they must be placed in separate Excel workbook files, which can be opened by code in the
add-in at the desired time.

• As you probably know, when an Excel workbook is changed and the user tries to close
the workbook, Excel displays a warning message asking if the user wants to save the
changes before closing the workbook. No such message is displayed for an add-in. Thus,
the creator of an add-in can change the data in an add-in worksheet through code without
worrying that the user of the add-in will be bothered by a message to which he or she
could not possibly respond intelligently. (Of course, it is up to the add-in's creator to save
any changes if desired, using the Save As method of the Worksheet object.)

• When an Excel workbook is opened, the Workbook_Open event is fired. For an ordinary
Workbook, the user can suppress this event by holding down the Shift key. The Open
event for an add-in cannot be suppressed. This is in keeping with the tamper-proof nature
of add-ins.

• Add-in macros are not displayed in the Macros dialog box, thus hiding them from the user.

 110

Add-ins and COM Add-ins

Excel 2000 supports the same add-in model that is supported by Excel 97. This is the
add-in model that we use to create the SRXUtils add-in.

In addition, the Office 2000 suite supports a new add-in model called the COM add-in
model. A COM add-in is an ActiveX DLL or executable file that can be connected to
multiple Office 2000 applications. Since this type of add-in is an ActiveX DLL or
executable, it must be created using a programming environment, such as Visual Basic
or Visual C++, that is capable of creating these types of files. However, Visual Basic for
Applications cannot create ActiveX DLLs or executables, so it cannot be used to create
COM add-ins.

10.2.3.3 Debugging add-ins

An add-in can be debugged just like any other Excel workbook. You do not need to refer again to
the original XLS file.

In particular, an add-in can be opened like any other Excel workbook. However, unless you know
the password (assuming that the add-in has one), you will not be able to see either the add-in's
code or its workbook window. Using the password, you can expand the project node in the Project
window to view the code and, if you select the ThisWorkbook node and open the Properties
window, change the IsAddIn property to False to display the workbook window. Now you can
treat the workbook just like any other Excel workbook. Once the necessary changes have been
made, you can recompile the code and return the IsAddIn property to True.

10.2.3.4 Deleting an add-in

You may have noticed that the Add-Ins dialog shown in Figure 10-5 does not have a Delete button.
To remove an add-in from the list, uncheck the add-in, rename the XLA file, and then check the
add-in again. You will get a message asking if Excel should remove the add-in from the list. And
while we are on the subject of idiosyncratic behavior, note that changes to an add-in's Title
property may not be reflected in the Add-Ins dialog until Excel is shut down and reopened.

10.3 An Example Add-In

Let's begin the creation of an Excel add-in by creating an add-in shell. This will demonstrate the
process of add-in creation and provide a starting point from which we can create a full-fledged
add-in-based Excel application, adding new features as we proceed through the book. I strongly
suggest that you follow along in the creation process.

In this chapter, we will create the add-in shell whose features just display message boxes (for
now). At this time, we do not want to cloud the issue of add-in creation by implementing any real
features. In Chapter 12, we will increase the number of mock features so that we can demonstrate
how to handle multiple features in an add-in, as well as how to create a custom menu system for
an add-in. In later chapters, we will implement these features and add additional ones.

10.3.1 Creating the Source Workbook

 111

The first step is to create a new workbook that will act as the source for the add-in. Please do this
now. This workbook will eventually be saved as an add-in. I will refer to the workbook as
SRXUtils.xls, but you can feel free to name your version anything you like.

Incidentally, as we make changes to our add-in, we will do so in the SRXUtils.xls worksheet and
then save that worksheet over the current add-in. Before doing so, of course, we must unload the
current version of the add-in.

10.3.2 Setting Up the Custom Menus

To activate the mock features of our add-in shell, we will create a custom menu. We will discuss
the creation of menus and toolbars at length in Chapter 12. For now, we will keep the details to a
minimum so we can get the overall picture of add-in creation.

Our custom menu should be created automatically when the add-in loads and destroyed when the
add-in unloads. Accordingly, we begin by placing some code in the Open and BeforeClose events
of ThisWorkbook, as shown in Example 10-1.

Example 10-1. The Workbook's Open and BeforeClose Event Handlers

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 DeleteCustomMenuItem
End Sub

Private Sub Workbook_Open()
 CreateCustomMenuItem
End Sub

This event code just calls procedures to create or delete the custom menu. These procedures
should be placed in a new code module, so add a module to the SRXUtils project and name it
basMenus. Next, place the CreateCustomMenuItem procedure shown in Example 10-2 in
basMenus. It is not necessary to completely understand this procedure now, since we will go
over the details in Chapter 12. For the moment, note that Example 10-2 creates an ActivateSheet
menu item on the Custom menu, and that when we click the item, the routine defined by its
OnAction property—in this case, the ActivateSheet subroutine—is run.

Example 10-2. The CreateCustomMenuItem Procedure

Sub CreateCustomMenuItem()
 Dim cbcpop As CommandBarControl

 ' Check for custom menu. If it exists then exit.
 Set cbcpop = Application.CommandBars(_
 "Worksheet menu bar"). _
 FindControl(Type:=msoControlPopup, _
 Tag:="SRXUtilsCustomMenu")

 If Not cbcpop Is Nothing Then Exit Sub

 ' Control does not exist -- create it.
 Set cbcpop = Application.CommandBars(_
 "Worksheet menu bar"). _
 Controls.Add(Type:=msoControlPopup, _
 Temporary:=True)

 cbcpop.Caption = "Cu&stom"

 112

 ' Set tag property to find it later for deletion
 cbcpop.Tag = "SRXUtilsCustomMenu"

 ' Add menu item to popup menu
 With cbcpop.Controls.Add(Type:=msoControlButton, _
 Temporary:=True)
 .Caption = "&ActivateSheet"
 .OnAction = "ActivateSheet"
 End With
End Sub

Also place the DeleteCustomMenuItem procedure shown in Example 10-3 into basMenus:

Example 10-3. The DeleteCustomMenuItem Procedure

Sub DeleteCustomMenuItem()
 Dim cbc As CommandBarControl
 Set cbc = Application.CommandBars(_
 "Worksheet menu bar"). _
 FindControl(Type:=msoControlPopup, _
 Tag:="SRXUtilsCustomMenu")
 If Not cbc Is Nothing Then cbc.Delete
End Sub

10.3.3 Implementing the Features of the Add-In

Since the ActivateSheet utility (which is invoked when the user selects the ActivateSheet
custom menu item created by the code in Example 10-2) is very simple, it does not require its own
code module. We simply add the following procedure to the basMain code module, which we
also must create:

Public Sub ActivateSheet()
 MsgBox "This is the ActivateSheet utility"
End Sub

10.3.4 Final Steps

Finally, you should follow these steps:

1. Compile the project. Use the Debug menu to compile the SRXUtils.xls project.
2. Set the properties. Set the workbook and project properties as shown in Figure 10-6 and

Figure 10-8, making any necessary changes based on the name you have chosen for your
add-in.

3. Protect the add-in. Under the Protection tab of the project's Properties dialog, check the
"Lock project for viewing" checkbox and enter a password.

4. Save the add-in. Save the project as an add-in named SRXUtils.xla in a directory of your
choice.

Now we are ready to try the add-in. Close the SRXUtils.xls workbook and open a new workbook.
Select the Add-Ins menu item under the Tools menu and hit the Browse button on the Add-Ins
dialog. Locate your SRXUtils.xla file. Then check the entry in the Add-Ins dialog. You should see
the new Custom menu in the worksheet menu bar. Select the ActivateSheet item. You should get
the expected message box. Finis.

As mentioned earlier, as we progress through the book, we will make this example add-in much
more meaningful.

 113

Chapter 11. Excel Events
During the course of using Excel, certain events happen. For instance, when a worksheet is created,
that is an event. When a chart is resized, that is an event. Microsoft Excel defines a total of 63
different events. When an event occurs, programmers like to say that the event fires.

The purpose of an event is simply to allow the VBA programmer to write code that will execute
whenever an event fires. As we will see, this code is placed in an event procedure. The code itself
is referred to as event code. We wrote some simple event code for the Open and BeforeClose
workbook events when we created the SRXUtils add-in in the previous chapter.

Most Excel events break naturally into five groups, as indicated in Table 11-1 through Table 11-5.
These groups partially reflect the level at which the event takes place—the application level
(highest), the workbook level (middle), or the worksheet/chartsheet level (lowest).

To illustrate, when a worksheet is activated by the user or through code (by calling the Activate
method) several events will fire. They are, in firing order:

• The Activate event of the worksheet. This event fires whenever the worksheet is activated.
• The SheetActivate event of the workbook. This event fires whenever any worksheet in the

workbook is activated.
• The SheetActivate event of the application. This event fires whenever any worksheet in

any workbook in the currently running instance of Excel is activated. (However, as we
will discuss later, to enable this event, we must write special code.)

11.1 The EnableEvents Property

It is important to note that no Excel event will fire unless the EnableEvents property is set to True
(although it is set to True by default). Thus, the programmer has control over whether Excel
events are enabled. The EnableEvents property is a property of the Application object, so, for
instance, to prevent the Save event from firing when the active workbook is saved, we can write:

Application.EnableEvents = False
ActiveWorkbook.Save
Application.EnableEvents = True

11.2 Events and the Excel Object Model

The Excel object model contains several objects that exist simply as a convenience, in order to
include the Excel events in the object model. (We do not actually program with these objects.)
These objects are AppEvents, DocEvents, ChartEvents, WorkBookEvents, OLEObjectEvents, and
RefreshEvents. The events associated with a worksheet, for instance, are methods of the
DocEvents object, which is a child of the Worksheet object and the Chart object.

11.3 Accessing an Event Procedure

 114

By now you are probably wondering how to write an event procedure. The short answer is that for
each event, Excel provides us with an event code shell where we can place the event code for that
event.

To illustrate, consider the SelectionChange event of the Worksheet object. Figure 11-1 shows the
code window for a worksheet (Sheet1). Note that the Worksheet object is selected in the objects
list box. This causes the procedures list box to be filled with the names of the worksheet events.
We can simply choose the event for which we want to write event code.

Figure 11-1. Events for the Worksheet object

For instance, if we choose the SelectionChange event, Excel will automatically produce the
following code shell:

Private Sub Worksheet_SelectionChange(ByVal Target As Excel.Range)

End Sub

Excel will even place the cursor between the two code lines so we can begin entering event code.

As the name implies, this event fires when the current selection is changed in the worksheet. Note
that Excel will fill in the Target parameter with the Range object that represents the new
selection. Thus, our event code has access to the new selection, but not to the previous selection.
Many events have parameters associated with them. This provides a way for Excel to pass us
information related to the event.

The same approach will work for the workbook and chart events, but Application events require a
different approach, which we will discuss later in the chapter.

The Excel events are listed in Table 11-1 through Table 11-5.

11.4 Worksheet Events

The worksheet-related events are shown in Table 11-1. These events are also referred to as
document events.

Table 11-1. Worksheet Events (DocEvents)
Event name Description

Activate Occurs when a worksheet is activated.

BeforeDoubleClick Occurs when a worksheet is double-clicked, before the default
double-click action.

 115

BeforeRightClick Occurs when a worksheet is right-clicked, before the default right-
click action.

Calculate Occurs after the worksheet is recalculated.

Change Occurs when cells on the worksheet are changed by the user or by
an external link.

Deactivate Occurs when the worksheet is deactivated.
PivotTableUpdate (Excel 10
only) Occurs after a PivotTable report is updated on a worksheet.

SelectionChange Occurs when the selection changes on a worksheet.

11.5 WorkBook Events

Table 11-2 shows the workbook-related events.

Table 11-2. Workbook Events
Event name Description

Activate Occurs when a workbook is activated.
AddinInstall Occurs when the workbook is installed as an add-in.
AddinUninstall Occurs when the workbook is uninstalled as an add-in.
BeforeClose Occurs before the workbook closes.
BeforePrint Occurs before the workbook (or anything in it) is printed.
BeforeSave Occurs before the workbook is saved.
Deactivate Occurs when the workbook is deactivated.
NewSheet Occurs when a new sheet is created in the workbook.
Open Occurs when the workbook is opened.
PivotTableCloseConnection (Excel 10
only)

Occurs after a PivotTable closes the connection to its data
source.

PivotTableOpenConnection(Excel 10
only)

Occurs after a PivotTable opens the connection to its data
source.

SheetActivate Occurs when any sheet is activated.

SheetBeforeDoubleClick Occurs when any worksheet is double-clicked, before the
default double-click action.

SheetBeforeRightClick Occurs when any worksheet is right-clicked, before the
default right-click action.

SheetCalculate Occurs after any worksheet is recalculated or after any
changed data is plotted on a chart.

SheetChange Occurs when cells in any worksheet are changed by the
user or by an external link.

SheetDeactivate Occurs when any sheet is deactivated.

SheetSelectionChange Occurs when the selection changes on any worksheet
(does not occur if the selection is on a chart sheet).

WindowActivate Occurs when any workbook window is activated.
WindowDeactivate Occurs when any workbook window is deactivated.
WindowResize Occurs when any workbook window is resized.

 116

Incidentally, a user can suppress the Open event for a workbook by holding down the Shift key
when opening the workbook.

11.6 Chart Events

Table 11-3 shows the chart-related events.

Table 11-3. Chart Events
Event name Description

Activate Occurs when a chart sheet or embedded chart is activated.

BeforeDoubleClick Occurs when an embedded chart is double-clicked, before the default double-
click action.

BeforeRightClick Occurs when an embedded chart is right-clicked, before the default right-click
action.

Calculate Occurs after the chart plots new or changed data.
Deactivate Occurs when the chart is deactivated.
DragOver Occurs when a range of cells is dragged over a chart.
DragPlot Occurs when a range of cells is dragged and dropped on a chart.
MouseDown Occurs when a mouse button is pressed while the pointer is over a chart.
MouseMove Occurs when the position of the mouse pointer changes over a chart.
MouseUp Occurs when a mouse button is released while the pointer is over a chart.
Resize Occurs when the chart is resized.
Select Occurs when a chart element is selected.
SeriesChange Occurs when the user changes the value of a chart data point.

11.7 Application Events

Table 11-4 shows the Application-level events. These events apply to all objects in the currently
running instance of Excel.

Table 11-4. Application Events
Event name Description

NewWorkbook Occurs when a new workbook is created.
SheetActivate Occurs when any sheet is activated.

SheetBeforeDoubleClick Occurs when any worksheet is double-clicked,
before the default double-click action.

SheetBeforeRightClick Occurs when any worksheet is right-clicked, before
the default right-click action.

SheetCalculate Occurs after any worksheet is recalculated or after
any changed data is plotted on a chart.

SheetChange Occurs when cells in any worksheet are changed by
the user or by an external link.

SheetPivotTableUpdate (Excel 10 only) Occurs after the sheet containing the PivotTable
report has been updated.

 117

SheetDeactivate Occurs when any sheet is deactivated.

SheetSelectionChange
Occurs when the selection changes on any
worksheet (does not occur if the selection is on a
chart sheet).

WindowActivate Occurs when any workbook window is activated.
WindowDeactivate Occurs when any workbook window is deactivated.
WindowResize Occurs when any workbook window is resized.
WorkbookActivate Occurs when any workbook is activated.
WorkbookAddinInstall Occurs when a workbook is installed as an add-in.
WorkbookAddinUninstall Occurs when any add-in workbook is uninstalled.

WorkbookBeforeClose Occurs immediately before any open workbook
closes.

WorkbookBeforePrint Occurs before any open workbook is printed.
WorkbookBeforeSave Occurs before any open workbook is saved.
WorkbookDeactivate Occurs when any open workbook is deactivated.

WorkbookNewSheet Occurs when a new sheet is created in any open
workbook.

WorkbookOpen Occurs when a workbook is opened.
WorkbookPivotTableCloseConnection
(Excel 10 only)

Occurs after a PivotTable report connection has
been closed.

WorkbookPivotTableOpenConnection (Excel
10 only)

Occurs after a PivotTable report connection has
been opened.

Unfortunately, Excel makes it a bit more difficult to reach the Application events than events in
the other categories. Here is a step-by-step procedure for reaching the event code shells for the
Application events:

1. Use the VBA Insert menu to insert a class module into your project. Let us call this class
module CApp (short for Class Application). In the declaration section of the class
module, add the line:

Public WithEvents App As Application

Choosing the App object in the objects drop-down should now give you access to the
Application event code shells, as shown in Figure 11-2.

Figure 11-2. Application-level events

2. In the code module in which you want to activate Application-level events (say, the code
module associated with a workbook, worksheet, or chart), place the following declaration
in the declarations section of the module:

TE
AM
FL
Y

Team-Fly®

 118

Dim AppObj As New CApp

(You can use any variable name you wish in place of AppObj).

3. Finally, assign the App property of AppObj to the Application object, by executing the
code:

Set AppObj.App = Excel.Application

It is up to you where to place this line of code, but it must be executed in order to activate
Application-level events. (There is a certain circularity here, since a natural place to put
this code is in the WorkbookOpen event. However, this event will not fire until this code
has been executed.)

In addition to using the EnableEvents property, you can turn off Application-level events by
executing the code:

Set AppObj.App = Nothing

11.8 QueryTable Refresh Events

Table 11-5 shows the events related to QueryTables. We will not discuss QueryTables in this book,
but at least now you are aware of the existence of these events should you decide to pursue this
matter on your own.

Table 11-5. Refresh Events
Event name Description

AfterRefresh Occurs after a query is completed or canceled.
BeforeRefresh Occurs before any refreshes of the query table.

 119

Chapter 12. Custom Menus and Toolbars
In this chapter, we discuss methods for programmatically controlling menus and toolbars. Even
though the subject of menus and toolbars is fairly straightforward, it can seem very confusing,
especially since the documentation is less helpful than it might be.

12.1 Menus and Toolbars: An Overview

Actually, Excel's menu and toolbar objects do not belong to the Excel object model. The menus
and toolbars throughout the Microsoft Office application suite belong to the Office object model.
The portion of the Office object model that relates to menus and toolbars is shown in Figure 12-1.

Figure 12-1. The menu and toolbar portion of the Office object model

Note that this model is actually quite small, containing only two objects and their corresponding
collections:

• CommandBar objects and the CommandBars collection
• CommandBarControl objects and the CommandBarControls collection

12.1.1 Menu Terminology

To help set the notation, Figure 12-2 shows the components of the Office menu structure (this
happens to be a Word menu, but no matter).

Figure 12-2. An Office menu

 120

12.1.2 The CommandBar Object

Toolbars, menu bars, menus, submenus, and shortcut menus are all CommandBar objects. (A
shortcut menu is a menu that pops up in response to a right mouse click.) Thus, every item
pictured in Figure 12-2 is a command bar except the popup controls and the button control.

Of course, toolbars, menu bars, and shortcut menus are "top level" objects, whereas menus and
submenus emanate from toolbars, menu bars, or shortcut menus.

It is important to note that Office VBA does not treat each of these CommandBar objects in the
same way. For instance, the Count property of the CommandBars collection counts only the top-
level items: menu bars, toolbars, and shortcut menus. It does not count menus or submenus. Also,
the Add method of the CommandBars collection can be used to create toolbars or menu bars, but
not menus or submenus.

The CommandBar object has a Type property that can assume one of the constants in the
following enum:

Enum MsoBarType
 msoBarTypeNormal = 0 ' toolbar
 msoBarTypeMenuBar = 1 ' menu bar
 msoBarTypePopup = 2 ' menu, submenu, or shortcut menu
End Enum

12.1.3 Command-Bar Controls

The items on a toolbar, menu bar, menu, or submenu are actually controls, called command-bar
controls; that is, they are CommandBarControl objects. As we will see, there are various types of
command-bar controls, falling into two broad categories: custom command-bar controls
(including custom text boxes, drop-down list boxes, and combo boxes) and built-in command-bar
controls. Note that command-bar controls are not the same as the controls that we can place on a
UserForm; they are designed specifically for toolbars and menus.

There are two special types of custom command-bar controls that are not typical of other types of
controls. These are Popup controls and Button controls.

 121

12.1.3.1 Popup controls

A command-bar control of type msoControlPopup is a control whose sole purpose is to pop up
a menu (when the control is on a menu bar) or a submenu (when the control is on a menu). These
controls are naturally referred to as popup controls (see Figure 12-2). Popup controls that are
located on a menu bar take on the appearance of a recessed button when the mouse pointer is over
the control. Popup controls on a menu or submenu have a small arrow on the far right to identify
them.

Thus, the term popup is used in two different ways. A popup control is a command-bar control of
type msoControlPopup and is used to pop up a menu or submenu. A popup command bar is a
command bar of type msoBarTypePopup and is either a menu, submenu, or shortcut menu. Note
that to display a popup command bar, the user needs to activate a popup control.

12.1.3.2 Button controls

A command-bar control of type msoControlButton is called a button control. When a button
control is activated (using an accelerator key or mouse click), a macro is executed. Button controls
have a string property called OnAction, which we can set to the name of the macro that is
executed when the control is activated.

12.1.4 Adding a Menu Item

It is worth mentioning now that there are a few counterintuitive wrinkles in the process of menu
creation. In particular, we might think at first that adding a new menu should be done using the
Add method of the CommandBars collection, specifying the name of the parent menu and the
location of the new menu on the parent. After all, a menu is a CommandBar object, and this
procedure would be consistent with other cases of adding objects to a collection.

However, this is not how it is done. Instead, as we will see, a new menu (or submenu) is created
by adding a command-bar control of type msoControlPopup to the CommandBarControls
collection of the parent menu (and specifying the new control's position on the parent). Actually,
this represents a savings of effort on our behalf. For, as we have remarked, a menu or submenu
requires a popup control for activation. Thus, Microsoft makes the task of creating menus and
submenus easier by automatically creating the corresponding (empty) menu or submenu in
response to our creation of a popup control. (We will see an example of this later, so don't worry
too much if this is not perfectly clear yet.)

One word of advice before proceeding: As we will see, when creating a new toolbar or menu, you
can set one of the parameters to make the object temporary, meaning that it will be destroyed
when Excel is closed. In this way, if anything unexpected happens, it is easy to recover—just
close Excel and reopen it. Alternatively, by opening the Customize dialog box (from the Tools
menu), you can delete menu items by dragging them off of the menu, and you can delete toolbars
by using the Delete button.

12.2 The CommandBars Collection

The topmost object that relates to menus and toolbars is the CommandBars collection, which
contains all of the application's CommandBar objects. The CommandBars collection is accessible
through the CommandBars property of the Application object, that is:

Application.CommandBars

 122

The code in Example 12-1 will print a list of all of the CommandBar objects to the immediate
window. You may be surprised at the large number of objects, most of which are not currently
visible.

Example 12-1. Listing Excel's CommandBar Objects

Public Sub ShowCmdBars()
 Dim sType as string, cbar as CommandBar

 For Each cbar In Application.CommandBars
 Select Case cbar.Type
 Case msoBarTypeNormal ' A toolbar
 sType = "Normal"
 Case msoBarTypeMenuBar ' A menu bar
 sType = "Menu bar"
 Case msoBarTypePopup ' Menu, submenu
 sType = "Popup"
 End Select

 Debug.Print cbar.Name & "," & sType & "," & cbar.Visible
 Next
End Sub

If you execute this code, you should get the following entries, among many others:

Worksheet Menu Bar,Menu bar,True
Chart Menu Bar,Menu bar,False

This indicates that Excel's main menu bars are different for worksheets than for chartsheets, as is
evident if you look at the menus themselves. The worksheet menu bar has different controls than
the Chart menu bar. Thus, if you want to add a custom menu item to Excel's "main" menu bar,
regardless of what type of sheet is currently active, you will need to do so for both the Worksheet
Menu Bar and the Chart Menu Bar.

There is a slight complication concerning the CommandBars property that we should discuss.
When qualified with the Application object, as in Application.CommandBars, this property
returns the collection of all available built-in and custom command bars for the application which
in this case is Excel. This is why we used the fully qualified expression
Application.CommandBars in Example 12-1. Note that from a standard code module, we
can skip the qualification and just write CommandBars.

However, from a Workbook, the CommandBars property returns a different collection. In
particular, there are two possibilities. When the workbook is embedded within another application
and Excel is activated by double-clicking on that embedded workbook, the CommandBars
collection returns the collection of command bars that are available in that setting. This may be
different from the full collection of Excel command bars. If the workbook is not embedded in
another application, then the CommandBars property returns Nothing.

Note also that the Workbook object has a CommandBars property. However, this property is
meaningful only when the workbook is embedded within another application, in which case the
property returns the CommandBars collection for that application. When applied to a
nonembedded workbook, the property returns Nothing. Moreover, there is no programmatic way
to return the set of command bars attached to a workbook.

 123

12.3 Creating a New Menu Bar or Toolbar

As we have said, one way in which menu bars and toolbars differ from menus and submenus is in
their creation. To create a new menu bar or shortcut menu, we use the Add method of the
CommandBars collection. The syntax for the Add method is:

CommandBarsObject.Add(Name, Position, MenuBar, Temporary)

The optional Name parameter is the name of the new command bar. If this argument is omitted,
Excel VBA assigns a default name (such as "Custom 1") to the command bar. The optional
Position parameter gives the position of the new command bar. This can be set to
msoBarLeft, msoBarTop, msoBarRight, msoBarBottom , msoBarFloating (for a
floating command bar), or msoBarPopup (for a shortcut menu).

The optional Boolean MenuBar parameter is set to True for a menu bar and False for a toolbar.
The default value is False, so if the argument is omitted, a toolbar is created. Note that if you
create a new menu bar and make it visible, it will replace the existing Excel menu bar! If this
happens, you can still exit Excel by typing Alt-F4, and the normal Excel menu will reappear the
next time that you launch Excel.

Setting the optional Temporary parameter to True makes the new command bar temporary.
Temporary command bars are deleted when Excel is closed. The default value is False.

To illustrate, the following code creates a new floating toolbar called "Custom Toolbar" and
makes it visible:

Dim cbar As Office.CommandBar
Set cbar = Application.CommandBars.Add("Custom Toolbar", _
 msoBarFloating, False, True)
cbar.Visible = True

It is important to note that, if a CommandBar object by the name Custom Toolbar already exists,
the previous code will produce a runtime "Invalid procedure call" error. Thus, we really should
test for the existence of the CommandBar object before using the Add method, as shown in
Example 12-2.

Example 12-2. Creating a New Toolbar

Public Sub CreateToolbar()
 Dim cbar As Office.CommandBar
 Dim bExists As Boolean

 bExists = False
 For Each cbar In Application.CommandBars
 If cbar.Name = "Custom Toolbar" Then bExists = True
 Next

 If Not bExists Then
 Set cbar = Application.CommandBars.Add("Custom Toolbar", _
 msoBarFloating, False, True)
 cbar.Visible = True
 End If
End Sub

 124

12.4 Command-Bar Controls

Initially, one of the most confusing aspects of the Office menu system is that the items that appear
on a menu bar are not menus, or even names of menus. Rather, they are controls of type
CommandBarControl. Command-bar controls can be added to a menu bar, toolbar, menu,
submenu, or shortcut menu. (Think of toolbars, menu bars, and so on as "forms" upon which you
place controls.)

Every command-bar control is an object of type CommandBarControl and so it belongs to the
CommandBarControls collection. (We are not saying that the Type property of a command-bar
control is CommandBarControl.) In addition, every command-bar control is an object of one of
the following three object types:

• CommandBarButton
• CommandBarComboBox
• CommandBarPopup

This dual identity of CommandBarControl objects allows the various types of command-bar
controls to possess on the one hand a common set of properties and methods (those of the
CommandBarControl object) and, on the other hand, an additional set of properties and methods
that reflects the diversity of these controls. This makes sense, since, for instance, text boxes are
quite different from popup controls. Moreover, as we will see, CommandBarPopup objects need a
special property (called Controls) that provides access to the associated menu's controls. (The
other types of CommandBarControl objects do not need, and do not have, this property.)

The Type property of a CommandBarControl helps to identify the data type of the control. It can
assume any of the values in the following enum:

Enum MsoControlType
 msoControlCustom = 0
 msoControlButton = 1 ' CommandBarButton
 msoControlEdit = 2 ' CommandBarComboBox
 msoControlDropdown = 3 ' CommandBarComboBox
 msoControlComboBox = 4 ' CommandBarComboBox
 msoControlButtonDropdown = 5 ' CommandBarComboBox
 msoControlSplitDropdown = 6 ' CommandBarComboBox
 msoControlOCXDropdown = 7 ' CommandBarComboBox
 msoControlGenericDropdown = 8
 msoControlGraphicDropdown = 9 ' CommandBarComboBox
 msoControlPopup = 10 ' CommandBarPopup
 msoControlGraphicPopup = 11 ' CommandBarPopup
 msoControlButtonPopup = 12 ' CommandBarPopup
 msoControlSplitButtonPopup = 13 ' CommandBarPopup
 msoControlSplitButtonMRUPopup = 14 ' CommandBarPopup
 msoControlLabel = 15
 msoControlExpandingGrid = 16
 msoControlSplitExpandingGrid = 17
 msoControlGrid = 18
 msoControlGauge = 19
 msoControlGraphicCombo = 20 ' CommandBarComboBox
End Enum

The comments that follow some of the constants in this enum indicate the data type of the control.
This information comes from the Microsoft help files. The missing comments mean either that
some command-bar controls do not belong to one of the three data types in question or else that
the help file has not kept up with later additions to the enum.

 125

12.4.1 Creating a New Command-Bar Control

To create and add a command-bar control to a command bar, use the Add method of the
CommandBarControls collection. This method returns a CommandBarButton,
CommandBarComboBox, or CommandBarPopup object, depending on the value of the Type
parameter. The syntax is:

CommandBarControlsObject.Add(Type, Id, Parameter, Before, Temporary)

Type is the type of control to be added to the specified command bar. Table 12-1 shows the
possible values for this parameter, along with the corresponding control and the return type of the
Add method.

Table 12-1. msoControlType Values for the Type Parameter
Type Parameter (Value) Control Returned object

msoControlButton (1) Button CommandBarButton
msoControlEdit (2) Text box CommandBarComboBox
msoControlDropdown (3) List box CommandBarComboBox
soControlComboBox (4) Combo box CommandBarComboBox
msoControlPopup (10) Popup CommandBarPopup

The optional Before parameter is a number that indicates the position of the new control on the
command bar. The new control will be inserted before the control that is at this position. If this
argument is omitted, the control is added at the end of the command bar.

To add a so-called custom control of one of the types listed in Table 12-1, set the Id parameter to
1 or leave it out. To add a built-in control, set the Id parameter to the ID number of the control
(and leave out the Type argument). We will discuss built-in control IDs, and consider some
examples, in the following section.

As with command bars, we can set the optional Temporary parameter to True to make the new
command-bar control temporary. It will then be deleted when Excel is closed.

It is very important to note that a CommandBar object does not have a CommandBarControls
property, as might be expected. In order to return a CommandBarControls object, we must use the
Controls property, as in:

CommandBars("Worksheet Menu bar").Controls

It is equally important to note that, among all of the types of CommandBarControls, one and only
one type has a Controls property. In particular, a CommandBarControl of type
CommandBarPopup has a Controls property, which provides access to the CommandBarControls
collection associated with the corresponding menu for the popup control. As we will see in an
upcoming example, the Controls property thus provides the means by which we can add controls
to the menu!

12.5 Built-in Command-Bar-Control IDs

 126

As we will see in Example 12-3, it is possible to place built-in command-bar controls on toolbars
(or menus). This is done by setting the Id parameter of the Add method of the
CommandBarControls collection to the ID of the built-in command-bar control.

We must now address the issue of how to determine the IDs for the built-in controls. One
approach to finding the ID of a particular control is to use the FindControl method to get a
reference to the control. Once this is done, we can examine the control's ID property. The syntax
for FindControl is:

expression.FindControl(Type, Id, Tag, Visible, Recursive)

where expression is either a CommandBar or CommandBars object. The other parameters are
optional. The method returns the first CommandBarControl object that fits the criteria specified by
the parameters, or Nothing if the search is unsuccessful. Briefly, the parameters are:

Type

One of the MsoControlType constants in the enum given earlier in this chapter

Id

The ID of the control

Tag

The tag value of the control

Visible

Set to True to include only visible command-bar controls in the search

Recursive

True to include the command bar and all of its popup subtoolbars in the search

While the FindControl method can be quite useful, the problem in this situation is that the method
requires another way to identify the control, such as through its Tag property. Thus, the
FindControl method is most useful in finding a custom control that we have created and assigned a
Tag value.

An alternative approach to getting built-in control IDs is to create a one-time list for future
reference. The code in Example 12-3 will create a text file and fill it with a list of all built-in
control names and IDs. (Note that it requires that a directory named \temp exist on your D: drive;
feel free to change the drive and path to one suitable for your system.) The code creates a
temporary toolbar, adds a built-in control for each possible control ID using a simple For loop,
and then examines each of these controls. This is a rather ad hoc approach, but seems to be the
only approach available.

Example 12-3. Code to Generate a List of Control IDs

Public Sub ListControlIDs()
 Dim fr As Integer
 Dim cbar As Office.CommandBar
 Dim ctl As CommandBarControl
 Dim i As Integer

 127

 Const maxid = 4000

 fr = FreeFile
 Open "d:\temp\ids.txt" For Output As #fr

 ' Create temporary toolbar
 Set cbar = Application.CommandBars.Add("temporary", msoBarTop, _
 False, True)

 For i = 1 To maxid
 On Error Resume Next ' skip if cannot add
 cbar.Controls.Add Id:=i
 Next i

 On Error GoTo 0
 For Each ctl In cbar.Controls
 Print #fr, ctl.Caption & " " & ctl.Id
 Next

 cbar.Delete
 Close #fr

Example 12-4 shows a small portion of the resulting file when the code is run on my system.
Appendix C, contains a complete list.

Example 12-4. Outputting the IDs of Command-Bar Controls

<Custom> 1
&Spelling... 2
&Save 3
&Print... 4
&New... 18
&Copy 19
Cu&t 21
&Paste 22
Open 23
Can't Repeat 37
&Microsoft Word 42
Clear Contents 47
Custom 51
&Piggy Bank 52
Custom 59
&Double Underline 60
Custom 67
Custom 68
&Close 106
AutoFormat 107
&Format Painter 108
Print Pre&view 109
Custom 112
&Bold 113
&Italic 114
&Underline 115

We will consider an example that uses built-in controls later in the chapter (at which time it should
become clearer just what a built-in control is.)

TE
AM
FL
Y

Team-Fly®

 128

12.6 Example: Creating a Menu

The program shown in Example 12-5 creates the menu system shown in Figure 12-3 on Excel's
worksheet menu bar. Note that the macros that are invoked by the selection of the menu items are
named ExampleMacro1 and ExampleMacro2.

Figure 12-3. An example custom menu

Example 12-5. An Example Menu

Sub CreatePopup()
 Dim cbpop As CommandBarControl
 Dim cbctl As CommandBarControl
 Dim cbsub As CommandBarControl

 ' Create a popup control on the main menu bar
 Set cbpop = Application.CommandBars("Worksheet Menu Bar"). _
 Controls.Add(Type:=msoControlPopup)
 cbpop.Caption = "&Custom"
 cbpop.Visible = True

 ' Add a menu item
 Set cbctl = cbpop.Controls.Add(Type:=msoControlButton)
 cbctl.Visible = True

 ' Next is required for caption
 cbctl.Style = msoButtonCaption
 cbctl.Caption = "MenuItem&1"

 ' Action to perform
 cbctl.OnAction = "ExampleMacro1"

 ' Add a popup for a submenu
 Set cbsub = cbpop.Controls.Add(Type:=msoControlPopup)

 cbsub.Visible = True
 cbsub.Caption = "&SubMenuItem1"

 ' Add a menu item to the submenu
 Set cbctl = cbsub.Controls.Add(Type:=msoControlButton)

 cbctl.Visible = True

 ' Next is required for caption
 cbctl.Style = msoButtonCaption
 cbctl.Caption = "SubMenuItem&2"

 ' Action to perform
 cbctl.OnAction = "ExampleMacro2"
End Sub

Note also the use of the ampersand character (&) in the Caption properties. This character signals
a hot key (or accelerator key). Thus, "&Custom" appears as Custom in the menu bar and can be
invoked using the keystroke combination Alt-C.

 129

12.7 Example: Creating a Toolbar

Let us construct a custom toolbar with four different types of controls, as shown in Figure 12-4.
This will illustrate the use of the built-in controls. The code in Example 12-6 does the job. We will
discuss various portions of the code after you have glanced at it.

Figure 12-4. A custom toolbar

Example 12-6. An Example Toolbar

Sub CreateToolbar()
 Dim cbar As CommandBar, cbctl As CommandBarControl

 ' Delete if it exists
 For Each cbar In Application.CommandBars
 If cbar.Name = "Toolbar Example" Then cbar.Delete
 Next

 ' Create a floating toolbar
 Set cbar = Application.CommandBars.Add(Name:="Toolbar Example", _
 Position:=msoBarFloating)
 cbar.Visible = True

 ' Add a custom button control to execute a macro
 Set cbctl = cbar.Controls.Add(Type:=msoControlButton)
 cbctl.Visible = True
 cbctl.Style = msoButtonCaption
 cbctl.Caption = "CustomButton"

 ' Run the following macro
 cbctl.OnAction = "ExampleMacro"

 ' Add built-in Open... control
 Set cbctl = cbar.Controls.Add(Id:=23)

 ' Icon for button
 cbctl.FaceId = 23
 cbctl.Visible = True

 ' Add built-in spell checking button
 Set cbctl = cbar.Controls.Add(Id:=2)
 cbctl.FaceId = 2
 cbctl.Visible = True

 ' Add a list box
 Set cbctl = cbar.Controls.Add(Type:=msoControlDropdown)

 ' Add a tag so macro can find it
 cbctl.Tag = "ComposerList"
 cbctl.Visible = True
 cbctl.Caption = "ListCaption"

 130

 ' Set list properties of the list box
 With cbctl
 .AddItem "Chopin", 1
 .AddItem "Mozart", 2
 .AddItem "Bach", 3
 .DropDownLines = 0
 .DropDownWidth = 75

 ' select nothing to start
 .ListIndex = 0
 End With

 ' Set macro to execute when an item
 ' is selected
 cbctl.OnAction = "ExampleListMacro"
End Sub

The first step is to check for an existing toolbar named Toolbar Example. If it exists, we delete it.
Then we create a floating toolbar named Toolbar Example. The name is important, since we will
use it later for identification.

Next, we add a custom button control (Id argument missing) and assign it the macro
ExampleMacro, whose code, which is shown in Example 12-7, simply tells us that we pushed
the button.

Example 12-7. The ExampleMacro Macro

Sub ExampleMacro()
 MsgBox "Custom button pressed"
End Sub

Next, we add a built-in File Open... custom control, whose Id happens to be 23. (We have already
discussed how to get built-in control IDs.) This custom control automatically displays the Open
dialog box. Note that we set the FaceId to 23 as well. This displays the default icon for the Open
command, but we could choose another icon if desired.

Then we add the built-in Spelling custom control, which checks the spelling of the active
document.

Finally, we add a custom list box and populate it with the names of three composers. Note that we
set the Tag property of this list box. The reason is that we want to be able to use the FindControl
method to find the list box from within the macro that is assigned to the OnAction property, which
is shown in Example 12-8.

Example 12-8. Macro Invoked by Selecting a Composer from the List Box

Sub ExampleListMacro()
 Dim cbctl As CommandBarControl
 Find the list box control
 Set cbctl = CommandBars("Toolbar Example"). _
 FindControl(Tag:="ComposerList")
 If Not cbctl Is Nothing Then
 MsgBox "You selected " & cbctl.List(cbctl.ListIndex)
 End If
End Sub

 131

In this macro, we use the FindControl method to locate the list box control, via its tag, on the
toolbar. Once we have located the list box, we can get the currently selected item (which we
simply display for this example). Note that if two or more controls fit the search criteria,
FindControl returns the first control that it finds. Also, if no control fits the criteria, FindControl
returns Nothing, so we can check this as we have done in our program.

12.8 Example: Adding an Item to an Existing Menu

Of course, rather than creating a custom toolbar or adding a custom menu to Excel's menu system,
you may prefer to add a button to an existing toolbar or a menu item to an existing menu. In that
case, you simply need to retrieve a reference to the CommandBar object to which you wish to add
the item and call the Controls collection's Add method to add an item to it. In addition, you can
retrieve the Index property of the item before which you'd like to position your new menu item or
toolbar button. Example 12-9, which contains the source code for a Workbook_Open event that
adds an "About SRXUtils" menu item immediately before the "About Microsoft Excel" item,
shows how this can be done. Note that the procedure is able to determine the precise location of
the About Microsoft Excel menu item by retrieving a reference to its CommandBarControl object
and its Index property.

Example 12-9. Adding a Menu Item to an Existing Menu

Private Sub Workbook_Open()
 Dim lngPos As Long
 Dim objHelpMenu As CommandBar
 Dim objHelpMenuItem As CommandBarControl
 Dim objExcelAbout As CommandBarControl

 'Get reference to Help menu
 Set objHelpMenu = Application.CommandBars("Help")

 ' Determine position of "About Microsoft Excel"
 Set objExcelAbout = objHelpMenu.Controls("About Microsoft Excel")
 If Not objExcelAbout Is Nothing Then
 lngPos = objExcelAbout.Index
 Else
 lngPos = objHelpMenu.Controls.Count
 End If

 ' Add "About SRXUtils" menu item
 Set objHelpMenuItem = objHelpMenu.Controls.Add(msoControlButton, _
 1, , lngPos, True)

 objHelpMenuItem.Caption = "About &SRXUtils"
 objHelpMenuItem.BeginGroup = True
 objHelpMenuItem.OnAction = "ShowAboutMacros"
End Sub

12.9 Augmenting the SRXUtils Application

Armed with our knowledge of Office CommandBars, we can augment our add-in shell, first
discussed in Chapter 10.

 132

12.9.1 Creating the Data Worksheet

As an Excel application gets more complex, the associated menu gets more complex. Rather than
store all data directly in code, it makes sense to use a worksheet. Recall that add-in worksheets are
hidden from the user, so they are the perfect place to keep data for the add-in.

Open the SRXUtils.xls source workbook, delete all sheets but one, and name that sheet DataSheet.
Fill in the sheet as shown in Figure 12-5. This sheet contains one row for each procedure (or
utility) of the add-in (we will add more rows later in the book). The first row is for the
ActivateSheet utility whose code shell we included earlier. We will add code shells for the
other utilities a bit later. In later chapters, we will implement these utilities properly.

Figure 12-5. DataSheet of SRXUtils.xls

Let us take a closer look at the contents of DataSheet. The first column is the name of the utility.
This is not used outside of the sheet.

The second column is the name of the procedure that is activated when the utility is invoked by
the user through a menu item created by the add-in. In this case, all menu items fire the same
utility: RunUtility. This utility will determine the menu item that was clicked and call the
appropriate procedure.

The third column gives the location of this procedure. As you can see, we have placed the printing
procedures in a separate workbook called Print.utl. As an application gets more complex, you may
want to split it up into several workbooks. In this way, your add-in can be written to load a file
only when it is needed, thus saving resources. (In this example, we are splitting up the application
for demonstration purposes only. The printing utilities are not really complex enough to warrant a
separate workbook.)

The fourth column contains the caption for the menu item that will invoke the utility. Note the
ampersand character (&), which determines the menu hot key. For example, the ActivateSheet
menu item can be invoked using the A key. The fifth column gives the menu item name in case
there is a submenu. Thus, the print utilities are accessed through the Print submenu.

The final two columns determine whether the menu (or submenu) item will be enabled or disabled
when a worksheet or chartsheet is active. As we have seen, Excel uses a different main menu bar
when a worksheet is active (Worksheet Menu Bar) than when a chartsheet is active (Chart Menu
Bar). For a utility that pertains only to charts, for instance, we may not want the corresponding
menu item to be available from the Worksheet menu bar and vice-versa.

Next, you should create a new standard code module called basMain and place the following
constant declarations in the Declarations section:

Public Const Utility_Col = 1
Public Const OnAction_Col = 2
Public Const Procedure_Col = 3
Public Const InWorkbook_Col = 4
Public Const MenuItem_Col = 5
Public Const SubMenuItem_Col = 6
Public Const OnWksMenu_Col = 7
Public Const OnChartMenu_Col = 8

 133

By using these constants throughout the add-in, if we need to move any columns in the DataSheet
sheet, all we need to do is change the values of these constants. (This is precisely what symbolic
constants are for!)

12.9.2 Setting Up the Custom Menus

The first step in creating the custom menus for our features is to make a slight alteration in the
code for the Open event for ThisWorkbook. Change the code as shown in Example 12-10.

Example 12-10. The Revised Versions of ThisWorkbook's Open and Close Events

Private Sub Workbook_Open()
 CreateCustomMenus
End Sub

The code for creating the custom menu is more complicated than the one from Chapter 10 because
we must now extract the necessary information from the DataSheet worksheet. There are many
ways to do this, but we have elected to split the process into two procedures. The first procedure,
CreateCustomMenus, checks for the existence of the custom menus using the Tag property. If
the menu exists, it is deleted. Then the procedure calls the second procedure,
CreateCustomMenu, which actually does the menu creation. This is done once for the
worksheet menu bar and once for the chart menu bar. The first procedure is shown in Example 12-
11.

Example 12-11. The CreateCustomMenus Procedure

Sub CreateCustomMenus()
 ' Create custom menu on both worksheets and chartsheets
 ' menu bars if they do not already exist.
 ' Use the control's tag property to identify it.

 Dim cbc As CommandBarControl

 Set cbc = Application.CommandBars(_
 "Worksheet menu bar").FindControl(_
 Type:=msoControlPopup, Tag:="SRXUtilsCustomMenu")

 If Not cbc Is Nothing Then cbc.Delete

 CreateCustomMenu "Worksheet Menu Bar"

 Set cbc = Application.CommandBars(_
 "Chart menu bar").FindControl(_
 Type:=msoControlPopup, Tag:="SRXUtilsCustomMenu")

 If Not cbc Is Nothing Then cbc.Delete

 CreateCustomMenu "Chart Menu Bar"
End Sub

The CreateCustomMenu procedure is shown in Example 12-12. Note that the OnAction
property of every menu item is set to a procedure called RunUtility, as the "onActivation Proc"
column in Figure 12-3 shows. This procedure will sort out which menu item was selected and call
the appropriate procedure. To pass the information to RunUtility, we set each control's Tag
property to the name of the procedure and its Parameter property to the name of the workbook that
contains the procedure. (The Tag and Parameter properties are "spare" properties designed to
allow the programmer to store important information, which is precisely what we are doing.) In

 134

the RunUtility procedure, we can use the ActionControl property to return the control that
caused the RunUtility procedure to execute. Then it is a simple matter to read the Tag and
Parameter properties of that control.

Example 12-12. The CreateCustomMenu Procedure

Sub CreateCustomMenu(sBarName As String)
 Dim cbpop As CommandBarControl
 Dim cbctl As CommandBarControl
 Dim cbctlCurrentPopup As CommandBarControl
 Dim iEnabledColumn As Integer
 Dim iLastRow As Integer
 Dim iCurrentRow As Integer
 Dim sCurrentMenuItem As String
 Dim sCurrentSubMenuItem As String
 Dim sCurrentProcedure As String
 Dim sCurrentWorkbook As String
 Dim sCurrentOnAction As String
 Dim ws As Worksheet

 iEnabledColumn = OnWksMenu_Col ' Column for worksheet menu bar
 If LCase(sBarName) = "chart menu bar" Then _
 iEnabledColumn = OnChartMenu_Col

 Set ws = ThisWorkbook.Worksheets("DataSheet")

 ' Create a popup control on main menu bar sBarName
 Set cbpop = Application.CommandBars(sBarName). _
 Controls.Add(Type:=msoControlPopup, Temporary:=True)

 With cbpop
 .Caption = "Cu&stom"
 .Tag = "SRXUtilsCustomMenu"
 End With

 ' Get last used row of DataSheet
 iLastRow = Application.WorksheetFunction.CountA(ws.Range("A:A"))

 ' Go through DataSheet to get menu items
 For iCurrentRow = 2 To iLastRow
 ' Set the values
 sCurrentProcedure = ws.Cells(iCurrentRow, Procedure_Col).Value
 sCurrentWorkbook = ws.Cells(iCurrentRow, InWorkbook_Col).Value
 sCurrentMenuItem = ws.Cells(iCurrentRow, MenuItem_Col).Value
 sCurrentSubMenuItem = ws.Cells(iCurrentRow,
SubMenuItem_Col).Value
 sCurrentOnAction = ThisWorkbook.Name & "!" & _
 ws.Cells(iCurrentRow, OnAction_Col).Value

 ' If no Submenu item then this is a button control
 ' else it is a popup control
 If sCurrentSubMenuItem = "" Then
 ' Add button control
 With cbpop.Controls.Add(Type:=msoControlButton,
Temporary:=True)
 .Caption = sCurrentMenuItem
 .OnAction = sCurrentOnAction
 .Tag = sCurrentProcedure ' to pass this on
 .Parameter = sCurrentWorkbook ' to pass this on
 .Enabled = ws.Cells(iCurrentRow, iEnabledColumn).Value

 135

 End With
 Else
 ' Add popup control if it is not already added
 If sCurrentMenuItem <> "" Then
 Set cbctlCurrentPopup = cbpop.Controls.Add(_
 Type:=msoControlPopup, Temporary:=True)
 cbctlCurrentPopup.Caption = sCurrentMenuItem
 End If

 ' Now add the submenu item, which is a button control
 With cbctlCurrentPopup.Controls.Add(_
 Type:=msoControlButton, Temporary:=True)
 .Caption = sCurrentSubMenuItem
 .OnAction = sCurrentOnAction
 .Tag = sCurrentProcedure ' to pass this on
 .Parameter = sCurrentWorkbook ' to pass this on
 .Enabled = ws.Cells(iCurrentRow, iEnabledColumn).Value
 End With
 End If
 Next ' row
End Sub

12.9.3 Implementing the Features of the Add-in

We are now ready to "implement" the features of the add-in. As discussed earlier, for now we will
just supply a message box for each feature.

The ActivateSheet utility has already been taken care of, since there should be a code module
named basMain in the SRXUtils.xls project. For now, this module should contain only the
following procedure:

Public Sub ActivateSheet()
 MsgBox "This is the ActivateSheet utility"
End Sub

For the printing utilities, we need a new Excel workbook. Create a new workbook and name it
Print.xls. Add a code module (with any name) containing the code shown in Example 12-13.

Example 12-13. Code for the Printing Procedures

Public Sub PrintCharts()
 MsgBox "This is the print charts utility"
End Sub

Public Sub PrintPivotTables()
 MsgBox "This is the print pivot tables utility"
End Sub

Public Sub PrintSheets()
 MsgBox "This is the print sheets utility"
End Sub

Now, the Print.xls workbook is an ordinary Excel workbook, so if our add-in opens this workbook
in order to call one of its procedures, the workbook will be visible to the user. This is not good.
Hence, we need to create an add-in from this worksheet as well. Let us call it Print.utl. (You can
save the worksheet under this name by placing the name in quotation marks in the File name box
in Excel's Save As dialog. If you omit the quotation marks, Excel will save the file as Print.utl.xla.)
Don't forget to perform the usual add-in creation rituals for this workbook (compile the code, set

 136

the workbook and project properties, and lock the workbook from viewing) before saving it as an
add-in.

We now need to implement the RunUtility procedure. This procedure, which should be placed
in the basMain code module, is shown in Example 12-14.

Example 12-14. The RunUtility Procedure

Sub RunUtility()
 ' Use Tag and Parameter properties to find the procedure for
 ' the requested utility. Procedure name is in Tag property
 ' and workbook name is in the Parameter property.
 ' Use ActionControl to return the control.

 Dim WkbName As String
 Dim ProcName As String

 WkbName = Application.CommandBars.ActionControl.Parameter
 If WkbName = "" Or WkbName = "ThisWorkbook" Then _
 WkbName = ThisWorkbook.Name

 ProcName = Application.CommandBars.ActionControl.Tag

 ' Open workbook if necessary
 On Error GoTo WkbNotFound
 If Not IsBookOpen(WkbName) Then
 Workbooks.Open ThisWorkbook.Path & Application.PathSeparator &
WkbName
 End If

 ' Run procedure
 On Error GoTo ProcNotFound

 Application.Run WkbName & "!" & ProcName
 Exit Sub

 WkbNotFound:
 MsgBox "Cannot find workbook " & WkbName & " in " & _
 ThisWorkbook.Path, vbCritical, "Test Add-In"
 Exit Sub

 ProcNotFound:
 MsgBox "Cannot find procedure " & ProcName & " in " & _
 WkbName, vbCritical, "Test Add-In"
 Exit Sub
End Sub

Example 12-14 makes a call to the IsBookOpen function (which is shown in Example 12-15) to
see if the workbook containing the procedure is open. Perhaps the obvious choice for determining
whether or not a workbook is open is to look through the Workbooks collection, which is the
collection of all "open" workbooks (more on this in Chapter 17). However, an add-in is hidden,
even from this collection. Fortunately, we can still refer to an add-in workbook by name, so we
just try to get this name using the line:

sName = Workbooks(sWkbName).Name

If this generates an error, we know that the workbook is not open. Otherwise, it will return the
name of the workbook. (Of course, we already knew the name in this case, but that doesn't matter.)

 137

Example 12-15. The IsBookOpen Function

Private Function IsBookOpen(sWkbName) As Boolean
 ' Check to see if workbook is open
 ' Note that an add-in workbook does not appear in
 ' the Workbooks collection, so we need another method.
 ' However, an add-in can be referenced by name, so we simply
 ' access its Name property. If an error occurs, then
 ' the workbook is not open.

 Dim sName As String

 On Error GoTo WkbNotOpen
 IsBookOpen = True
 sName = Workbooks(sWkbName).Name

 Exit Function

 WkbNotOpen:
 IsBookOpen = False
End Function

12.9.4 Closing Any Open Add-Ins

When the user unchecks the SRXUtils item in the Add-Ins dialog, Excel will close the
SRXUtils.xla workbook. But it will not close any add-ins, such as Print.utl, that were opened in
code. The place to close all open add-ins is in the workbook's BeforeClose event, which currently
only deletes the custom menu.

A simple (but perhaps not elegant) approach is to close every add-in listed in the DataSheet except
the main SRXUtils.xla (which is closed when the user deselects the add-in). For this, we need an
On Error Resume Next line so that an attempt to close a workbook that is not open will be
ignored. Thus, you should change the code for the existing BeforeClose event to that shown in
Example 12-16.

Example 12-16. The Workbook_BeforeClose Event Handler

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 ' Delete custom menu and close all add-ins

 Dim r As Integer
 Dim ws As Worksheet
 Dim sName As String

 ' In case we try to close a workbook that is not open
 On Error Resume Next

 DeleteCustomMenus

 Set ws = ThisWorkbook.Worksheets("DataSheet")
 For r = 2 To Application.WorksheetFunction.CountA(ws.Range("A:A"))
 sName = ws.Cells(r, InWorkbook_Col).Value
 If sName <> "" And sName <> "ThisWorkbook" Then
 Workbooks(sName).Close
 End If
 Next r
End Sub

TE
AM
FL
Y

Team-Fly®

 138

The DeleteCustomMenus procedure is shown in Example 12-17.

Example 12-17. The DeleteCustomMenus Procedure

Sub DeleteCustomMenus()
 Dim cbc As CommandBarControl

 Set cbc = Application.CommandBars("Worksheet menu bar"). _
 FindControl(Type:=msoControlPopup, Tag:="TestAddInCustomMenu")

 If Not cbc Is Nothing Then cbc.Delete

 Set cbc = Application.CommandBars("Chart menu bar"). _
 FindControl(Type:=msoControlPopup,
Tag:="TestAddInCustomMenu")
 If Not cbc Is Nothing Then cbc.Delete
End Sub

The pieces are now complete, so you can save the SRXUtils.xls file as an add-in, just as we did in
Chapter 10. (If you have a problem, you can download the source code for this add-in from the
O'Reilly web site and compare it with your code.)

 139

Chapter 13. Built-In Dialog Boxes
The Excel object model contains a Dialog object for each of Excel's built-in dialog boxes. These
Dialog objects are kept in the Dialogs collection and are indexed by the XlBuiltInDialog
constants shown in Table 13-1 and Table 13-2. The Dialogs collection is returned by the Dialogs
property of the Application object. In Table 13-1, "<vX>" indicates that the constant is new for
Excel version X.

Table 13-1. XlBuiltInDialog constants and values
_xlDialogChartSourceData (541)<v9> xlDialogFormatMove (128) xlDialogPrinterSetup (9)
_xlDialogPhonetic (538)<v9> xlDialogFormatNumber (42) xlDialogPrintPreview (222)
xlDialogActivate (103) xlDialogFormatOverlay (226) xlDialogPromote (202)
xlDialogActiveCellFont (476) xlDialogFormatSize (129) xlDialogProperties (474)
xlDialogAddChartAutoformat (390) xlDialogFormatText (89) xlDialogPropertyFields (754)<v10>
xlDialogAddinManager (321) xlDialogFormulaFind (64) xlDialogProtectDocument (28)
xlDialogAlignment (43) xlDialogFormulaGoto (63) xlDialogProtectSharing (620)

xlDialogApplyNames (133) xlDialogFormulaReplace (130) xlDialogPublishAsWebPage
(653)<v9>

xlDialogApplyStyle (212) xlDialogFunctionWizard (450) xlDialogPushbuttonProperties
(445)

xlDialogAppMove (170) xlDialogGallery3dArea (193) xlDialogReplaceFont (134)
xlDialogAppSize (171) xlDialogGallery3dBar (272) xlDialogRoutingSlip (336)
xlDialogArrangeAll (12) xlDialogGallery3dColumn (194) xlDialogRowHeight (127)
xlDialogAssignToObject (213) xlDialogGallery3dLine (195) xlDialogRun (17)
xlDialogAssignToTool (293) xlDialogGallery3dPie (196) xlDialogSaveAs (5)
xlDialogAttachText (80) xlDialogGallery3dSurface (273) xlDialogSaveCopyAs (456)
xlDialogAttachToolbars (323) xlDialogGalleryArea (67) xlDialogSaveNewObject (208)
xlDialogAutoCorrect (485) xlDialogGalleryBar (68) xlDialogSaveWorkbook (145)
xlDialogAxes (78) xlDialogGalleryColumn (69) xlDialogSaveWorkspace (285)
xlDialogBorder (45) xlDialogGalleryCustom (388) xlDialogScale (87)
xlDialogCalculation (32) xlDialogGalleryDoughnut (344) xlDialogScenarioAdd (307)
xlDialogCellProtection (46) xlDialogGalleryLine (70) xlDialogScenarioCells (305)
xlDialogChangeLink (166) xlDialogGalleryPie (71) xlDialogScenarioEdit (308)
xlDialogChartAddData (392) xlDialogGalleryRadar (249) xlDialogScenarioMerge (473)
xlDialogChartLocation (527) xlDialogGalleryScatter (72) xlDialogScenarioSummary (311)
xlDialogChartOptionsDataLabelMultiple
(724)<v10> xlDialogGoalSeek (198) xlDialogScrollbarProperties (420)

xlDialogChartOptionsDataLabels (505) xlDialogGridlines (76) xlDialogSearch (731)<v10>

xlDialogChartOptionsDataTable (506) xlDialogImportTextFile
(666)<v9> xlDialogSelectSpecial (132)

xlDialogChartSourceData (540) xlDialogInsert (55) xlDialogSendMail (189)
xlDialogChartTrend (350) xlDialogInsertHyperlink (596) xlDialogSeriesAxes (460)
xlDialogChartType (526) xlDialogInsertNameLabel (496) xlDialogSeriesOptions (557)
xlDialogChartWizard (288) xlDialogInsertObject (259) xlDialogSeriesOrder (466)
xlDialogCheckboxProperties (435) xlDialogInsertPicture (342) xlDialogSeriesShape (504)
xlDialogClear (52) xlDialogInsertTitle (380) xlDialogSeriesX (461)
xlDialogColorPalette (161) xlDialogLabelProperties (436) xlDialogSeriesY (462)

xlDialogColumnWidth (47) xlDialogListboxProperties (437) xlDialogSetBackgroundPicture
(509)

xlDialogCombination (73) xlDialogMacroOptions (382) xlDialogSetPrintTitles (23)
xlDialogConditionalFormatting (583) xlDialogMailEditMailer (470) xlDialogSetUpdateStatus (159)
xlDialogConsolidate (191) xlDialogMailLogon (339) xlDialogShowDetail (204)

 140

xlDialogCopyChart (147) xlDialogMailNextLetter (378) xlDialogShowToolbar (220)
xlDialogCopyPicture (108) xlDialogMainChart (85) xlDialogSize (261)
xlDialogCreateNames (62) xlDialogMainChartType (185) xlDialogSort (39)
xlDialogCreatePublisher (217) xlDialogMenuEditor (322) xlDialogSortSpecial (192)
xlDialogCustomizeToolbar (276) xlDialogMove (262) xlDialogSplit (137)
xlDialogCustomViews (493) xlDialogNew (119) xlDialogStandardFont (190)

xlDialogDataDelete (36) xlDialogNewWebQuery
(667)<v9> xlDialogStandardWidth (472)

xlDialogDataLabel (379) xlDialogNote (154) xlDialogStyle (44)
xlDialogDataLabelMultiple (723)<v10> xlDialogObjectProperties (207) xlDialogSubscribeTo (218)
xlDialogDataSeries (40) xlDialogObjectProtection (214) xlDialogSubtotalCreate (398)
xlDialogDataValidation (525) xlDialogOpen (1) xlDialogSummaryInfo (474)
xlDialogDefineName (61) xlDialogOpenLinks (2) xlDialogTable (41)
xlDialogDefineStyle (229) xlDialogOpenMail (188) xlDialogTabOrder (394)
xlDialogDeleteFormat (111) xlDialogOpenText (441) xlDialogTextToColumns (422)

xlDialogDeleteName (110) xlDialogOptionsCalculation
(318) xlDialogUnhide (94)

xlDialogDemote (203) xlDialogOptionsChart (325) xlDialogUpdateLink (201)
xlDialogDisplay (27) xlDialogOptionsEdit (319) xlDialogVbaInsertFile (328)
xlDialogEditboxProperties (438) xlDialogOptionsGeneral (356) xlDialogVbaMakeAddin (478)

xlDialogEditColor (223) xlDialogOptionsListsAdd (458) xlDialogVbaProcedureDefinition
(330)

xlDialogEditDelete (54) xlDialogOptionsME (647)<v9> xlDialogView3d (197)

xlDialogEditionOptions (251) xlDialogOptionsTransition
(355)

xlDialogWebOptionsBrowsers
(773)<v10>

xlDialogEditSeries (228) xlDialogOptionsView (320) xlDialogWebOptionsEncoding
(686)<v9>

xlDialogErrorbarX (463) xlDialogOutline (142) xlDialogWebOptionsFiles
(684)<v9>

xlDialogErrorbarY (464) xlDialogOverlay (86) xlDialogWebOptionsFonts
(687)<v9>

xlDialogErrorChecking (732)<v10> xlDialogOverlayChartType
(186)

xlDialogWebOptionsGeneral
(683)<v9>

xlDialogEvaluateFormula (709)<v10> xlDialogPageSetup (7) xlDialogWebOptionsPictures
(685)<v9>

xlDialogExternalDataProperties (530)<v9> xlDialogParse (91) xlDialogWindowMove (14)
xlDialogExtract (35) xlDialogPasteNames (58) xlDialogWindowSize (13)
xlDialogFileDelete (6) xlDialogPasteSpecial (53) xlDialogWorkbookAdd (281)
xlDialogFileSharing (481) xlDialogPatterns (84) xlDialogWorkbookCopy (283)
xlDialogFillGroup (200) xlDialogPhonetic (656) xlDialogWorkbookInsert (354)

xlDialogFillWorkgroup (301) xlDialogPivotCalculatedField
(570) xlDialogWorkbookMove (282)

xlDialogFilter (447) xlDialogPivotCalculatedItem
(572) xlDialogWorkbookName (386)

xlDialogFilterAdvanced (370) xlDialogPivotClientServerSet
(689)<v9> xlDialogWorkbookNew (302)

xlDialogFindFile (475) xlDialogPivotFieldGroup (433) xlDialogWorkbookOptions (284)

xlDialogFont (26) xlDialogPivotFieldProperties
(313) xlDialogWorkbookProtect (417)

xlDialogFontProperties (381) xlDialogPivotFieldUngroup
(434) xlDialogWorkbookTabSplit (415)

xlDialogFormatAuto (269) xlDialogPivotShowPages (421) xlDialogWorkbookUnhide (384)
xlDialogFormatChart (465) xlDialogPivotSolveOrder (568) xlDialogWorkgroup (199)

xlDialogFormatCharttype (423) xlDialogPivotTableOptions
(567) xlDialogWorkspace (95)

 141

xlDialogFormatFont (150) xlDialogPivotTableWizard
(312) xlDialogZoom (256)

xlDialogFormatLegend (88) xlDialogPlacement (300)
xlDialogFormatMain (225) xlDialogPrint (8)

Table 13-2. Additional XlBuiltInDialog Constants and Their Values for Excel 9.0
_xlDialogChartSourceData (541) xlDialogOptionsME (647) xlDialogWebOptionsFonts (687)
_xlDialogPhonetic (538) xlDialogPivotClientServerSet (689) xlDialogWebOptionsGeneral (683)
xlDialogExternalDataProperties (530) xlDialogPublishAsWebPage (653) xlDialogWebOptionsPictures (685)
xlDialogImportTextFile (666) xlDialogWebOptionsEncoding (686)
xlDialogNewWebQuery (667) xlDialogWebOptionsFiles (684)

Note that each of the constants in Table 13-1 is formed from the prefix xlDialog followed by
the name of the dialog box. For example, the Open dialog box constant is xlDialogOpen and so
the corresponding Dialog object is:

Application.Dialogs(xlDialogOpen)

The Open dialog box is shown in Figure 13-1.

Figure 13-1. The Open File dialog box

Unfortunately, the Dialog object has only one useful property or method: the Show method.

13.1 The Show Method

The Show method displays a dialog box. This provides a convenient way to "lead" the user to a
built-in dialog box. Unfortunately, we cannot access the values that the user enters into that dialog.
Until the dialog is dismissed by the user and the actions specified in the dialog are completed, we
have no control over the chain of events. (In Word 97, for instance, we can use built-in dialog
boxes to get values from the user, without letting Word act automatically on those values.)

To illustrate, the code:

Application.Dialogs(xlDialogOpen).Show

displays the Open dialog box in Figure 13-1. The Show method returns True if the user clicks the
OK button and False if the user clicks the Cancel button.

 142

When the dialog box is dismissed by the user using the OK button, any appropriate actions
indicated by the fields in the dialog box are carried out. In the case of the Open dialog, this means,
of course, that the file selected by the user is actually opened in Excel. However, no actions are
taken if the user dismisses the dialog box using the Cancel button.

The Show method has syntax:

DialogObject.Show(arg1, arg2, ..., arg30)

where the arguments are used to set some dialog options.

In particular, it is possible to set some of the values on a built-in Excel dialog box using arguments
to the Show method. These arguments are listed in the Excel VBA Help file under "Built-In
Dialog Box Argument Lists." For instance, the xlDialogOpen dialog box has the following
arguments:

file_text
update_links
read_only
format
prot_ pwd
write_res_ pwd
ignore_rorec
file_origin
custom_delimit
add_logical
editable
file_access
notify_logical
converter

Hence, the code:

Application.Dialogs(xlDialogOpen).Show "*.*", False, True

displays the Open dialog, sets the "Files of type" drop-down box to All Files "*.*" so that the
dialog will display the names of all files, sets update_links to False (so that Excel links are
not automatically updated) and read_only to True (thus any file that is opened will be read-
only).

Unfortunately, Microsoft does not seem to have documented the meaning of the various
arguments. Also, the arguments are not named arguments, so we must include space for all
arguments that precede the arguments that we want to set. Thus, a trial-and-error approach seems
to be the only solution if you must set some dialog options. (Have fun.)

 143

Chapter 14. Custom Dialog Boxes
As we have seen, Excel's built-in dialogs offer very restricted communication with the user.
Fortunately, Excel makes it possible to create custom dialog boxes that allow much more flexible
communication. Custom dialog boxes are also called forms or UserForms. Our intention here is to
present an introduction to the subject, which will provide a good jumping-off point for further
study.

Generally speaking, most Excel applications will require only very simple forms. For example, we
may want to display a form with a text box for text input, a list box to allow user selection, or
some option buttons to select from several choices. Of course, we will want some command
buttons to allow the user to execute procedures.

In fact, Microsoft's Visual Basic is a more appropriate programming environment than Microsoft
Office for creating applications that involve complex forms, since it was designed specifically for
that purpose. And Visual Basic allows you to access any of the object models in the Microsoft
Office suite, just as Excel does.

14.1 What Is a UserForm Object?

A UserForm object can be thought of as a standard code module with a visual interface (a form)
that is used to interact with the user (hence the term UserForm). However, we must be careful not
to take this description too literally. For instance, procedures (even public ones) that are declared
in the General section of a UserForm module are generally intended to support objects (or code)
on the form itself, whereas public procedures declared in a standard module are generally intended
to support code anywhere in the project (not just in its own module).

To illustrate the point, suppose we declare a public procedure called ProcedureA in the General
section of a UserForm module called UserForm1. Even though this procedure is public, we cannot
access it from another module (even within the same project) by simply writing:

ProcedureA

as we could if the procedure was defined within a standard module. Instead, we must use the
qualified name:

UserForm1.ProcedureA

14.2 Creating a UserForm Object

To create a user form at design time, we just select the project in which the form will reside and
choose UserForm from the Insert menu. (Forms can be created at run time using the Add method
of the UserForms collection, but we will confine our attention to creating forms at design time.)
Figure 14-1 shows the design environment when a UserForm object is selected in the Project
window.

Figure 14-1. A UserForm dialog box (design time)

 144

Note that the window on the right in Figure 14-1 contains the dialog box, in which we have placed
a text box control and two command button controls. There is also a Toolbox window that
contains icons used to add various Windows controls to the form.

To place a control on a form, we simply click on the icon in the Toolbox and then drag a rectangle
on the form. This rectangle is replaced by the control. We can change the properties of the form
itself (or any controls on the form) by selecting the object and making the changes in the
Properties window. (Note the change to the form's caption in Figure 14-1.)

Additional controls may also be available on your system. These can be accessed by choosing
"Additional controls" under the Tools menu. (This menu option is enabled, though only if a user
form has the focus in the VB IDE.)

14.3 ActiveX Controls

If you have been using Microsoft Windows for some time (as we presume you have, since you are
reading this book), then you are quite familiar with controls at the user level. The following are
examples of controls:

• Command buttons
• Text boxes
• List boxes
• Combo boxes
• Option buttons
• Check boxes
• Labels
• Tabs
• Scroll bars

All of these controls have a visual interface for interaction with the user. However, some controls
do not have a visual interface. One example is the Timer control, which can be set to fire an event
at regular intervals. Thus, the programmer can write code that will execute at regular intervals.

 145

Generally speaking, a control (or ActiveX control) can be thought of as a special type of code
component that can be placed within a larger container object (such as a form) and has the
following properties:

• Controls generally (but not always) provide a visual interface for communication with the
user.

• Controls can have methods that can be invoked by the user.
• Controls can have properties that can be read and set by the user.
• Controls can have events for which the user can write event code.

We discussed events that are associated with Excel objects (worksheets, workbooks, charts, and so
on) in Chapter 11. Control events work in precisely the same way, as we will see in the upcoming
examples.

14.4 Adding UserForm Code

In general, VBA programmers add two types of code to a UserForm module: event code that
underlies the various controls on the form (and perhaps the form itself) and additional procedures
that perform utility functions needed by the application. The latter code is added to the general
section of the UserForm code module.

To illustrate the point with a very simple example, suppose we want to create an application that
sorts selected columns (treating each column as a single object) using the first row as the sort key.
Our form might look something like the one shown in Figure 14-2.

Figure 14-2. A Sort dialog box

When the user clicks the Sort button, VBA will ask him or her to confirm the sort operation and
then act accordingly. Now, when the Sort button is selected by the user, VBA fires the Click event
for this button. If the button is named cmdSort, then VBA provides the event code shell:

Private Sub cmdSort_Click()

End Sub

Clearly, we want to perform the sorting operation when this event is fired. However, it would not
be a good idea to place the actual code to perform the sort in this event code shell. Instead, we
write a separate sorting procedure to do the sorting and place it in the General section of the
UserForm module, or perhaps make it a public procedure in a separate standard code module
within the project:

Public Sub SortColumns()
 ' code here to sort text
End Sub

 146

There are several reasons why it is better to place the sorting code in a separate procedure. This
code modularity makes it easier to:

• Use the code in other locations in the application
• Move the code to other applications
• Find and repair bugs in the code
• Make improvements or additions to the code
• Just plain read the code

Once the sorting procedure is complete, we can add the following code to the Click event:

Private Sub cmdSort_Click()
 If MsgBox("Sort currently selected columns?", _
 vbQuestion + vbYesNo) = vbYes Then SortColumns
End Sub

Incidentally, the Click event for the Cancel button is often just the following:

Private Sub cmdCancel_Click()
 Unload Me
End Sub

All this does is unload the form.

While on the subject of unloading a form, it is important to understand the distinction between
unloading a form and hiding a form. We can hide a form by setting the form's Visible property to
False. This makes the form invisible, but it still consumes resources, such as memory. When we
unload a form, it no longer consumes resources. (Well, this is not quite true. We need to not only
unload the form, but also to set any variables that reference the form to Nothing.)

14.5 Excel's Standard Controls

Excel has two types of controls. Figure 14-3 shows two toolboxes, each of which provides access
to one type of control. (Below each toolbox is a control created using that toolbox.)

Figure 14-3. Control toolbars

 147

The controls on the Control Toolbox (on the left in Figure 14-3) are ActiveX controls. These
controls can be placed either on a UserForm or directly on a worksheet (but not a chartsheet).
They are the same as the controls that are accessible from the VB editor's Toolbox when designing
a UserForm. ActiveX controls are very flexible and generally support a wide range of events. The
Control Toolbox can be opened from within Excel (not the Excel VBA IDE) by selecting the
Customize option from the Tools menu and checking the Control Toolbox toolbar in the Toolbars
tab.

Note that the Control Toolbox in Figure 14-3 is not the same as the Toolbox in Figure 14-1, even
though both are used to access ActiveX controls. The Toolbox in Figure 14-1 places ActiveX
controls on user forms; the Control Toolbox in Figure 14-3 places ActiveX controls on worksheets.
The first button on the Control Toolbox, called the Design Mode button, is particularly important.
Pressing it puts the worksheet in design mode at least with respect to its controls. When in design
mode, we can move and resize the controls on the worksheet using the mouse. We can also right-
click the control to bring up a dialog box with control options. When the Design Mode button is
not depressed, clicking on a control with the mouse simply fires the Click event!

By selecting the Customize option from the Tools menu and checking the Forms toolbar in the
Toolbars tab, you open the Forms toolbox. The controls on the Forms toolbox (on the right in
Figure 14-3) are referred to as "standard Excel worksheet controls" and are a remnant from Excel
5.0. They can be placed on worksheets or chartsheets (but not UserForms) and have only a single
event: the Click event.

For instance, if you place a standard button on a worksheet, Excel immediately opens the Assign
Macro dialog box, as shown in Figure 14-4. This allows you to assign a macro to the button's
Click event.

Figure 14-4. Response to placing a standard Excel command button

Since standard Excel controls are the only controls that can be placed on a chartsheet, they remain
useful. But ActiveX controls are far more flexible and should be used whenever possible. We will
speak no further about the standard Excel controls.

14.6 Example: The ActivateSheet Utility

It is time now to implement the ActivateSheet utility in our SRXUtils application. This will
demonstrate the use of UserForms.

TE
AM
FL
Y

Team-Fly®

 148

In particular, when the user selects ActivateSheet, we would like to present her with a custom
dialog that lists all of the sheets in the active workbook, as shown in Figure 14-5. The user can
select one of these sheets, which will then be activated.

Figure 14-5. The activate sheet dialog

To implement this utility, we need to do the following:

• Change the ActivateSheet procedure in basMain to open the Activate Sheet dialog
(instead of displaying the current message).

• Design the Activate Sheet dialog itself.
• Write the code behind the Activate Sheet dialog.

14.6.1 Back to SRXUtils

So crank up the SRXUtils.xls worksheet and replace the ActivateSheet procedure in basMain:

Public Sub ActivateSheet()
 MsgBox "This is the ActivateSheet utility"
End Sub

with the procedure:

Public Sub ActivateSheet()
 dlgActivateSheet.Show
End Sub

which simply displays the Activate Sheet dialog (which we will call dlgActivateSheet).

14.6.2 Create the UserForm

After you insert a UserForm into your project, you should use the Properties window to change its
Name property to dlgActivateSheet and its Caption property to "Activate Sheet." Then you
can add the controls to the form. The UserForm in Figure 14-5 has two command buttons and one
list box.

14.6.2.1 List box

Place a List box on the form as in Figure 14-5. Using the Properties window, set the properties
shown in Table 14-1. Note that the TabIndex property determines not only the order that the
controls are visited as the user hits the Tab key, but also determines which control has the initial
focus. Since we want the initial focus to be on the list box, we set its tab index to 0.

Table 14-1. Nondefault Properties of the ListBox Control
Property Value

Name lstSheets

 149

TabIndex 0

We should also note that, in general, there are two places in which a control property can be set: in
the Properties window at design time or using code during run time. Some properties should be (or
must be) set at design time, whereas others can only be set at run time. However, most properties
can be set at either time.

As a simple example, a control's Visible or Enabled property is often set during run time, in
response to actions by the user. For instance, we may want to disable a command button labeled
Print until the user has selected an object to print from a list of objects. Setting the Enabled
property of a command button whose name is PrintButton is easily done:

PrintButton.Enabled = False

In general, the choice of where to set a given property of a control is partly a matter of taste. I
favor setting properties in code because it tends to make the code more complete and thus more
readable. It can also make changing properties simpler. However, some fundamental properties,
such as Name and Caption, are best set at design time.

14.6.2.2 Activate button

Place a command button on the form, as in Figure 14-5. Using the Properties window, set the
properties shown in Table 14-2.

Table 14-2. Nondefault Properties of the Activate Button
Property Value

Name cmdActivate
Accelerator A
Caption Activate
TabIndex 1

14.6.2.3 Cancel button

Place another command button on the form, as in Figure 14-5. Using the Properties window, set
the properties shown in Table 14-3.

Table 14-3. Nondefault Properties of the Cancel Button
Property Value

Name cmdCancel
Accelerator C
Caption Cancel
TabIndex 2
Cancel True

14.6.3 Create the Code Behind the UserForm

Now it is time to create the code behind these controls.

14.6.3.1 Cancel button code

Double click on the Cancel button to display the Click event code shell. Adding the line:

 150

Unload Me

will fill out the code shell as follows and cause the form to be unloaded when the user hits the
Cancel button:

Private Sub cmdCancel_Click()
 Unload Me
End Sub

14.6.3.2 ActivateSelectedSheet procedure

Next, we create a procedure that will activate the selected sheet. We want this procedure to be
called in three situations; namely, when the user:

• Selects a sheet name from the list box and clicks the Activate button (or uses the Alt-A
hot key)

• Double-clicks on a sheet name in the list box
• Selects a sheet name from the list box and hits the Enter key

Since this code will be used in three different situations, we can avoid repeating the code by
placing it in its own procedure in the General section of a UserForm, as shown in Example 14-1.

Example 14-1. The ActivateSelectedSheet Procedure

Sub ActivateSelectedSheet()
 If lstSheets.ListIndex > -1 Then
 Sheets(lstSheets.List(lstSheets.ListIndex)).Activate
 End If
 Unload Me
End Sub

This code demonstrates some list box properties. First, the ListIndex property returns the index
number (starting at 0) of the currently selected item in the list box. Thus, the following code
checks to see if an item is selected (otherwise ListIndex = -1):

If lstSheets.ListIndex > -1 Then

The code:

lstSheets.List(i)

returns the ith item in the list box (as a string). Thus:

lstSheets.List(lstSheets.ListIndex))

is the currently selected item—that is, the currently selected sheet name. Finally, the code:

Sheets(lstSheets.List(lstSheets.ListIndex)).Activate

activates that worksheet by invoking its Activate method. We will discuss the Activate method in
Chapter 18. For now, we simply note that if a worksheet has the name MySheet, then the code:

Sheets("MySheet").Activate

activates that sheet.

 151

Finally, the last thing done in the cmdActivate_Click event is to unload the form, since it is no
longer needed.

14.6.3.3 Activate button code

To set the code behind the Activate button, select cmdActivate in the Objects drop-down box
(above the upper-left corner of the code window) and select Click in the Procedures drop-down
box (above the upper-right corner of the code window). You can now fill in the code for the Click
event of the cmdActivate button:

Private Sub cmdActivate_Click()
 ActivateSelectedSheet
End Sub

14.6.3.4 Double-click lstSheets code

We also want ActivateSelectedSheet to be called when the user double-clicks on a sheet
name. The DblClick event for the list box fires when the user double-clicks on an item in the list
box. Select lstSheets in the Objects drop-down and DblClk in the Procedures drop-down. Then fill
in the DblClk event code shell:

Private Sub lstSheets_DblClick(ByVal Cancel As _
 MSForms.ReturnBoolean)
 ActivateSelectedSheet
End Sub

14.6.3.5 Enter key event

We also want to invoke ActivateSelectedSheet when the user selects a sheet name and hits
the Enter key. When the list box has the focus, any keystroke fires the KeyDown event. Choose
this event in the Procedures drop-down and add the code shown in Example 14-2 to the event shell.

Example 14-2. The lstSheets_KeyDown Event Procedure

Private Sub lstSheets_KeyDown(ByVal KeyCode As _
 MSForms.ReturnInteger, ByVal Shift As Integer)
 If KeyCode = vbKeyReturn Then ActivateSelectedSheet
End Sub

In this case, we must add code to determine whether the Enter key was struck. Fortunately, Excel
will fill in the KeyCode parameter of the KeyDown event with the key code for the key that
caused the event to be fired. (For a list of key codes, check "KeyCode" in the Excel VBA help file.)

14.6.3.6 Fill the lstSheets list box

Next, we need to fill the lstSheets list box with a list of all of the sheets in the current
workbook. We want this to be done automatically, so we will place the required code in the
Initialize event of the UserForm. This event is fired by Excel when the form is loaded, but before
it becomes visible. As the name implies, it is designed to initialize various properties of the form
and its controls.

Select UserForm in the Object drop-down and Initialize in the Procedures drop-down. You should
get the UserForm_Initialize event code shell. Fill it with the code shown in Example 14-3.

Example 14-3. The UserForm_Initialize Event Procedure

 152

Private Sub UserForm_Initialize()
 ' Fill lstSheets with the list of sheets
 Dim cSheets As Integer
 Dim i As Integer

 cSheets = Sheets.Count
 lstSheets.Clear

 For i = 1 To cSheets
 lstSheets.AddItem Sheets(i).Name
 Next
End Sub

This code first gets the total number of sheets (worksheets and charts) in the current workbook.
(We will discuss this in detail in later chapters, so don't worry about it now.) The list box is then
cleared of any previous content. Then we have a For loop that adds the sheet names to the list box.
This is done using the ListBox control's AddItem method. The name of a sheet is given by its
Name property.

14.6.4 Trying the Activate Utility

If all has gone well, you can now save SRXUtils as an add-in, load it through the Tools menu (if it
is currently loaded, you will need to unload it before saving the add-in or Excel will complain),
and try out the new ActivateSheet feature.

14.7 ActiveX Controls on Worksheets

As you may know, ActiveX controls (and standard Excel controls) can be placed directly on a
worksheet. Care must be taken, however, not to clutter up a worksheet with controls that would be
better placed on a UserForm. When only a small number of controls are required, placing these
controls directly on a worksheet may be appropriate.

There are some special considerations when controls are placed directly on a worksheet. In
particular, each ActiveX control on a worksheet (not on a UserForm) is represented by an
OLEObject in the Excel object model. However, it is important to note that OLEObject objects
can also represent embedded OLE objects. Thus, for instance, if we insert a bitmap on a worksheet
(select Object from Excel's Insert menu), this bitmap object will be represented by an OLEObject.

The Worksheet object has a property called OLEObjects that returns the OLEObjects collection
consisting of all OLEObject objects on the worksheet. Thus, the OLEObjects collection for the
active worksheet is:

ActiveSheet.OLEObjects

Because OLEObjects also represent embedded OLE objects (such as bitmaps), we cannot be
certain that, say:

ActiveSheet.OLEObjects(1)

is a control. Thus, it is wise when adding a control or embedded OLE object to a worksheet to
immediately assign the control or object a name and then refer to it by this name rather than by
index, as in:

 153

ActiveSheet.OLEObjects("MyButton")

14.7.1 Referring to a Control on a Worksheet

Fortunately, Excel lets us refer to an ActiveX control on a worksheet by using its name, without
reference to the OLEObjects collection. For instance, if we place a command button on a
worksheet, Excel will give it the default name CommandButton1. Both of the following lines set
the height of this command button to 20 points:

ActiveSheet.OLEObjects("CommandButton1").Height = 20
ActiveSheet.CommandButton1.Height = 20

Unfortunately, however, the properties and methods that we access in this manner are the
properties and methods of the OLEObject, not the control itself. These properties are shown in
Table 14-4.

Table 14-4. Members of the OLEObject object
AltHTML Enabled PrintObject
Activate Height ProgId
Application Index Select
AutoLoad Interior SendToBack
AutoUpdate Left Shadow
Border LinkedCell ShapeRange
BottomRightCell ListFillRange SourceName
BringToFront Locked Top
Copy Name TopLeftCell
CopyPicture Object Update
Creator OLEType Verb
Cut OnAction Visible
Delete Parent Width
Duplicate Placement ZOrder

Thus, for instance, while we can set the Height property of the command button, we cannot set its
Caption property in this way. That is, the code:

ActiveSheet.OLEObjects("CommandButton1").Caption = "ClickMe"

will generate an error.

The way to reach the members of the control itself is to use the Object property of an OLEObject
object, which returns the underlying control, and makes its properties and methods accessible.
Thus, the following two lines each set the button's caption:

ActiveSheet.OLEObjects("CommandButton1").Object.Caption = "ClickMe"
ActiveSheet.CommandButton1.Object.Caption = "ClickMe"

In addition to the standard properties available for ActiveX controls, the following properties can
be used with ActiveX controls embedded in sheets in Microsoft Excel:

BottomRightCell

 154

Returns a Range object that represents the cell that lies under the lower-right corner of the
object.

LinkedCell

Returns or sets the worksheet range that is linked to the value of the control. Thus, if we
place a value in the linked cell, the control will assume this value, and vice-versa.

ListFillRange

Returns or sets the worksheet range that is used to fill a list box control.

Placement

Returns or sets the way that the control is attached to the cells below it. The possible
values are the XlPlacement constants: xlMoveAndSize, xlMove, and
xlFreeFloating.

PrintObject

Prints the control when the worksheet is printed if this property is set to True.

TopLeftCell

Returns a Range object that represents the cell that lies under the top-left corner of the
object.

ZOrder

Returns the ZOrder position of the control.

Note also that Table 14-4 has some properties that are not properties of controls themselves. They
relate to the OLEObject, which is the container for the control, and thus to the control's
relationship with the worksheet. For instance, the code:

ActiveSheet.CommandButton1.TopLeftCell.Address

returns the address of the top-left cell of the worksheet that lies under the control (or rather, the
control's container: the OLEObject).

As another example, the following code will locate the top-left cell under the command button and
then scroll the active window so that this cell (and therefore the command button) is at the upper-
left corner of the window:

Dim rng As Range
Set rng = ActiveSheet.CommandButton1.TopLeftCell
With ActiveWindow
 .ScrollRow = rng.Row
 .ScrollColumn = rng.Column
End With

It is important to note that some properties and methods of some Excel objects are disabled when
an ActiveX control has the focus. For example, the Sort method of the Range object cannot be
used when a control is active. Since a control on a worksheet remains active after it is clicked, the
following code will fail:

 155

Private Sub CommandButton1_Click
 Range("A:A").Sort Key1:=Range("A:A")
End Sub

(We will discuss the sort method in Chapter 19. Don't worry about that now.) This is one
disadvantage of placing controls directly on worksheets.

Of course, one way to avoid this problem is to activate another object before calling the sort
method. For instance, we can amend the previous code as follows:

Private Sub CommandButton1_Click
 Range("A:A").Activate
 Range("A:A").Sort Key1:=Range("A:A")
 CommandButton1.Activate ' Optional
End Sub

It is also worth mentioning that if you save an Excel 97 or Excel 2000 workbook in Excel 5.0/95
Workbook file format, all ActiveX control information will be lost.

14.7.2 Adding a Control to a Worksheet Programmatically

To programmatically add an ActiveX control to a worksheet, we use the Add method of the
OLEObjects collection. The syntax is:

OLEObjectCollection.Add(ClassType, FileName, Link, DisplayAsIcon, _
 IconFileName, IconIndex, IconLabel, Left, Top, Width, Height)

The ClassType parameter is the so-called programmatic identifier (or ProgID) for the control.
Table 14-5 shows the ProgIDs for various controls.

Table 14-5. ProgIDs for ActiveX Controls
Control ProgID

CheckBox Forms.CheckBox.1
ComboBox Forms.ComboBox.1
CommandButton Forms.CommandButton.1
Frame Forms.Frame.1
Image Forms.Image.1
Label Forms.Label.1
ListBox Forms.ListBox.1
MultiPage Forms.MultiPage.1
OptionButton Forms.OptionButton.1
ScrollBar Forms.ScrollBar.1
SpinButton Forms.SpinButton.1
TabStrip Forms.TabStrip.1
TextBox Forms.TextBox.1
ToggleButton Forms.ToggleButton.1

The only other parameters that are relevant to adding ActiveX controls (this method is used for
other types of OLE objects as well) are the Left, Top, Width, and Height parameters, which
specify in points the location (with respect to the upper-left corner of cell A1) and size of the
control. All other parameters should be omitted. (This is a good place for named arguments!)

 156

For instance, the code:

ActiveSheet.OLEObjects.Add ClassType:="Forms.Textbox.1", _
 Left:=72, Top:=72, Height:=20, Width:=100

places a new text box approximately one inch from the top and left edges of the active worksheet.
(The dimensions do not seem to be terribly accurate.)

 157

Chapter 15. The Excel Object Model
The Excel object model is one of the most extensive object models in Microsoft's arsenal, with
almost 200 objects and over 5000 properties and methods. As we have mentioned, however, many
of these objects and members are included solely for backward compatibility with earlier versions
of Excel. When we ignore these objects and members, the object count drops to 140 and the
member count is about 3000. This makes the Excel object model second in size only to the Word
object model.

We will not discuss the objects and members that are included for backward compatibility only.
However, since you should at least be aware of the existence of these objects, we will include
them in our pictures of the model (appropriately marked) but not in the tables.

It is certainly not our intention in this book to cover all, or even most, of the objects and members
of the Excel object model. Our goal is to acquaint you with the major portions of this model, so
that you can easily learn more as needed.

It seems appropriate to begin by trying to present an overall view of the Excel object model.

15.1 A Perspective on the Excel Object Model

To put the Excel object model in some perspective, Table 15-1 gives some statistics on various
Microsoft object models for Office 97 (the numbers are somewhat larger for later versions of
Office).

Table 15-1. Some Object Model Statistics for Office 97
Application Objects Properties Methods Enums Constants

Access 8 51 1596 532 31 485
Binder 8 4 37 15 4 11
DAO 3.5 37 235 174 26 185
Excel 8 192 3245 1716 152 1266
Forms 2 64 588 352 42 191
Graph 8 44 1120 234 58 447
Office 97 40 615 209 78 801
Outlook 8 42 1568 534 34 154
PowerPoint 8 110 1197 322 53 370
Word 8 188 2300 837 192 1969

For reference, Table 15-2 shows all nonhidden objects in the Excel XP object model, along with
the number of children for each object.

Table 15-2. Excel 10 objects and their child counts
AddIn (1) FillFormat (1) Protection (1)
AddIns (2) Filter (1) PublishObject (1)
Adjustments (0) Filters (2) PublishObjects (2)
AllowEditRange (2) Floor (4) QueryTable (3)
AllowEditRanges (1) Font (1) QueryTables (2)

TE
AM
FL
Y

Team-Fly®

 158

Application (32) FormatCondition (4) Range (22)
Areas (2) FormatConditions (2) RecentFile (2)
AutoCorrect (1) FreeformBuilder (2) RecentFiles (2)
AutoFilter (3) Graphic (1) RoutingSlip (1)
AutoRecover (1) Gridlines (2) RTD (0)
Axes (2) GroupShapes (3) Scenario (2)
Axis (6) HiLoLines (2) Scenarios (2)
AxisTitle (6) HPageBreak (3) Series (6)
Border (1) HPageBreaks (2) SeriesCollection (2)
Borders (2) Hyperlink (3) SeriesLines (2)
CalculatedFields (2) Hyperlinks (2) ShadowFormat (1)
CalculatedItems (2) Interior (1) Shape (22)
CalculatedMember (1) IRtdServer (0) ShapeNode (0)
CalculatedMembers (2) IRTDUpdateEvent (0) ShapeNodes (1)
CalloutFormat (0) LeaderLines (2) ShapeRange (17)
CellFormat (4) Legend (5) Shapes (4)
Characters (2) LegendEntries (2) Sheets (3)
Chart (16) LegendEntry (3) SmartTag (4)
ChartArea (5) LegendKey (4) SmartTagAction (1)
ChartColorFormat (1) LineFormat (1) SmartTagActions (2)
ChartFillFormat (2) LinkFormat (1) SmartTagOptions (1)
ChartGroup (7) Mailer (1) SmartTagRecognizer (1)
ChartGroups (2) Name (2) SmartTagRecognizers (2)
ChartObject (6) Names (2) SmartTags (2)
ChartObjects (6) ODBCError (1) SoundNote (1)
Charts (4) ODBCErrors (2) Speech (0)
ChartTitle (6) OLEDBError (1) SpellingOptions (0)
ColorFormat (0) OLEDBErrors (2) Style (4)
Comment (3) OLEFormat (1) Styles (2)
Comments (2) OLEObject (5) Tab (1)
ConnectorFormat (2) OLEObjects (6) TextEffectFormat (0)
ControlFormat (1) Outline (1) TextFrame (2)
Corners (1) PageSetup (2) ThreeDFormat (1)
CubeField (3) Pane (2) TickLabels (2)
CubeFields (2) Panes (2) TreeviewControl (1)
CustomProperties (2) Parameter (2) Trendline (3)
CustomProperty (1) Parameters (2) Trendlines (2)
CustomView (1) Phonetic (2) UpBars (4)
CustomViews (2) Phonetics (2) UsedObjects (1)
DataLabel (6) PictureFormat (0) UserAccess (0)
DataLabels (6) PivotCache (2) UserAccessList (1)
DataTable (3) PivotCaches (2) Validation (1)
DefaultWebOptions (1) PivotCell (6) VPageBreak (3)
Diagram (2) PivotField (5) VPageBreaks (2)
DiagramNode (3) PivotFields (2) Walls (4)
DiagramNodeChildren (1) PivotFormula (1) Watch (1)

 159

DiagramNodes (1) PivotFormulas (2) Watches (2)
Dialog (1) PivotItem (4) WebOptions (1)
Dialogs (2) PivotItemList (2) Window (7)
DisplayUnitLabel (6) PivotItems (2) Windows (2)
DownBars (4) PivotLayout (4) Workbook (14)
DropLines (2) PivotTable (8) Workbooks (2)
Error (1) PivotTables (2) Worksheet (17)
ErrorBars (2) PlotArea (4) WorksheetFunction (1)
ErrorCheckingOptions (1) Point (5) Worksheets (3)
Errors (2) Points (2)

Table 15-3 shows the Excel objects that have at least five children. As we can see by comparing
the sizes of Tables 15-2 and 15-3, most objects by far have fewer than five children.

Table 15-3. Excel 10 objects with 5 or more children
Application (32) DataLabel (6) Point (5)
Axis (6) DataLabels (6) Range (22)
AxisTitle (6) DisplayUnitLabel (6) Series (6)
Chart (16) Legend (5) Shape (22)
ChartArea (5) OLEObject (5) ShapeRange (17)
ChartGroup (7) OLEObjects (6) Window (7)
ChartObject (6) PivotCell (6) Workbook (14)
ChartObjects (6) PivotField (5) Worksheet (17)
ChartTitle (6) PivotTable (8)

This list shows the only Excel 10 objects whose child count is in the double digits:

Application (32)
Shape (22)
Range (22)
Worksheet (17)
ShapeRange (17)
Chart (16)
Workbook (14)

Indeed, much of the power of the Excel object hierarchy is concentrated in the seven objects and
much of the remainder of this book is devoted to those objects.

15.2 Excel Enums

It is also interesting to glance over the list of Excel enums, whose names begin with Xl (with the
sole exception of the Constants enum). Tables Table 15-4 through Table 15-6 show these
enums for Excel 8, 9, and 10, along with a count of the number of constants per enum. Note that
there are some rather large enums in the object model. The enums with at least 20 constants are:

• XlBuiltInDialog (241)
• Constants (167)
• XlChartType (73)

 160

• XlApplicationInternational (45)
• XlFileFormat (43)
• XlRangeAutoFormat (43)
• XlPaperSize (42)
• XlClipboardFormat (33)
• XlChartItem (32)
• XlPivotFormatType (22)
• XlParameterDataType (21)
• XlPattern (20)

Table 15-4. The Excel Enums and their number of constants (Excel 8)
Constants (163) XlEnableSelection (3) XlPivotFieldOrientation (5)
XlApplicationInternational (45) XlEndStyleCap (2) XlPivotTableSourceType (4)
XlApplyNamesOrder (2) XlErrorBarDirection (2) XlPlacement (3)
XlArrangeStyle (4) XlErrorBarInclude (4) XlPlatform (3)
XlArrowHeadLength (3) XlErrorBarType (5) XlPrintLocation (3)
XlArrowHeadStyle (5) XlFileAccess (2) XlPriority (3)
XlArrowHeadWidth (3) XlFileFormat (39) XlPTSelectionMode (6)
XlAutoFillType (11) XlFillWith (3) XlRangeAutoFormat (21)
XlAutoFilterOperator (6) XlFilterAction (2) XlReferenceStyle (2)
XlAxisCrosses (4) XlFindLookIn (3) XlReferenceType (4)
XlAxisGroup (2) XlFormatConditionOperator (8) XlRoutingSlipDelivery (2)
XlAxisType (3) XlFormatConditionType (2) XlRoutingSlipStatus (3)
XlBackground (3) XlFormControl (10) XlRowCol (2)
XlBarShape (6) XlFormulaLabel (4) XlRunAutoMacro (4)
XlBordersIndex (8) XlHAlign (8) XlSaveAction (2)
XlBorderWeight (4) XlHighlightChangesTime (3) XlSaveAsAccessMode (3)
XlBuiltInDialog (221) XlIMEMode (11) XlSaveConflictResolution (3)
XlCalculation (3) XlInsertShiftDirection (2) XlScaleType (2)
XlCategoryType (3) XlLegendPosition (5) XlSearchDirection (2)
XlCellInsertionMode (3) XlLineStyle (8) XlSearchOrder (2)
XlCellType (10) XlLink (4) XlSheetType (5)
XlChartGallery (3) XlLinkInfo (2) XlSheetVisibility (3)
XlChartItem (29) XlLinkInfoType (3) XlSizeRepresents (2)
XlChartLocation (3) XlLinkType (2) XlSortMethod (2)
XlChartPicturePlacement (7) XlLocationInTable (9) XlSortMethodOld (2)
XlChartPictureType (3) XlLookAt (2) XlSortOrder (2)
XlChartSplitType (4) XlMailSystem (3) XlSortOrientation (2)
XlChartType (73) XlMarkerStyle (12) XlSortType (2)
XlClipboardFormat (33) XlMouseButton (3) XlSpecialCellsValue (4)
XlColorIndex (2) XlMousePointer (4) XlSubscribeToFormat (2)
XlCommandUnderlines (3) XlMSApplication (7) XlSummaryColumn (2)
XlCommentDisplayMode (3) XlObjectSize (3) XlSummaryReportType (2)
XlConsolidationFunction (11) XlOLEType (3) XlSummaryRow (2)
XlCopyPictureFormat (2) XlOLEVerb (2) XlTabPosition (2)
XlCreator (1) XlOrder (2) XlTextParsingType (2)
XlCutCopyMode (2) XlOrientation (4) XlTextQualifier (3)

 161

XlCVError (7) XlPageBreak (2) XlTickLabelOrientation (5)
XlDataLabelPosition (11) XlPageBreakExtent (2) XlTickLabelPosition (4)
XlDataLabelsType (6) XlPageOrientation (2) XlTickMark (4)
XlDataSeriesDate (4) XlPaperSize (42) XlTimeUnit (3)
XlDataSeriesType (4) XlParameterDataType (20) XlToolbarProtection (5)
XlDeleteShiftDirection (2) XlParameterType (3) XlTrendlineType (6)
XlDirection (4) XlPasteSpecialOperation (5) XlUnderlineStyle (5)
XlDisplayBlanksAs (3) XlPasteType (6) XlVAlign (5)
XlDisplayShapes (3) XlPattern (20) XlWBATemplate (4)
XlDVAlertStyle (3) XlPhoneticAlignment (4) XlWindowState (3)
XlDVType (8) XlPhoneticCharacterType (4) XlWindowType (5)
XlEditionFormat (4) XlPictureAppearance (2) XlWindowView (2)
XlEditionOptionsOption (8) XlPictureConvertorType (13) XlXLMMacroType (3)
XlEditionType (2) XlPivotFieldCalculation (9) XlYesNoGuess (3)
XlEnableCancelKey (3) XlPivotFieldDataType (3)

Table 15-5. Additional enums for Excel 9.0
XlCmdType (4) XlHtmlType (4) XlSourceType (7)
XlColumnDataType (10) XlLayoutFormType (2) XlSubtototalLocationType (2)
XlCubeFieldType (2) XlPivotFormatType (22) XlWebFormatting (3)
XlDisplayUnit (9) XlQueryType (6) XlWebSelectionType (3)

Table 15-6. Additional enums for Excel 10
XlArabicModes (4) XlImportDataAs (2) XlRobustConnect (3)
XlCalculatedMemberType (2) XlInsertFormatOrigin (2) XlSearchWithin (2)
XlCalculationInterruptKey (3) XlLinkStatus (11) XlSmartTagDisplayMode (3)
XlCalculationState (3) XlPivotCellType (10) XlSortDataOption (2)
XlCorruptLoad (3) XlPivotTableMissingItems (3) XlSpeakDirection (2)
XlDataLabelSeparator (1) XlPivotTableVersionList (3) XlUpdateLinks (3)
XlErrorChecks (7) XlPrintErrors (4)
XlHebrewModes (4) XlRangeValueDataType (3)

15.3 The VBA Object Browser

Microsoft does supply a tool for viewing the objects, properties, methods, events, and enums in an
object model. It is called the Microsoft Object Browser, and it is accessible from the View menu
in the VBA IDE (or hit the F2 key). Figure 15-1 shows the Microsoft Object Browser.

Figure 15-1. The Microsoft Object Browser

 162

The topmost drop-down list box lets us select an object model for viewing; in the case of Figure
15-1, we are viewing the Excel object model. The second list box is for searching the object model.
On the left, we find a list of the classes in the object model. There is one class per object and one
class per enum. The right-hand list box shows the properties, methods, and events of the object
that is selected in the Classes list box. The text box at the bottom gives some information about
the selected item.

The Object Browser is certainly a useful tool, and you will probably want to spend some time
experimenting with it. (Perhaps its best feature is that it is easily accessible from the IDE.)
However, it gives only a flat, one-dimensional view of the object model. For this reason, I have
written an object browser that provides a two-dimensional view of an object model. In fact, many
of the figures in this book are screen shots taken from my object browser. For more information
on this browser, please see the coupon in the back of this book.

 163

Chapter 16. The Application Object
As we discussed in Chapter 15, the majority of the action in the Excel object model rests in the six
objects: Application, Chart, PivotTable, Range, Workbook, and Worksheet. In this book, we will
concentrate on the following objects, along with some of their children:

Application
Chart
CommandBars
Dialogs
Global
Names
Range
Sheets
Window/Windows
Workbook/Workbooks
Worksheet
WorkSheetFunctions

This constitutes the vast majority of the Excel object model. With this knowledge, you should be
able to program most Excel tasks and be in a position to easily pick up any additional information
from the Excel help files that you might need for less common programming tasks.

As you might imagine, several of these objects are complicated enough to deserve a complete
chapter, so we will devote this chapter to discussing some of the properties and methods of the
Application object itself, along with some of its simpler children.

Figure 16-1 shows the Application object, which sits atop the Excel object model and represents
Excel itself, and its children. Each object is preceded by an icon that indicates whether it is a
collection object (the little basket) or a noncollection object (the little oval).[1]

[1] This figure and others like it was taken from a program called Object Model Browser. For more on this,
please check out my web site at http://www.romanpress.com.

Figure 16-1. The Excel Application object and its children (the tag <vX> means that
the object is new in version X of Excel)

http://www.romanpress.com/

 164

Figure 16-2 shows all children of the Application object, including those that are marked as
hidden in the Excel object model. These latter objects are marked with an X through the icon. The
objects in Figure 16-2 that are marked (Office 2.2) actually belong to the Microsoft Office object
model, but are included here because they are accessible from the Excel object model and are
sometimes used when programming the Excel model. There is also one object that belongs to the
Visual Basic Extensibility model. It is marked as (VBIDE 5.3).

Figure 16-2. The Excel Application object along with its hidden children

 165

16.1 Properties and Methods of the Application Object

The Application object has a whopping 268 properties and methods, shown in Table 16-1.

Table 16-1. Application object members[2]
_Default DisplayRecentFiles OnDoubleClick
_Evaluate DisplayScrollBars OnEntry
_FindFile<v9> DisplayStatusBar OnKey
_Run2 DoubleClick OnRepeat
_Wait<v9> Dummy1 OnSheetActivate
_WSFunction Dummy10 OnSheetDeactivate

 166

ActivateMicrosoftApp Dummy101<v9> OnTime
ActiveCell Dummy11 OnUndo
ActiveChart Dummy12<v9> OnWindow
ActiveDialog Dummy13<v10> OperatingSystem
ActiveMenuBar Dummy14<v10> OrganizationName
ActivePrinter Dummy2 Parent
ActiveSheet Dummy3 Path
ActiveWindow Dummy4 PathSeparator
ActiveWorkbook Dummy5 PivotTableSelection
AddChartAutoFormat Dummy6 PreviousSelections
AddCustomList Dummy7 ProductCode<v9>
AddIns Dummy8 PromptForSummaryInfo
AlertBeforeOverwriting Dummy9 Quit
AltStartupPath EditDirectlyInCell Range
AnswerWizard<v9> EnableAnimations Ready<v10>
Application EnableAutoComplete RecentFiles
AskToUpdateLinks EnableCancelKey RecordMacro
Assistant EnableEvents RecordRelative
AutoCorrect EnableSound ReferenceStyle
AutoFormatAsYouTypeReplaceHyperlinks<v10> EnableTipWizard RegisteredFunctions
AutomationSecurity<v10> ErrorCheckingOptions<v10> RegisterXLL
AutoPercentEntry<v9> Evaluate Repeat
AutoRecover<v10> Excel4IntlMacroSheets ReplaceFormat<v10>
Build Excel4MacroSheets ResetTipWizard
Calculate ExecuteExcel4Macro RollZoom
CalculateBeforeSave ExtendList<v9> Rows
CalculateFull<v9> FeatureInstall<v9> RTD<v10>
CalculateFullRebuild<v10> FileConverters Run
Calculation FileDialog<v10> Save
CalculationInterruptKey<v10> FileFind SaveWorkspace
CalculationState<v10> FileSearch ScreenUpdating
CalculationVersion<v9> FindFile Selection
Caller FindFormat<v10> SendKeys
CanPlaySounds FixedDecimal SetDefaultChart
CanRecordSounds FixedDecimalPlaces Sheets
Caption GenerateGetPivotData<v10> SheetsInNewWorkbook
CellDragAndDrop GetCustomListContents ShortcutMenus
Cells GetCustomListNum ShowChartTipNames
CentimetersToPoints GetOpenFilename ShowChartTipValues
Charts GetPhonetic<v9> ShowStartupDialog<v10>
CheckAbort<v10> GetSaveAsFilename ShowToolTips
CheckSpelling Goto ShowWindowsInTaskbar<v9>
ClipboardFormats Height SmartTagRecognizers<v10>
ColorButtons Help Speech<v10>
Columns Hinstance<v10> SpellingOptions<v10>
COMAddIns<v9> Hwnd<v10> StandardFont

 167

CommandBars IgnoreRemoteRequests StandardFontSize
CommandUnderlines InchesToPoints StartupPath
ConstrainNumeric InputBox StatusBar
ControlCharacters Interactive TemplatesPath
ConvertFormula International ThisCell<v10>
CopyObjectsWithCells Intersect ThisWorkbook
Creator Iteration ThousandsSeparator<v10>
Cursor LanguageSettings<v9> Toolbars
CursorMovement LargeButtons Top
CustomListCount Left TransitionMenuKey
CutCopyMode LibraryPath TransitionMenuKeyAction
DataEntryMode MacroOptions TransitionNavigKeys
DDEAppReturnCode MailLogoff UILanguage
DDEExecute MailLogon Undo
DDEInitiate MailSession Union
DDEPoke MailSystem UsableHeight
DDERequest MapPaperSize<v10> UsableWidth
DDETerminate MathCoprocessorAvailable UsedObjects<v10>
DecimalSeparator<v10> MaxChange UserControl
DefaultFilePath MaxIterations UserLibraryPath<v9>
DefaultSaveFormat MemoryFree UserName
DefaultSheetDirection MemoryTotal UseSystemSeparators<v10>
DefaultWebOptions<v9> MemoryUsed Value
DeleteChartAutoFormat MenuBars VBE
DeleteCustomList Modules Version
Dialogs MouseAvailable Visible
DialogSheets MoveAfterReturn Volatile
DisplayAlerts MoveAfterReturnDirection Wait
DisplayClipboardWindow Name Watches<v10>
DisplayCommentIndicator Names Width
DisplayExcel4Menus NetworkTemplatesPath Windows
DisplayFormulaBar NewWorkbook<v10> WindowsForPens
DisplayFullScreen NextLetter WindowState
DisplayFunctionToolTips<v10> ODBCErrors Workbooks
DisplayInfoWindow ODBCTimeout WorksheetFunction
DisplayInsertOptions<v10> OLEDBErrors<v9> Worksheets
DisplayNoteIndicator OnCalculate
DisplayPasteOptions<v10> OnData

[2] (g) indicates a global member.

Of course, there are far too many members to discuss even the majority in a nonreference book, so
we will pick out a few of the more interesting and useful members. The important point is that you
can use Table 16-1 to find a member that suits a particular purpose and then check the Excel help
files for more information if it is not covered in this book.

TE
AM
FL
Y

Team-Fly®

 168

We will also discuss additional properties and methods of the Application object throughout the
remainder of the book, hopefully at times when the discussion will be more relevant.

In the hope of making our discussion a bit more structured, we will try to break the members in
Table 16-1 into separate groups. Note, however, that this is in many cases a bit arbitrary.

16.1.1 Members that Return Children

Many of the members of the Application object are designed simply to gain access to a child
object of the Application object. For instance, the Workbooks property simply returns the
Workbooks collection object, which represents all of the currently open Workbook objects (i.e.,
workbooks). We will discuss many of these objects at the proper time, but it is worth taking a look
at the members that return these objects now.

Table 16-2 shows the 48 members of the Application object that return child objects.

Table 16-2. Members that return child objects
Name ReturnType

ActiveCell Range
ActiveChart Chart
ActiveDialog DialogSheet
ActiveMenuBar MenuBar
ActiveWindow Window
ActiveWorkbook Workbook
AddIns AddIns
Application Application
AutoCorrect AutoCorrect
AutoRecover AutoRecover
Cells Range
Charts Sheets
Columns Range
DefaultWebOptions DefaultWebOptions
Dialogs Dialogs
DialogSheets Sheets
ErrorCheckingOptions ErrorCheckingOptions
Excel4IntlMacroSheets Sheets
Excel4MacroSheets Sheets
FindFormat CellFormat
Intersect Range
MenuBars MenuBars
Modules Modules
Names Names
NextLetter Workbook
ODBCErrors ODBCErrors
OLEDBErrors OLEDBErrors
Parent Application
Range Range
RecentFiles RecentFiles

 169

ReplaceFormat CellFormat
Rows Range
RTD RTD
Sheets Sheets
ShortcutMenus Menu
SmartTagRecognizers SmartTagRecognizers
Speech Speech
SpellingOptions SpellingOptions
ThisCell Range
ThisWorkbook Workbook
Toolbars Toolbars
Union Range
UsedObjects UsedObjects
Watches Watches
Windows Windows
Workbooks Workbooks
WorksheetFunction WorksheetFunction
Worksheets Sheets

There are some points worth noting in Table 16-2. First, there are several members that begin with
the word "Active." It should come as no surprise that these members return the corresponding
currently active object. For instance, the ActiveSheet member returns the currently active
worksheet or chart, depending upon which is active at the time. (Note that there is no Sheet object.
Sheets are either worksheets or stand-alone charts. We will discuss this issue in detail in Chapter
18.)

Observe also that often the name of a member is the same as the name of the object that the
member returns. For instance, the AddIns property returns the AddIns collection, the Application
property returns the Application object, and the Windows property returns the Windows collection.

The notable exceptions to this rule are:

• The ThisWorkBook property returns the Workbook object containing the currently
running code. One use of this property is in determining the location (complete path and
filename) of the workbook on the user's computer, which is done by writing:

ThisWorkbook.FullName

• Several object properties, such as Cells, Columns, and Rows, return a Range object. This
is because there are no Cell, Column, or Row objects in the Excel object model. Instead,
each of these "objects" is actually a Range object. (Incidentally, a similar thing happens in
the Word object model. In particular, there are no Character, Word, or Sentence objects.
Rather, these are Range objects in the Word object model as well.)

16.1.2 Members that Affect the Display

There are several members that affect the display of certain items:

DisplayAlerts property (R/W Boolean)

 170

When True, Excel displays various warning messages (such as a confirmation message
that precedes the deletion of a worksheet) while a macro is running. If you do not want a
macro to be disturbed, then set this to False:

Application.DisplayAlerts = False

The default value of this property is True.

DisplayCommentIndicator property (R/W Long)

This property affects the way that Excel indicates the presence of a comment in an
unselected cell. It can be any one of the constants in the following enum:

Enum XlCommentDisplayMode
 xlCommentIndicatorOnly = -1 ' Display indicator
only
 xlNoIndicator = 0 ' Display
 xlCommentAndIndicator = 1 ' Display indicator
and comment
 ' itself
End Enum

Setting DisplayCommentIndicator to either xlCommentIndicatorOnly or
xlCommentAndIndicator sets the value of the DisplayNoteIndicator property
(described later in this section) to True, while setting DisplayCommentIndicator to
xlNoIndicator changes DisplayNoteIndicator to False.

DisplayFormulaBar property (R/W Boolean)

This property determines whether the formula bar is displayed. Its default value is True.

DisplayFullScreen property (R/W Boolean)

This property determines whether Excel is in full-screen mode. (Note that displaying
Excel in full-screen mode is not the same as maximizing Excel's application window.)

DisplayNoteIndicator property (R/W Boolean)

If this property is True (its default value) then cells containing notes display cell tips and
contain note indicators (which are small dots in the upper-right corner of a cell). Setting
DisplayNoteIndicator to False also sets DisplayCommentIndicator to xlNoIndicator,
while setting DisplayNoteIndicator to True sets DisplayCommentIndicator to
xlCommentIndicatorOnly.

16.1.3 Members that Enable Excel Features

Several Application members enable or disable certain Excel features:

AutoFormatAsYouTypeReplaceHyperlinks property (R/W Boolean)

Set to True to have Excel automatically format hyperlink text as a hyperlink. Set to
False to turn off this often-annoying feature of Excel.

EnableAnimations property (R/W Boolean)

 171

This property determines whether animated insertion and deletion is enabled. When
animation is enabled, inserted worksheet rows and columns appear slowly and deleted
worksheet rows and columns disappear slowly. The default value is False.

EnableAutoComplete property (R/W Boolean)

This property determines whether Excel's AutoComplete feature is enabled; its default
value is True.

EnableCancelKey property (R/W Long)

This property controls how Excel handles the Ctrl -Break or Esc key combinations during
a running procedure. It can be one of the following XlEnableCancelKey constants:

Enum XlEnableCancelKey
 xlDisabled = 0
 xlInterrupt = 1
 xlErrorHandler = 2
End Enum

The meanings of these constants follow:

xlDisabled

Trapping is disabled (the keystrokes are ignored).

xlInterrupt

The running procedure is interrupted by the display of a dialog box that enables the user
to either debug or end the procedure. This is the default value.

xlErrorHandler

The keystroke interrupt is sent to the running procedure as an error that is trappable by an
error handler using the On Error GoTo statement. The error code is 18.

Note that this property can be dangerous and should be used with great circumspection. In
particular, if you set the property to xlDisabled, then there is no way to interrupt an
infinite loop. Similarly, if you set the property to xlErrorHandler but your error
handler returns using the Resume statement, there is no way to stop nonself-terminating
code.

For these reasons, Excel always resets the EnableCancelKey property to xlInterrupt
whenever Excel returns to the idle state and there is no code running.

EnableEvents property (R/W Boolean)

This property is True (its default value) if events are enabled for the Application object.
(For more on this, see Chapter 11.)

EnableSound property (R/W Boolean)

This property enables and (mercifully) disables sounds for Microsoft Office. The default
value is False.

 172

16.1.4 Event-Related Members

It is possible to assign macros to certain events. (These are special events—not the events that we
discussed in Chapter 11.) For instance, we can assign a macro to play whenever a particular key is
pressed. This is done by invoking the OnKey method for the Application object. Let us describe
two of the more useful events that can be assigned a macro.

16.1.4.1 OnKey method

The syntax for the OnKey method is:

Application.OnKey(Key, Procedure)

where Key is the key or key combination (written as a string) that will execute the macro and
Procedure is the name of that macro.

Note that we can alter the normal behavior of Excel by assigning a key combination to the Key
parameter that has a normal Excel response (such as Ctrl-S for save). If we assign an empty string
to the Procedure parameter, then Excel will omit its normal response (so nothing will happen).
If we omit the Procedure parameter, then Excel will return the key combination to its normal
function.

To illustrate, the following code will disable the Ctrl-o key combination, which normally displays
the Open dialog box:

Application.OnKey "^o",""

The following code returns the Ctrl-o key combination to its normal Excel function:

Application.OnKey "^o"

The Key argument can specify a single key or any key combined with one or more of Alt, Ctrl, or
Shift. Normal alphanumeric keys are denoted by themselves, as in "a," "A," "1." Table 16-3 shows
how to enter special keys. For instance, the F2 key is denoted by "{F2}", and the Enter key is
denoted either by "{ENTER}" or "~".

Table 16-3. Special Keys for the Key Parameter
Key Code

Backspace {BACKSPACE} or {BS}
Break {BREAK}
Caps Lock {CAPSLOCK}
Clear {CLEAR}
Delete or Del {DELETE} or {DEL}
Down Arrow {DOWN}
End {END}
Enter (numeric keypad) {ENTER}
Enter ~ (tilde)
Esc {ESCAPE} or {ESC}
Help {HELP}
Home {HOME}
Ins {INSERT}

 173

Left Arrow {LEFT}
Num Lock {NUMLOCK}
Page Down {PGDN}
Page Up {PGUP}
Return {RETURN}
Right Arrow {RIGHT}
Scroll Lock {SCROLLLOCK}
Tab {TAB}
Up Arrow {UP}
F1 through F15 {F1} through {F15}

To combine keys with Shift, Ctrl, or Alt, use the following prefixes:

Shift + (plus sign)
Ctrl ^ (caret)
Alt % (percent sign)

For instance, to denote the Alt-F2 key combination, write "%{F2}". To denote Ctrl-Shift-Enter,
write "^+{ENTER}".

In order to use one of the characters +, ^, %, {, }, or ~ without having it interpreted as a special
key, simply enclose the character in braces. For instance, to reassign the { key, we would assign
the Key parameter to "{{}".

16.1.4.2 OnTime method

This method is used to run a procedure at a specific time or after a specific amount of time has
passed. The syntax is:

Application.OnTime(EarliestTime, Procedure, LatestTime, Schedule)

Of course, the Procedure parameter is the name of the macro to run. The EarliestTime
parameter is the time you want the macro to be run. To specify a time, we use the TimeValue
function. For instance, the following code executes the macro test in the ThisWorkbook code
module of the book1 workbook at 3:58 P.M.:

Application.OnTime TimeValue("3:58 PM"), _
 "d:\excel\book1.xls!ThisWorkbook.test"

LatestTime is an optional parameter that specifies the latest time at which the procedure can
begin running. We can use the TimeValue function to specify a time for this parameter, or we
can set LatestTime to EarliestTime plus some additional time. For instance, the following
code requires that Excel run the macro no later than 30 seconds following 3:58 P.M.:

Application.OnTime TimeValue("3:58 PM"), _
 "d:\excel\book1.xls!ThisWorkbook.test", _
 TimeValue("3:58 PM") + 30

The LatestTime parameter may be useful, since if Excel is busy (running another procedure, for
instance), then execution of the macro denoted by Procedure will be delayed. If you do not
want the macro to be run after a certain time, then set the LatestTime parameter.

 174

If you want to clear a previously set OnTime macro, you can call the procedure with the
Schedule parameter set to False. Otherwise, the parameter can be omitted, since its default
value is True.

Note that the Now function returns the current time. Thus, to schedule a macro for a certain
amount of time from the present, we can set EarliestTime to:

Now + TimeValue(time)

16.1.5 Calculation-Related Members

The Application object has several members related to calculation.

16.1.5.1 Calculate method

This method calculates all open workbooks, a specific worksheet in a workbook, or a specified
range of cells on a worksheet, depending upon how it is applied.

When applied to the Application object, as in:

Application.Calculate

Excel will calculate all open workbooks. When applied to a specific worksheet, as in:

Worksheets(1).Calculate

Excel will calculate that worksheet. When applied to a specific range, as in:

Worksheets(1).Rows(2).Calculate

Excel will calculate the cells in that range. Note that since Calculate is a global method, we can
simply write:

Calculate

in place of:

Application.Calculate

16.1.5.2 CalculateFullRebuild method

This method calculates all data and rebuilds all dependencies (formulas that refer to other cells) in
all open workbooks. This method applies only to the Application object.

16.1.5.3 Calculation property (R/W Long)

This property sets Excel's calculation mode and can be set to any of the following constants:

Enum XlCalculation
 xlCalculationManual = -4135
 xlCalculationAutomatic = -4105
 xlCalculationSemiautomatic = 2
End Enum

 175

The default value is xlCalculationAutomatic. As is typical, the documentation does not
explain the term semiautomatic (at least I could not find an explanation). However, there is an
option in Excel's Calculation tab under the Options dialog that allows us to specify automatic
calculation except for data tables; this is what is meant by semiautomatic.

16.1.5.4 CalculateBeforeSave property (R/W Boolean)

This property is True if workbooks are calculated before they are saved to disk. This is relevant
only when the Calculation property is set to xlManual.

16.1.5.5 CheckAbort method

This method stops recalculation in Excel. Its syntax is:

Application.CheckAbort(keepabortrange)

where keepabortrange is a range that is exempt from the method; that is, recalcualtion still
takes place in this range.

16.1.6 File-Related Members

Let us take a brief look at the members that are related to file operations.

16.1.6.1 DefaultFilePath property (R/W String)

This property returns or sets the default path that Microsoft Excel uses when it opens or saves files.
This setting can also be changed by the user in the General tab of the Options dialog.

16.1.6.2 DefaultSaveFormat property (R/W Long)

This property returns or sets the default format for saving files. The default for this property is
xlWorkbookNormal, indicating the normal workbook format for the current version of Excel.
The possible values for this property are the XLFileFormat constants shown in Table 16-4.

Table 16-4. XLFileFormat constants
xlAddIn (18) xlExcel5 (39) xlWJ3 (40)
xlCSV (6) xlExcel7 (39) xlWJ3FJ3 (41)
xlCSVMac (22) xlExcel9795 (43) xlWK1 (5)
xlCSVMSDOS (24) xlHtml (44)<v9> xlWK1ALL (31)
xlCSVWindows (23) xlIntlAddIn (26) xlWK1FMT (30)
xlCurrentPlatformText (-4158) xlIntlMacro (25) xlWK3 (15)
xlDBF2 (7) xlSYLK (2) xlWK3FM3 (32)
xlDBF3 (8) xlTemplate (17) xlWK4 (38)
xlDBF4 (11) xlTextMac (19) xlWKS (4)
xlDIF (9) xlTextMSDOS (21) xlWorkbookNormal (-4143)
xlExcel2 (16) xlTextPrinter (36) xlWorks2FarEast (28)
xlExcel2FarEast (27) xlTextWindows (20) xlWQ1 (34)
xlExcel3 (29) xlUnicodeText (42)<v9> xlXMLSpreadsheet (46)<v10>
xlExcel4 (33) xlWebArchive (45)<v10>
xlExcel4Workbook (35) xlWJ2WD1 (14)

 176

16.1.6.3 FileDialog property

This property programmatically opens a file-related dialog box and returns a FileDialog object. It
takes as parameter one of the following constants to indicate the type of dialog:

msoFileDialogFilePicker
msoFileDialogFolderPicker
msoFileDialogOpen
msoFileDialogSaveAs

To illustrate, the following code:

' Open dialog
With Application.FileDialog(msoFileDialogFolderPicker)
 .Show

 ' Display path
 MsgBox .SelectedItems(1)
End With

allows the user to select a folder and then displays the folder's complete path.

16.1.6.4 FindFile method

This method, whose syntax is:

Application.FindFile

displays the Open dialog box. If a file is opened successfully by the user, the method returns True.
If the user cancels the dialog box, the method returns False.

16.1.6.5 GetOpenFilename method

This method displays the Open dialog box and gets a filename or filenames from the user but does
not open the files. Its syntax is:

Application.GetOpenFilename(FileFilter, _
 FilterIndex, Title, ButtonText, MultiSelect)

The optional FileFilter parameter is a string that specifies what to put in the "Files of type"
drop-down list box in the Open dialog. In other words, it specifies file filtering criteria. This string
is in two parts, of the form:

description, filefilter

The first part is the description of the file type, and the second part is the MS-DOS wildcard file-
filter specification. The two parts are separated by a comma. Note that the first part is the string
that appears in the "Files of type" drop-down box in the Open dialog box. Thus, the first part also
includes the wildcard file-filter specification. Perhaps a few examples will help clarify:

Text files
Text Files (*.txt),*.txt

Lotus files
Lotus 1-2-3 (*.wk?), *.wk?

Add-In files
Add-In Files (*.xla),*.xla

 177

It is also possible to use multiple wildcard file filters, as in:

Backup Files (*.xlk; *.bak), *.xlk; *.bak

(Note the semicolons.) If the FileFilter argument is omitted, the default is:

All Files (*.*),*.*

Note that FileFilter can consist of more than one filter specification, separated by commas, as
in:

Debug.Print Application.GetOpenFilename(_
 "Text Files (*.txt),*.txt, _
 Backup Files (*.xlk; *.bak), *.xlk; *.bak")

In this case, the optional FilterIndex parameter specifies which of the filters appears in the
"Files of type" drop-down list box. For instance, the following will cause the second filter (backup
files) to appear in the "Files of type" drop-down list box:

Debug.Print Application.GetOpenFilename(_
 "Text Files (*.txt),*.txt, _
 Backup Files (*.xlk; *.bak), *.xlk; *.bak", 2)

The optional Title parameter specifies the title of the dialog box. If this argument is omitted, the
title is Open. The ButtonText parameter is ignored by Windows, but used on the Macintosh.

The optional MultiSelect property is set to True to allow multiple filenames to be selected
and False to allow only one filename to be selected. The default value is False. To select
multiple files from the Open dialog, the user must hold down the Ctrl or Shift key.

The method returns the selected filename or the name entered by the user. The returned name may
also include a path specification. If the MultiSelect parameter is True, the return value is an
array of the selected filenames (even if only one filename is selected). The method returns False
if the user cancels the dialog box.

When Multiselect is True, we can determine the number of files selected by the user by using
the UBound function to get the upper bound for the returned array, as in:

NumFiles = UBound(Application.GetOpenFilename(MultiSelect:=True))

Note finally that this method may change the current drive or folder.

16.1.6.6 GetSaveAsFilename method

This method is similar to the GetOpenFilename method, but instead displays the Save As dialog
box and gets a filename from the user without saving any files. The syntax is:

Application.GetSaveAsFilename(InitialFilename, _
 FileFilter, FilterIndex, Title, ButtonText)

The optional InitialFilename parameter specifies the filename that is placed in the "File
name" text box on the Save As dialog. If this argument is omitted, Excel uses the name of the
active workbook. The other parameters (and return values) are the same as for the
GetOpenFilename method. As with GetOpenFilename, this method may change the current drive
or folder.

TE
AM
FL
Y

Team-Fly®

 178

16.1.6.7 RecentFiles property (Read-Only)

This property returns a RecentFiles collection that represents the list of recently used files. There
are two interesting aspects to the RecentFiles collection. First, it has a Maximum property that
returns or can be set to the maximum number of files allowed in the recently used files list that
appears on Excel's File menu. This number must be an integer between 0 and 9, inclusive. Thus,
the code:

MsgBox Application.RecentFiles.Maximum

displays the current value.

Second, we can print a list of the filenames of the most recently used files as follows (of course,
you may want to do more than print this list):

Dim rf As RecentFile
For Each rf In Application.RecentFiles
 Debug.Print rf.Name
Next

Note that the RecentFiles collection contains RecentFile objects, and not simply the names of the
recently used files, as one might expect.

16.1.6.8 SaveWorkspace method

This method saves the current workspace. Its syntax is:

Application.SaveWorkspace(Filename)

where Filename is an optional filename for the xlw file.

16.1.7 Members that Affect the Current State of Excel

The following members have an effect on the current settings of Excel:

CopyObjectsWithCells property (R/W Boolean)

When this property is True, objects (such as embedded controls or shapes) are cut,
copied, extracted, and sorted along with cells.

Cursor property (R/W Long)

This property returns or sets the appearance of the mouse pointer. It can be one of the
following XlMousePointer constants:

Enum XlMousePointer
 xlDefault = -4143
 xlNorthwestArrow = 1
 xlWait = 2
 xlIBeam = 3
End Enum

It is considered good programming practice to set the mouse pointer to xlWait if your
code will take more than a second or so to complete. Of course, you will need to return
the mouse pointer to its previous state when the procedure terminates. The proper way to

 179

do this is to save the original Cursor property value before changing it, so it can be reset
to its original value.

CutCopyMode property (R/W Long)

This property returns or sets the status of Cut or Copy mode.

The CutCopyMode property can be set to either True or False. On the PC, these have
the same effect (but differ on the Macintosh); namely, to cancel Cut or Copy mode and
remove the moving border that surrounds the region to be cut or copied.

The CutCopyMode property can return False, indicating that Excel is in neither Cut nor
Copy mode, or else one of the two values from the following enum:

Enum XlCutCopyMode
 xlCopy = 1 ' Copy mode
 xlCut = 2 ' Cut mode
End Enum

DataEntryMode property (R/W Long)

This property returns or sets Data Entry mode. When in Data Entry mode, data can be
entered only in the cells in the currently selected range.

The property can assume any of the following constant values:

xlOn

Data Entry mode is on.

xlOff

Data Entry mode is off.

xlStrict

Data Entry mode is on, and pressing Esc will not turn it off.

EditDirectlyInCell property (R/W Boolean)

When this property is True (which is its default value), Excel allows editing in cells.
Otherwise, it does not allow editing in the cells (but you can still edit in the formula bar).

FixedDecimal property (R/W Boolean)

When this property is True, all numeric data entered will be formatted with the number
of fixed decimal places set by the FixedDecimalPlaces property. The default value of this
property is False; the value of the FixedDecimalPlaces property is ignored.

FixedDecimalPlaces property (R/W Long)

This property returns or sets the number of fixed decimal places used when the
FixedDecimal property is set to True. For example, if the FixedDecimalProperty is True
and FixedDecimalPlaces is set to 3, an entry of 100 in a cell will be displayed as 0.1.

 180

Interactive property (R/W Boolean)

When this property is set to False, Excel will block all input from the keyboard and
mouse except for input to dialog boxes that are displayed by code. This will prevent the
user from interfering with the currently running macro. The default value of the
Interactive property is True.

Of course, considerable care must be taken with this property. For instance, if you forget
to reset the property to True, or if your code terminates unexpectedly, the user may need
to restart Excel. Note that the Alt-F4 key combination will work to shut down Excel, but
the user will not be able to save any work. Be careful with this one!

MoveAfterReturn property (R/W Boolean)

When this property is True, its default value, the active cell will be moved as soon as the
Enter key is pressed. The MoveAfterReturnDirection property is used to specify the
direction in which the active cell will be moved. If set to False, the active cell remains
unchanged after the Enter key is pressed.

MoveAfterReturnDirection property (R/W Long)

This property returns or sets the direction in which the active cell is moved when the user
presses Enter if the MoveAfterReturn property is set to True. It can assume any one of
the following values:

Enum XlDirection
 xlUp = -4162
 xlToRight = -4161
 xlToLeft = -4159
 xlDown = -4121
End Enum

ReferenceStyle property (R/W Long)

This property returns or sets the style (A1 style or R1C1 style) in which Excel displays
cell references and row and column headings. It can be one of the following
XlReferenceStyle constants:

Enum XlReferenceStyle
 xlR1C1 = -4150
 xlA1 = 1
End Enum

ScreenUpdating property (R/W Boolean)

When this property is True, its default value, screen updating is turned on. Since this
may slow down some display-intensive procedures considerably, you may want to
temporarily turn off screen updating.

SheetsInNewWorkbook property (R/W Long)

This property returns or sets the number of sheets that Excel automatically inserts into
new workbooks.

ShowChartTipNames property (R/W Boolean)

When this property is True, its default value, Excel charts show chart tip names.

 181

ShowChartTipValues property (R/W Boolean)

When this property is True, its default value, Excel charts show chart tip values.

ShowToolTips property (R/W Boolean)

When this property is True, its default value, ToolTips are turned on.

StandardFont property (R/W String)

This property returns or sets the name of the standard font. Note that the change does not
take effect until Excel is restarted.

StandardFontSize property (R/W Long)

This property returns or sets the standard font size, in points. The change does not take
effect until Excel is restarted.

StartupPath property (Read-Only String)

This property returns the complete path of the startup folder, excluding the final separator.

TemplatesPath property (Read-Only String)

This property returns the path where templates are stored.

16.1.8 Members that Produce Actions

Several members of the Application object perform some sort of action.

16.1.8.1 ConvertFormula method

This method converts cell references in a formula between the A1 and R1C1 reference styles. It
can also convert between relative and absolute references. Its syntax is:

Application.ConvertFormula(Formula, FromReferenceStyle,
ToReferenceStyle, _
 ToAbsolute, RelativeTo)

The Formula parameter is a string containing the formula to convert. It must be a valid formula,
beginning with an equal sign.

The FromReferenceStyle parameter must be one of the following constants:

Enum XlReferenceStyle
 xlR1C1 = -4150
 xlA1 = 1
End Enum

The optional ToReferenceStyle parameter is the reference style into which to convert the
formula. It is also one of the XlReferenceStyle constants. If we omit this argument, the
reference style is not changed.

 182

The optional ToAbsolute parameter specifies the converted reference type and can be one of the
following XlReferenceType constants:

Enum XlReferenceType
 xlAbsolute = 1
 xlAbsRowRelColumn = 2
 xlRelRowAbsColumn = 3
 xlRelative = 4
End Enum

If this argument is omitted, the reference type is not changed.

Finally, the optional RelativeTo parameter is a Range object containing a single cell. This cell
is used to determine relative references.; that is, we can think of the formula as being placed in this
cell and so all relative references are with respect to this cell.

To illustrate, consider the following code:

sFormula = "=D2"
Debug.Print Application.ConvertFormula(sFormula, _
 xlA1, xlR1C1, xlRelative, Range("C3"))
Debug.Print Application.ConvertFormula(sFormula, _
 xlA1, xlR1C1, xlRelRowAbsColumn, Range("C3"))

The second line converts from A1 notation to R1C1 notation, assuming that the formula is in cell
C3. Hence, the output is:

= R[-1]C[1]

since D2 is one column to the right and one row up from cell C3. The third line of code converts
A1 notation to R1C1 notation, but uses an absolute column reference and so produces:

= R[-1]C4

since column 4 is one column to the right of column 3.

16.1.8.2 Evaluate method

This method converts an Excel name to an object or a value. Its syntax is:

Application.Evaluate(Name)

(This method also applies to Chart, DialogSheet, and Worksheet objects.)

The Name parameter is the name of the object. It can be any of the following types of name:

An A1-style reference

Name can be any A1-style reference to a single cell. The reference is considered to be
absolute. To illustrate, consider the following code, each line of which purports to place
the word Mary in cell A1:

Range("A1").Value = "Mary"
A1.Value = "Mary"
Evaluate("A1").Value = "Mary"

 183

[A1].Value = "Mary"

The first line uses the Range method. The second line will produce an error because Excel
considers A1 a variable rather than a cell reference. The third line uses the Evaluate
method to convert the name of a cell to a Range object. The fourth line is shorthand for
the third line.

A range

Name can be any range formed by using the range operator (colon), intersect operator
(space), and union operator (comma) with references. The Evaluate method will return
the corresponding Range object. To illustrate, consider the following code:

Evaluate("B2:C4").Select
Evaluate("B2:C4, D5:F6").Select
Evaluate("B2:C4 B1:F2").Select
[B2:C4 B1:F2].Select

The first line selects the range B2:C4. The second line selects the union of the two
rectangular ranges B2:C4 and D5:F6. The third line selects the intersection of the two
rectangular ranges B2:C4 B1:F2. The fourth line is shorthand for the third line.

A Defined Name

Name can be any defined name. For instance, if we name a range test, then the
following code selects that range:

Evaluate("test").Select

(Incidentally, I have had some inconsistent results using the syntax [test].Select. It
seems to work some but not all of the time.) We can also use formula names. For instance,
the following code displays the sum of the values in cells B2 through B5:

MsgBox Evaluate("SUM(B2:B5)")

Note that external references (references to other workbooks) can be used as well, as in:

Workbooks("BOOK2.XLS").Sheets("MySheet").Evaluate("A1").Select

As we have seen, using square brackets is equivalent to calling the Evaluate method with a string
argument. Square brackets have the advantage of producing more concise code, but they cannot be
used with string variables. For instance, we can write:

Dim sFormula As String
sFormula = "SUM(B2:B5)"
MsgBox Evaluate(sFormula)

But the code:

MsgBox [sFormula]

will simply display the string SUM(B2:B5), as it would without the square brackets.

16.1.8.3 Goto method

 184

This method selects a given range in any workbook. (It can also select a Visual Basic procedure.)
The syntax is:

Application.Goto(Reference, Scroll)

The optional Reference parameter specifies the destination. It can be a Range object, a string
that contains a cell reference in R1C1-style notation, or a string that contains a Visual Basic
procedure name. If the argument is omitted, the destination is the destination used in the previous
call to GoTo.

The optional Scroll parameter should be set to True to scroll through the window so that the
upper-left corner of the destination appears in the upper-left corner of the window. The default is
False, which means the destination will not move if it was visible within the window, or else it
will appear at the bottom of the window if it was not visible.

For example, to select the range B5:C6 in the active worksheet, we can write:

Application.Goto Reference:=Range("B5:C6")

or:

Application.Goto Reference:="R5C2:R6C3"

The GoTo method also works in conjunction with the PreviousSelections array. In particular, the
Application object has a PreviousSelections property that returns an array of Range objects
referencing the previous four ranges selected. The syntax is:

Application.PreviousSelections(Index)

where Index is a number between 1 and 4.

Each time the user selects a range or cell either by using the Name box or the Go To command (on
the Edit menu), or the Goto method is called in code, the current range (before the action takes
place) is added to the top (index 1) of the PreviousSelections array and the other items in the array
are moved down one index value. (The item in position 4, of course, drops out of the array.)

As a simple illustration, consider the code:

Application.Goto Sheet1.Range("A1")
ActiveCell.Value = 1
Application.Goto Sheet2.Range("A1")
ActiveCell.Value = 2

which fills the first cell on each of two sheets, using the GoTo method to add the cell ranges to the
PreviousSelections array.

Now the following line will alternate between the two cells when executed repeatedly:

Application.Goto Application.PreviousSelections(1)

Note that the GoTo method differs from the Select method in several ways:

• Both methods select the given range, but the Select method does not activate the sheet
upon which the new selection is made (if it is not already active).

• The Select method does not have a Scroll argument.

 185

• The Select method does not add the current selection to the PreviousSelections array.
• The Select method has a Replace argument.

16.1.8.4 Quit method

This method closes Excel. Note that the BeforeClose event will fire when the Quit method is
executed. (This event has a Cancel parameter that can be set to cancel the quit operation.) We
discussed workbook events (including BeforeClose) in Chapter 11.

Note that if there are any unsaved open workbooks when the Quit method is invoked, Excel will
display the usual dialog box asking the user whether he or she wants to save the changes. We can
prevent this either by explicitly saving all workbooks (using the Save method) before invoking the
Quit method or by setting the DisplayAlerts property to False. However, in the latter case, any
unsaved data will be lost without warning!

It is also important to note that Excel checks the Saved property of a workbook in order to
determine whether to prompt for saving. Thus, if we set the Saved property to True but do not
save the workbook, Excel will quit without prompting to save the workbook (and without saving
the workbook).

16.1.9 Miscellaneous Members

Here are some additional members of the Application object.

16.1.9.1 CellFormat, FindFormat and ReplaceFormat object

The CellFormat object works in conjunction with the FindFormat and ReplaceFormat properties
of the Application object to programmatically find and replace cell formatting.

Specifically, the new FindFormat and ReplaceFormat properties of the Application object each
return a unique CellFormat object. We can set the formatting properties of either of these
CellFormat objects and then use the Replace method of the Range object to replace the formatting
in the CellFormat object returned by the FindFormat property, with the formatting in the
CellFormat object returned by the ReplaceFormat property.

For example, the following code replaces cells that have been formatted as bold with bold italic
formatting. Note that nowhere in the code is a CellFormat object explicitly declared.

Sub Example_CellFormat()
 ' Replace Bold with Bold Italic

 With Application.FindFormat
 .Clear
 .Font.Bold = True
 End With

 With Application.ReplaceFormat
 .Clear
 .Font.Bold = True
 .Font.Italic = True
 End With

 Cells.Replace SearchFormat:=True, ReplaceFormat:=True
End Sub

 186

The CellFormat object has a number of format-related properties. These are listed here. (The
CellFormat object has a single method named Clear, which clears all formatting.) These are used
just as we used the Font property in the previous code.

• AddIndent
• Borders
• Font
• FormulaHidden
• HorizontalAlignment
• IndentLevel
• Interior
• Locked
• MergeCells
• NumberFormat
• NumberFormatLocal
• Orientation
• ShrinkToFit
• VerticalAlignment
• WrapText

16.1.9.2 InputBox method

We have already discussed the VBA InputBox function, which is used to return input from the
user. The InputBox method of the Application object also returns user information, but has the
advantage of being able to validate the return type and to return Excel formulas, objects, and error
values.

The syntax for the InputBox method is:

Application.InputBox(Prompt, Title, Default, _
 Left, Top, HelpFile, HelpContextId, Type)

The parameters are as follows (note that all of the parameters are optional except the Prompt
parameter):

Prompt

The message to be displayed in the dialog box; it can be a string, number, date, or
Boolean value.

Title

The caption for the dialog box. The default caption is Input.

Default

The value that will appear in the text box when the dialog box is displayed. If this
argument is omitted, the text box will be empty.

Left and Top

The upper-left corner of the dialog box in points, measured from the upper-left corner of
the screen.

HelpFile and HelpContextID

 187

The name of the Help file and the context ID for a help topic to invoke when the user hits
the Help button on the input box. If these arguments are omitted, then no Help button is
included on the input box dialog.

Type

The data type that can be entered into the text box by the user (and thus the return type of
the method). It can be one or a sum of the values in Table 16-5. When the value is a sum
of several numbers, then any of the corresponding data types is acceptable. It follows that
formulas are always acceptable. The default value is 2 for Text.

Table 16-5. Values for the InputBox Method's Type Parameter
Value Meaning

0 A formula
1 A number
2 Text (a string)
4 A logical value (True or False)
8 A reference to a single cell
16 An error value, such as #N/A
64 An array of values

Unfortunately, the type checking done by the InputBox method does not seem to be very accurate.
To illustrate, the InputBox statement:

Range("A1").Value = Application.InputBox(_
 Prompt:="Enter data", Type:=0)

should accept only formulas and not text. However, entering the text "test" simply puts this text in
cell A1. (The help documentation does say that when Type is 0, InputBox returns the formula as
text and any references in the formula are returned as A1-style references.)

Note that when Type is equal to 8, the InputBox method returns a Range object that refers to the
cell in the reference. Therefore, we must use the Set statement to assign this object to a variable
of type Range, as in:

Dim rng as Variant
Set rng = Application.InputBox(_
 Prompt:="Enter Cell Reference", Type:=8)

If we omit the Set statement, the variable is set to the value in the range, rather than the Range
object itself. (If we had declared the rng variable to be of type Range, then the preceding code,
without the Set statement, would result in the error message, "Object variable or With block
variable not set.")

When Type is equal to 64, the user is expected to enter a rectangular cell range that will be treated
as a two-dimensional array. For instance, consider a worksheet as shown in Figure 16-3.

Figure 16-3. Illustration of Type = 64

TE
AM
FL
Y

Team-Fly®

 188

The code:

Dim a As Variant
a = Application.InputBox(_
 Prompt:="Enter Array", Type:=64)
Debug.Print a(3,2)

will accept the input:

A1:B6

after which a(3,2) will equal 56.

As a final example, if we respond to the code:

Dim a As Variant
a = Application.InputBox(Prompt:="Enter Formula", Type:=1)
Range("D1").Formula = a

with a formula, Excel does not put the formula in the cell D1 (it puts only the number), even
though 1 is a sum of 1 and 0. In other words, we shouldn't take the sum statement too literally.

16.1.9.3 Selection property

This property simply returns the currently selected object in the active window. For instance, if a
cell is selected, the property returns a Range object denoting this cell. The Selection property
returns Nothing if nothing is selected. Note that the property also applies to a Window object
and returns the current selection in that window.

16.1.9.4 StatusBar property (R/W String)

This useful property returns or sets the text in Excel's status bar. To return control of the status bar
to Excel, simply set this property to False. (Similarly, this property will return False if Excel
currently has control over the status bar.)

16.1.9.5 Intersect method

This method returns a Range object that represents the rectangular intersection of two or more
ranges. The syntax is:

Application.Intersect(Arg1, Arg2, ...)

where Arg1, Arg2, . . . are the Range objects whose ranges we wish to intersect. At least two
Range objects must be specified. For instance, the following line selects the intersection, which is
the range B2:D5:

 189

Application.Intersect(Range("A1:D5"), Range("B2:F9")).Select

16.1.9.6 Union method

This method is the analog of the Intersect method, but returns the union of two or more ranges.
The syntax is:

Application.Union(Arg1, Arg2, ...)

where Arg1, Arg2, . . . are the Range objects whose ranges we wish to join together. At least two
Range objects must be specified. For instance, the following code selects both rectangular regions
A1:D5 and B2:F9:

Application.Union(Range("A1:D5"), Range("B2:F9")).Select

16.2 Children of the Application Object

Figure 16-4 shows the children of the Application object. (This repeats Figure 16-1.)

Figure 16-4. The Excel Application object and its children

We will discuss many of the children of the Application object, including AppEvents, Chart,
Range, Sheets, Workbook, and Worksheet, in later chapters. (We have already discussed the
Dialogs object.) For now, let us discuss some of the "smaller" children.

16.2.1 Name Objects and the Names Collections

 190

A Name object represents a defined name for a range of cells. There are two types of names in
Excel: built-in names such as Print_Area and custom names created by the user or by code.

Name objects are kept in several Names collections. There is a Names collection for the
Application object, as well as Names collections for each Workbook and Worksheet object.

There are a variety of ways to create a new Name object. We can add a Name object to a Names
collection by calling the collection's Add method or we can use the CreateNames method of the
Range object (discussed in Chapter 19).

For instance, the following code creates a Name object that refers to a range on Sheet1 of Book1.
The Name object is added to the workbook's Names collection, but not to Sheet1's Names
collection:

Workbooks("Book1.xls").Names.Add Name:="WkBkName"
RefersTo:="=Sheet1!A1:B1"

Note the use of a sheet qualifier in the RefersTo parameter and the specification of an absolute
address. If the absolute operator ($) is not used, the range will be defined relative to the active cell.

The following code adds a Name object to the Names collection of Sheet1 and Sheet2:

Workbooks("Book1.xls").Worksheets("Sheet1") _
 .Names.Add Name:="WkSheet1Name", _
 RefersTo:="=Sheet1!A1:B1"

 Workbooks("Book1.xls").Worksheets("Sheet2"). _
 Names.Add Name:="WkSheet2Name", _
 RefersTo:="=Sheet2!A1:B1"

Note that this code will also add the Name objects to the workbook's Names collection.

The following code sets the font for the range WkSheet1Name to boldface:

Sheet1.Names("WkSheet1Name").RefersToRange.Font.Bold = True

Note that there is no Names collection for a given Range object, even though a Range object can
have more than one name. The best we can do is retrieve the first name for a range object by using
the Name property (see the discussion in Chapter 19).

Let us review some of the properties and methods of the Name object:

Delete method

This method, whose syntax is:

NameObject.Delete

deletes the Name object from the Names collections in which it resides. It does not delete
the actual range.

Name property

This property returns or sets the name of the Name object.

 191

RefersTo property

This property returns or sets the formula that defines a named range, in A1-style notation,
beginning with an equal sign.

RefersToR1C1 property

This property returns or sets the formula that defines a named range, in R1C1-style
notation, beginning with an equal sign.

RefersToRange property

This property returns the Range object referred to by the named range. It is read-only.
(See the previous example code.)

Value property

This property also returns or sets the formula that defines a named range, in A1-style
notation, beginning with an equal sign. Thus, it is equivalent to the RefersTo property.

Visible property

This property returns or sets the visibility of the named range.

16.2.2 The Windows Collection and Window Objects

Of course, a Window object represents an Excel window. The Windows collection of the
Application object is the collection of Window objects for all currently open windows in the
currently running version of Excel. (Similarly, the Windows collection for a Workbook object
contains only the windows in the workbook.)

The Arrange method of the Windows collection is used to arrange the current windows. The
syntax is:

WindowsObject.Arrange(ArrangeStyle, _
 ActiveWorkbook, SyncHorizontal, SyncVertical)

The optional ArrangeStyle parameter can be one of the following XlArrangeStyle
constants:

Enum XlArrangeStyle
 xlArrangeStyleVertical = -4166
 xlArrangeStyleHorizontal = -4128
 xlArrangeStyleTiled = 1 ' Default
 xlArrangeStyleCascade = 7
End Enum

We can set the ActiveWorkbook parameter to True to arrange only the visible windows of the
active workbook. The default value is False, in which case all windows are arranged.

When ActiveWorkbook is True, the remaining parameters are evaluated (otherwise they are
ignored). SyncHorizontal can be set to True to synchronize the horizontal scrolling windows
of the active workbook. In other words, all windows scroll at the same time when one window is
scrolled horizontally. The default value is False. Similarly, the SyncVertical parameter

 192

specifies vertical scrolling synchronization. Thus, the following code tiles the visible windows and
enables horizontal scrolling synchronization:

ActiveWorkbook.Windows.Arrange _
 ArrangeStyle:=xlArrangeStyleTiled, _
 SyncHorizontal:=True

To create a new window, we use the NewWindow method of the Workbook object, as in:

ThisWorkbook.NewWindow

in which case a copy of the active window is created. This method also applies to an existing
Window object and creates a copy of the window to which it is applied.

The Windows collection has a special property with respect to indexing, namely, the active
window is always:

Windows(1)

The 58 members of the Window object are shown in Table 16-6.

Table 16-6. Members of the Window object
_DisplayRightToLeft<v9> EnableResize ScrollWorkbookTabs
Activate FreezePanes SelectedSheets
ActivateNext GridlineColor Selection
ActivatePrevious GridlineColorIndex SmallScroll
ActiveCell Height Split
ActiveChart Index SplitColumn
ActivePane LargeScroll SplitHorizontal
ActiveSheet Left SplitRow
Application NewWindow SplitVertical
Caption OnWindow TabRatio
Close Panes Top
Creator Parent Type
DisplayFormulas PointsToScreenPixelsX<v9> UsableHeight
DisplayGridlines PointsToScreenPixelsY<v9> UsableWidth
DisplayHeadings PrintOut View
DisplayHorizontalScrollBar PrintPreview Visible
DisplayOutline RangeFromPoint<v9> VisibleRange
DisplayRightToLeft RangeSelection Width
DisplayVerticalScrollBar ScrollColumn WindowNumber
DisplayWorkbookTabs ScrollIntoView<v9> WindowState
DisplayZeros ScrollRow Zoom

16.2.3 The WorksheetFunction Object

The WorksheetFunction object is returned by the WorksheetFunction property of the Application
object. The sole purpose of the WorksheetFunction object is to provide access to Excel's
worksheet functions. For instance, the following code illustrates the use of the WorksheetFunction
object to access Excel's Min function:

 193

Dim rng As Range
Dim rMin As Single
Set rng = Worksheets("Sheet1").Range("A1:D10")
rMin = Application.WorksheetFunction.Min(rng)

 194

Chapter 17. The Workbook Object
In this chapter, we discuss the Workbook object and the Workbooks collection. Figure 17-1 shows
the portion of the Excel object model that relates directly to workbooks.

Figure 17-1. The Workbook object

17.1 The Workbooks Collection

The Application object has a Workbooks property that returns a Workbooks collection, which
contains all of the Workbook objects for the currently open instance of Excel. For instance, the
following code displays the number of open workbooks:

Dim wbs As Workbooks
Set wbs = Application.Workbooks
MsgBox wbs.Count

Let us look at a few of the properties and methods of the Workbooks collection.

17.1.1 Add Method

The Add method creates a new workbook, which is then added to the Workbooks collection. The
new workbook becomes the active workbook. The syntax is:

WorkbooksObject.Add(Template)

where the optional Template parameter determines how the new workbook is created. If this
argument is a string specifying the name of an existing Excel template file, the new workbook is
created with that file as a template.

As you may know, a template is an Excel workbook that may contain content (such as row and
column labels), formatting, and macros and other customizations (menus and toolbars, for
instance). When you base a new workbook on a template, the new workbook receives the content,
formatting, and customization from the template.

The Template argument can also be one of the following constants:

 195

Enum XlWBATemplate
 xlWBATWorksheet = -4167
 xlWBATChart = -4109
 xlWBATExcel4MacroSheet = 3
 xlWBATExcel4IntlMacroSheet = 4
End Enum

In this case, the new workbook will contain a single sheet of the specified type. If the Template
argument is omitted, Excel will create a new workbook with the number of blank sheets set by the
Application object's SheetsInNewWorkbook property.

17.1.2 Close Method

The Close method closes all open workbooks. The syntax is simply:

WorksbooksObject.Close

17.1.3 Count Property

Most collection objects have a Count property, and the Workbooks collection is no exception.
This property simply returns the number of currently open workbooks.

17.1.4 Item Property

The Item property returns a particular workbook in the Workbooks collection. For instance:

Workbooks.Item(1)

returns the Workbook object associated with the first workbook in the Workbooks collection.
Since the Item property is the default property, we can also write this as:

Workbooks(1)

Note that we cannot rely on the fact that a certain workbook will have a certain index. (This
applies to all collections.) Thus, to refer to a particular workbook, you should always use its name,
as in:

Workbooks("Book1.xls")

It is important to note that if a user creates a new workbook named, say, Book2, using the New
menu item on the File menu, then we may refer to this workbook in code by writing:

Workbooks("Book2")

but the code:

Workbooks("Book2.xls")

will generate an error (subscript out of range) until the workbook is actually saved to disk.

17.1.5 Open Method

This method opens an existing workbook. The rather complex syntax is:

 196

WorkbooksObject.Open(FileName, UpdateLinks, ReadOnly, _
 Format, Password, WriteResPassword, IgnoreReadOnlyRecommended, _
 Origin, Delimiter, Editable, Notify, Converter, AddToMRU)

Most of these parameters are rarely used (several of them relate to opening text files, for instance).
We discuss the most commonly used parameters and refer the reader to the help files for more
information. Note that all of the parameters are optional except FileName.

FileName is the file name of the workbook to be opened. To open the workbook in read-only
mode, set the ReadOnly parameter to True.

If a password is required to open the workbook, the Password parameter should be set to this
password. If a password is required but you do not specify the password, Excel will ask for it.

The AddToMru parameter should be set to True to add this workbook to the list of recently used
files. The default value is False.

17.1.6 OpenText Method

This method will load a text file as a new workbook. The method will parse the text data and place
it in a single worksheet. The rather complex syntax is:

WorkbooksObject.OpenText(Filename, Origin, StartRow, _
 DataType, TextQualifier, ConsecutiveDelimiter, Tab, _
 Semicolon, Comma, Space, Other, OtherChar, FieldInfo)

Note first that all of the parameters to this method are optional except the FileName parameter.

The Filename parameter specifies the filename of the text file to be opened.

The Origin parameter specifies the origin of the text file and can be one of the following
XlPlatform constants:

Enum XlPlatform
 xlMacintosh = 1
 xlWindows = 2
 xlMSDOS = 3
End Enum

Note that the xlWindows value specifies an ANSI text file, whereas the xlMSDOS constant
specifies an ASCII file. If this argument is omitted, the current setting of the File Origin option in
the Text Import Wizard will be used.

The StartRow parameter specifies the row number at which to start parsing text from the text file.
The default value is 1.

The optional DataType parameter specifies the format of the text in the file and can be one of the
following XlTextParsingType constants:

Enum XlTextParsingType
 xlDelimited = 1 ' Default
 xlFixedWidth = 2
End Enum

 197

The TextQualifier parameter is the text qualifier. It can be one of the following
XlTextQualifier constants:

Enum XlTextQualifier
 xlTextQualifierNone = -4142
 xlTextQualifierDoubleQuote = 1 ' Default
 xlTextQualifierSingleQuote = 2
End Enum

The ConsecutiveDelimiter parameter should be set to True for Excel to consider
consecutive delimiters as one delimiter. The default value is False.

There are several parameters that require that DataType be xlDelimited. When any one of
these parameters is set to True, it indicates that Excel should use the corresponding character as
the text delimiter. They are described here (all default values are False):

Tab

Set to True to use the tab character as the delimiter.

Semicolon

Set to True to use a semicolon as the delimiter.

Comma

Set to True to use a comma as the delimiter.

Space

Set to True to use a space as the delimiter.

Other

Set to True to use a character that is specified by the OtherChar argument as the
delimiter.

When Other is True, OtherChar specifies the delimiter character. If OtherChar contains
more than one character, only the first character is used.

The FieldInfo parameter is an array containing parse information for the individual source
columns. The interpretation of FieldInfo depends on the value of DataType.

When DataType is xlDelimited, the FieldInfo argument should be an array whose size is
the same as or smaller than the number of columns of converted data. The first element of a two-
element array is the column number (starting with the number 1), and the second element is one of
the following numbers that specifies how the column is parsed:

Value Description
1 General
2 Text
3 MDY date
4 DMY date

TE
AM
FL
Y

Team-Fly®

 198

5 YMD date
6 MYD date
7 DYM date
8 YDM date
9 Skip the column

If a two-element array for a given column is missing, then the column is parsed with the General
setting. For instance, the following value for FieldInfo causes the first column to be parsed as
text and the third column to be skipped:

Array(Array(1, 2), Array(3, 9))

All other columns will be parsed as general data.

To illustrate, consider a text file with the following contents:

"John","Smith","Serial Record",1/2/98
"Fred","Gwynn","Serials Order Dept",2/2/98
"Mary","Davis","English Dept",3/5/98
"David","Johns","Chemistry Dept",4/4/98

The code:

Workbooks.OpenText _
 FileName:="d:\excel\temp.txt", _
 Origin:=xlMSDOS, _
 StartRow:=1, _
 DataType:=xlDelimited, _
 TextQualifier:=xlTextQualifierDoubleQuote, _
 ConsecutiveDelimiter:=True, _
 Comma:=True, _
 FieldInfo:=Array(Array(1, 2), _
 Array(2, 2), Array(3, 2), Array(4, 6))

produces the worksheet shown in Figure 17-2. Note that the cells in column D are formatted as
dates.

Figure 17-2. A comma-delimited text file opened in Excel

On the other hand, if DataType is xlFixedWidth, the first element of each two-element array
specifies the starting character position in the column (0 being the first character) and the second
element specifies the parse option (1-9) for the resulting column, as described earlier.

To illustrate, consider the text file whose contents are as follows:

0-125-689
2-523-489
3-424-664

 199

4-125-160

The code:

Workbooks.OpenText _
 FileName:="d:\excel\temp.txt", _
 Origin:=xlMSDOS, _
 StartRow:=1, _
 DataType:=xlFixedWidth, _
 FieldInfo:=Array(Array(0, 2), _
 Array(1, 9), Array(2, 2), Array(5, 9), _
 Array(6, 2))

produces the worksheet in Figure 17-3. (Note how we included arrays to skip the hyphens.)

Figure 17-3. A fixed-width text file opened in Excel

Finally, it is important to observe that the text file is opened in Excel, but not converted to an
Excel workbook file. To do so, we can invoke the SaveAs method, as in:

Application.ActiveSheet.SaveAs _
 FileName:="d:\excel\temp.xls", _
 FileFormat:=xlWorkbookNormal

17.2 The Workbook Object

A Workbook object represents an open Excel workbook. As we have discussed, Workbook
objects are stored in a Workbooks collection.

The Workbook object has a total of 103 properties and methods, as shown in Table 17-1.

Table 17-1. Members of the Workbook object
_CodeName FullName RefreshAll
_PrintOut<v9> FullNameURLEncoded<v10> RejectAllChanges
_Protect<v10> HasMailer ReloadAs<v9>
_ReadOnlyRecommended<v10> HasPassword RemovePersonalInformation<v10>
_SaveAs<v10> HasRoutingSlip RemoveUser
AcceptAllChanges HighlightChangesOnScreen Reply
AcceptLabelsInFormulas HighlightChangesOptions ReplyAll
Activate HTMLProject<v9> ReplyWithChanges<v10>
ActiveChart IsAddin ResetColors
ActiveSheet IsInplace RevisionNumber
AddToFavorites KeepChangeHistory Route

 200

Application Keywords Routed
Author LinkInfo RoutingSlip
AutoUpdateFrequency LinkSources RunAutoMacros
AutoUpdateSaveChanges ListChangesOnNewSheet Save
BreakLink<v10> Mailer SaveAs
BuiltinDocumentProperties MergeWorkbook SaveCopyAs
CalculationVersion<v9> Modules Saved
CanCheckIn<v10> MultiUserEditing SaveLinkValues
ChangeFileAccess Name sblt<v9>
ChangeHistoryDuration Names SendForReview<v10>
ChangeLink NewWindow SendMail
Charts OnSave SendMailer
CheckIn<v10> OnSheetActivate SetLinkOnData
Close OnSheetDeactivate SetPasswordEncryptionOptions<v10>
CodeName OpenLinks Sheets
Colors Parent ShowConflictHistory
CommandBars Password<v10> ShowPivotTableFieldList<v10>
Comments PasswordEncryptionAlgorithm<v10> SmartTagOptions<v10>
ConflictResolution PasswordEncryptionFileProperties<v10> Styles
Container PasswordEncryptionKeyLength<v10> Subject
CreateBackup PasswordEncryptionProvider<v10> TemplateRemoveExtData
Creator Path Title
CustomDocumentProperties PersonalViewListSettings Unprotect
CustomViews PersonalViewPrintSettings UnprotectSharing
Date1904 PivotCaches UpdateFromFile
DeleteNumberFormat PivotTableWizard UpdateLink
DialogSheets Post UpdateLinks<v10>
DisplayDrawingObjects PrecisionAsDisplayed UpdateRemoteReferences
Dummy16<v10> PrintOut UserControl
Dummy17<v10> PrintPreview UserStatus
EnableAutoRecover<v10> Protect VBASigned<v9>
EndReview<v10> ProtectSharing VBProject
EnvelopeVisible<v9> ProtectStructure WebOptions<v9>
Excel4IntlMacroSheets ProtectWindows WebPagePreview<v9>
Excel4MacroSheets PublishObjects<v9> Windows
ExclusiveAccess PurgeChangeHistoryNow Worksheets
FileFormat ReadOnly WritePassword<v10>
FollowHyperlink ReadOnlyRecommended WriteReserved
ForwardMailer RecheckSmartTags<v10> WriteReservedBy

Several of the members listed in Table 17-1 exist solely to return the children of the Workbook
object. The children are shown in Figure 17-4.

Figure 17-4. Children of the Workbook object

 201

Table 17-2 gives the members of the Workbook object that return children.

Table 17-2. Members of Workbook that return children
Name ReturnType

ActiveChart Chart
Application Application
Charts Sheets
CustomViews CustomViews
DialogSheets Sheets
Excel4IntlMacroSheets Sheets
Excel4MacroSheets Sheets
Mailer Mailer
Modules Sheets
Names Names
NewWindow Window
PivotCaches PivotCaches
PublishObjects PublishObjects
RoutingSlip RoutingSlip
Sheets Sheets
SmartTagOptions SmartTagOptions
Styles Styles
WebOptions WebOptions
Windows Windows
Worksheets Sheets

There are a few items worth noting about Table 17-2. First, the ActiveSheet property may return
either a Chart object or a Worksheet object, depending upon what type of object is currently active.

Second, the Charts, Sheets, and Worksheets properties all return a (different) Sheets collection. In
particular, the Charts object returns the Sheets collection that contains all of the chart sheets in the
workbook. (This does not include charts that are embedded in worksheets.) The Worksheets
property returns the Sheets collection of all worksheets in the workbook. Finally, the Sheets
property returns the Sheets collection of all worksheets and chart sheets. This is a relatively rare
example of a collection that contains objects of more than one type. Note that there is no Sheet
object in the Excel object model.

 202

Let us look at a few of the more commonly used members from Table 17-1.

17.2.1 Activate Method

This method activates the workbook. The syntax is straightforward, as in:

Workbooks("MyWorkBook").Activate

Note that Workbooks is global, so we do not need to qualify it with the Application keyword.

17.2.2 Close Method

The Close method closes the workbook. Its syntax is:

WorkbookObject.Close(SaveChanges, FileName, RouteWorkbook)

Note that the Close method of the Workbook object has three parameters, unlike the Close method
of the Workbooks object, which has none.

The optional SaveChanges parameter is used to save changes to the workbook before closing. In
particular, if there are no changes to the workbook, the argument is ignored. It is also ignored if
the workbook appears in other open windows. On the other hand, if there are changes to the
workbook and it does not appear in any other open windows, the argument takes effect.

In this case, if SaveChanges is True, the changes are saved. If there is not yet a filename
associated with the workbook (that is, if it has not been previously saved), then the name given in
FileName is used. If FileName is also omitted, Excel will prompt the user for a filename. If
SaveChanges is False, changes are not saved. Finally, if the SaveChanges argument is
omitted, Excel will display a dialog box asking whether the changes should be saved. In short, this
method behaves as you would hope.

The optional RouteWorkbook refers to routing issues; we refer the interested reader to the Excel
VBA help file for more information.

It is important to note that the Close method checks the Saved property of the workbook to
determine whether or not to prompt the user to save changes. If we set the Saved property to True,
then the Close method will simply close the workbook with no warning and without saving any
unsaved changes.

17.2.3 DisplayDrawingObjects Property

This property returns or sets a value indicating how shapes are displayed. It can be one of the
following XlDisplayShapes constants:

Enum XlDisplayShapes
 XlDisplayShapes = -4104
 xlPlaceholders = 2
 xlHide = 3
End Enum

17.2.4 FileFormat Property (Read-Only Long)

This property returns the file format or type of the workbook. It can be one of the following
XlFileFormat constants:

 203

Enum XlFileFormat
 xlAddIn = 18
 xlCSV = 6
 xlCSVMac = 22
 xlCSVMSDOS = 24
 xlCSVWindows = 23
 xlCurrentPlatformText = -4158
 xlDBF2 = 7
 xlDBF3 = 8
 xlDBF4 = 11
 xlDIF = 9
 xlExcel2 = 16
 xlExcel2FarEast = 27
 xlExcel3 = 29
 xlExcel4 = 33
 xlExcel4Workbook = 35
 xlExcel5 = 39
 xlExcel7 = 39
 xlExcel9795 = 43
 xlHtml = 44
 xlIntlAddIn = 26
 xlIntlMacro = 25
 xlSYLK = 2
 xlTemplate = 17
 xlTextMac = 19
 xlTextMSDOS = 21
 xlTextPrinter = 36
 xlTextWindows = 20
 xlUnicodeText = 42
 xlWebArchive = 45
 xlWJ2WD1 = 14
 xlWJ3 = 40
 xlWJ3FJ3 = 41
 xlWK1 = 5
 xlWK1ALL = 31
 xlWK1FMT = 30
 xlWK3 = 15
 xlWK3FM3 = 32
 xlWK4 = 38
 xlWKS = 4
 xlWorkbookNormal = -4143
 xlWorks2FarEast = 28
 xlWQ1 = 34
 xlXMLSpreadsheet = 46
End Enum

17.2.5 Name, FullName, and Path Properties

The Name property returns the name of the workbook, the Path property returns the path to the
workbook file, and FullName returns the fully qualified (path and filename) of the workbook file.
All of these properties are read-only.

Note that using the Path property without a qualifier is equivalent to:

Application.Path

and thus returns the path to Excel itself (rather than to a workbook).

17.2.6 HasPassword Property (Read-Only Boolean)

 204

This read-only property is True if the workbook has password protection. Note that a password
can be assigned as one of the parameters to the SaveAs method.

17.2.7 PrecisionAsDisplayed Property (R/W Boolean)

When this property is True, calculations in the workbook will be done using only the precision of
the numbers as they are displayed, rather than as they are stored. Its default value is False;
calculations are based on the values of numbers as they are stored.

17.2.8 PrintOut Method

The PrintOut method prints an entire workbook. (This method applies to a host of other objects as
well, such as Range, Worksheet, and Chart.) The syntax is:

WorkbookObject.PrintOut(From, To, Copies, _
 Preview, ActivePrinter, PrintToFile, Collate)

Note that all of the parameters to this method are optional.

The From parameter specifies the page number of the first page to print, and the To parameter
specifies the last page to print. If omitted, the entire object (range, worksheet, etc.) is printed.

The Copies parameter specifies the number of copies to print. The default is 1.

Set Preview to True to invoke print preview rather than printing immediately. The default is
False.

ActivePrinter sets the name of the active printer. On the other hand, setting PrintToFile
to True causes Excel to print to a file. Excel will prompt the user for the name of the output file.
(Unfortunately, there is no way to specify the name of the output file in code.)

The Collate parameter should be set to True to collate multiple multipage copies.

17.2.9 PrintPreview Method

This method invokes Excel's print preview feature. Its syntax is:

WorkbookObject.PrintPreview

Note that the PrintPreview method applies to the same set of objects as the PrintOut method.

17.2.10 Protect Method

This method protects a workbook so that it cannot be modified. Its syntax is:

WorkbookObject.Protect(Password, Structure, Windows)

The method also applies to charts and worksheets, with a different syntax.

The optional Password parameter specifies a password (as a case-sensitive string). If this
argument is omitted, the workbook will not require a password to unprotect it.

 205

Set the optional Structure parameter to True to protect the structure of the workbook—that is,
the relative position of the sheets in the workbook. The default value is False.

Set the optional Windows parameter to True to protect the workbook windows. The default is
False.

17.2.11 ReadOnly Property (Read-Only Boolean)

This property is True if the workbook has been opened as read-only.

17.2.12 RefreshAll Method

This method refreshes all external data ranges and pivot tables in the workbook. The syntax is:

WorkbookObject.RefreshAll

17.2.13 Save Method

This method simply saves any changes to the workbook. Its syntax is:

WorkbookObject.Save

17.2.14 SaveAs Method

This method saves changes to a workbook in the specified file. The syntax is:

expression.SaveAs(Filename, FileFormat, Password, WriteResPassword, _
 ReadOnlyRecommended, CreateBackup, AccessMode, ConflictResolution,
_
 AddToMru, TextCodePage, TextVisualLayout)

The Filename parameter specifies the filename to use for the newly saved disk file. If a path is
not included, Excel will use the current folder.

The FileFormat parameter specifies the file format to use when saving the file. Its value is one
of the XlFileFormat constants described in our discussion of the FileFormat property.

The Password parameter specifies the password to use when saving the file and can be set to any
case-sensitive string of up to 15 characters.

The WriteResPassword is a string that specifies the write-reservation password for this file. If
a file is saved with a write-reservation password and this password is not supplied when the file is
next opened, the file will be opened as read-only.

We can set the ReadOnlyRecommended parameter to True to display a message when the file
is opened, recommending that the file be opened as read-only.

Set the CreateBackup parameter to True to create a backup file.

The AccessMode and ConflictResolution parameters refer to sharing issues. We refer the
interested reader to the Excel VBA help file for details.

 206

Set the AddToMru parameter to True to add the workbook to the list of recently used files. The
default value is False.

The remaining parameters are not used in the U.S. English version of Excel.

17.2.15 SaveCopyAs Method

This method saves a copy of the workbook to a file but does not modify the open workbook itself.
The syntax is:

WorkbookObject.SaveCopyAs(Filename)

where Filename specifies the filename for the copy of the original file.

17.2.16 Saved Property (R/W Boolean)

This property is True if no changes have been made to the specified workbook since it was last
saved. Note that this property is read/write, which means we can set the property to True even if
the workbook has been changed since it was last saved. As discussed earlier, we can set this
property to True, then close a modified workbook without being prompted to save the current
changes.

17.3 Children of the Workbook Object

Figure 17-5 shows the children of the Workbook object. (This is a repeat of Figure 17-4.)

Figure 17-5. Children of the Workbook object

Let us take a quick look at some of these children. (We will discuss the Window, Worksheet, and
WorkbookEvents objects later in the book.)

17.3.1 The CustomView Object

The CustomViews property returns the CustomViews collection. Each CustomView object in this
collection represents a custom view of the workbook. CustomView objects are pretty
straightforward, so we will just consider an example. Look at the sheet shown in Figure 17-6.

 207

Figure 17-6. Example of the CustomView object

Now suppose we use the Autofilter command to filter on the year, as shown in Figure 17-7.

Figure 17-7. A filtered view

The following code will give this custom view the name View1998:

ThisWorkbook.CustomViews.Add "View1998"

Now we can display this view at any time with the code:

ThisWorkbook.CustomViews!View1998.Show

or:

strView = "View1998"
ActiveWorkbook.CustomViews(strView).Show

17.3.2 The Names Collection

As with the Application object, the Workbook object has a Names property that returns a Names
collection. This collection represents the Name objects associated with the workbook. For details
on Name objects, see Chapter 16.

17.3.3 The Sheets Collection

The Sheets property returns a Sheets collection that contains a Worksheet object for each
worksheet and a Chart object for each chartsheet in the workbook. We will discuss Worksheet
objects and Chart objects later in the book.

17.3.4 The Styles Collection and the Style Object

A Style object represents a set of formatting options for a range. Each workbook has a Styles
collection containing all Style objects for the workbook.

TE
AM
FL
Y

Team-Fly®

 208

To apply a style to a range, we simply write:

RangeObject.Style = StyleName

where StyleName is the name of a style.

To create a Style object, use the Add method, whose syntax is:

WorkbookObject.Add(Name, BasedOn)

Note that the Add method returns the newly created Style object.

The Name parameter specifies the name of the style, and the optional BasedOn parameter
specifies a Range object that refers to a cell whose style is used as a basis for the new style. If this
argument is omitted, the newly created style is based on the Normal style.

Note that, according to the documentation, if a style with the specified name already exists, the
Add method will redefine the existing style based on the cell specified in BasedOn. (However, on
my system, Excel issues an error message instead, so you should check this carefully.)

The properties of the Style object reflect the various formatting features, such as font name, font
size, number format, alignment, and so on. There are also several built-in styles, such as Normal,
Currency, and Percent. These built-in styles can be found in the Style name box of the Style dialog
box (under the Format menu).

To illustrate, the following code creates a style and then applies it to an arbitrary range of the
current worksheet:

Dim st As Style

' Delete style if it exists
For Each st In ActiveWorkbook.Styles
 If st.Name = "Bordered" Then st.Delete
Next

' Create style
With ActiveWorkbook.Styles.Add(Name:="Bordered")
 .Borders(xlTop).LineStyle = xlDouble
 .Borders(xlBottom).LineStyle = xlDouble
 .Borders(xlLeft).LineStyle = xlDouble
 .Borders(xlRight).LineStyle = xlDouble
 .Font.Bold = True
 .Font.Name = "arial"
 .Font.Size = 36
End With

' Apply style
Application.ActiveSheet.Range("A1:B3").Style = "Bordered"

17.4 Example: Sorting Sheets in a Workbook

Let us add a new utility to our SRXUtils application. If you work with workbooks that contain
many sheets (worksheets and chartsheets), then you may want to sort the sheets in alphabetical
order.

 209

The basis for the code to order the sheets is the Move method of the Worksheet and Chart objects.
Its syntax is:

SheetsObject.Move(Before, After)

Of course, to use this method effectively, we need a sorted list of sheet names.

The first step is to augment the DataSheet worksheet for SRXUtils by adding a new row for the
new utility, as shown in Figure 17-8. (The order of the rows in this DataSheet is based on the
order in which we want the items to appear in the custom menu.)

Figure 17-8. Augmenting the DataSheet worksheet

Next, we insert a new code module called basSortSheets, which will contain the code to
implement this utility.

We shall include two procedures in basSortSheets. The first procedure verifies that the user
really wants to sort the sheets. If so, it calls the second procedure, which does the work. The first
procedure is shown in Example 17-1. It displays the dialog box shown in Figure 17-8.

Example 17-1. The SortSheets Procedure

Sub SortSheets()
 If MsgBox("Sort the sheets in this workbook?", _
 vbOKCancel + vbQuestion, "Sort Sheets") = vbOK Then
 SortAllSheets
 End If
End Sub

The action takes place in the procedure shown in Example 17-2. The procedure first collects the
sheet names in an array, then places the array in a new worksheet. It then uses the Sort method
(applied to a Range object, discussed in Chapter 19) to sort the names. Then, it refills the array
and finally, reorders the sheets using the Move method.

Example 17-2. The SortAllSheets Procedure

Sub SortAllSheets()
 ' Sort worksheets

 Dim wb As Workbook
 Dim ws As Worksheet
 Dim rng As Range
 Dim cSheets As Integer
 Dim sSheets() As String
 Dim i As Integer

 Set wb = ActiveWorkbook

 ' Get true dimension for array
 cSheets = wb.Sheets.Count
 ReDim sSheets(1 To cSheets)

 210

 ' Fill array with worksheet names
 For i = 1 To cSheets
 sSheets(i) = wb.Sheets(i).Name
 Next

 ' Create new sheet and put names in first column
 Set ws = wb.Worksheets.Add

 For i = 1 To cSheets
 ws.Cells(i, 1).Value = sSheets(i)
 Next

 ' Sort column
 ws.Columns(1).Sort Key1:=ws.Columns(1), _
 Order1:=xlAscending

 ' Refill array
 For i = 1 To cSheets
 sSheets(i) = ws.Cells(i, 1).Value
 Next

 ' Delete extraneous sheet
 Application.DisplayAlerts = False
 ws.Delete
 Application.DisplayAlerts = True

 ' Reorder sheets by moving each one to the end
 For i = 1 To cSheets
 wb.Sheets(sSheets(i)).Move After:=wb.Sheets(cSheets)
 Next
End Sub

Once the code is inserted, you can save the SRXUtils.xls workbook as an add-in. Don't forget to
unload the add-in first, or Excel will complain.

 211

Chapter 18. The Worksheet Object
A Worksheet object represents an Excel worksheet. Figure 18-1 shows that portion of the Excel
object model that relates directly to worksheets.

Figure 18-1. The Worksheet object

18.1 Properties and Methods of the Worksheet Object

Table 18-1 shows the members of the Worksheet object.

Table 18-1. Members of the Worksheet Object
_CheckSpelling<v9> DropDowns Previous
_CodeName EnableAutoFilter PrintOut
_DisplayRightToLeft<v9> EnableCalculation PrintPreview
_Evaluate EnableOutlining Protect
_PasteSpecial<v10> EnablePivotTable ProtectContents
_PrintOut<v9> EnableSelection ProtectDrawingObjects
_Protect<v10> Evaluate Protection<v10>
_SaveAs<v10> FilterMode ProtectionMode
Activate GroupBoxes ProtectScenarios
Application GroupObjects QueryTables
Arcs HPageBreaks Range
AutoFilter Hyperlinks Rectangles
AutoFilterMode Index ResetAllPageBreaks
Buttons Labels Rows
Calculate Lines SaveAs
Cells ListBoxes Scenarios

 212

ChartObjects MailEnvelope<v10> Scripts<v9>
CheckBoxes Move ScrollArea
CheckSpelling Name ScrollBars
CircleInvalid Names Select
CircularReference Next SetBackgroundPicture
ClearArrows OLEObjects Shapes
ClearCircles OnCalculate ShowAllData
CodeName OnData ShowDataForm
Columns OnDoubleClick SmartTags<v10>
Comments OnEntry Spinners
ConsolidationFunction OnSheetActivate StandardHeight
ConsolidationOptions OnSheetDeactivate StandardWidth
ConsolidationSources OptionButtons Tab<v10>
Copy Outline TextBoxes
Creator Ovals TransitionExpEval
CustomProperties<v10> PageSetup TransitionFormEntry
Delete Parent Type
DisplayAutomaticPageBreaks Paste Unprotect
DisplayPageBreaks PasteSpecial UsedRange
DisplayRightToLeft Pictures Visible
DrawingObjects PivotTables VPageBreaks
Drawings PivotTableWizard

Many of the members in Table 18-1 exist solely to return the children of the Worksheet object.
These members and their return types are shown in Table 18-2.

Table 18-2. Members That Return Objects
Name ReturnType

Application Application
AutoFilter AutoFilter
Cells Range
CircularReference Range
Columns Range
Comments Comments
CustomProperties CustomProperties
HPageBreaks HPageBreaks
Hyperlinks Hyperlinks
Names Names
Outline Outline
PageSetup PageSetup
PivotTableWizard PivotTable
Protection Protection
QueryTables QueryTables
Range Range
Rows Range
Shapes Shapes

 213

SmartTags SmartTags
Tab Tab
UsedRange Range
VPageBreaks VPageBreaks

Let us discuss some of the members in Table 18-1.

Activate method

This method activates the worksheet, as in:

ThisWorkbook.Worksheets("Sheet1").Activate
AutoFilterMode property

This property is True if the AutoFilter drop-down arrows are currently displayed on the
worksheet. (Also see the FilterMode property, discussed later in this section). Note that
we can set this property to False to remove the arrows, but we cannot set it to True. To
display the AutoFilter arrows, we use the AutoFilter method, which is discussed in
Chapter 19.

Calculate method

This method calculates all cells in the worksheet. (Note that the method applies to
workbooks and specific ranges as well.) The syntax is simply:

WorksheetObject.Calculate

CodeName property

This property returns the code name for the worksheet (it also applies to workbook and
chart objects). The code name can be used in place of any expression that returns the
worksheet. The code name can also be set in the Properties window. It is referred to as
(name) to distinguish it from the Name property.

To illustrate, suppose that we have a worksheet whose code name is SheetCodeName and
whose name is SheetName. Then the following are equivalent:

Worksheets("SheetName").Activate
SheetCodeName.Activate

Note that when we first create a worksheet, the name and code name are the same. The
two names can then be changed independently. However, the code name can be changed
only at design time; it cannot be changed with code at run time.

Copy method

The Copy method has multiple syntaxes. To copy a worksheet, we use the syntax:

WorksheetObject.Copy(Before, After)

where the optional Before parameter is the sheet before which the copied sheet will be
placed and the After parameter is the sheet after which the copied sheet will be placed.
(Only one of Before or After is allowed at one time.)

 214

Note that if neither Before nor After is specified, Excel will copy the worksheet to a
new workbook.

To illustrate, the following code copies the active worksheet and places the copy at the
end of the list of current worksheets:

ActiveSheet.Copy After:=Worksheets(Worksheets.Count)

Delete method

This method simply deletes the worksheet. The syntax is:

WorksheetObject.Delete

EnableCalculation property (R/W Boolean)

When this property is True, Excel automatically recalculates the worksheet when
necessary. Otherwise, the user must request a recalculation. Note that when this property
is first set to True, Excel will do a recalculation.

Evaluate method

The Evaluate method converts an Excel name to an object or a value. We discussed the
details of this method in Chapter 16.

FilterMode property (Read-Only Boolean)

This property is True if the worksheet is in filter mode. Thus, for instance, if the
AutoFilter arrows are displayed but no filtering has taken place, then AutoFilterMode is
True whereas FilterMode is False. Once filtering is actually performed, then
FilterMode is True. Put another way, the FilterMode property indicates whether there are
hidden rows due to filtering.

Move method

The Move method moves the worksheet to another location in the workbook. The syntax
is:

WorksheetObject.Move(Before, After)

where the parameters have the same meaning as in the Copy method, discussed earlier in
this section.

Name property (R/W String)

This property returns or sets the name of the worksheet, as a string.

Names property

This property returns the Names collection representing all the worksheet-specific names.
For more on Name objects, see Chapter 16.

PasteSpecial method

 215

This method pastes the contents of the Clipboard onto the worksheet, using a specified
format. The most commonly used syntax is simply:

WorksheetObject.PasteSpecial(Format)

where Format specifies the format of the data to paste, as a string. For instance, the
following code pastes data in Word document format (assuming that it exists on the
Clipboard):

ActiveSheet.PasteSpecial "Microsoft Word Document"

To learn the syntax of other Format strings, you can copy the desired object and then
check Excel's Paste Special dialog box.

Note that we must select the destination range before using the PasteSpecial method.

PrintOut method

The PrintOut method prints a worksheet. (The method also applies to Workbook and
Range objects.) The syntax is:

WorksheetObject.PrintOut(From, To, Copies, _
 Preview, ActivePrinter, PrintToFile, Collate)

Note that all of the parameters to this method are optional.

The From parameter specifies the page number of the first page to print, and the To
parameter specifies the last page to print. If omitted, the entire object (range, worksheet,
etc.) is printed.

The Copies parameter specifies the number of copies to print. The default is 1.

Set Preview to True to invoke print preview rather than printing immediately. The
default is False.

ActivePrinter sets the name of the active printer.

Setting PrintToFile to True causes Excel to print to a file. Excel will prompt the user
for the name of the output file. (Unfortunately, there is no way to specify the name of the
output file in code.)

The Collate parameter should be set to True to collate multiple multipage copies.

PrintPreview method

This method invokes Excel's print preview feature for the worksheet. Its syntax is:

WorksheetObject.PrintPreview

Protect method

This method protects a worksheet from modification. Its syntax is:

WorksheetObject.Protect(Password, DrawingObjects, _

 216

 Contents, Scenarios, UserInterfaceOnly)

(Note that the syntax varies from the same method of the Workbook object.)

The optional Password parameter is a string that specifies a case-sensitive password for
the worksheet.

The optional DrawingObjects parameter should be set to True to protect shapes. The
default value is False.

The optional Contents parameter should be set to True, the default, to protect the cells
in the worksheet.

The optional Scenarios parameter should be set to True, the default, to protect
scenarios.

The Protect method allows independent protection of cells from changes by the user and
by code. In particular, if UserInterfaceOnly is set to True, then the user cannot
make changes to the worksheet, but changes can be made through code. On the other
hand, if UserInterfaceOnly is False (the default), then neither the user nor the
programmer can alter the worksheet. Note that it is not the macros themselves that are
protected, as the help documentation seems to indicate. Rather, the worksheet is protected
from the effect of the macros.

Note also that if the UserInterfaceOnly argument is set to True when protecting a
worksheet and then the workbook is saved, the entire worksheet (not just the interface)
will be protected when the workbook is reopened. To unprotect the worksheet but
reenable user interface protection, we must reapply the Protect method with
UserInterfaceOnly set to True.

ProtectionMode property (Read-Only)

This property is True if user-interface-only protection is turned on (via the Protect
method). Its default value is False.

SaveAs method

This method saves changes to the worksheet in a different file. Its syntax is:

WorksheetObject.SaveAs(Filename, FileFormat, Password, _
 WriteResPassword, ReadOnlyRecommended, CreateBackup, _
 AddToMru, TextCodePage, TextVisualLayout)

The Filename parameter specifies the filename to use for the newly saved disk file. If a
path is not included, Excel will use the current folder.

The FileFormat parameter specifies the file format to use when saving the file. Its
value is one of the XlFileFormat constants described in our discussion of the
FileFormat property in Chapter 17.

The Password parameter specifies the password to use when saving the file and can be
set to any case-sensitive string of up to 15 characters.

 217

The WriteResPassword parameter is a string that specifies the write-reservation
password for this file. If a file is saved with a write-reservation password and this
password is not supplied when the file is next opened, the file will be opened as read-only.

We can set the ReadOnlyRecommended parameter to True to display a message when
the file is opened, recommending that the file be opened as read-only.

Set the CreateBackup parameter to True to create a backup file.

Set the AddToMru parameter to True to add the workbook to the list of recently used
files. The default value is False.

The remaining parameters are not used in the U.S. English version of Excel.

ScrollArea property

This property returns or sets the range where scrolling and cell selection is allowed. The
value should be an A1-style range reference. For instance, the code:

ActiveSheet.ScrollArea = "A1:B200"

allows cell selection and scrolling only within the range A1:B200. To remove any
restrictions on cell selection and scrolling, set this property to an empty string, as in:

ActiveSheet.ScrollArea = ""

Note that setting the scroll area has nothing to do with freezing panes.

Select method

This method selects the worksheet. This is not the same as making it active through the
Activate method. In fact, several sheets can be selected at one time (to delete them, for
instance). The syntax is:

WorksheetObject.Select(Replace)

where Replace is set to True to replace the current selection with the specified
worksheet, rather than including the worksheet in the current selection.

SetBackgroundPicture method

This method sets the background graphic for a worksheet (or chart). The syntax is:

WorksheetObject.SetBackgroundPicture(FileName)

where FileName is the name of the graphic file to use for the background.

ShowDataForm method

This method displays the data form associated with the worksheet. Note that for the
ShowDataForm method to work without generating an error, Excel must be able to
determine that the current selection is part of a list. For information on the use of data
forms, see the Excel 8 help topic "Guidelines for creating a list on a worksheet" or the
Excel 9 help topic "About data forms."

TE
AM
FL
Y

Team-Fly®

 218

The syntax of this method is simply:

WorksheetObject.ShowDataForm

Note that the procedure in which the ShowDataForm method is called will pause while
the data form is displayed. When the data form is closed, the procedure will resume at the
line following the call to ShowDataForm. (In other words, the data form is modal.)

Figure 18-2 illustrates the data form for a worksheet.

Figure 18-2. A data form

Unprotect method

This method removes protection from a worksheet. It has no effect if the worksheet is not
protected. The syntax is:

WorksheetObject.Unprotect(Password)

where Password is the password used to protect the worksheet (if any). If we omit this
argument for a sheet that is password-protected, Excel will prompt the user for the
password.

UsedRange property

This ostensibly very useful property returns a Range object that represents the smallest
rectangular region that encompasses any currently used cells.

Unfortunately, the UsedRange property has had a rather rocky history in past versions of
Excel, and my experience is that the problems have not been completely resolved in Excel
97. (Unfortunately, I know of no single test to check the reliability of this property, and I
have not yet used Excel 9 long enough to make a definitive statement about this version.)
Thus, I strongly suggest that you use this method with caution, for it sometimes seems to
include cells that once had contents but have since been completely cleared.

 219

At the end of Chapter 19, we will give an example function that can be used to compute
the correct used range.

Visible property

This property returns True if the worksheet is visible and False otherwise. However, in
addition to setting this property to True or False, we can also set this property to
xlVeryHidden, in which case the only way to make the worksheet visible is by setting
this property to True in code. Hence, the user cannot make the worksheet visible.

18.2 Children of the Worksheet Object

Let us discuss a few of the children of the Worksheet object. Others will be discussed in later
chapters.

Comments

The Comments property returns the Comments collection, which consists of all Comment
objects (comments) in the worksheet. We will discuss the Comment object in Chapter 19.

The Names collection

We discussed the Names collection and Name objects in Chapter 16, and so we refer the
reader to that earlier discussion.

The Outline object

To illustrate Excel outlining using code, consider the worksheet shown in Figure 18-3.
Our goal is to produce the outline in Figure 18-4.

Figure 18-3. Illustrating Excel outlines

Figure 18-4. The end result

 220

The first step in obtaining the outline in Figure 18-4 is to set the properties of the Outline
object for this worksheet. The Outline property of the Worksheet object returns an
Outline object, so we begin with:

With ActiveSheet.Outline
 .SummaryRow = xlBelow
 .AutomaticStyles = False
End With

Setting the SummaryRow property to xlBelow tells Excel that our summary rows (the
subtotal and total rows) lie below the detailed data. Thus, Excel will place the
expansion/contraction buttons (the small buttons displaying minus signs in Figure 18-4) at
the appropriate rows.

Setting AutomaticStyles to False prevents Excel from tampering with our formatting.
Otherwise, Excel would remove the boldfacing on the summary rows.

As you can see in Figure 18-4, we want to make the following groupings:

Rows 2-4
Rows 7-9
Rows 2-11

For this, we use the Group method of the Range object. In particular, the following code
accomplishes the desired grouping, resulting in Figure 18-4:

With ActiveSheet
 .Rows("2:4").Group
 .Rows("7:9").Group
 .Rows("2:11").Group
End With

Note that the SummaryColumn property of the Outline object governs the location of the
expansion/contraction buttons when columns grouped.

To expand or collapse levels, the user can click the small numbered buttons at the top of
the leftmost column in Figure 18-4. Clicking on button number X results in all levels
above X being completely expanded and all levels below and including X being
completely contracted. Thus, all rows at level X and above are made visible, but no levels
below X are visible.

 221

The same thing can be accomplished using the ShowLevels method of the Outline object,
whose syntax is:

OutlineObject.ShowLevels(RowLevels, ColumnLevels)

For instance, the code:

ActiveSheet.Outline.ShowLevels 2

is equivalent to clicking on the button labeled 2 and has the effect of showing all levels
above and including level 2, as pictured in Figure 18-5.

Figure 18-5. Outline collapsed to level 2

The PageSetup object

The PageSetup object represents the page formatting (such as margins and paper size) of
an Excel worksheet. Each of the page-formatting options is set by setting a corresponding
property of the PageSetup object.

The PageSetup property of the Worksheet object returns the worksheet's PageSetup object.

The properties and methods of the PageSetup object are shown in Table 18-3. (All of the
items in Table 18-3 are properties except the PrintQuality method.) Most of the members
in Table 18-3 are self-explanatory (and hold no real surprises), so we will not discuss
them.

Table 18-3. Members of the PageSetup Object
Application FitToPagesWide PrintErrors<v10>
BlackAndWhite FooterMargin PrintGridlines
BottomMargin HeaderMargin PrintHeadings
CenterFooter LeftFooter PrintNotes
CenterFooterPicture<v10> LeftFooterPicture<v10> PrintQuality
CenterHeader LeftHeader PrintTitleColumns
CenterHeaderPicture<v10> LeftHeaderPicture<v10> PrintTitleRows
CenterHorizontally LeftMargin RightFooter
CenterVertically Order RightFooterPicture<v10>
ChartSize Orientation RightHeader
Creator PaperSize RightHeaderPicture<v10>
Draft Parent RightMargin
FirstPageNumber PrintArea TopMargin
FitToPagesTall PrintComments Zoom

To illustrate, the following code sets some of the properties of the active worksheet:

 222

With ActiveSheet.PageSetup
 .LeftMargin = Application.InchesToPoints(1)
 .RightMargin = Application.InchesToPoints(1)
 .PrintTitleRows = "A1"
 .PaperSize = xlPaperLetter
End With

Note the use of the InchesToPoints function, which is required if we want to express
units in inches, since most of the formatting properties require measurement in points.
Referring to Figure 18-6, the PrintTitleRows property will cause the word Report, which
lies in cell A1, to appear on each page of the printout.

Figure 18-6. A worksheet and the PrintTitleRows property

18.3 Protection in Excel XP

Excel XP introduces some additional protection features, beginning with the Protection object,
which we discuss next.

18.3.1 The Protection Object

When you protect a worksheet, Excel permits you to specify that certain operations are still
permitted on unlocked cells. At the user level, this is done through the Protection dialog box. At
the programming level, it is done through the properties of the Protection object. Most of these
properties (listed below) are self-explanatory. Note that all of these properties except
AllowEditRanges are Boolean.

• AllowDeletingColumns
• AllowDeletingRows
• AllowEditRanges
• AllowFiltering
• AllowFormattingCells
• AllowFormattingColumns
• AllowFormattingRows
• AllowInsertingColumns
• AllowInsertingHyperlinks
• AllowInsertingRows
• AllowSorting
• AllowUsingPivotTables

 223

For example, if the AllowSorting property is True, then users can still sort unlocked cells in a
protected worksheet.

The AllowEditRanges property returns an AllowEditRanges object, discussed separately in the
text.

18.3.2 The AllowEditRange Object

The AllowEditRange object allows a specified range of cells on a worksheet to be password
protected from editing. Once a range has been protected in this way, and the entire worksheet has
been protected, any attempt at editing cells in that range will require the password.

Here is some code that assigns a password to a range on the active worksheet. It also demonstrates
the use of the AllowEditRanges collection.

Sub ProtectRange()
 Dim ws As Worksheet
 Dim i As Integer

 Set ws = Application.ActiveSheet

 ' Remove protection
 ws.Unprotect

 ' Delete all current protection ranges
 'MsgBox ws.Protection.AllowEditRanges.Count
 For i = 1 To ws.Protection.AllowEditRanges.Count
 Debug.Print ws.Protection.AllowEditRanges(i).Title
 ws.Protection.AllowEditRanges(i).Delete
 Next

 ' Add a protection range
 ws.Protection.AllowEditRanges.Add _
 Title:="Headings", _
 Range:=Range("A1:A4"), _
 Password:="hide"

 ' Protect sheet (else protection range is not enabled)
 ws.Protect
End Sub

The properties of the AllowEditRange object are:

Range

Returns or sets the range associated with the AllowEditRange object.

Title

Returns or sets the title (i.e. name) of the range associated with the AllowEditRange
object.

Users

Returns the collection of UserAccessObjects associated with the AllowEditRange object.
For more on this, see the section on the UserAccess object.

 224

The methods of the AllowEditRange object are:

ChangePassword

Changes the password associated with the AllowEditRange object.

Delete

Deletes the AllowEditRange object.

Unprotect

Unprotects the workbook.

18.3.3 The UserAccess Objects

UserAccess objects allow certain users to access a protected range without requiring the password.
For instance, if your username is steve, then the following code will allow you to access protected
ranges:

Sub AddUser()
 Dim ws As Worksheet
 Dim ua As UserAccess

 Set ws = Application.ActiveSheet

 ' NOTE: Sheet must be unprotected for this code to work!
 ws.Unprotect
 Set ua = ws.Protection.AllowEditRanges(1).Users.Add("steve", True)
End Sub

Note that the worksheet must be unprotected for this code to run without error.

The UserAccess object has but three members: the AllowEdit Boolean property, the read-only
Name property, and the Delete method.

The UserAccessList collection holds the current UserAccess objects.

18.4 Example: Printing Sheets

We can now implement the PrintSheets feature of our SRXUtils application. Recall that at the
present time, this Print utility, located in the Print.utl add-in, simply displays a message box. To
implement this feature, we want the utility to first display a dialog box, as shown in Figure 18-7.
The list box contains a list of all sheets in the active workbook. The user can select one or more
sheets and hit the Print button to print these sheets.

Figure 18-7. Print sheets dialog

 225

The steps to create the print utility are as follows: all the action takes place in the Print.xls
workbook, so open this workbook. When the changes are finished, you will need to save Print.xls
as Print.utl as well. If Print.utl is loaded, the only way to unload it is to unload the add-in
SRXUtils.xla (if it is loaded) and close the workbook SRXUtils.xls (if it is open).

18.4.1 Create the UserForm

Create the dialog shown in Figure 18-7 in the Print.xls workbook. Name the dialog
dlgPrintSheets and set its Caption property to "Print Sheets." Then change the
PrintSheets procedure to:

Public Sub PrintSheets()
 dlgPrintSheets.Show
End Sub

The dlgPrintSheets dialog has two command buttons and one list box:

dlgPrintSheets.Show

18.4.1.1 List box

Place a list box on the form as in Figure 18-7. Using the Properties window, set the properties
shown in Table 18-4.

Table 18-4. Nondefault Properties of the List Box
Property Value

Name lstSheets
TabIndex 0
MultiSelect frmMultiSelectExtended

When the Cancel property of the cmdCancel button is set to True, the button is "clicked" when
the user hits the Escape key. Thus, the Escape key will dismiss the print dialog.

The MultiSelect property is set to frmMultiSelectExtended so that the user can use the
Control key to select multiple (possibly nonconsecutive) entries and the shift key to select multiple
consecutive entries.

The TabIndex property determines not only the order in which the controls are visited as the user
hits the Tab key, but also determines which control has the initial focus. Since we want the initial
focus to be on the list box, we set its tab index to 0.

18.4.1.2 Print button

Place a command button on the form as in Figure 18-7. Using the Properties window, set the
properties shown in Table 18-5.

 226

Table 18-5. Nondefault Properties of the Print Button
Property Value

Name cmdPrint
Accelerator P
Caption Print
TabIndex 1

18.4.1.3 Cancel button

Place another command button on the form as in Figure 18-7. Using the Properties window, set
the properties shown in Table 18-6.

Table 18-6. Nondefault Properties of the Cancel Button
Property Value

Name cmdCancel
Accelerator C
Caption Cancel
TabIndex 2
Cancel True

18.4.2 Create the Code Behind the UserForm

Now it is time to create the code behind these controls.

18.4.2.1 The Declarations section

The Declarations section of the dlgPrintSheets UserForm should contain declarations of the
module-level variables, as shown in Example 18-1.

Example 18-1. Module-Level Variable Declarations

Option Explicit
Dim cSheets As Integer
Dim sSheetNames() As String

18.4.2.2 Cancel button code

The Cancel button code is shown in Example 18-2.

Example 18-2. The cmdCancel_Click Event Handler

Private Sub cmdCancel_Click()
 Unload Me
End Sub

18.4.2.3 Print button code

The Print button calls the main print procedure and then unloads the form; its source code is
shown in Example 18-3.

Example 18-3. The cmdPrint_Click Event Handler

 227

Private Sub cmdPrint_Click()
 PrintSelectedSheets
 Unload Me
End Sub

18.4.2.4 The Form's Initialize event

The Initialize event of the UserForm is the place to fill the list box with a list of sheets. Our
application uses a module-level array, sSheetNames, to hold the sheet names and a module-level
integer variable, cSheets, to hold the sheet count; both were defined in Example 18-1. We fill
these variables in the Initialize event and then use the array to fill the list, as Example 18-4 shows.
The variables are used again in the main print procedure, which is why we have declared them at
the module level.

Note the use of the ReDim statement to redimension the arrays. This is necessary since we do not
know at the outset how many sheets there are in the workbook.

Example 18-4. The UserForm's Initialize Event Procedure

Private Sub UserForm_Initialize()
 Dim ws As Object 'Worksheet
 ReDim sSheetNames(1 To 10)

 lstSheets.Clear
 cSheets = 0

 For Each ws In ActiveWorkbook.Sheets
 cSheets = cSheets + 1

 ' Redimension arrays if necessary
 If UBound(sSheetNames) < cSheets Then
 ReDim Preserve sSheetNames(1 To cSheets + 5)
 End If

 ' Save name of sheet
 sSheetNames(cSheets) = ws.Name

 ' Add sheet name to list box
 lstSheets.AddItem sSheetNames(cSheets)
 Next
End Sub

18.4.2.5 The PrintSheets procedure

The main printing procedure is shown in Example 18-5. Note that we have been careful to deal
with two special cases. First, there may not be any sheets in the workbook. Second, the user may
hit the Print button without selecting any sheets in the list box.

It is important to note also that list boxes are 0-based, meaning that the first item is item 0.
However, our arrays are 1-based (the first item is item 1), so we must take this into account when
we move from a selection to an array member; to wit: selection i corresponds to array index i+1.

Example 18-5. The PrintSelectedSheets Procedure

Sub PrintSelectedSheets()
 Dim i As Integer
 Dim bNoneSelected As Boolean

TE
AM
FL
Y

Team-Fly®

 228

 bNoneSelected = True

 If cSheets = 0 Then
 MsgBox "No sheets in this workbook.", vbExclamation
 Exit Sub
 Else
 For i = 0 To lstSheets.ListCount - 1
 If lstSheets.Selected(i) Then
 bNoneSelected = False

 ' List box is 0-based, arrays are 1-based
 ActiveWorkbook.Sheets(sSheetNames(i + 1)).PrintOut
 End If
 Next
 End If

 If bNoneSelected Then
 MsgBox "No

 sheets have been selected from the list box.", vbExclamation
 End If
End Sub

 229

Chapter 19. The Range Object
The Range object is one of the workhorse objects in the Excel object model. Simply put, to work
with a portion of an Excel worksheet, we generally need to first identify that portion as a Range
object.

As Microsoft puts it, a Range object "Represents a cell, a row, a column, a selection of cells
containing one or more contiguous blocks of cells, or a 3-D range."

Table 19-1 shows the 158 members of the Range object.

Table 19-1. Members of the Range Object
_Default End Phonetic
_NewEnum EntireColumn Phonetics<v9>
_PasteSpecial<v10> EntireRow PivotCell<v10>
_PrintOut<v9> Errors<v10> PivotField
Activate FillDown PivotItem
AddComment FillLeft PivotTable
AddIndent FillRight Precedents
Address FillUp PrefixCharacter
AddressLocal Find Previous
AdvancedFilter FindNext PrintOut
AllowEdit<v10> FindPrevious PrintPreview
Application Font QueryTable
ApplyNames FormatConditions Range
ApplyOutlineStyles Formula ReadingOrder
Areas FormulaArray RemoveSubtotal
AutoComplete FormulaHidden Replace
AutoFill FormulaLabel Resize
AutoFilter FormulaLocal Row
AutoFit FormulaR1C1 RowDifferences
AutoFormat FormulaR1C1Local RowHeight
AutoOutline FunctionWizard Rows
BorderAround GoalSeek Run
Borders Group Select
Calculate HasArray SetPhonetic<v9>
Cells HasFormula Show
Characters Height ShowDependents
CheckSpelling Hidden ShowDetail
Clear HorizontalAlignment ShowErrors
ClearComments Hyperlinks ShowPrecedents
ClearContents ID<v9> ShrinkToFit
ClearFormats IndentLevel SmartTags<v10>
ClearNotes Insert Sort
ClearOutline InsertIndent SortSpecial
Column Interior SoundNote

 230

ColumnDifferences Item Speak<v10>
Columns Justify SpecialCells
ColumnWidth Left Style
Comment ListHeaderRows SubscribeTo
Consolidate ListNames Subtotal
Copy LocationInTable Summary
CopyFromRecordset Locked Table
CopyPicture Merge Text
Count MergeArea TextToColumns
CreateNames MergeCells Top
CreatePublisher Name Ungroup
Creator NavigateArrow UnMerge
CurrentArray Next UseStandardHeight
CurrentRegion NoteText UseStandardWidth
Cut NumberFormat Validation
DataSeries NumberFormatLocal Value
Delete Offset Value2
Dependents Orientation VerticalAlignment
DialogBox OutlineLevel Width
DirectDependents PageBreak Worksheet
DirectPrecedents Parent WrapText
Dirty<v10> Parse
EditionOptions PasteSpecial

Our plan in this chapter is first to explore ways of defining Range objects. Then we will discuss
many of the properties and methods of this object, as indicated in Table 19-1. As we have
mentioned, our goal is not to cover all aspects of the Excel object model, but to cover the main
portions of the model and to provide you with a sufficient foundation so that you can pick up
whatever else you may need by using the help system.

19.1 The Range Object as a Collection

The Range object is rather unusual in that it often acts like a collection object as well as a
noncollection object. For instance, it has an Item method and a Count property. On the other hand,
the Range object has many more noncollection-type members than is typical of collection objects.
In particular, the average member count among all other collection objects is 19, whereas the
Range object has 158 members.

Indeed, the Range object should be thought of as a collection object that can hold other Range
objects. To illustrate, consider the following code:

Dim rng as Range
Set rng = Range("A1", "C5").Cells
MsgBox rng.Count ' displays 15

Set rng = Range("A1", "C5").Rows
MsgBox rng.Count ' displays 5

 231

Set rng = Range("A1", "C5").Columns
MsgBox rng.Count ' displays 3

In this code, we alternately set rng to the collection of all cells, rows, and columns of the range
A1:C5. In each case, MsgBox reports the correct number of items in the collection. Note that the
Excel model does not have a cell, row, or column object. Rather, these objects are Range objects;
that is, the members of rng are Range objects.

When we do not specify the member type, a Range object acts like a collection of cells. To
illustrate, observe that the code:

Dim rng As Range
Set rng = Range("A1", "C5")
MsgBox rng.Count
MsgBox rng(6).Value ' row-major order

displays the number of cells in the range and then the value of cell 6 in that range (counted in row-
major order; that is, starting with the first row and counting from left to right). Also, the code:

Dim rng As Range
Dim oCell As Range
Set rng = Range("A1", "C5")
For Each oCell In rng
 Debug.Print oCell.Value
Next

will cycle through each cell in the range rng, printing cell values in the Immediate window.

19.2 Defining a Range Object

As witness to the importance of the Range object, there are a total of 113 members (properties and
methods) throughout the Excel object model that return a Range object. This number drops to 51
if we count only distinct member names, as shown in Table 19-2. (For instance, BottomRightCell
is a property of 21 different objects, as is TopLeftCell.)

Table 19-2. Excel Members That Return a Range Object
_Default End Range
ActiveCell EntireColumn RangeSelection
BottomRightCell EntireRow RefersToRange
Cells Find Resize
ChangingCells FindNext ResultRange
CircularReference FindPrevious RowDifferences
ColumnDifferences GetPivotData RowRange
ColumnRange Intersect Rows
Columns Item SourceRange
CurrentArray LabelRange SpecialCells
CurrentRegion Location TableRange1
DataBodyRange MergeArea TableRange2
DataLabelRange Next ThisCell
DataRange Offset TopLeftCell

 232

Dependents PageRange Union
Destination PageRangeCells UsedRange
DirectDependents Precedents VisibleRange
DirectPrecedents Previous

Let us take a look at some of the more prominent ways to define a Range object.

19.2.1 Range Property

The Range property applies to the Application, Range, and Worksheet objects. Note that:

Application.Range

is equivalent to:

ActiveSheet.Range

When Range is used without qualification within the code module of a worksheet, then it is
applied to that sheet. When Range is used without qualification in a code module for a workbook,
then it applies to the active worksheet in that workbook.

Thus, for example, if the following code appears in the code module for Sheet2:

Worksheets(1).Activate
Range("D1").Value = "test"

then its execution first activates Sheet1, but still places the word "test" in cell D1 of Sheet2.
Because this makes code difficult to read, I suggest that you always qualify your use of the Range
property.

The Range property has two distinct syntaxes. The first syntax is:

object.Range(Name)

where Name is the name of the range. It must be an A1-style reference and can include the range
operator (a colon), the intersection operator (a space), or the union operator (a comma). Any dollar
signs in Name are ignored. We can also use the name of a named range.

To illustrate, here are some examples:

Range("A2")
Range("A2:B3")
Range("A2:F3 A1:D5") ' An intersection
Range("A2:F3, A1:D5") ' A union

Of course, we can use the ConvertFormula method to convert a formula from R1C1 style to A1
style before applying the Range property, as in:

Range(Application.ConvertFormula("R2C5:R6C9", xlR1C1, xlA1))

Finally, if TestRange is the name of a range, then we may write:

Range(Application.Names("TestRange"))

 233

or:

Range(Application.Names!TestRange)

to return this range.

The second syntax for the Range property is:

object.Range(Cell1, Cell2)

Here Cell1 is the cell in the upper-left corner of the range and Cell2 is the cell in the lower-
right corner, as in:

Range("D4", "F8")

Alternatively, Cell1 and Cell2 can be Range objects that represent a row or column. For
instance, the following returns the Range object that represents the second and third rows of the
active sheet:

Range(Rows(2), Rows(3))

It is important to note that when the Range property is applied to a Range object, all references are
relative to the upper-left corner cell in that range. For instance, if rng represents the second
column in the active sheet, then:

rng.Range("A2")

is the second cell in that column, and not cell A2 of the worksheet. Also, the expression:

rng.Range("B2")

represents the (absolute) cell C2, because this cell is in the second column and second row from
cell B1 (which is the upper-left cell in the range rng).

19.2.2 Cells Property

The Excel object model does not have an official Cells collection nor a Cell object. Nevertheless,
the cells property acts as though it returns such a collection as a Range object. For instance, the
following code returns 8:

Range("A1:B4").Cells.Count

Incidentally, Cells.Count returns 16,777,216 = 256 * 65536.

The Cells property applies to the Application, Range, and Worksheet objects (and is global).
When applied to the Worksheet object, it returns the Range object that represents all of the cells
on the worksheet. Moreover, the following are equivalent:

Cells
Application.Cells
ActiveSheet.Cells

When applied to a Range object, the Cells property simply returns the same object, and hence does
nothing.

 234

The syntax:

Cells(i,j)

returns the Range object representing the cell at row i and column j. Thus, for instance:

Cells(1,1)

is equivalent to:

Range("A1")

One advantage of the Cells property over the Range method is that the Cells property can accept
integer variables. For instance, the following code searches the first 100 rows of column 4 for the
first cell containing the word "test." If such a cell is found, it is selected. If not, a message is
displayed:

Dim r As Long
For r = 1 To 100
 If Cells(r, 4).Value = "test" Then
 Cells(r, 4).Select
 Exit For
 End If
Next
If r = 101 then MsgBox "No such cell."

It is also possible to combine the Range and Cells properties in a useful way. For example,
consider the following code:

Dim r As Long
Dim rng As Range

With ActiveSheet
 For r = 1 To 100
 If Cells(r, r).Value <> "" Then
 Set rng = .Range(.Cells(1, 1), .Cells(r, r))
 Exit For
 End If
 Next
End With

rng.Select

This code searches the diagonal cells (cells with the same row and column number) until it finds a
nonempty cell. It then sets rng to refer to the range consisting of the rectangle whose upper-left
corner is cell A1 and whose lower-right corner is the cell found in this search.

19.2.3 Column, Columns, Row, and Rows Properties

The Excel object model does not have an official Columns or Rows collection. However, the
Columns property does return a collection of Range objects, each of which represents a column.
Thus:

ActiveSheet.Columns(i)

 235

is the Range object that refers to the ith column of the active worksheet (and is a collection of the
cells in that column). Similarly:

ActiveSheet.Rows(i)

refers to the ith row of the active worksheet.

The Columns and Rows properties can also be used with a Range object. Perhaps the simplest way
to think of rng.Columns is as the collection of all columns in the worksheet reindexed so that
column 1 is the leftmost column that intersects the range rng. To support this statement, consider
the following code, whose results are shown in Figure 19-1:

Dim i As Integer
Dim rng As Range

Set rng = Range("D1:E1, G1:I1")
rng.Select

MsgBox "First column in range is " & rng.Column ' Displays 4
MsgBox "Column count is " & rng.Columns.Count ' Displays 2

For i = -(rng.Column - 2) To rng.Columns.Count + 1
 rng.Columns(i).Cells(1, 1).Value = i
Next

Figure 19-1. A noncontiguous range

Note that the range rng is selected in Figure 19-1 (and includes cell D1). The Column property of
a Range object returns the leftmost column that intersects the range. (Similarly, the Row property
returns the topmost row that intersects the range.) Hence, the first message box will display the
number 4.

Now, from the point of view of rng, Columns(1) is column number 4 of the worksheet (column
D). Hence, Columns(0) is column number 3 of the worksheet (column C) which, incidentally, is
not part of rng. Indeed, the first column of the worksheet is column number

-(rng.Column - 2)

which is precisely why we started the For loop at this value.

Next, observe that:

rng.Columns.Count

is equal to 2 (which is the number displayed by the second message box). This is a bit unexpected.
However, for some reason, Microsoft designed the Count property of r ng.Columns to return
the number of columns that intersect only the leftmost area in the range, which is area D1:E1. (We
will discuss areas a bit later.) Finally, note that:

rng.Columns(3)

is column F, which does not intersect the range at all.

 236

As another illustration, consider the range selected in Figure 19-2. This range is the union B4:C5,
E2:E7.

Figure 19-2. The range as a union

The code:

Dim rng As Range
Set rng = Range("B4:C5, E2:E7")
MsgBox rng.Columns(1).Cells(1, 1).Value

displays a message box containing the x shown in cell B4 in Figure 19-2 because the indexes in
the Cells property are taken relative to the upper cell in the leftmost area in the range.

Note that we can use either integers or characters (in quotes) to denote a column, as in:

Columns(5)

and:

Columns("E")

We can also write, for instance:

Columns("A:D")

to denote columns A through D. Similarly, we can denote multiple rows as in:

Rows("1:3")

Since a syntax such as:

Columns("C:D", "G:H")

does not work, the Union method is often useful in connection with the Columns and Rows
methods. For instance, the code:

Dim rng As Range
Set rng = Union(Rows(3), Rows(5), Rows(7))
rng.Select

selects the third, fifth, and seventh rows of the worksheet containing this code or of the active
worksheet if this code is in a workbook or standard code module.

 237

19.2.4 Offset Property

The Offset property is used to return a range that is offset from a given range by a certain number
of rows and/or columns. The syntax is:

RangeObject.Offset(RowOffset, ColumnOffset)

where RowOffset is the number of rows and ColumnOffset is the number of columns by
which the range is to be offset. Note that both of these parameters are optional with default value 0,
and both can be either positive, negative, or 0.

For instance, the following code searches the first 100 cells to the immediate right of cell D2 for
an empty cell (if you tire of the message boxes, simply press Ctrl-Break to halt macro execution):

Dim rng As Range
Dim i As Integer
Set rng = Range("D2")
For i = 1 To 100
 If rng.Offset(0, i).Value = "" Then
 MsgBox "Found empty cell at offset " & i & " from cell D2"
 End If
Next

19.3 Additional Members of the Range Object

Let us now take a quick look at some additional members of the Range object. (Please refer to
Table 19-1 for an indication of which members are discussed in this section.)

19.3.1 Activate Method

The Activate method will activate (or select) the range to which it is applied. The Activate method
applies to a variety of other objects besides the Range object, such as the Window object, the
Worksheet object, and the Workbook object.

19.3.2 AddComment Method

This method adds a Comment object (i.e., a comment) to the single-cell range. Its syntax is:

RangeObject.AddComment(Text)

where Text is the text of the comment. For instance, the code:

Dim rng As Range
Dim c As Comment
Set rng = Range("B2")
Set c = rng.AddComment("This is a comment")

adds a comment to cell B2 with the text "This is a comment." Note that if RangeObject consists
of more than a single cell, a runtime error results.

19.3.3 Address Property (Read-Only String)

TE
AM
FL
Y

Team-Fly®

 238

The Address property returns the range reference of the Range object as a string. The syntax is:

RangeObject.Address(RowAbsolute, ColumnAbsolute, _
 ReferenceStyle, External, RelativeTo)

RowAbsolute is set to True (the default) to return the row part of the reference as an absolute
reference. ColumnAbsolute is set to True (the default) to return the column part of the
reference as an absolute reference.

ReferenceStyle can be one of the XlReferenceStyle constants xlA1 or xlR1C1. The
default value is xlA1.

Set the External parameter to True to return an external reference—that is, a reference that is
qualified by the workbook and worksheet names and is thus valid outside the current worksheet.
The default value of False returns a reference that is not qualified and is therefore valid only
within the current worksheet.

Finally, the RelativeTo parameter is used when RowAbsolute and ColumnAbsolute are
False and ReferenceStyle is xlR1C1. In this case, we must include a reference point (a cell)
to use for the relative addresses. Let us consider some examples to help clarify this property:

Set rng = Range("B2")
rng.Address(ReferenceStyle:=xlA1) ' Returns B2
rng.Address(ReferenceStyle:=xlA1, _
 External:=True) ' Returns
[Book1]Sheet1!B2
rng.Address(ReferenceStyle:=xlR1C1) ' Returns R2C2
rng.Address(RowAbsolute:=False, _
 ColumnAbsolute:=False, ReferenceStyle:=xlA1) ' Returns B2
rng.Address(RowAbsolute:=False, _
 ColumnAbsolute:=False, ReferenceStyle:=xlR1C1, _
 RelativeTo:=Range("D1")) ' Returns R[1]C[-2]

Set rng = Range("B2:D5")
rng.Address(ReferenceStyle:=xlA1) ' Returns B2:D5
rng.Address(ReferenceStyle:=xlR1C1) ' Returns R2C2:R5C4
rng.Address(RowAbsolute:=False, _
 ColumnAbsolute:=False, ReferenceStyle:=xlA1) ' Returns B2:D5
rng.Address(RowAbsolute:=False, _
 ColumnAbsolute:=False, ReferenceStyle:=xlR1C1, _
 RelativeTo:=Range("D1")) ' Returns R[1]C[-
2]:R[4]C

19.3.4 AutoFill Method

This important method performs an autofill on the cells in the range. Its syntax is:

RangeObject.AutoFill(Destination, Type)

Here Destination is the Range object whose cells are to be filled. The destination must include
the source range—that is, the range that contains the data to use for the autofill.

The optional Type parameter specifies the fill type. It can be one of the following
XlAutoFillType constants (note that the Excel documentation refers to a nonexistent
XlFillType enum):

 239

Enum XlAutoFillType
 xlFillDefault = 0
 xlFillCopy = 1
 xlFillSeries = 2
 xlFillFormats = 3
 xlFillValues = 4
 xlFillDays = 5
 xlFillWeekdays = 6
 xlFillMonths = 7
 xlFillYears = 8
 xlLinearTrend = 9
 xlGrowthTrend = 10
End Enum

If this argument is xlFillDefault or is omitted, Excel will attempt to select the most
appropriate fill type, based on the source data.

To illustrate, consider the code:

Range("A1:B1").AutoFill Range("A1:K1")

which autofills cells C1 through K1 using the source data in cells A1 and B1. If A1 contains 1 and
B1 contains 2, then this code will fill the destination cells with consecutive integers starting at 3
(in cell C1). Note that cells A1 and B1 are included in the destination range.

As another illustration, consider the worksheet in Figure 19-3, where cell B1 contains the formula:

=A1*A1

Figure 19-3. Worksheet to autofill range B1:B5

The code:

Range("B1").AutoFill Range("B1:B5")

will produce the output shown in Figure 19-4.

Figure 19-4. Autofilling B1:B5 in Figure 19-3

 240

We should mention one source of potential problems with the AutoFill method. Apparently, when
AutoFill is executed, the formula in the source cell is copied, with changes, to other cells.
However, the value of the source cell is also copied, but without changes. Thus, if autocalculation
is off, the formulas in the autofilled cells will be correct but the values will be incorrect. To fix
this, just invoke the Calculate method.

19.3.5 AutoFilter Method

The AutoFilter method has two syntaxes, corresponding to two distinct functions. The syntax:

RangeObject.AutoFilter

simply toggles the display of the AutoFilter drop-down arrows for the columns that are involved
in the range.

The syntax:

RangeObject.AutoFilter(Field, Criteria1, Operator, Criteria2)

displays the AutoFilter arrows and filters a list using the AutoFilter feature.

The optional Field parameter is the offset (as an integer, counting from the left) of the field on
which the filter is based (the leftmost field is field one).

The optional Criteria1 parameter is the criteria (as a string). We can use "=" to find blank
fields, or "<>" to find nonblank fields. If this argument is omitted, the criteria is All. If Operator
(see the following example) is set to xlTop10Items, then Criteria1 specifies, as an integer,
the number of items to display (this number need not be equal to 10).

The Operator parameter can be one of the following XlAutoFilterOperator constants:

Enum XlAutoFilterOperator
 xlAnd = 1
 xlOr = 2
 xlTop10Items = 3
 xlBottom10Items = 4
 xlTop10Percent = 5
 xlBottom10Percent = 6
End Enum

If this parameter is set to xlAnd or xlOr, then we must use Criteria1 and Criteria2 to
construct the compound criteria.

To illustrate, consider the worksheet shown in Figure 19-5.

Figure 19-5. A worksheet before autofiltering

 241

The code:

 Range("A1:B5").AutoFilter 2, "1997", xlOr, "1998"

will filter the range A1:B5 to show only those rows in the range for either the year 1997 or 1998.
Note that it has no effect on the remaining rows of the worksheet. Hence, the result will be the
worksheet in Figure 19-5 with rows 3 and 4 missing.

Recall that the AutoFilterMode property of the Worksheet object is True if the AutoFilter drop-
down arrows are currently displayed on the worksheet. Note that we can set this property to
False to remove the arrows, but we cannot set it to True. (To display the AutoFilter arrows, use
the AutoFilter method.)

Recall also that the FilterMode property is True if the worksheet is in filter mode. Thus, for
instance, if the AutoFilter arrows are displayed but no filtering has taken place, then
AutoFilterMode is True, whereas FilterMode is False. Once filtering is actually performed, then
FilterMode is True.

19.3.6 AutoFit Method

This method changes the width of the columns or the height of the rows (depending upon the type
of range) to obtain the best fit for the range's contents. The syntax is:

RangeObject.AutoFit

where RangeObject refers to a Range object that consists of either one or more rows or one or
more columns (but not both). Otherwise, the method generates an error. If the range consists of
columns, then the column width is adjusted. If the range consists of rows, then the row height is
adjusted.

19.3.7 AutoFormat Method

This method automatically formats a range using a predefined format. The syntax is:

RangeObject.AutoFormat(Format, Number, Font, _
 Alignment, Border, Pattern, Width)

All parameters of this method are optional. The Format parameter can be one of the following
XlRangeAutoFormat constants:

 242

Enum XlRangeAutoFormat
 xlRangeAutoFormat3DEffects1 = 13
 xlRangeAutoFormat3DEffects2 = 14
 xlRangeAutoFormatAccounting1 = 4
 xlRangeAutoFormatAccounting2 = 5
 xlRangeAutoFormatAccounting3 = 6
 xlRangeAutoFormatAccounting4 = 17
 xlRangeAutoFormatClassic1 = 1
 xlRangeAutoFormatClassic2 = 2
 xlRangeAutoFormatClassic3 = 3
 xlRangeAutoFormatClassicPivotTable = 31
 xlRangeAutoFormatColor1 = 7
 xlRangeAutoFormatColor2 = 8
 xlRangeAutoFormatColor3 = 9
 xlRangeAutoFormatList1 = 10
 xlRangeAutoFormatList2 = 11
 xlRangeAutoFormatList3 = 12
 xlRangeAutoFormatLocalFormat1 = 15
 xlRangeAutoFormatLocalFormat2 = 16
 xlRangeAutoFormatLocalFormat3 = 19
 xlRangeAutoFormatLocalFormat4 = 20
 xlRangeAutoFormatNone = -4142
 xlRangeAutoFormatPTNone = 42
 xlRangeAutoFormatReport1 = 21
 xlRangeAutoFormatReport10 = 30
 xlRangeAutoFormatReport2 = 22
 xlRangeAutoFormatReport3 = 23
 xlRangeAutoFormatReport4 = 24
 xlRangeAutoFormatReport5 = 25
 xlRangeAutoFormatReport6 = 26
 xlRangeAutoFormatReport7 = 27
 xlRangeAutoFormatReport8 = 28
 xlRangeAutoFormatReport9 = 29
 xlRangeAutoFormatSimple = -4154
 xlRangeAutoFormatTable1 = 32
 xlRangeAutoFormatTable10 = 41
 xlRangeAutoFormatTable2 = 33
 xlRangeAutoFormatTable3 = 34
 xlRangeAutoFormatTable4 = 35
 xlRangeAutoFormatTable5 = 36
 xlRangeAutoFormatTable6 = 37
 xlRangeAutoFormatTable7 = 38
 xlRangeAutoFormatTable8 = 39
 xlRangeAutoFormatTable9 = 40
End Enum

Note that the constants marked as not used are not used in the U.S. English version of Excel.

The other parameters are Boolean and should be set to True (the default values) to include the
corresponding format feature, as follows:

Number

Include number formats

Font

Include font formats

 243

Alignment

Include alignment

Border

Include border formats

Pattern

Include pattern formats

Width

Include column width and row height in the autoformat

Note that if the range is a single cell, the AutoFormat method also formats the current region
containing the cell. (The CurrentRegion property and the current region are discussed in detail
later in this section.) Put another way, the following two statements are equivalent:

Cells("A1").AutoFormat
Cells("A1").CurrentRegion.AutoFormat

19.3.8 BorderAround Method

This method adds a border to a range and optionally sets the Color, LineStyle, and Weight
properties for the border. The syntax is:

RangeObject.BorderAround(LineStyle, Weight, ColorIndex, Color)

The LineStyle parameter can be one of the following XlLineStyle constants (note that the
Excel documentation refers to a nonexistent XlBorderLineStyle enum):

Enum XlLineStyle
 xlLineStyleNone = -4142
 xlDouble = -4119
 xlDot = -4118
 xlDash = -4115
 xlContinuous = 1 ' the default
 xlDashDot = 4
 xlDashDotDot = 5
 xlSlantDashDot = 13
End Enum

The optional Weight parameter specifies the border weight and can be one of the following
XlBorderWeight constants:

Enum XlBorderWeight
 xlMedium = -4138
 xlHairline = 1
 xlThin = 2 ' the default
 xlThick = 4
End Enum

Note that the Weight property is ignored unless the LineStyle is xlContinuous or omitted.

 244

The optional ColorIndex parameter specifies the border color, either as an index into the current
color palette or as one of the following XlColorIndex constants:

Enum XlColorIndex
 xlColorIndexNone = -4142
 xlColorIndexAutomatic = -4105
End Enum

The optional Color parameter also specifies the border color as an RGB value. Note that you
should specify at most one of the color parameters.

The technique for clearing a border is a bit unexpected. For instance, suppose we have set a border
with:

rng.BorderAround LineStyle:=xlDash

To clear this border, we might naturally try:

rng.BorderAround LineStyle:=xlLineStyleNone

but this does nothing. Instead, we must write:

rng.Borders.LineStyle = xlLineStyleNone

which clears the borders around each cell in the range separately.

19.3.9 Calculate Method

This method (which also applies to the Workbook and Worksheet objects) calculates all cells in
the specified range. For instance, the code:

Worksheets(1).Rows(2).Calculate

will calculate all of the cells in the second row of the first worksheet.

19.3.10 Clear Methods

Excel has several clear methods. In particular, the Clear method clears all contents, formulas, and
formatting from the cells in the given range. The ClearContents method clears only the contents
(values and/or formulas) from the cells in the range and leaves the formatting intact. The
ClearFormats method clears only the formatting from the cells in the range.

19.3.11 ColumnDifferences and RowDifferences Methods

The ColumnDifferences method returns a Range object that represents all the cells in the range
whose contents are different from certain comparison cells (there is one comparison cell in each
column). The syntax is:

RangeObject.ColumnDifferences(ComparisonCell)

where ComparisonCell is a range object that represents a single cell. The purpose of
ComparisonCell is simply to identify the row whose cells contain the comparison values.

To illustrate, consider the following code, whose results are shown in Figure 19-6:

 245

Dim rng As Range, rng2 As Range
Set rng = Range("A1:D6")
Set rng2 = _
 rng.ColumnDifferences(Comparison:=Range("A1"))
rng2.Select

Figure 19-6. The result of the ColumnDifferences method

Since the ComparisonCell is cell A1, the first cell of each column in the range contains the
comparison value. Thus, the cells that do not contain an "x" are selected in column A, the
nonblank cells are selected in column B, the cells that do not contain a "y" are selected in column
C and the cells that do not contain an "a" are selected in column D.

The RowDifferences method is the analog for rows of the ColumnDifferences method.

19.3.12 ColumnWidth and RowHeight Properties

The ColumnWidth property returns or sets the width of the columns in the specified range.

The return value is in units, each of which equals the width of one character in the Normal style.
For proportional fonts, the width of the character "0" (zero) is used.

Note that if the columns in the range do not all have the same width, the ColumnWidth property
returns Null.

The RowHeight property returns the height of all the rows in the range, measured in points. Note
that if the rows in the range do not all have the same height, the RowHeight property returns Null.

19.3.13 Width, Height, Top, and Left Properties

These properties return values for the entire range, in points. For instance, the Top property
returns the distance, in points, from the top of row 1 to the top of the first (leftmost) area of the
range.

Note that when applied to a column, the Width property returns the width, in points, of the column.
However, the relationship between Width and ColumnWidth can seem a bit strange at first.

For instance, the following code shows that a column of ColumnWidth 1 has Width 9.6 but a
column of ColumnWidth 2 has Width 15. (In my case, the Normal style is 10 point Arial.)
However, if the ColumnWidth property really measures the width of a column in units and the
Width property really measures the width of the same column in points, then doubling one of
these properties should double the other!

Columns("A").ColumnWidth = 1
MsgBox Columns("A").Width ' Displays 9.6

 246

Columns("A").ColumnWidth = 2
MsgBox Columns("A").Width ' Displays 15
Columns("A").ColumnWidth = 10
MsgBox Columns("A").Width ' Displays 58.2

Fortunately, a little high-school algebra reveals the truth here. It appears that the Width property
includes padding on the far right and the far left of the entire group of characters (next to the
column boundaries). To support this conclusion, let's do a little algebra, which you can skip if it
upsets you.

Assume for a moment that the Width property includes not just the sum of the widths of the
ColumnWidth characters, but also an additional p points of padding on each side of the entire
group of characters. Thus, the formula for Width is:

Width = 2*p + ColumnWidth*w

where w is the true width of a single "0" character, in points. Thus, plugging in the values from the
first two examples in the previous code gives:

9.6 = 2*p + 1*w
15 = 2*p + 2*w

Subtracting the first equation from the second gives:

5.4 = w

Substituting this into the first equation and solving for p gives:

p = 2.1

Thus, the formula for a Normal style of 10 point Arial is:

Width = 4.2 + ColumnWidth*5.4

Now, for a ColumnWidth of 10, this gives:

Width = 4.2 + 10*5.4 = 58.2

Eureka! (Check the third example in the previous code.)

Thus, we have verified (but not really proved) that the Width property measures not just the width
of each character but includes some padding on the sides of the column—in this case 2.1 points of
padding on each side.

19.3.14 Consolidate Method

This method combines (or consolidates) data from multiple ranges (perhaps on multiple
worksheets) into a single range on a single worksheet. Its syntax is:

RangeObject.Consolidate(Sources, Function, _
 TopRow, LeftColumn, CreateLinks)

Sources is the source of the consolidation. It must be an array of references in R1C1-style
notation. The references must include the full path of the ranges to be consolidated. (See the
following example.)

 247

Function is the function used to combine the data. It can be one of the following
XlConsolidationFunction constants. (The default value is xlAverage.)

Enum XlConsolidationFunction
 xlAverage = -4106
 xlCount = -4112
 xlCountNums = -4113
 xlMax = -4136
 xlMin = -4139
 xlProduct = -4149
 xlStDev = -4155
 xlStDevP = -4156
 xlSum = -4157
 xlUnknown = 1000
 xlVar = -4164
 xlVarP = -4165
End Enum

TopRow should be set to True to consolidate the data based on column titles in the top row of the
consolidation ranges. Set the parameter to False (the default) to consolidate data by position. In
other words, if TopRow is True, Excel will combine columns with the same heading, even if they
are not in the same position.

LeftColumn should be set to True to consolidate the data based on row titles in the left column
of the consolidation ranges. Set the parameter to False (the default) to consolidate data by
position.

CreateLinks should be set to True to have the consolidation use worksheet links. Set the
parameter to False (the default) to have the consolidation copy the data.

To illustrate, consider the worksheets in Figure 19-7 and Figure 19-8 (note the order of the
columns).

Figure 19-7. Sheet2 before consolidation

Figure 19-8. Sheet3 before consolidation

The code:

Worksheets("Sheet1").Range("A1").Consolidate _
 Sources:=Array("Sheet2!R1C1:R3C3", _

TE
AM
FL
Y

Team-Fly®

 248

 "Sheet3!R1C1:R3C3"), Function:=xlSum

will produce the results shown in Figure 19-9 (on Sheet1).

Figure 19-9. Sheet1 after consolidation with TopRow set to False

On the other hand, setting the TopRow property to True:

Worksheets("Sheet1").Range("A1").Consolidate _
 Sources:=Array("Sheet2!R1C1:R3C3", _
 "Sheet3!R1C1:R3C3"), Function:=xlSum, _
 TopRow:=True

produces the results shown in Figure 19-10, since the data is combined based on the names in the
first row.

Figure 19-10. Sheet1 with TopRow set to True

19.3.15 Copy and Cut Methods

As applied to the Range object, the Copy method has the syntax:

RangeObject.Copy(Destination)

where Destination is a Range object that specifies the new range to which the specified range
will be copied. If this argument is omitted, Excel will copy the range to the Clipboard. For
instance, the code:

Range("A1:C3").Copy Range("D5")

copies the range A1:C3 to a range of like size whose upper-left corner is cell D5. Note that the
same rules apply here as when copying using Excel's user interface. In particular, if the destination
is more than a single cell, then it must have the same dimensions as the source range or else an
error will occur.

The Cut method has similar syntax:

RangeObject.Cut(Destination)

and cuts the range rather than copying it.

 249

19.3.16 CopyFromRecordset Method

For those readers familiar with DAO, CopyFromRecordset is a very powerful method that copies
the contents of a DAO Recordset object onto a worksheet, beginning at the upper-left corner of the
specified range. Note that if the Recordset object contains fields with OLE objects in them, this
method fails.

To illustrate, consider the following code, which requires that a reference to Microsoft DAO is set
in the References dialog box in the Excel VBA Tools menu:

Dim rs As Recordset
Set rs = _
 DBEngine.OpenDatabase("d:\excel\excel.mdb"). _
 OpenRecordset("Objects")
Range("A1").CopyFromRecordset(rs, 10, 10)

This code opens an Access database named d:\excel\excel.mdb, creates a recordset based on the
table named Objects, and then copies the first 10 columns of the first 10 rows of the recordset to
the current worksheet, starting at cell A1.

Note that, in general, copying begins at the current row of the Recordset object (which in our
example is the first row, since we opened the recordset anew).

19.3.17 CreateNames Method

This method creates range names based on text labels in specified cells. The syntax is:

RangeObject.CreateNames(Top, Left, Bottom, Right)

The parameters are optional and have the default value of False. If one of the parameters is set to
True, then the corresponding row (Top or Bottom) or column (Left or Right) is used to
supply the names for the named ranges. If all of the parameters are False, then Excel tries to
guess the location of the names. (I would generally advise against letting an application guess at
anything.)

To illustrate, the following code, when applied to the sheet in Figure 19-8, will define three named
ranges:

Range("A1:C3").CreateNames Top:=True

For instance, the range A2:A3 will be named John.

19.3.18 CurrentRegion Property

This useful property returns a Range object that represents the current region, which is the region
bound by the closest empty rows and columns. To illustrate, the following code, when applied to
the sheet in Figure 19-11, selects the rectangular region A2:C4:

ActiveCell.CurrentRegion.Select

Figure 19-11. Illustrating CurrentRegion

 250

19.3.19 Delete Method

This method deletes the cells in the range. Its syntax is:

RangeObject.Delete(Shift)

The optional Shift parameter specifies how to shift cells to replace the deleted cells. It can be
one of the following constants:

Enum XlDeleteShiftDirection
 xlShiftUp = -4162
 xlShiftToLeft = -4159
End Enum

If this argument is omitted, then Excel guesses based on the shape of the range. In view of this, I
would advise always including the argument. (Applications should not guess!)

19.3.20 Dependents and DirectDependents Properties

The Dependents property returns a Range object that represents all cells containing all the
dependents of a cell. To illustrate, consider Figure 19-12, where we have displayed the underlying
formulas in each cell.

Figure 19-12. Illustrating the Dependents property

The following code selects cells B1, B2, C4, and C6:

Range("A1").Dependents.Select

Note that C6 is not a direct dependent of A1.

By contrast, the following line selects the direct dependents of cell A1, which are cells B1, B2,
and C4:

Range("A1").DirectDependents.Select

 251

19.3.21 Precedents and DirectPrecedents Properties

These properties work just like the Dependents and DirectDependents properties, but in the
reverse direction. For instance, referring to Figure 19-12, the line:

Range("C6").Precedents.Select

selects the cells B1 and A1, whereas the line:

Range("C6").DirectPrecedents.Select

selects the cell B1.

19.3.22 End Property

This property returns a Range object that represents the cell at the "end" of the region that contains
the source range by mimicking a keystroke combination (see the following code). The syntax is:

RangeObject.End(Direction)

where RangeObject should be a reference to a single cell and Direction is one of the
following constants. (The keystroke combination is also given in the following code.)

Enum XlDirection
 xlUp = -4162 ' Ctrl-Up
 xlToRight = -4161 ' Ctrl-Right
 xlToLeft = -4159 ' Ctrl-Left
 xlDown = -4121 ' Ctrl-Down
End Enum

Thus, for instance, the code:

Range("C4").End(xlToRight).Select

selects the rightmost cell in Row 4 for which all cells between that cell and cell C4 are nonempty
(that is, the cell immediately to the left of the first empty cell in row 4 following cell C4).

19.3.23 EntireColumn and EntireRow Properties

The EntireColumn property returns a Range object that represents the column or columns that
contain the specified range. The EntireRow property returns a Range object that represents the
row or rows that contain the specified range.

For instance, the code:

Range("A1:A3").EntireRow.Select

selects the first three rows of the current worksheet.

19.3.24 Fill Methods

The Excel object model has four Fill methods: FillDown, FillUp, FillLeft, and FillRight. As
expected, these methods work similarly, so we will describe only FillDown.

 252

The FillDown method fills down from the top cell or cells in the specified range to the bottom of
the range. The contents, formulas, and formatting of the cell or cells in the top row of a range are
copied into the rest of the rows in the range. The syntax is:

RangeObject.FillDown

For instance, the code:

Range("B3:D5").FillDown

will duplicate the values of cells B3 through B5 in cells C3 through C5 and D3 through D5.

19.3.25 Find Method

The Find method returns the first cell in a given range that satisfies a criterion. Note that the Find
method returns Nothing if no match is found. In any case, it does not affect the selection or the
active cell.

The syntax of the Find method is:

RangeObject.Find(What, After, LookIn, LookAt, _
 SearchOrder, SearchDirection, MatchCase, MatchByte)

Note that all of the parameters except What are optional.

The What parameter is the data to search for and can be a string or any other valid Excel data type
(number, date, etc.).

The After parameter is the cell after which the search should begin. (This would be the active
cell when doing a search from the user interface.) Thus, the cell referred to by After is the last
cell searched. If the After argument is omitted, the search starts after the cell in the upper-left
corner of the range.

The LookIn parameter is one of the following constants:

Enum XlFindLookIn
 xlValues = -4163
 xlComments = -4144
 xlFormulas = -4123
End Enum

The LookAt parameter is one of the following constants that determines whether the What value
must match the cell's entire contents or just any part of the cell's contents:

Enum XlLookAt
 xlWhole = 1
 xlPart = 2
End Enum

The SearchOrder parameter is one of the following XlSearchOrder constants:

Enum XlSearchOrder
 xlByRows = 1
 xlByColumns = 2
End Enum

 253

The SearchDirection parameter is one of the following XlSearchDirection constants:

Enum XlSearchDirection
 xlNext = 1 ' Default
 xlPrevious = 2
End Enum

The MatchCase parameter should be set to True to do a case-sensitive search; otherwise, the
search will be case-insensitive. (The MatchByte parameter is used only in the Far East version of
Microsoft Excel. See the help documentation for details.)

There are several things to note about the Find method:

• The values of the LookIn , LookAt, SearchOrder, MatchCase, and MatchByte
parameters (but not the SearchDirection parameter) are saved each time the Find
method is invoked and are then reused for the next call to this method. Note also that
setting these arguments changes the corresponding settings in Excel's Find dialog box,
and, conversely, changing the settings in the Find dialog box changes the values of these
parameters. This implies that we cannot rely on the values of these parameters, since the
user may have changed them through the Find dialog box. Hence, it is important to
specify each of these arguments for each call to the Find method.

• The FindNext and FindPrevious methods (described in the next section) can be used to
repeat a search.

• When a search reaches the end of the specified search range, it wraps around to the
beginning of the range. If you do not want this behavior, consider using a different range.

• To find cells that match more complicated search criteria, such as those involving
wildcard matches, we must use a more manual approach, such as cycling through the cells
in the range with a For Each loop and using the Like operator. For instance, the
following code searches for all cells in the range A1:C5 whose contents begin with an
"A" and sets the font for these cells to bold (note the use of the evaluation operator to
denote the range A1:C5):

Dim c As Range
For Each c In [A1:C5]
 If c.Value Like "A*" Then
 c.Font.Bold = True
 End If
Next

19.3.26 FindNext and FindPrevious Methods

The FindNext method continues a search that was started with the Find method, returning the next
cell that matches the criteria. The syntax is:

RangeObject.FindNext(After)

The After parameter must be specified or the search will begin at the upper-left corner of the
range. Thus, FindNext is the same as Find, except that it uses all of the parameters (except After)
that were set by the previous use of the Find method.

To continue the search from the last cell found, use that cell as the After argument. For instance,
the following code searches for all cells in the top row that contain the value 0 and removes the
value:

Dim c As Range

 254

Dim sFirstHit As String ' Address of first hit
With Rows(1)
 Set c = .Find(0, LookIn:=xlValues)
 If Not c Is Nothing Then
 sFirstHit = c.Address
 Do
 ' Change cell contents
 c.Value = ""

 ' find next cell
 Set c = .FindNext(c)
 Loop While Not c Is Nothing
 End If
End With

The FindPrevious method has the syntax:

RangeObject.FindPrevious(Before)

and works just like the FindNext method, but searches backward in the range starting with the cell
before the cell referred to by the Before parameter (with wrap around from the beginning of the
range to the end).

19.3.27 Formula and FormulaR1C1 Properties

The Formula property returns or sets the formula or value for each cell in the range. The formula
must be expressed in A1-style notation, and must include a leading equal sign.

For instance, the line:

Range("A1").Formula = "=Sum(A2:A3)"

sets the formula in cell A1. The line:

Range("A1:C1").Formula = "=Sum(A2:A3)"

places the formula in cells A1:C1, but because the formula uses relative references, these
references will be altered as usual. If we want to put the exact same formula in each cell, we must
use an array, as in:

Range("A1:C1").Formula = _
 Array("=Sum(A2:A3)", "=Sum(A2:A3)", "=Sum(A2:A3)")

We can also return an array using the Formula property. To illustrate, consider the worksheet in
Figure 19-13. The code:

Dim a As Variant
a = Range("A1:C2").Formula

sets the Variant variable a to an array, so that, for instance, a(2,3) = 7. Note that the Formula
property returns a Variant, so that a must be declared as a Variant.

Figure 19-13. Illustrating the Formula property

 255

If a cell contains a constant, the Formula property returns that constant. We can also assign a
constant to a cell by writing, for example:

Range("A1").Formula = 1

If the cell is empty, then the Formula property returns an empty string. If the cell contains a
formula, then the Formula method returns the formula as a string, as it would be displayed in the
formula bar (including the equal sign).

If we set the Formula property (or the Value property) of a cell to a date, then Excel checks to see
whether that cell is already formatted with one of the date or time formats. If not, Excel uses the
default short date format.

The FormulaR1C1 property is the analog to the Formula property but accepts and returns formulas
in R1C1 style.

19.3.28 FormulaArray Property

The FormulaArray property returns or sets an array formula, which must be in R1C1 style, for a
range. To illustrate, consider the worksheet shown in Figure 19-14. The code:

Range("A9:C11").FormulaArray = "=A1:C3 + A5:C7"

produced the values in cells A9:C11 in Figure 19-14. The formula on the left says to add the
contents of each cell in the uppermost 3-by-3 array to the corresponding cell in the middle 3-by-3
array, and place the result in the corresponding cell in the lower 3-by-3 array.

Figure 19-14. Illustrating the FormulaArray property

Note also that the code:

Debug.Print Range("A9").FormulaArray

prints the array formula:

 256

=A1:C3 + A5:C7

19.3.29 FormulaHidden Property (R/W Boolean)

This property returns or sets the Hidden state (True or False) for the formula in the cell to
which it is applied. This is equivalent to setting the Hidden check box in the Protection tab of the
Format Cells dialog.

Note that this is not the same as the Hidden property, which applies to ranges that consist of entire
rows (or entire columns) and determines whether or not those rows (or columns) are hidden from
view.

19.3.30 HasFormula Property (Read-Only)

This property returns True if all cells in the range contain formulas; it returns False if none of
the cells in the range contains a formula and Null otherwise.

19.3.31 HorizontalAlignment Property

The HorizontalAlignment property returns or sets the horizontal alignment of all cells in the range.
The value can be one of the following constants:

Enum XlHAlign
 xlHAlignRight = -4152
 xlHAlignLeft = -4131
 xlHAlignJustify = -4130
 xlHAlignDistributed = -4117 'for Far East Excel
 xlHAlignCenter = -4108
 xlHAlignGeneral = 1
 xlHAlignFill = 5
 xlHAlignCenterAcrossSelection = 7
End Enum

Note especially the xlHAlignCenterAcrossSelection constant, which is very useful for
aligning a title across multiple cells.

19.3.32 IndentLevel Property and InsertIndent Method

The IndentLevel property returns or sets the left indent for each cell in the range and can be any
integer between 0 and 15. All other settings cause an error. Presumably, indents are useful for
aligning the contents of cells or for formatting text.

For instance, to set the indent level of cell A1 to 10, we can write:

Range("A1").IndentLevel = 10

Unfortunately, the documentation does not specify how big an indent unit is, but we can still use
indent units in a relative way. Presumably, an indent level of 2 is twice that of an indent level of 1.

An alternative is to use the InsertIndent method, with the syntax:

RangeObject.InsertIndent(InsertAmount)

 257

where InsertAmount is an integer between 0 and 15. However, in this case, the InsertAmount
parameter specifies the amount to change the current indent for the range.

19.3.33 Insert Method

This method inserts a cell or range of cells into the worksheet, shifting existing cells to make room.
The syntax is:

RangeObject.Insert(Shift)

where Shift can be one of the XlInsertShiftDirection constants:

Enum XlInsertShiftDirection
 xlShiftToRight = -4161
 xlShiftDown = -4121
End Enum

If the Shift argument is omitted, Excel will decide upon the shift direction based on the shape of
the range. (As with other cases when Excel will guess, I recommend against allowing it to do so.)

19.3.34 Locked Property

This property returns the Locked status of the cells in the range or can be used to lock the range.
The property returns Null if the range contains both locked and unlocked cells.

19.3.35 Merge-Related Methods and Properties

It is quite common to create a merged cell (that is, a single cell created by combining several
adjacent cells) for use as a title or heading, for instance.

The Merge method creates a merged cell from the specified range. The syntax is:

RangeObject.Merge(Across)

where Across is an optional Variant that should be set to True to merge the cells in each row of
the range into a single cell per row or False (the default) to merge all cells in all rows into a
single cell. Note that when the individual cells contain data, the merged cell will contain only the
data from the upper-left cell. Hence, the data in all other cells will be lost.

The UnMerge method separates a merged area into individual cells. Its syntax is:

RangeObject.UnMerge

Note that as long as RangeObject contains any of the cells within a merged range, even if it
does not contain all merged cells or if it contains additional cells not in the merged area, the
method will unmerge the merged range. Note that calling the UnMerge method on a range that
does not contain merged cells has no effect and does not produce a runtime error.

The MergeArea property applies only to ranges that consist of a single cell (otherwise an error
occurs). The property returns a Range object representing the merged range containing that cell
(or the cell itself if it is not part of a merged range).

TE
AM
FL
Y

Team-Fly®

 258

The MergeCells property returns True if the specified range is contained within a merged range
of cells. The property returns Null if the specified range contains cells that are within a merged
range as well as cells that lie outside the merged range.

19.3.36 Next and Previous Properties

When applied to a Range object, the Next property returns the cell that would be made active by
striking the

TAB

key, although it does not actually select that cell. Thus, on an unprotected sheet, this
property returns the cell immediately to the right of the upper-left cell in the range. On
a protected sheet, this property returns the next unlocked cell.

Similarly, the Previous property emulates the Shift-Tab key by returning the appropriate cell (also
without selecting the cell).

19.3.37 NumberFormat Property

This property returns or sets the number-formatting string for the cells in the range. Note that the
property will return Null if the cells in the range do not all have the same number format.

One of the simplest ways to determine the desired formatting string is to record an Excel macro
and use the Format dialog. You can then inspect the macro code for the correct formatting string.

19.3.38 Parse Method

This method parses the data in a column (or portion thereof) and distributes the contents of the
range to fill adjacent columns. The syntax is:

RangeObject.Parse(ParseLine, Destination)

where RangeObject can be no more than one column wide.

The ParseLine parameter is a string containing left and right brackets to indicate where the data
in the cells in the column should be split. For example, the string:

[xxx] [xxx]

causes the Parse method to insert the first three characters from each cell into the first column of
the destination range, skip the fourth character, and then insert the next three characters into the
second column. Any additional characters (beyond the first six) are not included in the destination.
This makes the Parse method most useful for parsing fixed-length data (each cell has data of the
same length).

The Destination parameter is a Range object that represents the upper-left corner of the
destination range for the parsed data. If this argument is omitted, Excel will parse the data in place;
that is, it will use the source column as the first destination column.

19.3.39 PasteSpecial Method

This method pastes data from the Clipboard into the specified range. The syntax is:

 259

RangeObject.PasteSpecial(Paste, Operation, SkipBlanks, Transpose)

The Paste parameter indicates what will be pasted and is one of the following XlPasteType
constants:

Enum XlPasteType
 xlPasteValues = -4163
 xlPasteComments = -4144
 xlPasteFormulas = -4123
 xlPasteFormats = -4122
 xlPasteAll = -4104 ' Default
 xlPasteAllExceptBorders = 6
End Enum

The optional Operation parameter specifies a paste operation and can be one of the following
XlPasteSpecialOperation constants:

Enum XlPasteSpecialOperation
 xlPasteSpecialOperationNone = -4142 ' Default
 xlPasteSpecialOperationAdd = 2
 xlPasteSpecialOperationSubtract = 3
 xlPasteSpecialOperationMultiply = 4
 xlPasteSpecialOperationDivide = 5
End Enum

The SkipBlanks parameter should be set to True to skip pasting blank cells from the Clipboard.
To illustrate, suppose that the cell on the Clipboard that is destined to be pasted into cell D5 is
blank. If SkipBlanks is False (the default), then whatever is in D5 before the paste operation
will be overwritten when the blank cell is pasted, so D5 will then be empty. However, if
SkipBlank is True, the blank cell will not be pasted into D5 and so the contents of D5 will not
be disturbed.

The optional Transpose parameter can be set to True to transpose rows and columns when the
range is pasted. The default value is False.

19.3.40 PrintOut Method

The PrintOut method prints a range. (This method applies to a host of other objects as well, such
as Worksheet, Workbook, and Chart.) The syntax is:

RangeObject.PrintOut(From, To, Copies, Preview, _
 ActivePrinter, PrintToFile, Collate)

Note that all of the parameters to this method are optional.

The From parameter specifies the page number of the first page to print, and the To parameter
specifies the last page to print. If omitted, the entire object (range, worksheet, etc.) is printed.

The Copies parameter specifies the number of copies to print. The default is 1.

Set Preview to True to invoke print preview rather than printing immediately. The default is
False. ActivePrinter sets the name of the active printer.

 260

Setting PrintToFile to True causes Excel to print to a file. Excel will prompt the user for the
name of the output file. (Unfortunately, there is no way to specify the name of the output file in
code!)

The Collate parameter should be set to True to collate multiple multipage copies.

19.3.41 PrintPreview Method

This method invokes Excel's print preview feature for the given range (this method applies to the
same list of objects as the PrintOut method). Its syntax is:

RangeObject.PrintPreview

19.3.42 Replace Method

This method finds and replaces specified data in all cells in a range. It has no effect on the
selection or the active cell. The syntax is:

RangeObject.Replace(What, Replacement, LookAt, _
 SearchOrder, MatchCase, MatchByte)

The What parameter is the data to search for, and the Replacement parameter is the
replacement data. These data can be strings or any other valid Excel data types (numbers, dates,
etc.).

The LookAt parameter is one of the following constants that determines whether the What value
must match the cell's entire contents or just any part of the cell's contents:

Enum XlLookAt
 xlWhole = 1
 xlPart = 2
End Enum

The SearchOrder parameter is one of the following XlSearchOrder constants:

Enum XlSearchOrder
 xlByRows = 1
 xlByColumns = 2
End Enum

The MatchCase parameter should be set to True to do a case-sensitive search (the default is
False). The MatchByte parameter is used only in the Far East version of Microsoft Excel. See
the help documentation for details.

Note that the values of the LookAt, SearchOrder, MatchCase, and MatchByte parameters
are saved each time the Find method is invoked and then reused for the next call to this method.
Note also that setting these arguments changes the corresponding settings in Excel's Find dialog
box, and conversely, changing the settings in the Find dialog box changes the values of these
parameters. This implies that we cannot rely on the values of these parameters, since the user may
have changed them through the Find dialog box. Hence, it is important to specify each of these
arguments for each call to the Find method.

If the contents of the What argument are found at least once, the Replace method returns True.

 261

19.3.43 Select Method

This method selects the given range. Actually, the Select method applies to a whopping 81
different Excel objects. For the Range object, its syntax is:

RangeObject.Select

Note that this method selects a range of cells, whereas the Activate method activates a single cell.

19.3.44 ShrinkToFit Property

This property can be set to True to tell Excel to shrink the font size of all text in the range so that
the text fits the available column width. It also returns True if ShrinkToFit is set for all cells in
the range, False if it is turned off for all cells in the range, or Null if some cells have
ShrinkToFit turned on and others have ShrinkToFit turned off.

19.3.45 Sort Method

This method sorts a range or the current region when the specified range contains only one cell. It
can also be used to sort a pivot table. The syntax is:

RangeObject.Sort(Key1, Order1, Key2, Type, Order2, Key3, Order3, _
 Header, OrderCustom, MatchCase, Orientation, SortMethod, _
 IgnoreControlCharacters, IgnoreDiacritics, IgnoreKashida)

Sorting can take place based on up to three keys, denoted by Key1, Key2, and Key3. These
parameters can be expressed as text (a range name) or a Range object. The corresponding Order
parameter can be set to one of the following values:

Enum XlSortOrder
 xlAscending = 1 ' Default
 xlDescending = 2
End Enum

The optional Type parameter is used only when sorting pivot tables.

The optional Header parameter specifies whether the first row contains headers, in which case
they are not included in the sort. The Header parameter can be one of the following values:

Enum XlYesNoGuess
 xlGuess = 0
 xlYes = 1
 xlNo = 2 ' Default
End Enum

The optional OrderCustom parameter is an integer offset into the list of custom sort orders.
However, Microsoft seems not to have documented this further, so it seems best to simply omit
this argument, in which case it is assumed to be Normal (which sounds good).

The optional MatchCase parameter should be set to True to do a case-sensitive sort and False
(the default) to do a sort that is not case-sensitive. For instance, suppose that cell A1 contains the
text "AAA" and cell A2 contains the text "aaa." The code:

Range("A1:A2").Sort Key1:=Cells(1, 1), MatchCase:=True

 262

will swap the contents of these two cells, but the code:

Range("A1:A2").Sort Key1:=Cells(1, 1), MatchCase:=False

will not.

The optional Orientation parameter determines whether the sort is done by row or by column.
It can assume either of the values in the following enum:

Enum XlSortOrientation
 xlSortColumns = 1
 xlSortRows = 2
End Enum

For instance:

Range("A1:B2").Sort Key1:=Rows(1), Orientation:=xlSortColumns

sorts the columns in the range A1:B2 using the first row for the sort key.

The rest of the parameters are not used in the U.S. English version of Excel. The SortMethod
parameter is not documented, but it has a default value xlPinYin, whatever that means.

19.3.46 SpecialCells Method

This method returns a Range object that represents all the cells that match a specified type and
value. The syntax is:

RangeObject.SpecialCells(Type, Value)

The Type parameter specifies the type of cells to include from RangeObject. It can be one of
the following XlCellType constants:

Enum XlCellType
 xlCellTypeComments = -4144 'Cells with comments
 xlCellTypeFormulas = -4123 'Cells with formulas
 xlCellTypeConstants = 2 'Cells with constants
 xlCellTypeBlanks = 4 'Blank cells
 xlCellTypeLastCell = 11 'Last cell in range
 xlCellTypeVisible = 12 'All visible cells
End Enum

For instance, the code:

Range("A1:D10").SpecialCells(xlCellTypeBlanks).Select

selects all blank cells in the range A1:D10.

The optional Value parameter applies when the Type parameter is either
xlCellTypeConstants or xlCellTypeFormulas and identifies more specifically the type
of cell to return. In these cases, the Value parameter can be set to one of, or a sum of, the
following constants:

Enum XlSpecialCellsValue
 xlNumbers = 1

 263

 xlTextValues = 2
 xlLogical = 4
 xlErrors = 16
End Enum

For instance, the code:

Range("A1:D10").SpecialCells(xlCellTypeConstants,
xlTextValues).Select

selects only the cells with text (as opposed to numbers) within the range A1:D10.

19.3.47 TextToColumns Method

This method parses a column (or columns) of cells that contain text into several columns. The
syntax is:

RangeObject.TextToColumns(Destination, DataType, _
 TextQualifier, ConsecutiveDelimiter, Tab, Semicolon, _
 Comma, Space, Other, OtherChar, FieldInfo)

Note that all of the parameters to this method are optional.

The Destination parameter is a Range object that specifies where to put the results of the
conversion. If the Range object represents more than a single cell, then the starting point for the
destination is the upper-left cell in that range.

The DataType parameter specifies the format of the text to be split into columns. It can be one of
the following XlTextParsingType constants:

Enum XlTextParsingType
 xlDelimited = 1 ' Default
 xlFixedWidth = 2
End Enum

The TextQualifier parameter is the text qualifier. It can be one of the following
XlTextQualifier constants:

Enum XlTextQualifier
 xlTextQualifierNone = -4142
 xlTextQualifierDoubleQuote = 1 ' Default
 xlTextQualifierSingleQuote = 2
End Enum

The ConsecutiveDelimiter parameter should be set to True to have Excel consider
consecutive delimiters as one delimiter. The default value is False.

There are several parameters that require that the DataType be xlDelimited and, when set to
True, indicate that Excel should use the corresponding character as the text delimiter. They are
described in the following list (all default values are False):

Tab

Set to True to use the tab character as delimiter.

 264

Semicolon

Set to True to use a semicolon as delimiter.

Comma

Set to True to use a comma as delimiter.

Space

Set to True to use a space as delimiter.

Other

Set to True to use a character that is specified by the OtherChar argument as delimiter.

When Other is True, OtherChar specifies the delimiter character. If OtherChar contains
more than one character, only the first character is used.

The FieldInfo parameter is an array containing parse information for the individual source
columns. The interpretation of FieldInfo depends on the value of DataType.

When DataType is xlDelimited, the FieldInfo argument should be an array whose size is
the same as (or smaller than—see Table 19-3) the number of columns of converted data. The first
element of a two-element array is the column number (starting with the number 1), and the second
element is one of the numbers in Table 19-3 that specifies how the column is parsed.

Table 19-3. FieldInfo Values for xlDelimited Text
Code Description

1 General
2 Text
3 MDY date
4 DMY date
5 YMD date
6 MYD date
7 DYM date
8 YDM date
9 Skip the column

If a two-element array for a given column is missing, then the column is parsed with the General
setting. For instance, the following value for FieldInfo causes the first column to be parsed as
text and the third column to be skipped:

Array(Array(1, 2), Array(3, 9))

All other columns will be parsed as general data.

To illustrate, consider the sheet shown in Figure 19-15. The code:

Range("A1:A3").TextToColumns _
 Destination:=Range("B1"), _
 DataType:=xlDelimited, _

 265

 ConsecutiveDelimiter:=True, Comma:=True, _
 FieldInfo:=Array(Array(1, 2), Array(2, 3))

produces the second and third columns of Figure 19-15. Note that the cells in column C are
formatted as dates.

Figure 19-15. A worksheet with text to be parsed in A1:A3

On the other hand, if DataType is xlFixedWidth, the first element of each two-element array
specifies the starting character position in the column (0 being the first character) and the second
element specifies the parse option (1-9) for the resulting column, as described previously.

To illustrate, consider the worksheet in Figure 19-16. The code:

Range("A1:A3").TextToColumns _
 Destination:=Range("B1"), _
 DataType:=xlFixedWidth, _
 FieldInfo:=Array(Array(0, 2), _
 Array(1, 9), Array(2, 2), Array(5, 9), _
 Array(6, 2))

parses the first column of Figure 19-16 into the remaining columns. (Note how we included arrays
to skip the hyphens.)

Figure 19-16. A worksheet with fixed-width data to be parsed in A1:A3

19.3.48 Value Property

The Value property returns the value of the specified cell. If the cell is empty, Value returns an
empty string. This can be tested in either of the following ways:

If Range("A1") = "" Then . . .

or:

If IsEmpty(Range("A1")) Then . . .

If the Range object contains more than one cell, the Value property returns a two-dimensional
array. For instance, referring to Figure 19-16, the code:

Dim v As Variant
v = Range("A1:A3").Value
Debug.Print IsArray(v)

 266

Debug.Print v(2, 1) ' row 2, col 1

will print:

True
2-435-678

19.3.49 WrapText Property

This property returns or sets the value that tells Excel whether to wrap text in the cells. It will
return Null if the specified range contains some cells that wrap text and others that do not. Note
that Excel will change the row height of the range, if necessary, to accommodate the text when
wrapped.

19.4 Children of the Range Object

The children of the Range object are shown in Figure 19-17.

Figure 19-17. Children of the Range object

Corresponding to each of these children is a property of the Range object that returns the child.
For instance, the PivotField property of the Range object returns a PivotField child object.

Let us take a look at the children of the Range object.

19.4.1 The Areas Collection

An area is a contiguous (that is, connected) block of cells in a worksheet. There is no Area object
in the Excel object model. Instead, areas are Range objects.

 267

However, every range is made up of one or more areas, and the collection of all Range objects that
represent these areas is the Areas collection for the range. To illustrate, consider Figure 19-18,
which is the result of calling the following code:

Dim rng As Range
Set rng = ActiveSheet.Cells.SpecialCells(_
 xlCellTypeConstants, xlNumbers)
rng.Select

Note that three distinct areas are selected.

Figure 19-18. A range with three areas

We can clear the second area by writing:

rng.Areas(2).Clear

This will clear the cells C4 and D4. (Areas is a 1-based collection.)

It strikes me as a bit risky to refer to an individual area by index. However, it is perfectly safe to
cycle through all areas using a For loop such as:

Dim rng As Range, r As Range
Set rng = ActiveSheet.Cells.SpecialCells(_
 xlCellTypeConstants, xlNumbers)
For Each r In rng.Areas
 Debug.Print r.Cells.Count
Next

19.4.2 The Borders Collection

Every range has a set of borders. For instance, the bottom border consists of the bottom borders of
all of the cells that one would encounter by looking up at the range from the bottom of the
worksheet. (Imagine moving up each column of the sheet until you encounter a cell in the range.)
For example, the bottom border of the range:

Range("a1:b4, d2:e2")

is shown as a dark line in Figure 19-19.

Figure 19-19. Illustrating the Border object

TE
AM
FL
Y

Team-Fly®

 268

The Borders property of the Range object returns a Borders collection for the range. This
collection contains several Border objects, indexed by the following constants:

Enum XlBordersIndex
 xlDiagonalDown = 5
 xlDiagonalUp = 6
 xlEdgeLeft = 7
 xlEdgeTop = 8
 xlEdgeBottom = 9
 xlEdgeRight = 10
 xlInsideVertical = 11
 xlInsideHorizontal = 12
End Enum

(The Excel help documentation refers to these as XlBorderType constants.)

To illustrate, the following code sets the interior color of the range shown in Figure 19-19 to a
gray scale and sets the bottom border to thick red (shown as black in the figure). Note the use of
nested With statements:

With Range("a1:b4, d2:e2")
 .Interior.Color = RGB(196, 196, 196)
 With .Borders(xlEdgeBottom)
 .Weight = xlThick
 .Color = RGB(255, 0, 0)
 End With
End With

Figure 19-20 shows the results of changing the constant xlEdgeBottom to xlDiagonalDown,
while Figure 19-21 shows the results of changing the constant to xlInsideVertical.

Figure 19-20. The xlDiagonalDown constant

Figure 19-21. The xlInsideVertical constant

 269

19.4.3 The Border Object

The most interesting properties and methods of the Border object are described in this section.

19.4.3.1 Color property

This property returns or sets the primary color of the border. It can also be applied to the Borders
collection to set all vertical and horizontal lines for the borders at the same time. (The property
also applies to Font objects and Interior objects.)

For instance, the following code has the effect shown in Figure 19-22:

With Range("a1:b4, d2:e2")
 .Interior.Color = RGB(196, 196, 196)
 With .Borders
 .Weight = xlThick
 .Color = RGB(255, 0, 0)
 End With
End With

Figure 19-22. Assigning the Colors property of the Borders collection

To set a color value, we use the RGB color function, which has the form:

RGB(red, green, blue)

where red, green, and blue are integers between 0 and 255, inclusive, that represent the
strength of the respective color component. Table 19-4 gives some common color values.

Table 19-4. Some Common Colors
Color Red Green Blue

Black 0 0 0
Blue 0 0 255
Green 0 255 0
Cyan 0 255 255
Red 255 0 0
Magenta 255 0 255
Yellow 255 255 0
White 255 255 255

To use a grayscale, set the red, green, and blue components equally. For instance:

RGB(196, 196, 196)

 270

will produce a 25% grayscale. (The larger the numbers, the closer to white.) Unfortunately, Excel
rounds all grayscale settings to one of the following:

• 0% (white)
• 25%
• 40%
• 50%
• 80%
• 100% (black)

You can see this by running the following code:

Dim r As Integer
For r = 1 To 25
 Cells(r, 1).Interior.Color = _
 RGB(255 - 10 * r, 255 - 10 * r, 255 - 10 * r)
 Cells(r, 2).Value = 255 - 10 * r
Next

If you want to use grayscales often, consider adding the following constant declarations to a code
module. (The numbers on the right are RGB values.)

Public Const Gray25 = 12632256
Public Const Gray40 = 9868950
Public Const Gray50 = 8421504
Public Const Gray80 = 3355443

19.4.3.2 ColorIndex property

This property sets the color by using an index into a color palette. There is no way to do justice to
this in a black and white book, so I suggest you take a look at this property in Excel's help
documentation, where there is a color picture. However, you can set this property to one of the
following XlColorIndex constants as well:

Enum XlColorIndex
 xlColorIndexNone = -4142 ' no interior fill
 xlColorIndexAutomatic = -4105 ' automatic fill
End Enum

19.4.3.3 LineStyle property

The LineStyle property returns or sets the line style for the border. It can be one of the following
XlLineStyle constants:

Enum XlLineStyle
 xlLineStyleNone = -4142
 xlDouble = -4119
 xlDot = -4118
 xlDash = -4115
 xlContinuous = 1
 xlDashDot = 4
 xlDashDotDot = 5
 xlSlantDashDot = 13
End Enum

These values speak pretty much for themselves.

 271

19.4.3.4 Weight property

The Weight property returns or sets the weight of the border. It can be one of the following
XlBorderWeight constants:

Enum XlBorderWeight
 xlMedium = -4138
 xlHairline = 1
 xlThin = 2
 xlThick = 4
End Enum

19.4.4 The Characters Object

The Characters object represents a contiguous sequence of text characters. The main purpose of
the Characters object is to modify a portion of a text string. The syntax is:

RangeObject.Characters(start, length)

where start is the start character number and length is the number of characters. To illustrate,
the following code boldfaces the first word in a cell:

Dim rng As Range
Set rng = Range("A1")
rng.Characters(1, InStr(rng.Value, " ") - 1).Font.Bold = True

The result is shown in Figure 19-23.

Figure 19-23. Boldfacing the first word of a cell

19.4.5 The Comment Object

Recall that the AddComment method of the Range object is used to add a comment to a range.
Once the comment has been added, a corresponding Comment object is created. Each comment
object belongs to the Comments collection of the Worksheet object.

To illustrate, the following code creates a comment in cell A1 if it does not already exist. It then
sets the text and makes the comment visible for approximately three seconds. Note the use of the
DoEvents statement to ensure that Windows has the opportunity to display the comment before
entering the Do loop. (You might want to try this code without the DoEvents statement. On my
system, the comment is not displayed.) Note also that the Timer function returns the number of
seconds since midnight (so there is a potential problem if the three-second interval happens to
occur at midnight).

Dim tm As Single
tm = Timer

If Range("A1").Comment Is Nothing Then
 Range("A1").AddComment "comment"
End If

Range("A1").Comment.Text "Created: " & Now

 272

Range("A1").Comment.Visible = True
DoEvents

Do: Loop Until Timer - tm > 3
Range("A1").Comment.Visible = False

19.4.6 The Font Object

The Font property of a Range object returns a Font object. Font objects are used to control the
characteristics of the font (font name, size, color, and so on) used in the range.

The properties of the Font object are shown in Table 19-5.

Table 19-5. Properties of the Font Object
Application FontStyle Size
Background Italic Strikethrough
Bold Name Subscript
Color OutlineFont Superscript
ColorIndex Parent Underline
Creator Shadow

Recall that the Characters property can be used to format portions of text.

19.4.7 The FormatConditions Collection

Excel allows us to apply conditional formatting to a cell (or a range of cells). A conditional format
is a format that is applied if and only if certain conditions are met by the contents of the cell. For
instance, we may want to make a number red if it is negative, black if it is positive, or green if it is
0. This requires three conditional formats.

The FormatConditions property of a Range object returns a FormatConditions collection that can
contain up to three FormatCondition objects, each of which represents a conditional format.

The Add method of the FormatConditions collection is used to add FormatCondition objects to the
collection. However, attempting to add more than three such objects will generate an error. The
syntax for the Add method is:

FormatConditionsObject.Add(Type, Operator, Formula1, Formula2)

The required Type parameter specifies whether the conditional format is based on the value in the
cell or an expression. It can be either of the following XlFormatConditionType constants:

Enum XlFormatConditionType
 xlCellValue = 1
 xlExpression = 2
End Enum

When Type is xlCellValue, the Operator parameter specifies the operator to use with that
value. If Type is xlExpression, the Operator argument is ignored. The value of Operator
is one of the following constants:

Enum XlFormatConditionOperator
 xlBetween = 1

 273

 xlNotBetween = 2
 xlEqual = 3
 xlNotEqual = 4
 xlGreater = 5
 xlLess = 6
 xlGreaterEqual = 7
 xlLessEqual = 8
End Enum

If Type is xlCellValue, then Formula1 and Formula2 give the comparison values used with
Operator and the cell value. Note that Formula2 is used only with the xlBetween and
xlNotBetween constants.

For example, the following code sets the interior color of a cell in the range A1:C4 to 25%
grayscale if the number is between 0 and 10 (inclusive) and to white otherwise. The results are
shown in Figure 19-24. Note that we first cleared all conditional formatting before creating new
FormatCondition objects. Note also that an empty cell is treated as if it contains a 0.

Dim rng As Range
Dim i As Integer
Set rng = Range("A1:C4")

' Clear all existing formats
For i = rng.FormatConditions.Count To 1 Step -1
 rng.FormatConditions(i).Delete
Next

With rng
 .FormatConditions.Add xlCellValue, xlBetween, 0, 10
 .FormatConditions(1).Interior.Color = RGB(196, 196, 196)
 .FormatConditions.Add xlCellValue, xlNotBetween, 0, 10
 .FormatConditions(2).Interior.Color = RGB(255, 255, 255)
End With

Figure 19-24. A conditionally formatted range

When Type is xlExpression, Formula2 is ignored, and Formula1 gives the formula or
expression that determines the condition. This parameter can be a constant, a string, a cell
reference, or a formula. To illustrate, the following code sets the interior color based on whether
cells A1 and A2 contain the same value:

Dim rng As Range
Dim i As Integer
Set rng = Range("A1:A2")

' Clear all existing formats
For i = rng.FormatConditions.Count To 1 Step -1
 rng.FormatConditions(i).Delete
Next

With rng

 274

 .FormatConditions.Add xlExpression, , _
 Range("A1").Value = Range("A2").Value
 .FormatConditions(1).Interior.Color = _
 RGB(0, 0, 255)
 .FormatConditions.Add xlExpression, , _
 Range("A1").Value <> Range("A2").Value
 .FormatConditions(2).Interior.Color = _
 RGB(255, 0, 0)
End With

As the previous examples show, the actual formatting is done by setting some of the properties of
children of the FormatCondition object. In particular, the Borders, Font, and Interior properties
return child objects of the same name, whose properties can be set to indicate the desired
formatting.

Note finally that an existing FormatCondition object can be deleted using the Delete method of the
FormatConditions collection, and it can be changed using the Modify method of the
FormatCondition object. The Modify method has the syntax:

FormatConditionObject.Modify(Type, Operator, Formula1, Formula2)

where the parameters are identical to those of the Add method.

19.4.8 The Interior Object

The Interior object represents the characteristics of the interior region of a cell (or range of cells).
The Interior object has only a handful of properties (and no methods), as described in this section.

19.4.8.1 Color and ColorIndex properties

These properties are analogous to the properties by the same name of the Borders object,
discussed earlier. They set the interior of a cell (or cells) to the color specified.

19.4.8.2 Pattern property

This property returns or sets the interior pattern. It can be one of the following XlPattern
constants:

Enum XlPattern
 xlPatternVertical = -4166
 xlPatternUp = -4162
 xlPatternNone = -4142
 xlPatternHorizontal = -4128
 xlPatternGray75 = -4126
 xlPatternGray50 = -4125
 xlPatternGray25 = -4124
 xlPatternDown = -4121
 xlPatternAutomatic = -4105
 xlPatternSolid = 1
 xlPatternChecker = 9
 xlPatternSemiGray75 = 10
 xlPatternLightHorizontal = 11
 xlPatternLightVertical = 12
 xlPatternLightDown = 13
 xlPatternLightUp = 14
 xlPatternGrid = 15
 xlPatternCrissCross = 16

 275

 xlPatternGray16 = 17
 xlPatternGray8 = 18
End Enum

Note that this provides another way to access grayscales.

19.4.8.3 PatternColor and PatternColorIndex properties

These properties set the color (or color index) of the pattern used to fill the interior of a cell. For
more on setting color and color indexes, please see the discussion of the Color and ColorIndex
properties of the Border object.

19.4.9 The PivotField, PivotItem, and PivotTable Objects

These objects relate to PivotTable objects and will be discussed in Chapter 20.

19.4.10 The QueryTable Object

A QueryTable object represents a worksheet table that is built from data returned from an external
data source, such as Microsoft SQL Server or a Microsoft Access database. We will not discuss
QueryTable objects in this book. (There are better ways to retrieve data from an external source.)

19.4.11 The Validation Object

A Validation object is used to enforce data validation on a cell or range of cells. The Validation
property of the Range object returns a Validation object, whose properties can be returned or set.
Note that there is no Validations collection.

Data validation involves three parts: the actual validation, an input message that can be displayed
when a cell is activated, and an error message that can be displayed if the data entered is invalid.

The methods of the Validation object are Add, Delete, and Modify. To add validation to a range,
use the Add method, whose syntax is:

ValidationObject.Add(Type, AlertStyle, Operator, Formula1, Formula2)

Note the similarity between the parameters of the Add method of the Validation object and the
Add method of the FormatConditions object.

The required Type parameter specifies the type of data allowed and can be one of the following
XlDVType constants:

Enum XlDVType
 xlValidateInputOnly = 0
 xlValidateWholeNumber = 1
 xlValidateDecimal = 2
 xlValidateList = 3
 xlValidateDate = 4
 xlValidateTime = 5
 xlValidateTextLength = 6
 xlValidateCustom = 7
End Enum

 276

The xlValidateInputOnly constant causes Excel to treat all data as valid. This value should
be used when we want to display an input message (described later in this section), but not invoke
data validation.

The optional AlertStyle parameter specifies the buttons that will appear on the error dialog
box that is displayed if the data entered is invalid. It can be one of the following
XlDVAlertStyle constants:

Enum XlDVAlertStyle
 xlValidAlertStop = 1
 xlValidAlertWarning = 2
 xlValidAlertInformation = 3
End Enum

The meanings of these constants are as follows:

xlValidAlertInformation

OK and Cancel buttons

xlValidAlertStop

Retry and Cancel buttons

xlValidAlertWarning

Yes, No, and Cancel buttons

The optional Operator parameter is the operator used in the validation, and can be any one of
the XlFormatConditionOperator constants:

Enum XlFormatConditionOperator
 xlBetween = 1
 xlNotBetween = 2
 xlEqual = 3
 xlNotEqual = 4
 xlGreater = 5
 xlLess = 6
 xlGreaterEqual = 7
 xlLessEqual = 8
End Enum

The Formula1 parameter specifies the first part of the data-validation equation and Formula2
specifies the second part when Operator is xlBetween or xlNotBetween.

To understand this rather complex object, it is best to look at the corresponding dialog boxes in the
Excel user interface. Figure 19-25 shows the Settings tab of the Validation dialog box.

Figure 19-25. The Settings tab of the Data Validation dialog

 277

This dialog corresponds to setting:

Type:=xlValidateWholeNumber
Operator:=xlBetween
Formula1:="5"
Formula2:="10"
IgnoreBlank = True

You can learn more about the Type constants by clicking on the ? button in the Data Validation
dialog and then clicking on the Allow drop-down list box. Note that the other controls on the tab
in Figure 19-25 will change depending upon the value selected in the Allow drop-down box.

The Input Message tab is shown in Figure 19-26. The values in this dialog correspond to
properties of the Validation object. In particular, we have:

ShowInput = True
InputTitle = "Input:"
InputMessage = "Input a number"

Figure 19-26. The Input Message tab of the Data Validation dialog

TE
AM
FL
Y

Team-Fly®

 278

Figure 19-27 shows the Error Alert tab. This dialog corresponds to the following properties of the
Validation object:

ShowError = True
ErrorTitle = "Error:"
ErrorMessage = "This is an error"

Figure 19-27. The Error Alert tab of the Data Validation dialog

We can now put all of the pieces together to show how to set up data validation for a range of cells.
Note that the first order of business is to delete any old validation:

With Range("A1:D4").Validation
 .Delete
 .Add Type:=xlValidateWholeNumber, _
 AlertStyle:=xlValidAlertStop, _
 Operator:=xlBetween, _
 Formula1:="5", Formula2:="10"
 .IgnoreBlank = True
 .ShowInput = True
 .InputTitle = "Input:"
 .InputMessage = "Input a number"

 279

 .ShowError = True
 .ErrorTitle = "Error:"
 .ErrorMessage = "This is a error"
End With

19.5 Example: Getting the Used Range

As we mentioned in Chapter 18, the UsedRange method seems to have some problems, in that it
does not always return what we would consider to be the currently used range, that is the smallest
rectangular region of cells that contains all cells that currently have data. In any case, if you, too,
have trouble with the UsedRange method, the following function can be used in its place. Note
that the function GetUsedRange does assume that Excel's UsedRange method returns a superset
of the correct used range.

The operation of GetUsedRange is straightforward. As its source code in Example 19-1 shows,
the function starts with Excel's used range, determines the coordinates (row and column numbers)
of the upper-left and lower-right corners of this range, and then proceeds to shrink this range if it
contains rows or columns that are blank. This is determined by using the Excel CountA
worksheet function, which counts the number of nonempty cells.

Example 19-1. The GetUsedRange Function

Function GetUsedRange(ws As Worksheet) As Range
 ' Assumes that Excel's UsedRange gives a superset
 ' of the real used range.

 Dim s As String, x As Integer
 Dim rng As Range
 Dim r1Fixed As Integer, c1Fixed As Integer
 Dim r2Fixed As Integer, c2Fixed As Integer
 Dim i As Integer
 Dim r1 As Integer, c1 As Integer
 Dim r2 As Integer, c2 As Integer

 Set GetUsedRange = Nothing

 ' Start with Excel's used range
 Set rng = ws.UsedRange

 ' Get bounding cells for Excel's used range
 ' That is, Cells(r1,c1) to Cells(r2,c2)
 r1 = rng.Row
 r2 = rng.Rows.Count + r1 - 1
 c1 = rng.Column
 c2 = rng.Columns.Count + c1 - 1

 ' Save existing values
 r1Fixed = r1
 c1Fixed = c1
 r2Fixed = r2
 c2Fixed = c2

 ' Check rows from top down for all blanks.
 ' If found, shrink rows.
 For i = 1 To r2Fixed - r1Fixed + 1
 If Application.CountA(rng.Rows(i)) = 0 Then

 280

 ' empty row -- reduce
 r1 = r1 + 1
 Else
 ' nonempty row, get out
 Exit For
 End If
 Next

 ' Repeat for columns from left to right
 For i = 1 To c2Fixed - c1Fixed + 1
 If Application.CountA(rng.Columns(i)) = 0 Then
 c1 = c1 + 1
 Else
 Exit For
 End If
 Next

 ' Reset the range
 Set rng = _
 ws.Range(ws.Cells(r1, c1), ws.Cells(r2, c2))

 ' Start again
 r1Fixed = r1
 c1Fixed = c1
 r2Fixed = r2
 c2Fixed = c2

 ' Do rows from bottom up
 For i = r2Fixed - r1Fixed + 1 To 1 Step -1
 If Application.CountA(rng.Rows(i)) = 0 Then
 r2 = r2 - 1
 Else
 Exit For
 End If
 Next

 ' Repeat for columns from right to left
 For i = c2Fixed - c1Fixed + 1 To 1 Step -1
 If Application.CountA(rng.Columns(i)) = 0 Then
 c2 = c2 - 1
 Else
 Exit For
 End If
 Next

 Set GetUsedRange = _
 ws.Range(ws.Cells(r1, c1), ws.Cells(r2, c2))
End Function

19.6 Example: Selecting Special Cells

The Excel user interface does not have a built-in method for selecting worksheet cells based on
various criteria. For instance, there is no way to select all cells whose value is between 0 and 100,
or all cells that contain a date later than January 1, 1998. There is also no way to select only those
cells in a given column whose value is different from the value of the preceding cell. This can be
very useful when you have a sorted column and want to extract a set of unique values, as shown in
Figure 19-28.

 281

Figure 19-28. Selecting unique values

We will develop a small utility (and add it to the SRXUtils application) that can make a selection
based on some simple criteria. You may want to enhance this utility by adding more criteria.

The first step is to augment the DataSheet for SRXUtils by adding a new row for the new utility,
as shown in Figure 19-29. (The order of the rows in this DataSheet is based on the order in which
we want the items to appear in the custom menu.)

Figure 19-29. Augmenting the DataSheet worksheet

19.6.1 Designing the Utility

To keep our utility relatively simple, we will implement the following selection criteria:

• Select cell if preceding cell is different
• Select cell if preceding cell is the same
• Select empty cells
• Select nonempty cells

The search range for the selection operation, that is, the area to which the selection criteria will be
applied, is the current selection on the active worksheet. Note that we will need to verify that this
is a selection of worksheet cells and not, say, a chart. For the first two criteria, this range must be
either a single row or a single column or a portion thereof. For the last two criteria, the search
range can be any selection of cells.

As a courtesy to the user, if the current selection is just a single cell, the utility will default to the
used range for the last two criteria (empty or nonempty) and to the used portion of the column
containing the active cell for the first two criteria (same and different).

 282

As a bonus, we also include a feature that enlarges the current selection by including the entire
row (or column) containing each selected cell. For instance, applying this to the worksheet in
Figure 19-28 will select rows 12, 16, 18, 23, and 25.

19.6.2 Designing the Dialog

Now that our game plan has be mapped out, we can design and construct the dialog. The final
product is shown in Figure 19-30. It is a UserForm called dlgSelectSpecial, and its Caption
property should be set to "Select Special."

Figure 19-30. Select Special dialog

As to the operation of the utility, the user will first select one of the mutually exclusive options
under Select Cells If. The actual search range is displayed at the bottom of the dialog.

Here are some of the highlights of this form design. We suggest you read on before creating your
own form.

19.6.2.1 The Frame control

A frame control is used to group other controls. This is often done just to group controls that have
a similar purpose. However, in the case of option buttons, it has a more profound effect. Namely,
the option buttons in a single frame are mutually exclusive, which means that if the user selects
one option button, the others are automatically unselected.

To ensure that the option buttons are really inside the frame and not merely on top of it, make sure
the frame is selected when you click on the OptionButton control icon in the Toolbox. Then create
the option button inside the frame. Also, if you decide to copy and paste the additional option
buttons, make sure that the frame is selected when you choose the Paste command.

19.6.2.2 Control names

The control names were chosen to conform to my naming convention. Their names are:

• fraType (frame)
• optDifferent
• optSame

 283

• optEmpty
• cmdSelect
• cmdCancel
• cmdUndo
• cmdCompleteRows
• cmdCompleteColumns
• lblSearchRange

You will not need to set many control properties beyond the Name property and the Accelerator
property (indicated for each control in Figure 19-30 by an underscore in its caption). Be sure to set
the WordWrap property of the lblSearchRange label to False so that the label will occupy
only a single line. Also, set the TabStop property of lblSearchRange to False.

19.6.2.3 Tab Order

It is important whenever designing a custom dialog to set the tab order of all controls properly.
There is nothing less professional than having the focus jump around randomly when the user
repeatedly hits the Tab key! The simplest way to set the correct tab order is to use the Tab Order
dialog box, available from the View menu and shown in Figure 19-31. You can use this dialog to
get an overall view of the current tab order and to change that order, if desired. Remember that the
control with tab order 0 will receive the focus when the dialog is first displayed. You will need to
display the Tab Order dialog twice: once while the entire dialog is selected and once while the
frame control is selected (to see the tab orders of the option buttons).

Figure 19-31. The Tab Order dialog

19.6.2.4 Some final tips

We should remark that the VB editor's Format menu has some very useful items for aligning and
resizing controls on a UserForm to give your forms a more professional look. You should
definitely do some exploration of this menu. Another useful trick is to copy and paste controls.
This produces controls of identical size and preserves other properties as well. (Of course, some
properties, such as the Name property or the position properties, are not preserved.)

19.6.3 Writing the Code

Now that the dialog is created, we can start writing the code.

In the basMain standard module, place the code that displays the Select Special dialog box.
However, it is possible that the current selection in the active worksheet is not a collection of cells.
It could be a drawing object or chart, for instance. In this case, we want to issue a message stating

 284

that the current selection is inappropriate for the SelectSpecial utility and not to bother displaying
the dialog. The code in Example 19-2 (which should be stored in basMain) will do the job.

Example 19-2. The SelectSpecial Procedure

Sub SelectSpecial()
 ' Check for valid selection
 If TypeName(Selection) <> "Range" Then
 MsgBox "Selection must be a range of worksheet cells.",
vbCritical
 Else
 dlgSelectSpecial.Show
 End If
End Sub

Note that we use the TypeName function. When applied to an object, as in:

TypeName(ObjectVariable)

the function will return the name of the object.

Next, we need a couple of module-level declarations, shown in Example 19-3, in the form's code
module.

Example 19-3. dlgSelectSpecial Module-Level Declarations

Option Explicit
' These are used by more than one procedure
Dim rngSearch As Range
Dim rngForUndo As Range

The Initialize event of the form is the place to initialize the controls. As Example 19-4 shows, we
first want to disable some command buttons and fill the lblSearchRange label. We also can
set the module-level variables here.

Example 19-4. The Initialize Event Procedure

Private Sub UserForm_Initialize()
 cmdSelect.Enabled = False
 cmdUndo.Enabled = False
 lblSearchRange.Caption = "Search Range: Nothing"

 Set rngSearch = Selection
 Set rngForUndo = rngSearch
End Sub

The Close button simply unloads the form; its source code is shown in Example 19-5.

Example 19-5. The cmdClose_Click Event Procedure

Private Sub cmdClose_Click()
 Unload Me
End Sub

Incidentally, you can test out your progress so far (and later) by running the Initialize event. Just
place the cursor in this event and hit F5.

 285

The Undo button returns the selection to its original state, which is saved in the module-level
variable rngForUndo. Its source code is shown in Example 19-6.

Example 19-6. The cmdUndo_Click Event Procedure

Private Sub cmdUndo_Click()
 If Not rngForUndo Is Nothing Then
 rngForUndo.Select
 cmdUndo.Enabled = False
 End If
End Sub

The first thing the user will do after the dialog is displayed is choose an option from the frame at
the top. This choice will determine in part the search range. Also, some choices require a more
restrictive search range. To react to the user's choice, we call a procedure called
GetSearchRange whenever an option button is selected. The code to handle the option buttons
is shown in Example 19-7.

Example 19-7. Event Handlers for the Option Buttons

Private Sub optDifferent_Click()
 GetSearchRange
End Sub

Private Sub optEmpty_Click()
 GetSearchRange
End Sub

Private Sub optNotEmpty_Click()
 GetSearchRange
End Sub

Private Sub optSame_Click()
 GetSearchRange
End Sub

The GetSearchRange procedure is shown in Example 19-8.

Example 19-8. The GetSearchRange Procedure

Private Sub GetSearchRange()
 ' Set search range based on choice of search type.
 ' If Different or Same, validate range
 ' If single cell, change to:
 ' - used column for Different or Same match
 ' - used range for Empty or Not Empty match
 ' We know that rngSearch is a range of cells.
 ' Disables Select button if not a valid range.

 Dim cColumns As Integer, cRows As Integer

 cmdSelect.Enabled = True ' May be temporary

 If optDifferent Or optSame Then
 ' Search range must be (portion of)
 ' a single row or column

 cColumns = rngSearch.Columns.Count

 286

 cRows = rngSearch.Rows.Count

 If rngSearch.Areas.Count > 1 Or _
 (cColumns <> 1 And cRows <> 1) Then
 lblSearchRange.Caption = "Requires (portion of) single
column or row."
 cmdSelect.Enabled = False
 Exit Sub
 End If

 ' If single cell then expand to used portion of column
 If cColumns = 1 And cRows = 1 Then
 Set rngSearch = Application.Intersect(_
 rngSearch.EntireColumn, ActiveSheet.UsedRange)
 End If
 ElseIf optEmpty Or optNotEmpty Then
 ' If selection is single cell then expand to used range
 If rngSearch.Cells.Count = 1 Then
 Set rngSearch = ActiveSheet.UsedRange
 End If
 End If

 lblSearchRange.Caption = "Search Range: " & _
 rngSearch.Address(RowAbsolute:=False, ColumnAbsolute:=False)
End Sub

When the user hits the Select button, the action begins, based on the user's selection. Thus, we
should call a different procedure based on which option button is selected. After the new selection
is made, the Select button is disabled. Since the CompleteRows and CompleteColumns features
are still available, however, we do not want to dismiss the main dialog. The code to handle the
Select button is shown in Example 19-9.

Example 19-9. The cmdSelect_Click Event Procedure

Private Sub cmdSelect_Click()
 ' Read option buttons and
 ' call appropriate procedure

 If optDifferent Then
 SelectIfDifferent
 ElseIf optSame Then
 SelectIfSame
 ElseIf optEmpty Then
 SelectIfEmpty
 ElseIf optNotEmpty Then
 SelectIfNotEmpty
 End If

 cmdSelect.Enabled = False
End Sub

The SelectIfDifferent procedure is shown in Example 19-10. It basically searches through
the rngSearch range, looking for cells whose contents differ from the previous cell. Since we do
not know whether the range is a column or row (or portion thereof), it is easier to use a double
For loop. However, it would be a bit more efficient to split the code into two cases (cColumns =
1 and cRows = 1). Note that the first cell needs a bit of special attention, since we want to include
it in the selection. The selection is accumulated in a Range object variable called rngMatch,
using the Union function. However, we always need to consider the possibility that rngMatch is

 287

currently equal to Nothing, in which case the Union function will (unfortunately) return
Nothing. In other words:

Application.Union(Something, Nothing) = Nothing

Example 19-10. The SelectIfDifferent Procedure

Private Sub SelectIfDifferent()
 Dim rngMatch As Range
 Dim vCellValue As Variant
 Dim vPreviousCellValue As Variant
 Dim cMatches As Integer
 Dim oCell As Object
 Dim cRows As Integer, cColumns As Integer
 Dim r As Integer, c As Integer

 ' Get row and column count (one of which is 1)
 cColumns = rngSearch.Columns.Count
 cRows = rngSearch.Rows.Count

 ' Start search
 cMatches = 0
 Set rngMatch = Nothing

 For r = 1 To cRows
 For c = 1 To cColumns
 Set oCell = rngSearch.Cells(r, c)
 vCellValue = oCell.Value
 vCellValue = CStr(vCellValue)

 If r = 1 And c = 1 Then
 ' Include first cell
 If rngMatch Is Nothing Then
 Set rngMatch = oCell
 Else
 Set rngMatch = Application.Union(rngMatch, oCell)
 End If

 cMatches = cMatches + 1
 ' Save value for next comparison
 vPreviousCellValue = vCellValue
 Else
 ' Do comparison with previous cell
 vCellValue = rngSearch.Cells(r, c).Value
 vCellValue = CStr(vCellValue)

 If vCellValue <> vPreviousCellValue Then
 If rngMatch Is Nothing Then
 Set rngMatch = oCell
 Else
 Set rngMatch = Application.Union(rngMatch, oCell)
 End If

 cMatches = cMatches + 1
 End If

 ' Save value for next comparion
 vPreviousCellValue = vCellValue
 End If
 Next ' column

TE
AM
FL
Y

Team-Fly®

 288

 Next ' row

 ' Select the range
 If cMatches > 0 Then
 rngMatch.Select
 cmdUndo.Enabled = False
 Else
 MsgBox "No matching cells. Selection will not be changed.",
vbInformation
 cmdUndo.Enabled = False
 End If
End Sub

The SelectIfSame procedure, which is shown in Example 19-11, is very similar to the
SelectIfDifferent procedure. One significant difference is that we do not include the first
cell.

Example 19-11. The SelectIfSame Procedure

Private Sub SelectIfSame()

Dim rngMatch As Range
Dim vCellValue As Variant
Dim vPreviousCellValue As Variant
Dim cMatches As Integer
Dim oCell As Object
Dim cRows As Integer, cColumns As Integer
Dim r As Integer, c As Integer

' Get row and column count (one of which is 1)
cColumns = rngSearch.Columns.Count
cRows = rngSearch.Rows.Count

' Start search
cMatches = 0
Set rngMatch = Nothing

 For r = 1 To cRows
 For c = 1 To cColumns

 Set oCell = rngSearch.Cells(r, c)
 vCellValue = oCell.Value
 vCellValue = CStr(vCellValue)

 If r = 1 And c = 1 Then
 ' Save first value for next comparion
 vPreviousCellValue = vCellValue
 Else
 ' Do comparison with previous cell
 vCellValue = rngSearch.Cells(r, c).Value
 vCellValue = CStr(vCellValue)
 If vCellValue = vPreviousCellValue Then
 If rngMatch Is Nothing Then
 Set rngMatch = oCell
 Else
 Set rngMatch = Application.Union(rngMatch, oCell)
 End If
 cMatches = cMatches + 1
 End If
 ' Save value for next comparion

 289

 vPreviousCellValue = vCellValue
 End If
 Next ' column
 Next ' row

' Select the range
If cMatches > 0 Then
 rngMatch.Select
 cmdUndo.Enabled = False
Else
 MsgBox "No matching cells. Selection will not be changed.",
vbInformation
 cmdUndo.Enabled = False
End If

End Sub

The SelectIfEmpty and SelectIfNotEmpty procedures are almost identical.
SelectIfEmpty is shown in Example 19-12.

Example 19-12. The SelectIfEmpty Procedure

Private Sub SelectIfEmpty()
 Dim rngMatch As Range
 Dim cMatches As Integer
 Dim oCell As Object
 Dim cRows As Integer, cColumns As Integer
 Dim r As Integer, c As Integer

 ' Get row and column count (one of which is 1)
 cColumns = rngSearch.Columns.Count
 cRows = rngSearch.Rows.Count

 ' Start search
 cMatches = 0
 Set rngMatch = Nothing

 For r = 1 To cRows
 For c = 1 To cColumns
 Set oCell = rngSearch.Cells(r, c)
 If IsEmpty(oCell) Then
 If rngMatch Is Nothing Then
 Set rngMatch = oCell
 Else
 Set rngMatch = Application.Union(rngMatch, oCell)
 End If
 cMatches = cMatches + 1
 End If

 Next ' column
 Next ' row

 ' Select the range
 If cMatches > 0 Then
 rngMatch.Select
 cmdUndo.Enabled = False
 Else
 MsgBox "No matching cells. Selection will not be changed.",
vbInformation
 cmdUndo.Enabled = False

 290

 End If
End Sub

To get the SelectIfNotEmpty procedure, just change the line:

If IsEmpty(oCell) Then

to:

If Not IsEmpty(oCell) Then

Finally, the CompleteColumns and CompleteRows procedures are called from the
corresponding command-button Click events and are very similar. CompleteColumns is shown
in Example 19-13.

Example 19-13. The cmdCompleteColumns_Click Procedure

Private Sub cmdCompleteColumns_Click()
 ' For each selected cell, select the entire column

 Dim oCell As Object
 Dim rngNew As Range

 Set rngNew = Nothing

 For Each oCell In Selection
 If rngNew Is Nothing Then
 Set rngNew = oCell.EntireColumn
 Else
 Set rngNew = Union(rngNew, oCell.EntireColumn)
 End If
 Next

 rngNew.Select
 cmdUndo.Enabled = True
End Sub

To get CompleteRows, just replace EntireColumn by EntireRow in two places.

 291

Chapter 20. Pivot Tables
In this chapter, we take a look at pivot tables and how to create and format them using code.

20.1 Pivot Tables

While we are assuming that the reader is familiar with the basics of Excel, it probably would not
hurt to review the concept of a pivot table (or PivotTable) quickly.

PivotTables are one of the most powerful features in Excel. They are designed to accomplish three
main tasks:

• Import external data
• Aggregate data; for example, sum, count, or average the data
• Display the data in interesting ways

PivotTables can use data from external sources, as well as from one or more Excel tables. For
instance, the data for a PivotTable can come from an Access database. However, setting up Excel
to import external data requires that the appropriate data source drivers be installed on the user's
computer. Moreover, there are significant limitations on Excel's ability to import data through
PivotTables. For instance, all strings are limited to a length of 255 characters, which makes using
SQL to define a data source much more difficult.

All in all, importing data using a PivotTable can be problematic. Furthermore, we always have the
option of importing the required data directly to an Excel worksheet (using a variety of more
sophisticated methods, such as DAO and the GetRows method) and then creating the PivotTable
from the worksheet. Accordingly, we will restrict our discussion to using Excel data as the
PivotTable source.

Table 20-1, which represents sales from a fictitious fast food company that has both company and
franchise stores, shows the first half of the data that we will use to build our pivot table. The actual
source table is an Excel worksheet that contains twice the number of rows as Table 20-1, the
additional rows being the analogous data for the year 1997. (Thus, the first column in the
remainder of the table contains the year 1997.)

Table 20-1. Source Data for PivotTable (for 1998)
Year Period Store Code Store City Store Type Transactions Sales
1998 1 BO-1 BOSTON Company 3881 $6,248.00
1998 1 BO-2 BOSTON Company 3789 $5,722.00
1998 1 BO-3 BOSTON Company 3877 $6,278.00
1998 1 BO-4 BOSTON Company 3862 $6,123.00
1998 1 BO-5 BOSTON Franchise 4013 $6,861.00
1998 1 BO-6 BOSTON Franchise 3620 $5,039.00
1998 2 BO-1 BOSTON Company 3948 $6,468.00
1998 2 BO-2 BOSTON Company 3878 $6,301.00
1998 2 BO-3 BOSTON Company 3911 $6,390.00
1998 2 BO-4 BOSTON Company 3926 $6,438.00
1998 2 BO-5 BOSTON Franchise 3990 $6,767.00

 292

1998 2 BO-6 BOSTON Franchise 3615 $5,091.00
1998 3 BO-1 BOSTON Company 3936 $6,307.00
1998 3 BO-2 BOSTON Company 3857 $6,153.00
1998 3 BO-3 BOSTON Company 3898 $6,319.00
1998 3 BO-4 BOSTON Company 3949 $6,453.00
1998 3 BO-5 BOSTON Franchise 3617 $5,052.00
1998 3 BO-6 BOSTON Franchise 3624 $5,111.00
1998 4 BO-1 BOSTON Company 3853 $6,021.00
1998 4 BO-2 BOSTON Company 3891 $6,333.00
1998 4 BO-3 BOSTON Company 3892 $6,289.00
1998 4 BO-4 BOSTON Company 3966 $6,571.00
1998 4 BO-5 BOSTON Franchise 3595 $4,945.00
1998 4 BO-6 BOSTON Franchise 3611 $5,051.00
1998 1 LA-1 LOS ANGELES Franchise 8259 $29,267.00
1998 1 LA-2 LOS ANGELES Company 9140 $31,947.00
1998 1 LA-3 LOS ANGELES Company 9727 $35,405.00
1998 1 LA-4 LOS ANGELES Franchise 9494 $33,830.00
1998 1 LA-5 LOS ANGELES Franchise 10644 $39,971.00
1998 1 LA-6 LOS ANGELES Franchise 10649 $40,077.00
1998 2 LA-1 LOS ANGELES Franchise 9066 $32,595.00
1998 2 LA-2 LOS ANGELES Company 9789 $35,217.00
1998 2 LA-3 LOS ANGELES Company 9814 $35,455.00
1998 2 LA-4 LOS ANGELES Franchise 9917 $35,926.00
1998 2 LA-5 LOS ANGELES Franchise 10617 $39,424.00
1998 2 LA-6 LOS ANGELES Franchise 10190 $38,387.00
1998 3 LA-1 LOS ANGELES Franchise 9531 $33,966.00
1998 3 LA-2 LOS ANGELES Company 9698 $34,419.00
1998 3 LA-3 LOS ANGELES Company 9771 $34,494.00
1998 3 LA-4 LOS ANGELES Franchise 10232 $37,315.00
1998 3 LA-5 LOS ANGELES Franchise 10561 $39,141.00
1998 3 LA-6 LOS ANGELES Franchise 10924 $41,938.00
1998 4 LA-1 LOS ANGELES Franchise 9310 $33,202.00
1998 4 LA-2 LOS ANGELES Company 9496 $33,910.00
1998 4 LA-3 LOS ANGELES Company 9596 $34,500.00
1998 4 LA-4 LOS ANGELES Franchise 10050 $37,274.00
1998 4 LA-5 LOS ANGELES Franchise 10440 $38,304.00
1998 4 LA-6 LOS ANGELES Franchise 10778 $40,965.00
1998 1 NY-1 NEW YORK Company 6390 $19,890.00
1998 1 NY-2 NEW YORK Franchise 7016 $22,229.00
1998 1 NY-3 NEW YORK Franchise 7293 $24,077.00
1998 1 NY-4 NEW YORK Company 7037 $22,704.00
1998 1 NY-5 NEW YORK Franchise 7815 $26,962.00
1998 1 NY-6 NEW YORK Franchise 6935 $22,925.00
1998 2 NY-1 NEW YORK Company 6954 $22,389.00
1998 2 NY-2 NEW YORK Franchise 7531 $25,324.00
1998 2 NY-3 NEW YORK Franchise 7486 $24,753.00

 293

1998 2 NY-4 NEW YORK Company 7285 $24,112.00
1998 2 NY-5 NEW YORK Franchise 7749 $26,325.00
1998 2 NY-6 NEW YORK Franchise 6881 $23,123.00
1998 3 NY-1 NEW YORK Company 7256 $23,330.00
1998 3 NY-2 NEW YORK Franchise 7330 $24,258.00
1998 3 NY-3 NEW YORK Franchise 7212 $23,386.00
1998 3 NY-4 NEW YORK Company 7480 $24,619.00
1998 3 NY-5 NEW YORK Franchise 6771 $22,189.00
1998 3 NY-6 NEW YORK Franchise 6954 $23,188.00
1998 4 NY-1 NEW YORK Company 7086 $22,703.00
1998 4 NY-2 NEW YORK Franchise 7275 $24,245.00
1998 4 NY-3 NEW YORK Franchise 7121 $23,025.00
1998 4 NY-4 NEW YORK Company 7562 $25,329.00
1998 4 NY-5 NEW YORK Franchise 6569 $20,845.00
1998 4 NY-6 NEW YORK Franchise 6973 $23,220.00

The Period column in Table 20-1 is the time period. For simplicity, we consider only four time
periods. The Store Code column gives the store code, used to uniquely identify a store. The Store
City gives the city in which the store is located. The Store Type column indicates whether the
store is owned by the company or is franchised. The Transactions column gives the number of
transactions for that time period. The Sales column gives the total sales for that store during that
period.

Note that there is one, and only one, row for each time period/store code. (In database language,
the time period/store code forms a key for the data.)

Our goal is to create a PivotTable from the data in Table 20-1. Of course, before creating a
PivotTable, we need to identify the type of aggregate data in which we are interested. Clearly, we
want total sales and transaction counts. The question is: "Over what groupings?"

The best approach is first to identify the most refined (or smallest) grouping for the aggregate data.
In this case, it is store type/store location/time period. For example, we want the total sales for all
company stores in New York during period 1.

In addition, we will want aggregates for larger groupings—for example, total sales for all
company stores in New York over all periods and total sales for New York.

Finally, we want separate totals for the years 1998 and 1997.

20.2 The PivotTable Wizard

Let us first walk through the PivotTable wizard to create our PivotTable. Then we will create the
same PivotTable using code.

The first step is to select the source data and start the wizard by selecting PivotTable Report under
the Data menu. This will produce the first wizard dialog, as shown in Figure 20-1. (These figures
are for Excel 97 and 2000. The Excel XP wizard has a somewhat different appearance.)

Figure 20-1. Step 1 in the PivotTable wizard

 294

Note that this dialog allows us to select the data source for the PivotTable data. Clicking the Next
button produces the dialog in Figure 20-2.

Figure 20-2. Step 2 in the PivotTable wizard

Since we selected the correct source range before starting the wizard, Excel has correctly
identified that range in Figure 20-2, so we can simply hit the Next button, which produces the
dialog in Figure 20-3.

Figure 20-3. Step 3 in the PivotTable wizard

 295

This dialog is where we format the PivotTable by deciding which columns of the original source
table become pages in the PivotTable, which become rows, which become columns, and which
become data (for aggregation). The procedure is to drag the buttons on the right to the proper
location—row, column, page, or data. (We want one page for each of the two years.)

For our example, we drag the buttons to the locations shown in Figure 20-4. Note that the only
button not used is Store Code. This field is the aggregate field, that is, we will sum over all store
codes.

Figure 20-4. Step 4 in the PivotTable wizard

Clicking the Next button takes us to the dialog in Figure 20-5, where we choose the location for
the PivotTable. We choose a new worksheet.

Figure 20-5. Step 5 in the PivotTable wizard

Clicking the Finish button produces the PivotTable in Figure 20-6.

Figure 20-6. The PivotTable

 296

Note that the page button is labeled Year. Selecting one of All, 1998, or 1997 from the drop-down
list box next to this button will confine the data to that selection. Thus, the pivot table has three
pages: 1997, 1998, and combined (or All).

Note also that the columns are labeled by periods and the rows are labeled by both Store City and
Store Type, as requested. In addition, Excel has created a new field called Data that is used as row
labels. In this case, Excel correctly guessed that we want sums, but if Excel had guessed
incorrectly we could make a change manually.

In summary, we can see that the main components of a pivot table are the pages, rows, columns,
and data fields.

Rather than pursue further development of this PivotTable using the Excel interface, let us now
switch to using code.

20.3 The PivotTableWizard Method

To create a PivotTable through code, we use the PivotTableWizard method of the Worksheet
object or the PivotTable object. Contrary to what you might assume, the PivotTableWizard
method does not start the PivotTable wizard. Rather, it is used to create a PivotTable when applied
to the Worksheet object or to modify an existing PivotTable when applied to the PivotTable object.

The syntax is:

expression.PivotTableWizard(SourceType, SourceData, TableDestination, _
 TableName, RowGrand, ColumnGrand, SaveData, HasAutoFormat, _
 AutoPage, Reserved, BackgroundQuery, OptimizeCache, _
 PageFieldOrder, ageFieldWrapCount, ReadData, Connection)

where expression returns either a Worksheet object or a PivotTable object. As you might
expect, the parameters of the PivotTableWizard method correspond to settings in the PivotTable
wizard. On the other hand, the PivotTableWizard method cannot do everything that the PivotTable

 297

wizard can do. For instance, it cannot be used to specify the row, column, and data fields. (We
will see how to do that a bit later.) Put another way, the PivotTableWizard method sets the
properties of an empty PivotTable.

Let us go over some of the more important parameters to the PivotTableWizard method.

The optional SourceType parameter specifies the source of the PivotTable data and can be one
of the following XlPivotTableSourceType constants:

Enum XlPivotTableSourceType
 xlPivotTable = -4148
 xlDatabase = 1
 xlExternal = 2
 xlConsolidation = 3
End Enum

These directly correspond to the first dialog of the PivotTable wizard, as shown in Figure 20-1.

If we specify a value for SourceType, then we must also specify a value for SourceData. If
we specify neither, Excel uses the source type xlDatabase and the source data from a named
range called Database. If this named range does not exist, Excel uses the current region if the
current selection is in a range of more than 10 cells that contain data. Otherwise, the method will
fail. All in all, this rule is sufficiently complicated to warrant always specifying these parameters.

The SourceData parameter specifies the data for the PivotTable. It can be a Range object, an
array of ranges, or a text constant that represents the name of another PivotTable. For external data,
this must be a two-element array, the first element of which is the connection string specifying the
ODBC source for the data, and the second element of which is the SQL query string used to get
the data.

The TableDestination parameter is a Range object specifying where the PivotTable should
be placed. It can include a worksheet qualifier to specify the worksheet upon which to place the
pivot table as well.

The TableName parameter is a string that specifies the name of the new PivotTable.

The RowGrand parameter should be set to True to show grand totals for rows in the PivotTable.
Similarly, the ColumnGrand parameter should be set to True to show grand totals for columns
in the PivotTable.

The SaveData parameter should be set to True to save data with the PivotTable. If it is False,
then only the PivotTable definition is saved.

HasAutoFormat is set to True to have Excel automatically format the PivotTable whenever it is
refreshed or whenever any fields are moved.

The PageFieldOrder and PageFieldWrapCount parameters are meaningful only when
there is more than one page field, in which case these parameters specify where the page field
buttons and concomitant drop-down list boxes are placed relative to one another. The
PageFieldOrder parameter can be either xlDownThenOver (the default) or
xlOverThenDown. For instance, if there were three page fields, then the setting:

PageFieldOrder = xlDownThenOver
PageFieldWrapCount = 2

TE
AM
FL
Y

Team-Fly®

 298

would arrange the page fields as in Figure 20-7. This pivot table is only for illustration of the page
field order. It was created from the original pivot table by moving the row fields to page fields.
Note also that setting PageFieldOrder to xlOverThenDown would simply reverse the
positions of Store City and Store Type.

Figure 20-7. Illustrating page field order

The following code ostensibly creates the PivotTable in Figure 20-6 at the location of the active
cell:

ActiveSheet.PivotTableWizard _
 SourceType:=xlDatabase, _
 SourceData:="'Source'!R1C1:R145C7", _
 TableName:="Sales&Trans"

In fact, the results of executing this code are shown in Figure 20-8. The reason nothing much
seems to have happened is that, as we mentioned earlier, the PivotTableWizard method does not
allow us to specify which fields are page, row, column, and data fields. The table in Figure 20-8 is
an empty PivotTable.

Figure 20-8. An empty PivotTable

20.4 The PivotTable Object

To understand better what must be done next, we must discuss the PivotTable object and its
various child collection objects.

Invoking the PivotTableWizard method has created a PivotTable object named Sales&Trans for us.
All PivotTable objects have a PivotFields collection, accessed through the PivotFields property.
Thus, the code:

Dim pf As PivotField
For Each pf In _
 ActiveSheet.PivotTables("Sales&Trans").PivotFields
 Debug.Print pf.Name
Next

produces the following list of pivot fields:

 299

Year
Period
Store Code
Store City
Store Type
Transactions
Sales

Now, each PivotField object can have a designation that specifies whether this field is to be used
as a row field, a column field, a page field, or a data field. This designation is referred to as its
orientation.

It turns out that there is more than one way to set the orientation of a pivot field. One approach is
to set the pivot field's Orientation property, and another approach is to use the AddFields method.
Unfortunately, neither of these methods is sufficiently documented, so some experimentation is in
order.

As to the Orientation property approach, consider the code in Example 20-1, which sets both the
Orientation and Position properties. We will discuss the subtleties of this code after you have
looked at it.

Example 20-1. The CreatePivotFields Procedure

Sub CreatePivotFields()
 ' Assume source for pivot table
 ' is in sheet named 'Source'

 ActiveSheet.PivotTableWizard _
 SourceType:=xlDatabase, _
 SourceData:="'Source'!R1C1:R145C7", _
 TableName:="PivotTable1"

 With ActiveSheet.PivotTables("Sales&Trans")
 Debug.Print "Before all:"
 ShowFields

 .PivotFields("Year").Orientation = xlPageField
 .PivotFields("Year").Position = 1

 .PivotFields("Store City").Orientation = xlRowField
 .PivotFields("Store City").Position = 1

 .PivotFields("Store Type").Orientation = xlRowField
 .PivotFields("Store Type").Position = 2

 .PivotFields("Period").Orientation = xlColumnField

 Debug.Print "Before data fields:"
 ShowFields

 With .PivotFields("Transactions")
 .Orientation = xlDataField
 .Position = 1
 End With

 With .PivotFields("Sales")
 .Orientation = xlDataField
 .Position = 2
 End With

 300

 Debug.Print ""
 Debug.Print "After data fields:"

 ShowFields

 .PivotFields("Data").Orientation = xlRowField
 .PivotFields("Data").Position = 3
 End With
End Sub

The ShowFields procedure used in CreatePivotFields is shown in Example 20-2; it
simply prints (to the Immediate window) a list of all pivot fields and is very useful for
experimenting or debugging.

Example 20-2. The ShowFields Procedure

Sub ShowFields()
 Dim pf As PivotField

 Debug.Print "*PivotFields:"

 For Each pf In _
 ActiveSheet.PivotTables("Sales&Trans").PivotFields
 Debug.Print pf.Name
 Next

 Debug.Print "*RowFields:"

 For Each pf In _
 ActiveSheet.PivotTables("Sales&Trans").RowFields
 Debug.Print pf.Name
 Next

 Debug.Print "*ColFields:"

 For Each pf In _
 ActiveSheet.PivotTables("Sales&Trans").ColumnFields
 Debug.Print pf.Name
 Next

 Debug.Print "*DataFields:"

 For Each pf In _
 ActiveSheet.PivotTables("Sales&Trans").DataFields
 Debug.Print pf.Name
 Next
End Sub

Running CreatePivotFields results in the following display to the Immediate window:

Before all:
*PivotFields:
Year
Period
Store Code
Store City
Store Type
Transactions
Sales

 301

*RowFields:
*ColFields:
*DataFields:

Before data fields:
*PivotFields:
Year
Period
Store Code
Store City
Store Type
Transactions
Sales
*RowFields:
Store City
Store Type
*ColFields:
Period
*DataFields:

After data fields:
*PivotFields:
Year
Period
Store Code
Store City
Store Type
Transactions
Sales
Data
*RowFields:
Store City
Store Type
Data
*ColFields:
Period
*DataFields:
Sum of Transactions
Sum of Sales

The first thing we notice from this list is that the special pivot field called Data is created by Excel
only after the Transactions and Sales fields are assigned the xlDataField orientation. This
statement is further supported by the fact that if we move the last two lines of code:

.PivotFields("Data").Orientation = xlRowField

.PivotFields("Data").Position = 3

to just before the With block related to the Transactions field, Excel will issue an error message
when we try to run the code, stopping at the line:

.PivotFields("Data").Orientation = xlRowField

because it cannot set the Orientation property of the nonexistent Data field.

Next, we observe that, with respect to Row, Column, and Page fields, Excel simply adds the pivot
fields to the appropriate collections. However, with respect to Data fields, Excel creates new field
objects called Sum of Transactions and Sum of Sales that are considered data fields but not pivot-
table fields!

 302

20.4.1 Naming Data Fields

We should make a few remarks about naming data fields. It is important to note that if the name of
a data field has not been changed but we make a change to the aggregate function, say from Sum
to Average, then Excel will automatically rename the data field, in this case from Sum of Sales
to Average of Sales. However, once we set a new name for the data field, Excel will not
rename it when we change the aggregate function.

We can rename a data field simply by setting its Name property. However, even though Data
fields do not seem to belong to the PivotFields collection, we cannot use the name of a pivot field
for a data field. For instance, we cannot rename Sum of Transactions to Transactions,
since this is already taken by the pivot field. (Trying to do so will produce an error.) Thus, in
designing the source table for the pivot table, we should choose a column heading that we do not
want to use in the pivot table!

20.4.2 The Complete Code

For reference, let us put together the code required to create the pivot table in Figure 20-6; it is
shown in Example 20-3.

Example 20-3. The CreatePivot Procedure

Sub CreatePivot()
 ' Create pivot table at active cell
 ' Assumes that the source table is in sheet called Source

 ActiveSheet.PivotTableWizard _
 SourceType:=xlDatabase, _
 SourceData:="'Company Both'!R1C1:R145C7", _
 TableName:="Sales&Trans"

 ' Assign field orientations and data fields
 With ActiveSheet.PivotTables("Sales&Trans")
 .PivotFields("Year").Orientation = xlPageField
 .PivotFields("Year").Position = 1

 .PivotFields("Store City").Orientation = _
 xlRowField
 .PivotFields("Store City").Position = 1

 .PivotFields("Store Type").Orientation = _
 xlRowField
 .PivotFields("Store Type").Position = 2

 .PivotFields("Period").Orientation = _
 xlColumnField

 With .PivotFields("Transactions")
 .Orientation = xlDataField
 .Position = 1
 End With

 With .PivotFields("Sales")
 .Orientation = xlDataField
 .Position = 2
 End With

 .PivotFields("Data").Orientation = xlRowField

 303

 .PivotFields("Data").Position = 3
 End With
End Sub

Another approach to assigning orientation for the pivot fields is to use the AddFields method of
the PivotTable object. We can use this method for all but data fields. The syntax is:

PivotTableObject.AddFields(RowFields, _
 ColumnFields, PageFields, AddToTable)

The optional RowFields parameter can specify either a single pivot-field name or an array of
pivot-field names to be added as rows, and similarly for the ColumnFields and PageFields
parameters.

It is important to note that any invocation of the AddFields method will replace all existing fields
of the given type (row, column, or page) with the fields designated by the parameters of the
method. To increment rather than replace existing fields, we must set the AddToTable parameter
to True.

The alternative to CreatePivot shown in Example 20-4 uses the AddFields method for row,
column, and page fields. Note that this is shorter than the previous procedure. (It is also the
approach taken by Excel itself when we record a macro that creates this pivot table.)

Example 20-4. Creating a Pivot Table Using the AddFields Method

Sub CreatePivot2()
 ' Create pivot table at active cell
 ' Assumes that the source table is in sheet called Source

 ActiveSheet.PivotTableWizard _
 SourceType:=xlDatabase, _
 SourceData:="'Source'!R1C1:R145C7", _
 TableName:="Sales&Trans2"

 ActiveSheet.PivotTables("Sales&Trans2").AddFields _
 RowFields:=Array("Store City", "Store Type"), _
 ColumnFields:="Period", _
 PageFields:="Year"

 With ActiveSheet.PivotTables("Sales&Trans2")
 With .PivotFields("Transactions")
 .Orientation = xlDataField
 .Position = 1
 End With

 With .PivotFields("Sales")
 .Orientation = xlDataField
 .Position = 2
 End With
 End With
End Sub

20.5 Properties and Methods of the PivotTable Object

 304

The members of the PivotTable object are shown in Table 20-2. We'll discuss the most important
of these members by their function.

Table 20-2. Members of the PivotTable Object
_Default ErrorString PrintTitles<v9>
_PivotSelect<v10> Format<v9> RefreshDate
AddDataField<v10> GetData RefreshName
AddFields GetPivotData<v10> RefreshTable
Application GrandTotalName<v9> RepeatItemsOnEachPrintedPage<v9>
CacheIndex HasAutoFormat RowFields
CalculatedFields HiddenFields RowGrand
CalculatedMembers<v10> InnerDetail RowRange
ColumnFields ListFormulas SaveData
ColumnGrand ManualUpdate SelectionMode
ColumnRange MDX<v10> ShowCellBackgroundFromOLAP<v10>
CreateCubeFile<v10> MergeLabels ShowPageMultipleItemLabel<v10>
Creator Name ShowPages
CubeFields<v9> NullString SmallGrid<v9>
DataBodyRange PageFieldOrder SourceData
DataFields PageFields SubtotalHiddenPageItems
DataLabelRange PageFieldStyle TableRange1
DataPivotField<v10> PageFieldWrapCount TableRange2
DisplayEmptyColumn<v10> PageRange TableStyle
DisplayEmptyRow<v10> PageRangeCells Tag
DisplayErrorString Parent TotalsAnnotation<v9>
DisplayImmediateItems<v10> PivotCache Update
DisplayNullString PivotFields VacatedStyle
Dummy15<v10> PivotFormulas Value
EnableDataValueEditing<v10> PivotSelect Version<v10>
EnableDrilldown PivotSelection ViewCalculatedMembers<v10>
EnableFieldDialog PivotSelectionStandard<v10> VisibleFields
EnableFieldList<v10> PivotTableWizard VisualTotals<v10>
EnableWizard PreserveFormatting

20.5.1 Returning a Fields Collection

Several of the members of the PivotTable object are designed to return a fields collection.

20.5.1.1 ColumnFields property

This property returns the collection of all column fields, using the syntax:

PivotTableObject.ColumnFields

Alternatively, we can return selected column fields using the syntax:

PivotTableObject.ColumnFields(Index)

 305

where Index is either a single index (the index number of the desired field) or an array of indexes.

20.5.1.2 DataFields property

This property returns the collection of all data fields, using the syntax:

PivotTableObject.DataFields

Alternatively, we can return selected data fields using the syntax:

PivotTableObject.DataFields(Index)

where Index is either a single index (the index number of the desired field) or an array of indexes.

20.5.1.3 HiddenFields property

As we will see, a pivot field can be hidden by setting its orientation to xlHidden. The
HiddenFields property returns the collection of all hidden fields, using the syntax:

PivotTableObject.HiddenFields

Alternatively, we can return selected hidden fields using the syntax:

PivotTableObject.HiddenFields(Index)

where Index is either a single index (the index number of the desired field) or an array of indexes.

20.5.1.4 PageFields property

The PageFields property returns the collection of all page fields, using the syntax:

PivotTableObject.PageFields

Alternatively, we can return selected page fields using the syntax:

PivotTableObject.PageFields(Index)

where Index is either a single index (the index number of the desired field) or an array of indexes.

20.5.1.5 PivotFields property

The PivotFields property returns the collection of all pivot fields, using the syntax:

PivotTableObject.PivotFields

Alternatively, we can return selected pivot fields using the syntax:

PivotTableObject.PivotFields(Index)

where Index is either a single index (the index number of the desired field) or an array of indexes.

20.5.1.6 RowFields property

 306

The RowFields property returns the collection of all row fields, using the syntax:

PivotTableObject.RowFields

Alternatively, we can return selected row fields using the syntax:

PivotTableObject.RowFields(Index)

where Index is either a single index (the index number of the desired field) or an array of indexes.

20.5.1.7 VisibleFields property

The VisibleFields property returns the collection of all visible fields, using the syntax:

PivotTableObject.VisibleFields

Alternatively, we can return selected visible fields using the syntax:

PivotTableObject.VisibleFields(Index)

where Index is either a single index (the index number of the desired field) or an array of indexes.

20.5.2 Totals-Related Members

The PivotTable object has two properties that affect the display of totals.

ColumnGrand property (R/W Boolean)

When this property is True, the PivotTable shows grand column totals.

RowGrand property (R/W Boolean)

When this property is True, the PivotTable shows grand row totals.

To illustrate, referring to the pivot table in Figure 20-6, the code:

ActiveSheet.PivotTables("Sales&Trans"). _
 ColumnGrand = False
ActiveSheet.PivotTables("Sales&Trans"). _
 RowGrand = False

produces the pivot table in Figure 20-9, with no grand totals.

Figure 20-9. No grand totals

 307

We can also suppress the display of individual pivot-field totals, such as the totals for Store City in
Figure 20-9. This is a property of the particular PivotField object, so we will discuss it when we
discuss this object later in the chapter. As a preview, however, the display of field totals is
governed by the Subtotals property of the PivotField object. For instance, the following code turns
off all field totals in Figure 20-9:

Dim i As Integer
For i = 1 To 12
 ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store City").Subtotals(i) = False
Next

(There are 12 types of totals, and we must turn them all off.) This produces the pivot table in
Figure 20-10.

Figure 20-10. No totals at all

TE
AM
FL
Y

Team-Fly®

 308

20.5.3 Returning a Portion of a PivotTable

Several of the members of the PivotTable object are designed to return a portion of the pivot table
as a Range object. They are as follows.

20.5.3.1 ColumnRange property

This property returns a Range object that represents the column area in the pivot table. Figure 20-
11 illustrates the column range.

Figure 20-11. The ColumnRange range

20.5.3.2 DataBodyRange property

This property returns a Range object that represents the PivotTable's data area. Figure 20-12
shows the results of selecting the DataBodyRange.

Figure 20-12. The DataBodyRange range

20.5.3.3 DataLabelRange property

 309

This read-only property returns a Range object that represents the labels for the PivotTable data
fields. Figure 20-13 illustrates DataLabelRange.

Figure 20-13. The DataLabelRange range

20.5.3.4 PageRange and PageRangeCells properties

The PageRange property returns a Range object that represents the PivotTable's page area. This is
the smallest rectangular region containing all page field-related cells.

The PageRangeCells property returns a Range object that represents just the cells in the
PivotTable containing the page-field buttons and item drop-down lists. Figure 20-14 and Figure
20-15 illustrate the difference.

Figure 20-14. The PageRange range

Figure 20-15. The PageRangeCells range

20.5.3.5 RowRange property

 310

This property returns a Range object that represents the PivotTable's row area. Figure 20-16
illustrates the row area.

Figure 20-16. The RowRange range

20.5.3.6 TableRange1 property

This property returns a Range object that represents the entire PivotTable except the page fields.
This is illustrated in Figure 20-17.

Figure 20-17. The TableRange1 range

20.5.3.7 TableRange2 property

This property returns a Range object that represents the entire PivotTable, including the page
fields. This is illustrated in Figure 20-18.

Figure 20-18. The TableRange2 range

 311

20.5.4 PivotSelect and PivotSelection

The PivotSelect method selects part of a PivotTable. The syntax is:

PivotTableObject.PivotSelect(Name, Mode)

The Mode parameter specifies the selection mode and can be one of the following
XlPTSelectionMode constants:

Enum XlPTSelectionMode
 xlDataAndLabel = 0
 xlLabelOnly = 1
 xlDataOnly = 2
 xlOrigin = 3
 xlBlanks = 4
 xlButton = 15
 xlFirstRow = 256 ' Excel 9 only
End Enum

The Name parameter specifies the selection in what Microsoft refers to as "standard PivotTable
selection format." Unfortunately, the documentation does not tell us what this means, saying
instead, "A string expression used to specify part of a PivotTable. The easiest way to understand
the required syntax is to turn on the macro recorder, select cells in the PivotTable, and then study
the resulting code." There is more on this, and we refer the reader to the Excel VBA help
documentation (start by looking up the PivotSelect topic).

So let us consider some examples, all of which are based on the pivot table in Figure 20-10.
However, to illustrate the Name property and to shorten the figures a bit, we will rename the data
field "Sum of Transactions" to "Trans" and "Sum of Sales" to "Sale" using the following code:

Sub Rename()
 ' To shorten the names of the data fields

 ActiveSheet.PivotTables("Sales&Trans"). _
 DataFields("Sum of Transactions").Name = "Trans"

 ActiveSheet.PivotTables("Sales&Trans"). _
 DataFields("Sum of Sales").Name = "Sale"
End Sub

 312

This also emphasizes a point we made earlier. Namely, we would like to rename the "Sum of
Sales" field to "Sales" but there is a column in the source table by that name, so Excel will not let
us use the name for a data field. Thus, we are stuck with "Sale." Now back to business.

The following code selects the entire pivot table:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotSelect "", xlDataAndLabel

The following code selects the Store Type label area (pivot-field label and pivot-item labels):

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotSelect "'Store Type'[All]", xlLabelOnly

The following code selects all data and labels related to the Company pivot item:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotSelect "Company", xlDataAndLabel

The following code selects the cells shown in Figure 20-19:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotSelect "Company BOSTON", xlDataAndLabel

Figure 20-19. Selecting the company label and data for Boston

On the other hand, by reversing the words Company and BOSTON:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotSelect "BOSTON Company", xlDataAndLabel

we get the selection in Figure 20-20, which does not include the Company label!

Figure 20-20. Reversing the word order to select company data for Boston only

 313

The following code selects cell E12 of the pivot table in Figure 20-10:

ActiveSheet.PivotTables("Sales&Trans").PivotSelect _
 "'LOS ANGELES' Franchise 'Sale' '2'", xlDataOnly

The following code selects the labels and data for Boston and New York:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotSelect "'Store City'[BOSTON,'NEW YORK']", xlDataAndLabel

If we replace the comma with a colon:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotSelect "'Store City'[BOSTON:'NEW YORK']", xlDataAndLabel

then all items from Boston to New York (that is, all items) are selected.

The PivotSelection property returns or sets the PivotTable selection, again in standard PivotTable
selection format. Setting this property is equivalent to calling the PivotSelect method with th e
Mode argument set to xlDataAndLabel.

20.5.5 Additional Members of the PivotTable Object

Let us take a look at some additional members of the PivotTable object.

20.5.5.1 AddFields method

We have seen this method in action earlier in this chapter.

20.5.5.2 CalculatedFields method

It is possible to add calculated fields to a pivot table. These are fields that are not part of the
original source data, but instead are calculated from source fields using a formula.

The CalculatedFields method returns the CalculatedFields collection of all calculated fields. To
add a new calculated field, we use the Add method of the CalculatedFields collection. The syntax
is:

CalculatedFieldsObject.Add(Name, Formula)

 314

where Name is the name of the field and Formula is the formula for the field.

To illustrate, the following code creates a calculated field and displays it in the pivot table from
Figure 20-10. The results are shown in Figure 20-21.

With ActiveSheet.PivotTables("Sales&Trans"). _
 CalculatedFields.Add("Average", _
 "= Sales/Transactions")
 .Orientation = xlDataField
 .Name = "Avg Check"
 .NumberFormat = "##.#"
End With

Figure 20-21. Illustrating a calculated field

We should make a brief remark about the arithmetic of the calculated field. The calculated field is
computed directly from the data in the pivot table. The source data is not involved directly. This is
why we did not specify an aggregate function for the calculated field. (Such a function would have
been ignored.) Thus, for instance, the value in cell D7 is obtained by dividing the value in cell D6
by the value in cell D5.

Finally, we note that the ListFormulas method can be used to create a list of all calculated fields
on a separate worksheet.

20.5.5.3 Errors-related properties

When the DisplayErrorString property is True, the PivotTable displays a custom error string in
cells that contain errors. (The default value is False.) As the Excel help file observes, this
property is particularly useful for suppressing divide-by-zero errors.

 315

The ErrorString property can be used to set the string that is displayed in cells that contain errors
when DisplayErrorString is True. (The default value is an empty string.)

20.5.5.4 Null-related properties

When the DisplayNullString property is True, the PivotTable displays a custom string in cells
that contain null values. (The default value is True.)

The NullString property can be used to set the custom string for such cells. (The default value is
an empty string.)

20.5.5.5 EnableDrillDown property

One of the features of a PivotTable is the DrillDown feature. To illustrate, if we double-click on a
data cell, such as cell D5 in the pivot table of Figure 20-10, Excel will create a new worksheet, as
shown in Figure 20-22. This worksheet shows the original source rows that contribute to the value
in the double-clicked cell D5. (Note that the rows are complete, although the Sales column does
not contribute to cell D5.)

Figure 20-22. Illustrating DrillDown

By now you have probably guessed that the read-write Boolean property EnableDrillDown is used
to enable or to disable this feature for the pivot table.

20.5.5.6 Formatting properties and methods

The read-write HasAutoFormat property is True (its default value) if the PivotTable is
automatically formatted when it is refreshed or when some of its fields are moved.

The labels for the rows, columns, subtotals, and totals in Figure 20-6 are not merged with adjacent
blank cells. (The borders are adjusted so it may appear so, however.) To merge the labels with
adjacent blank cells, we can set the MergeLabels property to True.

The read-write PreserveFormatting property is True (its default value) if PivotTable formatting is
preserved when the PivotTable is refreshed or recalculated by operations such as pivoting, sorting,
or changing page-field items.

The TableStyle property returns or sets the style name (as a string) used in the PivotTable body.
The default value is a null string, so no style is applied.

20.5.5.7 Refreshing a pivot table

 316

When the ManualUpdate property is True, the PivotTable is recalculated only at the user's
request. The default value is False.

The RefreshTable method refreshes the PivotTable from the original source data. The method
returns True if it is successful.

The RefreshDate property returns the date on which the PivotTable or pivot cache was last
refreshed. It is read-only.

The RefreshName property returns the user name of the person who last refreshed the PivotTable
data or pivot cache.

20.5.5.8 PageField-related properties

As discussed earlier in the chapter, the PageFieldOrder property returns or sets the order in which
page fields are added to the PivotTable layout. It can be one of the following XlOrder constants:
xlDownThenOver or xlOverThenDown. The default constant is xlDownThenOver.

Recall also that the PageFieldWrapCount property returns or sets the number of PivotTable page
fields in each column or row.

The PageFieldStyle property returns or sets the style used in the page field area.

20.5.5.9 Name property

This property returns or sets the name of the pivot table as a string.

20.5.5.10 SaveData property (R/W Boolean)

When this property is True, its default value, data for the PivotTable is saved with the workbook.
If it is False, only the PivotTable definition is saved.

20.5.5.11 ShowPages method

This method creates a new PivotTable for each item in the specified page field. Each new
PivotTable is created on a new worksheet. The syntax is:

PivotTableObject.ShowPages(PageField)

For instance, if we apply this method to the pivot table in Figure 20-10 with the code:

ActiveSheet.PivotTables("Sales&Trans").ShowPages "Year"

we will get two new worksheets. One worksheet, named 1997, will contain the original pivot table,
but with the Year page field set to 1997. The other worksheet will contain the same pivot table
with the Year field set to 1998. (We can still change the Year field on any of the pivot tables. In
other words, each pivot table contains the data for all of the Year field values.)

20.5.5.12 SourceData property

This read-only property returns the data source for the PivotTable. For instance, when that source
is a single Excel worksheet, the SourceData method returns a string describing the source range.
The code:

 317

debug.print ActiveSheet.PivotTables("Sales&Trans").SourceData

returns the string:

'Company Both'!R1C1:R145C7

20.6 Children of the PivotTable Object

The children of the PivotTable object are shown in Figure 20-23.

Figure 20-23. Children of the PivotTable object

20.7 The PivotField Object

The properties and methods of the PivotField object are shown in Table 20-3.

Table 20-3. Members of the PivotField Object
_Default CurrentPageName<v9> LayoutPageBreak<v9>

TE
AM
FL
Y

Team-Fly®

 318

AddPageItem<v10> DatabaseSort<v10> LayoutSubtotalLocation<v9>
Application DataRange MemoryUsed
AutoShow DataType Name
AutoShowCount Delete NumberFormat
AutoShowField DragToColumn Orientation
AutoShowRange DragToData<v9> Parent
AutoShowType DragToHide ParentField
AutoSort DragToPage ParentItems
AutoSortField DragToRow PivotItems
AutoSortOrder DrilledDown<v9> Position
BaseField EnableItemSelection<v10> PropertyOrder<v10>
BaseItem Formula PropertyParentField<v10>
CalculatedItems Function ServerBased
Calculation GroupLevel ShowAllItems
Caption<v9> HiddenItems SourceName
ChildField HiddenItemsList<v10> StandardFormula<v10>
ChildItems IsCalculated SubtotalName<v9>
Creator IsMemberProperty<v10> Subtotals
CubeField<v9> LabelRange TotalLevels
CurrentPage LayoutBlankLine<v9> Value
CurrentPageList<v10> LayoutForm<v9> VisibleItems

Let us take a look at some of these members.

20.7.1 AutoShow-Related Members

The AutoShow method is used to restrict the display of pivot items for a given pivot field. The
syntax is:

PivotFieldObject.AutoShow(Type, Range, Count, Field)

All parameters are required for this method.

The Type parameter has two possible values: xlAutomatic activates the remaining parameters
and, thereby, causes the restrictions to take effect, and xlManual disables the remaining
parameters and causes Excel to remove any restrictions caused by a previous call to this method
with Type equal to xlAutomatic.

The other parameters can be described by the following sentence: restrict pivot items to the top
(Range =xlTop) or bottom (Range =xlBottom) Count pivot items based on the value in
pivot field Field.

Thus, for instance, referring to Figure 20-10, the code:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store Type").AutoShow _
 xlAutomatic, xlTop, 1, "Sale"

shows the top (Range =xlTop and Count=1) Store Type based on the value of Sale. The result
is shown in Figure 20-24.

 319

Figure 20-24. Illustrating AutoShow

As you can see, the top sales in Boston are from the company stores, whereas the top sales in the
other cities are in franchise stores.

The same code as the previous but with Type set to xlManual will remove the restrictions and
restore the original pivot table:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store Type").AutoShow _
 xlManual, xlTop, 1, "Sale"

The following properties are associated with AutoShow:

AutoShowCount property

The read-only AutoShowCount property returns the number of items that are
automatically shown in the pivot field (this is the Count parameter of the AutoShow
method).

AutoShowField property

This read-only property returns the name of the data field used to determine which items
are shown (this is the Field parameter of the AutoShow method).

AutoShowRange property

This read-only property returns xlTop or xlBottom. This is the value of the Range
parameter of the AutoShow method.

AutoShowType property

This read-only property returns xlAutomatic if AutoShow is enabled for the pivot field
and xlManual if AutoShow is disabled.

20.7.2 Sorting Pivot Fields

The AutoSort method sets the automatic field-sorting rules for the pivot field. The syntax is:

PivotFieldObject.AutoSort(Order, Field)

 320

The Order parameter specifies the sort order and is one of the following constants:

Enum XlSortOrder
 xlAscending = 1
 xlDescending = 2
End Enum

It can also be set to xlManual to disable automatic sorting. The Field parameter is the name of
the field to use as the sort key.

For instance, referring to Figure 20-10, the code:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store Type").AutoSort _
 xlAscending, "Sale"

sorts by Sale and produces the results shown in Figure 20-25. Note the order of the Store Type
items for Boston as compared to the other cities.

Figure 20-25. Illustrating AutoSort

The read-only AutoSortField property returns the name of the key field and the AutoSortOrder
property returns the sort order of the pivot field (xlAscending, xlDescending, or
xlManual).

20.7.3 The Fundamental Properties

The PivotField object has a handful of basic properties that you will almost always want to set.

20.7.3.1 Function property

This property applies only to data fields and returns or sets the aggregate function used to
summarize the pivot field. It can be one of the following XlConsolidationFunction
constants:

Enum XlConsolidationFunction

 321

 xlVarP = -4165
 xlVar = -4164
 xlSum = -4157
 xlStDevP = -4156
 xlStDev = -4155
 xlProduct = -4149
 xlMin = -4139
 xlMax = -4136
 xlCountNums = -4113
 xlCount = -4112
 xlAverage = -4106
 xlUnknown = 1000 ' Excel 9 only
End Enum

20.7.3.2 NumberFormat property

This property applies only to data fields and returns or sets the formatting string for the object.
Note that it will return Null if all cells in the specified range do not have the same number format.
This is a read-write string property.

20.7.3.3 Orientation property

This property returns or sets the orientation of the pivot field. It can be set to one of the following
values:

Enum XlPivotFieldOrientation
 xlHidden = 0
 xlRowField = 1
 xlColumnField = 2
 xlPageField = 3
 xlDataField = 4
End Enum

20.7.3.4 Position property

This read-write property returns or sets the position of the pivot field among all pivot fields in the
same area (row, column, page, or data).

20.7.4 Selecting Ranges

The PivotField object has two properties related to selecting portions of the pivot table related to
the field.

20.7.4.1 DataRange property

This property returns a Range object representing the value area associated with the given
PivotField. To illustrate, the code:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store Type"). _
 DataRange.Select

results in Figure 20-26.

Figure 20-26. DataRange for Store Type

 322

20.7.4.2 LabelRange property

The LabelRange property returns a Range object that represents the label cells for the PivotField.
To illustrate, the code:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store Type"). _
 LabelRange.Select

will select just the cell containing the button labeled Store Type in Figure 20-26.

20.7.5 Dragging Pivot Fields

The PivotField object has some properties that can prevent the user from moving the field. They
are as follows (all default values are True):

DragToColumn property

Set to False to prevent the field from being dragged to the column area.

DragToHide property

Set to False to prevent the field from being hidden by being dragged off of the pivot
table.

DragToPage property

Set to False to prevent the field from being dragged to the page field area.

DragToRow property

Set to False to prevent the field from being dragged to the row field area.

20.7.6 Name, Value, and SourceName Properties

 323

The read-write Name property returns or sets the name of the PivotField. This is the value that
appears in the label for that field. The Value property is the same as the Name property.

The read-only SourceName property returns the name of the field in the original source data. This
may differ from the value of the Name property if the Name property has been changed.

20.7.7 Grouping

Excel also lets us group (and ungroup) the data for a selection of pivot items into a single new
pivot item. This is done using the Group and Ungroup methods of the Range object. Note that
these methods apply to the Range object, not the PivotField or PivotItem objects.

The Group method has two syntaxes, but we will look at only the more flexible of the two. (For all
of the details on the Group method, we refer the interested reader to the Excel help documentation.)

Let us look at an example. Referring as usual to the pivot table in Figure 20-10, the following code
selects all labels and data for Boston and New York and then groups this data into a single group.
The group is then renamed Eastern. The results are shown in Figure 20-27. Observe that Excel
creates both a new pivot field and a new pivot item. The pivot field is called Store City2 and
contains the existing Los Angeles pivot item along with a new pivot item, which would have been
given the name Group1 by Excel if we had not specified the name Eastern.

With ActiveSheet.PivotTables("Sales&Trans")
 .PivotSelect "'Store City'[BOSTON,'New York']", xlDataAndLabel
 Set rng = Selection
 rng.Group
 .PivotFields("Store City2").PivotItems(1). Name = "Eastern"
 .PivotSelect "Eastern", xlDataAndLabel
End With

Figure 20-27. Illustrating the Group method

20.7.8 Data Field Calculation

Normally, data fields show a value based on the Function property of the field. On the other hand,
Excel also permits us to change the meaning of the value that is displayed in a data field.

 324

20.7.8.1 Calculation property

This is done by setting the Calculation property for the data field. (The property applies only to
data fields.) The possible values of this property are given by the following enum:

Enum XlPivotFieldCalculation
 xlNoAdditionalCalculation = -4143
 xlDifferenceFrom = 2
 xlPercentOf = 3
 xlPercentDifferenceFrom = 4
 xlRunningTotal = 5
 xlPercentOfRow = 6
 xlPercentOfColumn = 7
 xlPercentOfTotal = 8
 xlIndex = 9
End Enum

As you can see from these constants, the idea is to replace the raw value in the data field by a type
of relative value. (We will see an example in a moment.)

Note that for some values of Calculation, additional information is required. In particular, if
Calculation is equal to xlDifferenceFrom, xlPercentDifferenceFrom , or
xlPercentOf, then we must specify the following two properties:

BaseField property

This property, which applies only to data fields, returns or sets the field upon which the
data field calculation is based.

BaseItem property

This property, which applies only to data fields, returns or sets the item in the base data
field used for the calculation.

20.7.8.2 Calculations not requiring a BaseField/BaseItem

The Calculation values that do not require a BaseField/BaseItem pair are:

xlRunningTotal

Keeps a running total of all values, going down the rows of the table.

xlPercentOfRow

Each cell is replaced by that cell's percentage of the sum of the values in that cell's row
(for the given data field).

xlPercentOfColumn

Each cell is replaced by that cell's percentage of the sum of the values in that cell's
column (for the given data field).

xlPercentOfTotal

 325

Each cell is replaced by that cell's percentage of the sum of the values in the entire table
(for the given data field).

The formula to compute the value in a cell is:

new value = (current value * grand total) / (row total * column total)

Figures 20-28 through 20-31 illustrate these calculations, starting with the pivot table in Figure
20-10. Note that the percent calculations require that the grand row and column totals be displayed.
The code for Figure 20-28 is:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Sale").Calculation = xlRunningTotal

Referring to Figure 20-28, cell D6 contains sales for Boston, cell D10 contains total sales for
Boston and Los Angeles, and cell D14 contains total sales for Boston, Los Angeles, and New
York. (I have had reports that the Calculation property does not always work properly. For some
reason, it may simply cause the relevant cells to fill with Excel's infamous #N/A symbols. Indeed,
I have had this same experience at times, but I have not been able to figure out why.)

Figure 20-28. Calculation = xlRunningTotal

The code for Figure 20-29 is:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Sale").Calculation = xlPercentOfRow

Figure 20-29. Calculation = xlPercentOfRow

 326

The code for Figure 20-30 is:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Sale").Calculation = xlPercentOfColumn

Figure 20-30. Calculation = xlPercentOfColumn

The code for Figure 20-31 is:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Sale").Calculation = xlPercentOfTotal

Figure 20-31. Calculation = xlPercentOfTotal

 327

20.7.8.3 Calculations requiring a BaseField/BaseItem

The procedure for making calculations with a BaseField/BaseItem is not explained very well in
the documentation, so let us see if we can clear it up by first considering an example. Consider the
code:

With ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Sale")
 .Calculation = xlDifferenceFrom
 .BaseField = "Store City"
 .BaseItem = "Boston"
End With

Referring to Figure 20-32, we have reproduced our usual pivot table (from Figure 20-10) with
several changes. First, we removed the Trans values, since they are not relevant to our example.
We have also replaced the Sale values for the given BaseField and BaseItem by symbols (b1-b8).
Finally, we replaced the other Sale values with number signs, since we do not care about the
actual values.

Figure 20-32. Illustrating a calculation

TE
AM
FL
Y

Team-Fly®

 328

Now, the trick in seeing how the calculations are made is to fix a value for the fields other than the
base field—in our case the Store Type and Period. Consider, for instance, the values:

Store Type = "Company"
Period = 1

The Sale data cells corresponding to these values are grayed in Figure 20-32. One of these cells
(cell D4) is the base item cell. For this Store Type/Period combination, a calculation is made using
the value in this cell as the base value. In our case, it is the xlDifferenceFrom calculation that
is being made. Hence, the base value is subtracted from the values in all three grayed cells. This
gives the table in Figure 20-33. Note that the base value is even subtracted from itself, giving 0.
This is done for each Store Type/Period combination, as shown in Figure 20-33.

Figure 20-33. The finished calculation

The formulas for the Calculation property that require BaseField/BaseItem values are:

xlDifferenceFrom

- base value

xlPercentOf

#/base value (expressed as a percent)

xlPercentDifferenceFrom

(# - base value)/base value (expressed as a percent)

To illustrate, Figure 20-34 shows the actual effect of the earlier code on Figure 20-10:

With ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Sale")
 .Calculation = xlDifferenceFrom
 .BaseField = "Store City"
 .BaseItem = "Boston"
End With Figure 20-10.

Figure 20-34. Illustrating the Calculation property

 329

20.7.9 CurrentPage Property

This property returns or sets the current page. It is only valid for page fields. Note that the
property should be set either to the name of the page field or to "All" to show all pages.

20.7.10 DataType Property

This read-only property returns a constant that describes the type of data in the pivot field. It can
be one of the following XlPivotFieldDataType constants:

Enum XlPivotFieldDataType
 xlText = -4158
 xlNumber = -4145
 xlDate = 2
End Enum

20.7.11 HiddenItems and VisibleItems Properties

The HiddenItems property returns the PivotItems collection of all hidden PivotItem objects, using
the syntax:

PivotFieldObject.HiddenItems

It can also return a single or an array of hidden PivotItem objects using the syntax:

PivotFieldObject.HiddenItems(Index)

where Index is a single index or an array of indexes.

Similarly, the VisibleItems property returns a PivotItems collection of all visible PivotItem objects
or a single or an array of such objects. The syntax is the same as for the HiddenItems property.

20.7.12 MemoryUsed Property

 330

This read-only property returns the amount of memory currently being used by the PivotField (it
also applies to PivotItem objects) as a Long integer.

20.7.13 ServerBased Property

This read-write Boolean property applies to page fields only and is used with (generally very large)
external data sources. It is True when the PivotTable's data source is external and only the items
matching the page-field selection are retrieved.

By setting this property to True, the pivot cache (discussed later in the chapter) needs to
accommodate only the data for a single page field. This may be important, or even necessary,
when the external data source is large. The trade-off is that each time the page field is changed,
there may be a delay while Excel requeries the original source data to retrieve data on the new
page field.

Note that there are some circumstances under which this property cannot be set to True:

• The field is grouped.
• The data source is not external.
• The cache is used by more than one PivotTable.
• The field has a data type that cannot be server-based (such as a memo field or an OLE

object).

20.7.14 ShowAllItems Property

This read-write Boolean property is True if all items in the PivotTable are displayed. The default
value is False, in which case the pivot items that do not contribute to the data fields are not
displayed. Note that this property corresponds to the "Show items with no data" check box on
Excel's PivotTable Field dialog box.

To illustrate, suppose we add a single row to our source table:

1998 1 BO-1 BOSTON AStoreType 1000 $10000.00

This row creates a new store type but adds data only for Boston. The resulting pivot table will
have the default appearance shown in Figure 20-35. Since ShowAllItems is False, there are no
rows for the new store type corresponding to Los Angeles or New York.

Figure 20-35. ShowAllItems = False

 331

On the other hand, the code:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store Type").ShowAllItems = True

will produce the pivot table shown in Figure 20-36.

Figure 20-36. ShowAllItems = True

 332

20.7.15 Subtotals Method

This method returns or sets the display of a particular type of subtotal for the specified pivot field.
It is valid for all fields other than data fields. The syntax is:

PivotFieldObject.Subtotals(Index)

where the optional Index parameter indicates the type of subtotal and is a number from Table 20-4.

Table 20-4. Values for the Subtotals Method's Index Parameter
Index Subtotal Type

1 Automatic
2 Sum
3 Count
4 Average
5 Max
6 Min
7 Product
8 Count Nums
9 StdDev
10 StdDevp
11 Var
12 Varp

For instance, the following code requests a display of subtotals for both Sum and Count:

 333

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store City").Subtotals(2) = True
ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store City").Subtotals(3) = True

We can also set the Subtotals property to an array of 12 Boolean values to set multiple subtotals.
For instance, the following code displays all subtotals:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store City"). _
 Subtotals = Array(False, True, True, True, True, _
 True, True, True, True, True, True, True)

Note that we set Automatic to False in this array, since if Automatic is set to True, then all
other values are set to False (thus providing a quick way to set all subtotals to False).

If this argument is omitted, the Subtotals method returns an array containing a Boolean value for
each subtotal.

20.8 The PivotCache Object

Pivot tables can manipulate the source data in a variety of ways, and this can require a great deal
of processing power. For maximum efficiency, the data for a pivot table is first stored in memory
in what is referred to as a pivot cache. The pivot table, itself, actually provides various views of
the pivot cache. This allows manipulation of the data without the need to access the original
source further which might, after all, be an external data source.

The PivotCache object represents a pivot table's cache. It is returned by the PivotCache method of
the PivotTable object. Let us take a look at some of the main properties and methods of the
PivotCache object.

20.8.1 Refreshing a Pivot Cache

The Refresh method refreshes both the pivot cache and the pivot table.

However, we can prevent a pivot table from being refreshed, either through the user interface (the
Refresh data menu item on the PivotTable menu) or through code, by setting the EnableRefresh
property to False.

The read-write Boolean RefreshOnFileOpen property is True if the PivotTable cache is
automatically updated each time the workbook is opened by the user. The default value is False.
Note that this property is ignored if the EnableRefresh property is set to False. Note also that the
PivotTable cache is not automatically refreshed when the workbook is opened through code, even
if RefreshOnFileOpen is True.

The RefreshDate property returns the date on which the pivot cache was last refreshed, and the
RefreshName property returns the name of the user who last refreshed the cache.

20.8.2 MemoryUsed Property

The read-only MemoryUsed property applies to either a PivotCache object or a PivotField object
and returns the amount of memory currently being used by the cache, in bytes.

 334

20.8.3 OptimizeCache Property

Cache optimization is used with large or complex source data. It will slow the initial construction
of the cache. This read-write Boolean property can be used to set cache optimization.
Unfortunately, the precise consequences of cache optimization are not made clear in the
documentation, leaving us to use trial and error to decide whether it should be employed. Perhaps
the best strategy is to leave this property set to its default (False) unless performance seems to be
a problem.

20.8.4 RecordCount Property

This read-only property returns the number of records in the PivotTable cache.

20.8.5 SourceData Property

This property returns the data source for the PivotTable, as we discussed in the section on the
PivotTable object.

20.8.6 Sql Property

This read-write string property returns or sets the SQL query string used with an ODBC data
source.

20.9 The PivotItem Object

A PivotItem is a unique value of a PivotField. To illustrate, consider the following code:

Dim pi As PivotItem
For Each pi In _
 ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store City").PivotItems
 Debug.Print pi.Name
Next

That code will print the list:

BOSTON
LOS ANGELES
NEW YORK

which contains the distinct Store City values from the Store City pivot field.

The PivotItems method of the PivotField object returns PivotItem objects. The syntax:

PivotFieldObject.PivotItems

returns the collection of all PivotItem objects for that PivotField. The syntax:

PivotFieldObject.PivotItems(Index)

 335

can return a single PivotItem object or an array of PivotItem objects (by setting Index to an array
of indexes).

Table 20-5 shows the properties and methods of the PivotItem object. Let us take a look at some
of these members. Note that several of the members of the PivotField object also apply to the
PivotItem object.

Table 20-5. Members of the PivotItem Object
Application IsCalculated Position
ChildItems LabelRange RecordCount
Creator Name ShowDetail
DataRange Parent SourceName
Delete ParentItem Value
Formula ParentShowDetail Visible

20.9.1 DataRange Property

This property returns a Range object representing the data area associated with the given
PivotItem. To illustrate, the code:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store Type"). _
 PivotItems("Company").DataRange.Select

results in Figure 20-37.

Figure 20-37. DataRange for Store Type = Company

20.9.2 LabelRange Property

The LabelRange property returns a Range object that represents the label cells for the PivotItem.
Figure 20-38 illustrates the results of the code:

ActiveSheet.PivotTables("Sales&Trans"). _

 336

 PivotFields("Store Type"). _
 PivotItems("Company").LabelRange.Select

Figure 20-38. LabelRange for Store Type = Company

20.9.3 IsCalculated Property

This property returns True if the pivot item is a calculated item. We discuss calculated items later
in the chapter.

20.9.4 Name, Value, and SourceName Properties

The read-write Name property returns or sets the name of the PivotItem. This is the value that
appears in the label for that item. The Value property is the same as the Name property.

The read-only SourceName property returns the name of the item in the original source data. This
may differ from the value of the Name property if the Name property has been changed.

20.9.5 Position Property

The Position property returns or sets the position of the pivot item. For instance, the code:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store Type"). _
 PivotItems("Franchise").Position

returns the number 2, since Franchise is the second pivot item in the pivot table (see Figure 20-10).
Moreover, we can reverse the positions of Company and Franchise by setting the Position of the
Franchise pivot item to 1, as follows:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store Type"). _
 PivotItems("Franchise").Position = 1

20.9.6 RecordCount Property

 337

This read-only property returns the number of records in the PivotTable cache that contain the
pivot item. For instance, the code:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store Type"). _
 PivotItems("Franchise").RecordCount

will return the number 80 because there are 80 rows in the source table (and, hence, the pivot
cache) that involve the Franchise store type.

20.9.7 ShowDetail Property

When this read-write property is set to True, the pivot item is shown in detail; if it is False, the
PivotItem is hidden. To illustrate, consider, as usual, the pivot table in Figure 20-10. The code:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store City"). _
 PivotItems("Boston").ShowDetail = False

results in the pivot table in Figure 20-39. As we can see, the Transactions and Sales for Boston are
summed over all (both) store types (Company and Franchise).

Figure 20-39. Illustrating ShowDetail

Unfortunately, there seems to be a problem when the ShowDetail method is applied to inner pivot
items. For instance, the code:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store Type"). _
 PivotItems("Company").ShowDetail = False

does seem to set the ShowDetail property to False, as can be verified by the code:

MsgBox ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store Type"). _
 PivotItems("Company").ShowDetail

TE
AM
FL
Y

Team-Fly®

 338

However, the pivot table does not reflect this change! (At least this happens on the two systems on
which I have run this code. You should check this carefully on any system on which you intend to
run this code. A similar problem occurs with the Subtotals property as well.)

As another example, the following code toggles the display of details for the Boston pivot item:

With ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store City").PivotItems("Boston")
 .ShowDetail = Not .ShowDetail
End With

The ShowDetail property also applies to the Range object, even when the range lies inside a pivot
table. To illustrate, the following code will also produce the pivot table in Figure 20-39:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotSelect "Boston", xlDataAndLabel
Selection.ShowDetail = False

The following code toggles the display of the Boston details:

Dim rng As Range
ActiveSheet.PivotTables("Sales&Trans"). _
 PivotSelect "Boston", xlDataAndLabel
Set rng = Selection.Cells(1, 1)
rng.ShowDetail = Not rng.ShowDetail

Note that rng refers only to the first cell in the range representing the Boston data and labels; that
is, we have:

Set rng = Selection.Cells(1, 1)

This is done because, when applied to the Range object, the ShowDetail property will return a
value only when the range is a single cell.

As another illustration, the following code will hide the details for the entire Store City pivot field:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotSelect "'Store City'", xlDataAndLabel
Selection.ShowDetail = False
ActiveSheet.PivotTables("Sales&Trans"). _
 PivotSelect "'Store City'", xlDataAndLabel

(Replacing False by True will unhide the details.)

We must conclude by suggesting that since the ShowDetails property is very poorly documented,
you should experiment carefully and completely before relying on this property to perform in a
certain way.

20.9.8 Visible Property

This property determines whether or not the pivot item is visible in the pivot table.

20.10 PivotCell and PivotItemList Objects

 339

New to Excel XP is the PivotCell object, which represents a cell in a pivot table. This object and
its children are shown in Figure 20-40.

Figure 20-40. The PivotCell object

To obtain a PivotCell object, we use the PivotCell property of the Range object, as in:

MsgBox ActiveSheet.Range("C5").PivotCell.PivotCellType

Note that if the range contains more than one cell, the PivotCell object for the first cell is returned.

The PivotCell object has no methods. Among its 13 properties, here are the most important (and
the ones that seem to work):

• ColumnItems
• CustomSubtotalFunction
• DataField
• PivotCellType
• PivotField
• PivotItem
• PivotTable
• RowItems

The following sections provide a brief description of these properties. It is important to keep in
mind that Excel is not at all friendly when it comes to applying these properties to a PivotCell
object. That is, if the PivotCell object is not of a type that supports the property, then Excel will
return an error. For instance, if a cell is not a data cell in a pivot table, then accessing the PivotCell
object's ColumnItems property generates an error, rather than returning an empty collection, for
example.

20.10.1 ColumnItems, RowItems, and DataField Properties

The ColumnItems and RowItems properties each return a PivotItemList collection that contains
the column (or row) pivot items associated to the PivotCell. The DataField property returns a
single PivotField item associated to the PivotCell. Note that these properties will generate an error
(with the usual unhelpful message) if applied to the PivotCell object of a cell that is not an
aggregate (data) cell in the pivot table.

To illustrate, consider the pivot table in Figure 20-6. The PivotItemList procedure shown here
displays the column pivot items, row pivot, items, and data field associated with the PivotCell for
the range (cell) E5.

Sub PivotItemList()
 ' Illustrate the ColumnItems and RowItems properties

 Dim rng As Range
 Dim pi As PivotItem

 340

 Dim ws As Worksheet

 Set ws = ActiveSheet

 ' Note: the following code will fail if
 ' the rng is not a data cell.
 Set rng = ws.Range("E5")

 Debug.Print "Column items:"
 For Each pi In rng.PivotCell.ColumnItems
 Debug.Print pi.Name
 Next

 Debug.Print "Row items:"
 For Each pi In rng.PivotCell.RowItems
 Debug.Print pi.Name
 Next

 Debug.Print "Data Field:"
 Debug.Print rng.PivotCell.DataField.Name
End Sub

The output of this procedure is:

Column items:
2
Row items:
BOSTON
Company
Data Field:
Sum of Transactions

As mentioned, if we change the range to cell C5, the line:

For Each pi In rng.PivotCell.ColumnItems

will generate the unhelpful error message "Application defined or object-defined error".

20.10.2 CustomSubtotalFunction Property

As you no doubt know, a pivot table can display subtotals, as shown in Figure 20-6, which shows
sums by city. Now, the subtotal type can be set to automatic (the default) or to one of several
different custom values: sum, count, average, and so on. When a subtotal is set to a custom type,
the PivotCell object of the cells that show the subtotal type (not the subtotal values) have type
xlPivotCellCustomSubtotal (see the discussion of the PivotCellType property). For instance, if we
changed the subtotal by city to average, then the PivotCell object for cells A9, B9, and C9 in
Figure 20-6 would be of type xlPivotCellCustomSubtotal.

The CustomSubtotalFunction property of the PivotCell object returns the type of aggregate
function for a custom subtotal cell. The return values are defined by the following enum.

Enum XlConsolidationFunction
 xlVarP = -4165
 xlVar = -4164
 xlSum = -4157
 xlStDevP = -4156
 xlStDev = -4155
 xlProduct = -4149

 341

 xlMin = -4139
 xlMax = -4136
 xlCountNums = -4113
 xlCount = -4112
 xlAverage = -4106
 xlUnknown = 1000
End Enum

Note that if the PivotCell object is not of type xlPivotCellCustomSubtotal then any reference to
the CustomSubtotalFunction property generates an error, so it is important to check the
PivotcellType property (discussed below) before using the CustomSubtotalFunction property!

20.10.3 PivotCellType Property

This property returns the type of cell, in the form of one of the constants in the following
enumeration:

Enum XlPivotCellType
 xlPivotCellValue = 0
 xlPivotCellPivotItem = 1
 xlPivotCellSubtotal = 2
 xlPivotCellGrandTotal = 3
 xlPivotCellDataField = 4
 xlPivotCellPivotField = 5
 xlPivotCellPageFieldItem = 6
 xlPivotCellCustomSubtotal = 7
 xlPivotCellDataPivotField = 8
 xlPivotCellBlankCell = 9
End Enum

Figure 20-41 shows a pivot table and the PivotCellType values (on the right). You can use this to
see what types of cells are contained in a pivot table. For instance, cell A4 has PivotCellType 5,
indicating that it is a pivot field cell.

Figure 20-41. PivotCell values

20.10.4 PivotTable, PivotField, and PivotItem Properties

 342

The PivotTable property returns the PivotTable object associated with the PivotCell. The
PivotField property returns the PivotField object associated with the PivotCell; and the PivotItem
property returns the PivotItem associated with the PivotCell. Referring to Figure 20-6, the
following code illustrates these properties:

Sub test()
 ' Refer to Figure 20-6

 Dim rng As Range
 Dim ws As Worksheet

 Set ws = ActiveSheet

 Set rng = ws.Range("E5")

 Debug.Print rng.PivotCell.PivotTable.Name ' returns Sales&Trans
 Debug.Print rng.PivotCell.PivotField ' returns Sum of
Transactions

 Set rng = ws.Range("B5")

 Debug.Print rng.PivotCell.PivotItem.Name ' returns Company
End Sub

20.11 Calculated Items and Calculated Fields

We have seen that it is possible to add a calculated field to a pivot table. A calculated field is
special type of PivotField object that is not part of the original source data, but, instead, is
calculated from source fields using a formula. Note that there is no such thing as a CalculatedField
object, but there is a CalculatedFields collection.

As we have seen, to create a new calculated field, we use the Add method of the CalculatedFields
collection of the PivotTable object. The syntax is:

CalculatedFieldsObject.Add(Name, Formula)

where Name is the name of the field and Formula is the formula for the field.

On the other hand, a calculated item is a special type of PivotItem object associated with a given
PivotField object. (There is no such thing as a CalculatedItem object, but there is a
CalculatedItems collection.) The values of this item are calculated by using a formula.

The PivotField object has a CalculatedItems collection of all calculated items for that pivot field.
To create a new calculated item, we use the Add method of the CalculatedItems object. This
method has the same syntax as the Add method of the CalculatedFields object:

CalculatedItemsObject.Add(Name, Formula)

where Name is the name of the field and Formula is the formula for the field.

To illustrate, the following code adds a new calculated item to the Store Type pivot field:

ActiveSheet.PivotTables("Sales&Trans"). _
 PivotFields("Store Type").CalculatedItems. _

 343

 Add "CompanyX2", "='Store Type'Company*2"

The results are shown in Figure 20-42, where the calculated item is CompanyX2. The value in
each of the CompanyX2 cells is twice the value in the corresponding Company cell.

Figure 20-42. Illustrating a calculated item (CompanyX2)

For comparison, let us add a calculated field to the pivot table in Figure 20-42. We will add the
same calculated field that we added when we discussed the CalculatedFields method earlier in the
chapter:

With ActiveSheet.PivotTables("Sales&Trans"). _
 CalculatedFields.Add("Average", _
 "= Sales/Transactions")
 .Orientation = xlDataField
 .Name = "Avg Check"
 .NumberFormat = "##.#"
End With

The result is shown in Figure 20-43.

Figure 20-43. Illustrating a calculated field and calculated item

 344

Note that the ListFormulas method of the PivotTable object will produce a list (on a separate
worksheet) of all formulas in the pivot table. The outcome for the pivot table in Figure 20-43 is
shown in Figure 20-44.

Figure 20-44. The output of ListFormulas

Let us conclude by recalling that the read-only IsCalculated property can be used to determine
whether or not a pivot field or pivot item is calculated.

 345

20.12 Example: Printing Pivot Tables

Now we can implement the PrintPivotTables feature of the SRXUtils application. A complex
Excel workbook may have a large number of pivot tables scattered on various worksheets. A
simple utility for printing these pivot tables can be useful. (I have often been asked to write such a
utility in my consulting practice.)

Our application displays a dialog box, as shown in Figure 20-45. The list box contains a list of all
pivot tables. Each entry includes the pivot table's name, followed by the name of the worksheet.
The user can select one or more pivot tables and hit the print button to print these tables.

Figure 20-45. Print pivot tables

The following are the steps to create the print utility. All the action takes place in the Print.xls
workbook, so open this workbook. When the changes are finished, you will need to save Print.xls
as Print.utl as well. If Print.utl is loaded, the only way to unload it is to unload the add-in
SRXUtils.xla (if it is loaded) and close the workbook SRXUtils.xls (if it is open).

20.12.1 Create the UserForm

Create the dialog shown in Figure 20-45 in the Print.xls workbook. Name the dialog
dlgPrintPivotTables, change its Caption property to "Print Pivot Tables," and change the
PrintPivotTables procedure as shown in Example 20-5.

Example 20-5. The PrintPivotTables Procedure

Public Sub PrintPivotTables()
 dlgPrintPivotTables.Show
End Sub

The dlgPrintPivotTables dialog has two command buttons and one list box.

20.12.1.1 List box

Place a list box on the form as in Figure 20-45. Using the Properties window, set the following
properties:

Property Value
Name lstPTs
TabIndex 0
MultiSelect frmMultiSelectExtended

 346

When the Cancel property of the cmdCancel button is set to True, the button is "clicked" when
the user hits the Escape key. Thus, the Escape key will dismiss the print dialog.

The MultiSelect property is set to frmMultiSelectExtended so that the user can use the
Control key to select multiple (possibly nonconsecutive) entries and the Shift key to select
multiple consecutive entries.

The TabIndex property determines not only the order in which the controls are visited as the user
hits the Tab key, but also determines which control has the initial focus. Since we want the initial
focus to be on the list box, we set its tab index to 0.

20.12.1.2 Print button

Place a command button on the form as in Figure 20-45. Using the Properties window, set the
following properties:

Property Value
Name cmdPrint
Accelerator P
Caption Print
TabIndex 1

20.12.1.3 Cancel button

Place another command button on the form as in Figure 20-45. Using the Properties window, set
the following properties:

Property Value
Name cmdCancel
Accelerator C
Caption Cancel
TabIndex 2
Cancel True

20.12.2 Create the Code Behind the UserForm

Now it is time to create the code behind these controls.

20.12.2.1 The Declarations section

The Declarations section should contain declarations of the module-level variables as shown in
Example 20-6.

Example 20-6. Module-Level Variables in the user form's Declarations Section

Dim cPTs As Integer
Dim sPTNames() As String
Dim sSheets() As String

20.12.2.2 Cancel button code

The Cancel button code is shown in Example 20-7.

 347

Example 20-7. The cmdCancel_Click Event Procedure

Private Sub cmdCancel_Click()
 Unload Me
End Sub

20.12.2.3 Print button code

The Print button calls the main print procedure and then unloads the form; its event code is shown
in Example 20-8.

Example 20-8. The cmdPrint_Click Event Procedure

Private Sub cmdPrint_Click()
 PrintSelectedPTs
 Unload Me
End Sub

20.12.2.4 The Form's Initialize event

The user form's Initialize event is the place to fill the list box with a list of pivot tables. Our
application uses two module-level arrays: one to hold the worksheet names and one to hold the
pivot-table names. There is also a module-level variable to hold the pivot-table count. We fill
these arrays in the Initialize event, as shown in Example 20-9, and then use the arrays to fill the
list. These arrays are used again in the main print procedure, which is why we have declared them
at the module level.

Note the use of the ReDim statement to redimension the arrays. This is necessary since we do not
know at the outset how many pivot tables there are in the workbook.

Example 20-9. The Initialize Event

Private Sub UserForm_Initialize()
 ' Fill lstPTs with the list of pivot tables

 Dim ws As Worksheet
 Dim PT As PivotTable

 ReDim sPTNames(1 To 10) As String
 ReDim sSheets(1 To 10) As String

 lstPTs.Clear
 cPTs = 0

 For Each ws In ActiveWorkbook.Worksheets
 For Each PT In ws.PivotTables
 ' Update PT count
 cPTs = cPTs + 1

 ' Redimension arrays if necessary
 If UBound(sSheets) < cPTs Then
 ReDim Preserve sSheets(1 To cPTs + 5)
 ReDim Preserve sPTNames(1 To cPTs + 5)
 End If

 ' Save name of pivot table and ws
 sPTNames(cPTs) = PT.Name
 sSheets(cPTs) = ws.Name

TE
AM
FL
Y

Team-Fly®

 348

 ' Add item to list box
 lstPTs.AddItem PT.Name & " (in " & _
 sSheets(cPTs) & ")"
 Next
 Next
End Sub

20.12.2.5 PrintPTs procedure

The main printing procedure is shown in Example 20-10. Note that we have been careful to deal
with two special cases. First, there may not be any pivot tables in the workbook. Second, the user
may hit the Print button without selecting any pivot tables in the list box. Note also that list boxes
are 0-based, meaning that the first item is item 0. However, our arrays are 1-based (the first item is
item 1), so we must take this into account when we move from a selection to an array member; to
wit, selection i corresponds to array index i+1.

Example 20-10. The PrintSelectedPTs Procedure

Sub PrintSelectedPTs()
 ' Print the selected pivot tables in lstPTs

 Dim i As Integer
 Dim bNoneSelected As Boolean

 bNoneSelected = True

 If cPTs = 0 Then
 MsgBox "No pivot tables in this workbook.", _
 vbExclamation
 Exit Sub
 Else
 For i = 0 To lstPTs.ListCount - 1
 If lstPTs.Selected(i) Then
 bNoneSelected = False

 ' List box is 0-based, arrays are 1-based
 Worksheets(sSheets(i + 1)). _
 PivotTables(sPTNames(i + 1)). _
 TableRange2.PrintOut
 End If
 Next
 End If

 If bNoneSelected Then
 MsgBox "No pivot tables have been selected.", _
 vbExclamation
 End If
End Sub

 349

Chapter 21. The Chart Object
Excel charts are represented by Chart objects in the Excel object model. Since charts are quite
complex, the Chart object is one of the most complicated in the object model.

To set the terminology, Figure 21-1 shows a typical chart that has been labeled with some of the
commonly used chart-related terms.

Figure 21-1. Some chart terminology

Figure 21-2 shows the Chart object and its immediate children.

Figure 21-2. The Chart object

21.1 Chart Objects and ChartObject Objects

 350

As you probably know, Excel charts can reside in a special type of sheet called a chart sheet or
they can be embedded in an ordinary worksheet. Accordingly, a Chart object can represent a chart
sheet (standalone chart) or an embedded chart. In the latter case, the Chart object is not contained
directly in a worksheet. Rather, the worksheet contains a ChartObject object that acts as a
container for the Chart object.

Thus, for instance, if we create a new chart using the chart wizard, the fourth step in the wizard
displays the dialog shown in Figure 21-3.

Figure 21-3. Step 4 in the chart wizard

If we choose the "As new sheet" option in step 4 of the chart wizard, we can access the resulting
chart using the code:

Dim c as Chart
Set c = ThisWorkbook.Charts("Chart1")

On the other hand, choosing the "As object in" option in step 4 of the chart wizard, we access the
chart using the code:

Dim c As Chart
Set c = Worksheets("Sheet1").ChartObjects("Chart 1").Chart

Note the space between the word Chart and the number 1 in the name of the ChartObject object,
but not in the name of the Chart object.

We emphasize that there is no ChartSheet object. The Charts property of the Application object
returns a so-called Sheets collection containing one Chart object for each chart sheet. It does not
contain Chart objects for the embedded charts.

21.2 Creating a Chart

We have seen that a PivotTable is created and added to the PivotTables collection by invoking the
PivotTableWizard method. On the other hand, creating a new chart requires a different approach,
since it depends upon whether the chart is standalone (a chart sheet) or embedded in a worksheet
(and thus contained in a ChartObject object).

Also, unlike the PivotTableWizard method, the ChartWizard method does not create a chart; it
merely formats an existing chart. Accordingly, there are three steps required to create a
meaningful chart:

 351

• Decide whether to create a standalone chart (a chart sheet) or an embedded chart.
• Create the standalone chart or embedded chart as described in the following section.
• Format the chart using either the ChartWizard method or using individual properties and

methods of the chart object.

21.2.1 Creating Chart Sheets

The Workbook object has a Charts property that returns the Charts collection of all chart sheets in
the workbook. We can use the Add method of the Charts collection to create and add a new
chartsheet to the workbook.

The syntax for the Add method is:

ChartsObject.Add(Before, After, Count)

As usual, this method returns a Chart object. The Before parameter specifies the sheet before
which the new sheet is added, and the After parameter specifies the sheet after which the new
sheet is added. Only one of these parameters can be specified at one time or an error will result. If
neither is set, the new chart is inserted before the active sheet.

The optional Count parameter is an integer that specifies the number of sheets to be added. The
default value is 1.

For example, the following code creates a new chart sheet named "Sales":

Dim ch As Chart
Set ch = ThisWorkbook.charts.Add()
ch.Name = "Sales"

The Add method cannot be used to format the chart. As mentioned earlier, this must be done using
the various properties of the Chart object or the ChartWizard method, discussed later in the
chapter.

21.2.2 Creating Embedded Charts

The Worksheet object also has a ChartObjects property that returns a ChartObjects collection,
which is the collection of all ChartObjects in the worksheet. As we have mentioned, a ChartObject
object is a container for a Chart object—that is, an embedded chart.

The ChartObjects collection has an Add method that is used to create a new embedded chart. The
syntax is:

ChartsObjectObject.Add(Left, Top, Width, Height)

where the required Left and Top parameters give the coordinates of the upper-left corner of the
chart (in points) relative to the upper-left corner of cell A1 on the worksheet, and Width and
Height specify the initial size of the chart (also in points). Recall that the InchesToPoints method
can be used to convert inches to points.

Note that the Add method returns a ChartObject object, rather than a Chart object. This is a bit
confusing, since the method creates both a ChartObject object and the contained Chart object. The
code in Example 21-1 creates a new ChartObject object called ExampleChart along with its
contained Chart object. It positions the chart so that its upper-left corner is three columns from the

 352

left edge of the sheet and 1/2 row down from the top of the sheet. The dimensions of the chart are
8 columns wide and 20 rows high.

Example 21-1. Creating an Embedded Chart

Sub CreateAChart()
 ' Create an embedded chart

 Dim co As ChartObject
 Dim cw As Long, rh As Long

 ' Get data for positioning chart
 cw = Columns(1).Width
 rh = Rows(1).Height

 ' Position chart using column width and row height units
 Set co = ActiveSheet.ChartObjects.Add(cw * 3, rh * 0.5, cw * 8, rh
* 20)

 ' Name it
 co.Name = "ChartExample"

 Debug.Print co.Name
 Debug.Print co.Chart.Name

 ' Set chart type
 co.Chart.ChartType = xlLine
End Sub

The output of the Debug.Print statements are:

ChartExample
Sheet1 Chart 1

The chart appears as in Figure 21-4. (Yes, the chart is empty.)

Figure 21-4. The results of creating an embedded chart object

You may have noticed that the chart in Figure 21-4 is a trifle uninteresting. We will need to use
the various properties and methods of the Chart object (or the ChartWizard method) to create a
useful chart.

 353

Note that, although the documentation does not discuss the matter, experimentation shows that the
Name property of the Chart object appears to be read-only. Indeed, the code:

co.Chart.Name = "AChart"

results in the error message: "Method Name of object _Chart failed."

Note also that we can run the CreateAChart procedure multiple times without error and this
will produce multiple ChartObject objects with the same name! Thus, the name property seems to
be of little use for both ChartObject objects and embedded Chart objects. In fact, after running the
CreateAChart procedure twice and getting two charts named ExampleChart, the code:

Debug.Print ActiveSheet.ChartObjects(1).Name
Debug.Print ActiveSheet.ChartObjects(2).Name
ActiveSheet.ChartObjects("ChartExample").Left = 600

actually produces the output:

ChartExample
ChartExample

and moves one of the charts to the new position specified by the Left property!

21.2.3 An Example of Chart Creation

As we have said, creating a useful chart from scratch requires using the properties and methods of
the Chart object. As we will see, this object is quite complex, with a great many properties,
methods, and children. Before plunging into a discussion of these items, we want to give an
example of chart creation. This will put our future discussion into some perspective. In fact, we
will have several occasions to make reference to this code in the sequel.

Figure 21-5. The results of CreateChart

So, the CreateChart procedure shown in Example 21-2 produces the chart in Figure 21-5. It
may not be pretty, but it does illustrate much of the chart making process.

Example 21-2. The CreateChart Procedure

Sub CreateChart()
 ' Create an embedded chart

 354

 Dim co As ChartObject
 Dim cw As Long, rh As Long

 ' Get data for positioning chart
 cw = Columns(1).Width
 rh = Rows(1).Height

 ' Position chart using column width and row height units
 Set co = ActiveSheet.ChartObjects.Add(cw * 3, rh * 0.5, cw * 8, rh
* 20)

 ' Name it
 co.Name = "ChartExample"

 ' Set chart type
 co.Chart.ChartType = xlLine

 ' Add data series
 co.Chart.SeriesCollection.Add _
 Source:=ActiveSheet.Range("A1:B6"), _
 Rowcol:=xlColumns, SeriesLabels:=True, _
 Categorylabels:=True

 ' Add axes
 ' (This is actually the default setting,
 ' but is added here for illustration)
 With co.Chart
 .HasAxis(xlCategory, xlPrimary) = True
 .HasAxis(xlCategory, xlSecondary) = False
 .HasAxis(xlValue, xlPrimary) = True
 .HasAxis(xlValue, xlSecondary) = False
 End With

 ' Axis title formatting
 With co.Chart.Axes(xlCategory)
 .HasTitle = True
 .AxisTitle.Caption = "Types"
 .AxisTitle.Border.Weight = xlMedium
 End With

 With co.Chart.Axes(xlValue)
 .HasTitle = True

 With .AxisTitle
 .Caption = "Quantity for 1999"
 .Font.Size = 6
 .Orientation = xlHorizontal
 .Characters(14, 4).Font.Italic = True
 .Border.Weight = xlMedium
 End With
 End With

 ' Change the category names (Types) to lower case
 ' (On the worksheet they are in upper case)
 co.Chart.Axes(xlCategory).CategoryNames = _
 Array("a", "b", "c", "d", "e")

 ' Set the crossing point on the (primary) value axis at 50
 co.Chart.Axes(xlValue).CrossesAt = 50

 ' Horizontal but no vertical gridlines

 355

 co.Chart.Axes(xlValue).HasMajorGridlines = True
 co.Chart.Axes(xlCategory).HasMajorGridlines = False

 ' Outside Tickmarks on category axis
 co.Chart.Axes(xlCategory).MajorTickMark = xlTickMarkCross

 ' Move tick labels to below chart area
 co.Chart.Axes(xlCategory).TickLabelPosition = _
 xlTickLabelPositionNextToAxis

 ' Set chart area fill to solid white
 co.Chart.ChartArea.Interior.Color = RGB(255, 255, 255)

 ' Set plot area fill to gray
 co.Chart.PlotArea.Interior.ColorIndex = 15

 ' Format chart title
 With co.Chart.ChartTitle
 .Caption = "Great Chart"
 .Font.Size = 14
 .Font.Bold = True
 .Border.Weight = xlThick
 End With
End Sub

21.2.4 Z-Order and ChartObject Objects

Before looking at the main properties, methods, and children of the Chart object, we can get one
simple, but important, item out of the way.

Namely, it is possible for two or more embedded charts to overlap, which raises the question of
how to control which chart object appears on the top. Every ChartObject object has an order,
called its z-order, that indicates the object's relative position with respect to an imaginary z-axis
that comes directly out of the monitor at right angles, towards the user, as pictured in Figure 21-6.

Figure 21-6. Illustrating z-order

The ChartObject object has a read-only ZOrder property that is used to return the z-order of the
ChartObject. It also has BringToFront and SendToBack methods for changing the z-order. These
properties can be used to shuffle the order of ChartObject objects.

 356

21.3 Chart Types

Each Excel chart has either a standard chart type or a custom chart type. In addition, there are two
types of custom chart types: built-in and user-defined. All chart types are accessible by the user
through the Chart Type dialog box shown in Figure 21-7 (right-click a chart and choose Chart
Type).

Figure 21-7. The Chart Type dialog

21.3.1 ChartType property

The ChartType property is a read-write property that can be set to any one of the XlChartType
constants in Table 21-1.

Table 21-1. ChartType Constants
Type Description Constant(Value)

Area 3D Area xl3DArea(-4098)
 3D Stacked Area xl3DAreaStacked(78)
 3D 100% Stacked Area xl3DAreaStacked100(79)
 Area xlArea(1)
 Stacked Area xlAreaStacked(76)
 100% Stacked Area xlAreaStacked100(77)
Bar 3D Clustered Bar xl3DBarClustered(60)
 3D Stacked Bar xl3DBarStacked(61)
 3D 100% Stacked Bar xl3DBarStacked100(62)
 Clustered Bar xlBarClustered(57)

 357

 Stacked Bar xlBarStacked(58)
 100% Stacked Bar xlBarStacked100(59)
Bubble Bubble xlBubble(15)
 Bubble with 3D effects xlBubble3DEffect(87)
Column 3D Column xl3DColumn(-4100)
 3D Clustered Column xl3DColumnClustered(54)
 3D Stacked Column xl3DColumnStacked(55)
 3D 100% Stacked Column xl3DColumnStacked100(56)
 Clustered Column xlColumnClustered(51)
 Stacked Column xlColumnStacked(52)
 100% Stacked Column xlColumnStacked100(53)
Cone Clustered Cone Bar xlConeBarClustered(102)
 Stacked Cone Bar xlConeBarStacked(103)
 100% Stacked Cone Bar xlConeBarStacked100(104)
 3D Cone Column xlConeCol(105)
 Clustered Cone Column xlConeColClustered(99)
 Stacked Cone Column xlConeColStacked(100)
 100% Stacked Cone Column xlConeColStacked100(101)
Cylinder Clustered Cylinder Bar xlCylinderBarClustered(95)
 Stacked Cylinder Bar xlCylinderBarStacked(96)
 100% Stacked Cylinder Bar xlCylinderBarStacked100(97)
 3D Cylinder Column xlCylinderCol(98)
 Clustered Cylinder Column xlCylinderColClustered(92)
 Stacked Cylinder Column xlCylinderColStacked(93)
 100% Stacked Cylinder Column xlCylinderColStacked100(94)
Doughnut Doughnut xlDoughnut(-4120)
 Exploded Doughnut xlDoughnutExploded(80)
Line 3D Line xl3DLine(-4101)
 Line xlLine(4)
 Line with Markers xlLineMarkers(65)
 Stacked Line with Markers xlLineMarkersStacked(66)
 100% Stacked Line with Markers xlLineMarkersStacked100(67)
 Stacked Line xlLineStacked(63)
 100% Stacked Line xlLineStacked100(64)
Pie 3D Pie xl3DPie(-4102)
 Exploded 3D Pie xl3DPieExploded(70)
 Bar of Pie xlBarOfPie(71)
 Pie xlPie(5)
 Exploded Pie xlPieExploded(69)
 Pie of Pie xlPieOfPie(68)
Pyramid Clustered Pyramid Bar xlPyramidBarClustered(109)
 Stacked Pyramid Bar xlPyramidBarStacked(110)
 100% Stacked Pyramid Bar xlPyramidBarStacked100(111)
 3D Pyramid Column xlPyramidCol(112)
 Clustered Pyramid Column xlPyramidColClustered(106)
 Stacked Pyramid Column xlPyramidColStacked(107)

TE
AM
FL
Y

Team-Fly®

 358

 100% Stacked Pyramid Column xlPyramidColStacked100(108)
Radar Radar xlRadar(-4151)
 Filled Radar xlRadarFilled(82)
 Radar with Data Markers xlRadarMarkers(81)
Stock
Quotes High-Low-Close xlStockHLC(88)

 Open-High-Low-Close xlStockOHLC(89)
 Volume-High-Low-Close xlStockVHLC(90)
 Volume-Open-High-Low-Close xlStockVOHLC(91)
Surface 3D Surface xlSurface(83)
 Surface (Top View) xlSurfaceTopView(85)
 Surface (Top View) wireframe) xlSurfaceTopViewWireframe(86)
 3D Surface (wireframe) xlSurfaceWireframe(84)
XY (Scatter) Scatter xlXYScatter(-4169)
 Scatter with Lines xlXYScatterLines(74)
 Scatter with Lines and No Data Markers xlXYScatterLinesNoMarkers(75)
 Scatter with Smoothed Lines xlXYScatterSmooth(72)

 Scatter with Smoothed Lines and No Data
Markers xlXYScatterSmoothNoMarkers(73)

In Example 21-3, at the end of the chapter, we present a macro that scrolls through the chart types
in Table 21-1, allowing you to determine which chart type is appropriate for a particular purpose.

Note that it is possible that the return value of the ChartType property may not be one of the
values in Table 21-1. For instance, the code:

MsgBox ActiveChart.ChartType

returns -4111 when applied to a chart with a particular user-defined chart type. This value
actually occurs only once in the Excel object model. It is part of the Constants enum and is
assigned the symbolic name xlCombination. (Since this seems not to be documented, I cannot
say that this is the only value of ChartType that is not in Table 21-1.)

Note that each individual data series can have a chart type; that is, the Series object also has a
ChartType property. In this way, if a chart has two data series, each series can have a different
chart type. For instance, one series can be plotted as a line graph and the other as a column graph.
(We will discuss Series objects later in the chapter.)

21.3.1.1 ApplyCustomType method

Contrary to its name, the ApplyCustomType method can apply either a standard or a custom chart
type to a chart. The syntax is:

ChartObject.ApplyCustomType(ChartType, TypeName)

The ChartType parameter is either a standard chart type constant from Table 21-1 or one of the
following XlChartGallery constants:

Enum XlChartGallery
 xlBuiltIn = 21
 xlUserDefined = 22

 359

 xlAnyGallery = 23
End Enum

(The term ChartGallery does not seem to appear in the Excel documentation. However, in the
Word object model, the term ListGallery refers to the objects that represent the three tabs in the
Bullets and Numbering dialog box. Extrapolating to Excel, we might surmise that the term
ChartGallery refers to the two tabs in the Chart Type dialog box in Figure 21-8.)

If ChartType is an XlChartGallery constant, then the optional TypeName parameter specifies
the name of the custom chart type.

For instance, the following code:

ActiveChart.ApplyCustomType _
 ChartType:=xlBuiltIn, TypeName:="Blue Pie"

applies the built-in chart type called Blue Pie. This is equivalent to selecting Blue Pie in the Excel
dialog box shown in Figure 21-8.

Figure 21-8. Illustrating ApplyCustomType

As another example, the following code sets the chart type to a user-defined type named
DefaultXY:

ActiveChart.ApplyCustomType _
 ChartType:=xlUserDefined, TypeName:="DefaultXY"

21.4 Children of the Chart Object

 360

Figure 21-9 shows the children of the Chart object.

Figure 21-9. Children of the Chart object

An Excel chart has several components: axes, the chart area, a chart title, a data table, a floor (for a
3-D-chart), a plot area, and one or more data series (with data labels and data values). These
components are represented by the children of the Chart object, which we will now examine.

21.5 The Axes Collection

Figure 21-10 shows the portion of the Excel object model that relates to chart axes.

Figure 21-10. Axes-related objects

 361

The Chart object has an Axes collection that contains an Axis object for each axis in the chart. The
Axes method returns either a single axis or the Axes collection for a chart. To return the Axes
collection for a chart, use the syntax:

ChartObject.Axes

To return a specific Axis object, use the syntax:

ChartObject.Axes(Type, AxisGroup)

Here the optional Type parameter specifies the axis to return. It can be one of the following
XlAxisType constants:

Enum XlAxisType
 xlCategory = 1
 xlValue = 2
 xlSeriesAxis = 3
End Enum

Note that xlSeriesAxis is valid only for 3-D charts.

The optional AxisGroup parameter specifies the axis group. It can be one of the following
XlAxisGroup constants:

Enum XlAxisGroup
 xlPrimary = 1 ' The default
 xlSecondary = 2
End Enum

A secondary axis is a second vertical or horizontal axis upon which a second value series (vertical
case) or category series (horizontal case) is plotted (see Figure 21-1). If this argument is omitted,
the primary group is used. Note that 3-D charts have only one axis group.

 362

The Chart object has a read-write property named HasAxis that determines whether or not the
chart displays various types of axes. However, it is important to note that this method will fail if
the chart does not yet have the corresponding data series. For instance, if you are creating a chart
from scratch, it might be natural to add the code to create a category axis before adding the
category data that will be plotted against that axis. This not to do (to quote Hamlet)!

In fact, referring to the CreateChart example procedure earlier in the chapter, if we reverse the
data series code and the axes-related code, changing this:

' Add data series using data on the sheet itself
co.Chart.SeriesCollection.Add _
 Source:=ActiveSheet.Range("A1:B6"), _
 Rowcol:=xlColumns, SeriesLabels:=True, _
 Categorylabels:=True

' Add axes
With co.Chart
 .HasAxis(xlCategory, xlPrimary) = True
 .HasAxis(xlCategory, xlSecondary) = False
 .HasAxis(xlValue, xlPrimary) = True
 .HasAxis(xlValue, xlSecondary) = False
End With

to this:

' Add axes
With co.Chart
 .HasAxis(xlCategory, xlPrimary) = True
 .HasAxis(xlCategory, xlSecondary) = False
 .HasAxis(xlValue, xlPrimary) = True
 .HasAxis(xlValue, xlSecondary) = False
End With

' Add data series using data on the sheet itself
co.Chart.SeriesCollection.Add _
 Source:=ActiveSheet.Range("A1:B6"), _
 Rowcol:=xlColumns, SeriesLabels:=True, _
 Categorylabels:=True

Excel will issue the completely useless error message: "Method 'HasAxis' of object '_Chart' has
failed." (Unfortunately, as is all too often the case, the documentation does not discuss this issue at
all.)

The syntax for the HasAxis property is:

ChartObject.HasAxis(Index1, Index2)

where the parameters, despite their generic names, correspond directly to the Type and
AxisGroup parameters of the Axes method. For instance, the following code displays a primary
category axis and both primary and secondary value axes for the active chart:

With ActiveChart
 .HasAxis(xlCategory, xlPrimary) = True
 .HasAxis(xlCategory, xlSecondary) = False
 .HasAxis(xlValue, xlPrimary) = True
 .HasAxis(xlValue, xlSecondary) = True
End With

 363

21.6 The Axis Object

Table 21-2 shows the properties and methods of the Axis object. As you can see, Axis objects are
fairly involved in their own right. Fortunately, most of the members in Table 21-2 are self-
explanatory, so we consider them only briefly. Note that most of these members correspond to the
myriad check boxes and edit boxes in the five tabs of the Excel Format Axis dialog box.

Table 21-2. Members of the Axis Object
Application HasDisplayUnitLabel<v9> MinorTickMark
AxisBetweenCategories HasMajorGridlines MinorUnit
AxisGroup HasMinorGridlines MinorUnitIsAuto
AxisTitle HasTitle MinorUnitScale
BaseUnit Height Parent
BaseUnitIsAuto Left ReversePlotOrder
Border MajorGridlines ScaleType
CategoryNames MajorTickMark Select
CategoryType MajorUnit TickLabelPosition
Creator MajorUnitIsAuto TickLabels
Crosses MajorUnitScale TickLabelSpacing
CrossesAt MaximumScale TickMarkSpacing
Delete MaximumScaleIsAuto Top
DisplayUnit<v9> MinimumScale Type
DisplayUnitCustom<v9> MinimumScaleIsAuto Width
DisplayUnitLabel<v9> MinorGridlines

21.6.1 AxisGroup Property

This read-only property returns the group for the specified axis. It can be either xlPrimary (=1)
or xlSecondary (=2).

21.6.2 Axis Titles and Their Formatting

The AxisTitle property returns an AxisTitle object that represents the title of the specified axis.

21.6.2.1 HasTitle property (R/W Boolean)

Before we can format an axis title, we must tell Excel that the axis has a title using the HasTitle
property:

AxisObject.HasTitle = True

The AxisTitle object has several properties, the most prominent of which are the following:

AutoScaleFont

Scales the label text font size is automatically when the chart size changes when this
property is True. The default value is True.

 364

Border

Returns a Border object that can be used to set the color, line style, and width of the
border of the axis title.

Caption

Sets the text for the title.

Characters

Returns a Characters object, which is a range of characters in the caption. This allows us
to format a portion of the text in the caption.

Fill

Returns a ChartFillFormat object used to set fill-formatting properties for the axis title.

Font

Returns a Font object that can be used to set the font characteristics of the labels.

HorizontalAlignment and VerticalAlignment

Sets the alignment of axis title text.

Interior

Returns an Interior object that can be used to format the interior of the axis title area.

NumberFormat

Sets the number format code for the labels. This property returns Null if all labels do not
have the same number format. Note that since the format codes are the same as those used
by Excel to format worksheet cells, we can use the macro recorder to get appropriate
format codes.

Orientation

Returns or sets the orientation for the axis title. It can be any one of the following
constants:

Enum XlOrientation
 xlUpward = -4171
 xlDownward = -4170
 xlVertical = -4166
 xlHorizontal = -4128
End Enum

Let us take a closer look at the Characters object. A Characters object represents a contiguous
portion of text within a text string. The Characters property returns a Characters object. (Note that
the Characters property also applies to the ChartTitle object and the Range object.)

The syntax of the Characters property is:

 365

AxisTitleObject.Characters(start, length)

where start is the start character number and length is the number of characters to return in
the Characters object. When start is missing, it is assumed to be equal to 1, and when length is
missing, all characters after the starting character are included.

To illustrate, the following code creates a title for the primary value axis and italicizes the word
"billions." (Note the setting of the HasTitle property, to avoid an error message.)

With ActiveChart.Axes(xlValue, xlPrimary)
 .HasTitle = True
 .AxisTitle.Text = "These are billions"
 .AxisTitle.Characters(11, 8).Font.Italic = True
End With

Of course, if we wanted to italicize the entire title, we could simply use the Font property of the
AxisTitle object, as in:

ActiveChart.Axes(xlValue, xlPrimary). _
 AxisTitle.Font.Italic = True

21.6.2.2 The Border property and the Border object

This property returns a Border object that represents the border of the object. The Border object
can be used to set the color, line style, and weight of the border of an object, such as an axis title.

The Border object has no methods. Its main properties are Color, ColorIndex, LineStyle, and
Weight.

The Color property can be set to any RGB value. For instance, the following code sets the major
axis color to blue:

ActiveChart.Axes(xlCategory, xlPrimary). _
 MajorGridlines.Border.Color = RGB(0, 0, 255)

The ColorIndex property can be used to set the color via a color palette. For more information,
including the ColorIndex values, see the help documentation.

The LineStyle property can take on any of the following values:

Enum XlLineStyle
 xlLineStyleNone = -4142
 xlDouble = -4119
 xlDot = -4118
 xlDash = -4115
 xlContinuous = 1
 xlDashDot = 4
 xlDashDotDot = 5
 xlSlantDashDot = 13
End Enum

The Weight property can be set to one of the following XLBorderWeight constants:

Enum XlBorderWeight
 xlMedium = -4138
 xlHairline = 1

 366

 xlThin = 2
 xlThick = 4
End Enum

To further illustrate axis-title formatting, here is the relevant code from the CreateChart procedure:

' Axis formatting
With co.Chart.Axes(xlCategory)
 .HasTitle = True
 .AxisTitle.Caption = "Types"
 .AxisTitle.Border.Weight = xlMedium
End With

With co.Chart.Axes(xlValue)
 .HasTitle = True
 With .AxisTitle
 .Caption = "Quantity for 1999"
 .Font.Size = 6
 .Orientation = xlHorizontal
 .Characters(14, 4).Font.Italic = True
 .Border.Weight = xlMedium
 End With
End With

21.6.3 CategoryNames Property

This property returns or sets the category names for the axis. It can be set to either an array or a
Range object that contains the category names.

For instance, the code:

ActiveChart.Axes(xlCategory, xlSecondary). _
 CategoryNames = Array("One", "Two", "Three", "Four", "Five", "Six")

changes the labels on the upper horizontal axis to "One", "Two", "Three", etc.

21.6.4 CategoryType Property and BaseUnit Property

The CategoryType property returns or sets the type for a category axis. (It applies only to
category-type axes.) It can be one of the following XlCategoryType constants:

Enum XlCategoryType
 xlAutomaticScale = -4105
 xlCategoryScale = 2
 xlTimeScale = 3
End Enum

The default is xlAutomaticScale.

When the CategoryType property for the axis is set to xlTimeScale, the BaseUnit property
returns or sets the base unit for the specified category axis. It can be one of the following
XlTimeUnit constants:

Enum XlTimeUnit
 xlDays = 0
 xlMonths = 1

 367

 xlYears = 2
End Enum

Note that the value of this property takes effect only when the CategoryType property for the axis
is set to xlTimeScale, even though the value can be changed at any time.

21.6.5 Crosses and CrossesAt Properties

The Crosses property returns or sets the point on the specified axis at which the "other" axis
crosses—that is (we surmise), the other axis that is in the same axis group. Thus, if the specified
axis is a primary axis, so is the other axis. If the specified axis is a secondary axis, so is the other
axis. For instance, the code:

ActiveChart.Axes(xlValue, xlPrimary).Crosses = xlAxisCrossesMaximum

instructs the primary category axis (the other axis) to cross the primary value axis (the specified
axis) at the maximum point of the primary value axis (the specified axis).

The Crosses property can assume one of the following XlAxisCrosses constants:

Enum XlAxisCrosses
 xlAxisCrossesCustom = -4114
 xlAxisCrossesAutomatic = -4105
 xlAxisCrossesMaximum = 2
 xlAxisCrossesMinimum = 4
End Enum

When set to xlAxisCrossesAutomatic, Excel determines the crossing point. When set to
xlMinimum , the other axis crosses at the minimum value when the specified axis is a value axis
or the far-left category when the specified axis is a category axis. When set to xlMaximum , the
other axis crosses at the maximum value when the specified axis is a value axis or the far-right
category when the specified axis is a category axis. (Unfortunately, this property does not always
seem to act as advertised. In particular, I have noticed that setting this property to xlMinimum
does not always adjust the crossing point properly.)

Finally, the xlAxisCrossesCustom setting applies only to value axes, in which case when set
to xlAxisCrossesCustom , the CrossesAt property determines the crossing point for the other
(category) axis. Note that setting the CrossesAt property automatically sets the Crosses property to
xlAxisCrossesCustom .

For instance, referring to the CreateChart procedure, the code:

co.Chart.Axes(xlValue).CrossesAt = 50

causes the category axis to cross the value axis at 50.

Finally, note that these properties do not apply to 3-D charts.

21.6.6 Display Units

New to Excel 9 are the display unit-related properties HasDisplayUnitLabel, DisplayUnitLabel,
DisplayUnit, and DisplayUnitCustom, and the DisplayUnitLabel object. These properties can be
used to display a unit's legend for a chart axis. This is useful when dealing with labels that contain
very large numbers. For instance, if a series of labels has the form 1000000, 2000000, 3000000,

TE
AM
FL
Y

Team-Fly®

 368

and so on, we can create a legend with the word "millions" and then change the labels to 1, 2,
3,

As an example, the code:

Sub DisplayUnitLabel()
 With ActiveChart.Axes(xlValue)
 .DisplayUnit = xlMillions
 .HasDisplayUnitLabel = True
 With .DisplayUnitLabel
 .Caption = "millions"
 .Font.Size = 14
 End With
 End With
End Sub

produces the chart in Figure 21-11. Note that the value axis is labeled with millions as the legend
indicates.

Figure 21-11. Display unit labels

21.6.7 Gridline-Related Properties and the Gridline Object

The Axis object has several properties that relate to gridlines; they are described in the following
list:

HasMajorGridlines

Set this read-write property to True to show major gridlines for the axis, or False to
hide gridlines. Applies only to primary axes (not secondary axes).

HasMinorGridlines

Set this read-write property to True to show minor gridlines for the axis, or False to
hide gridlines. Applies only to primary axes (not secondary axes).

MajorGridlines

 369

This read-only property returns a Gridlines object that represents the major gridlines for
the specified axis. Applies only to primary axes (not secondary axes).

MinorGridlines

This read-only property returns a Gridlines object that represents the minor gridlines for
the specified axis. Applies only to primary axes (not secondary axes).

Note that the Gridlines object is not a collection object; that is, there is no Gridline object. Instead,
the properties of the Gridlines object apply to all of the gridlines for the axis. For instance, the
following code adds major gridlines to the category axis and formats these lines:

ActiveChart.Axes(xlCategory, xlPrimary). _
 HasMajorGridlines = True
With ActiveChart.Axes(xlCategory, xlPrimary). _
 MajorGridlines.Border
 .Color = RGB(0, 0, 255)
 .LineStyle = xlDot
 .Weight = xlThick
 End With

21.6.8 Position- and Dimension-Related Properties

The Axis object has the following properties related to its position and dimensions. These
properties are read-only.

Height

Returns the height of the axis in points.

Width

Returns the width of the axis in points.

Left

Returns the distance from the left edge of the axis to the left edge of the chart area.

Top

Returns the distance from the top edge of the axis to the top of the chart area.

(Note that the width of a vertical axis is 0 and the height of a horizontal axis is 0.)

21.6.9 Tick Mark-Related Properties

The Axis object has several properties related to tick marks. The MajorTickMark property returns
or sets the type of major tick mark for the specified axis, and the MinorTickMark property does
the same for minor tick marks. Each of these properties can assume any value from the following
enum:

Enum XlTickMark
 xlTickMarkNone = -4142
 xlTickMarkInside = 2
 xlTickMarkOutside = 3

 370

 xlTickMarkCross = 4
End Enum

The TickMarkSpacing property returns or sets the number of categories or series between tick
marks. This applies only to category and series axes (for 3-D charts). To set the tick mark spacing
on a value axis, we can use the MajorUnit and MinorUnit properties (described later in this
chapter).

There are also several properties related to tick-mark labels. The TickLabels property returns a
TickLabels object that represents the tick-mark labels for the specified axis.

The TickLabelPosition property returns or sets the position of tick-mark labels on the specified
axis. It can be one of the following XlTickLabelPosition constants:

Enum XlTickLabelPosition
 xlTickLabelPositionNone = -4142
 xlTickLabelPositionLow = -4134
 xlTickLabelPositionHigh = -4127
 xlTickLabelPositionNextToAxis = 4
End Enum

The TickLabelSpacing property returns or sets the number of categories or series between tick-
mark labels. This property applies only to category and series axes (for 3-D charts). Note that
Excel determines label spacing on all value axes.

21.6.9.1 The TickLabels object

The TickLabels object represents the set of tick-mark labels for an axis. Note that this is not a
collection object; that is, there is no TickLabel object. Thus, the properties of the TickLabels
object affect all of the labels for an axis simultaneously.

The TickLabels object has several properties, the most prominent of which are the following:

Font

Returns a Font object that can be used to set the font characteristics of the labels.

AutoScaleFont

Scales the label text font size automatically when the chart size changes when this
property is True. The default value is True.

NumberFormat

Sets the number-format code for the labels. This property returns Null if all labels do not
have the same number format. Note that since the format codes are the same as those used
by Excel to format worksheet cells, we can use the macro recorder to get appropriate
format codes.

Orientation

Returns or sets the orientation for the labels and can be any one of the following constants:

Enum XlTickLabelOrientation
 xlTickLabelOrientationUpward = -4171

 371

 xlTickLabelOrientationDownward = -4170
 xlTickLabelOrientationVertical = -4166
 xlTickLabelOrientationHorizontal = -4128
 xlTickLabelOrientationAutomatic = -4105
End Enum

21.6.10 Units-Related Properties

The Axis object has several properties related to setting units and the scale factor on the axis.

MajorUnit and MinorUnit

Returns or sets (as a Double) the major units or minor units for the specified axis. Setting
this property sets the corresponding MajorUnitIsAuto or MinorUnitsIsAuto property to
False.

MajorUnitIsAuto and MinorUnitIsAuto

Calculates the major units or minor units for the axis if True. These properties are
read/write Boolean.

MajorUnitScale and MinorScaleUnit

Returns or sets the major unit scale value or minor unit scale value for the category axis
when the CategoryType property is set to xlTimeScale. It can be one of the following
XlTimeUnit constants:

Enum XlTimeUnit
 xlDays = 0
 xlMonths = 1
 xlYears = 2
End Enum

MaximumScale and MinimumScale

Returns or sets the maximum or minimum value on the axis as a Double.

MaximumScaleIsAuto and MinimumScaleIsAuto

Calculates the maximum value or minimum value for the axis if True . This property is
read/write Boolean.

ScaleType

Returns or sets the value axis scale type; this property applies only to value axes. It can be
one of the following XlScaleType constants:

Enum XlScaleType
 xlScaleLogarithmic = -4133 'Common logarithm
 xlScaleLinear = -4132
End Enum

To illustrate, the following code:

With ActiveChart.Axes(xlValue, xlPrimary)

 372

 .MajorUnit = 1
 .MaximumScale = 5
End With

will cause the axis to appear as on the left in Figure 21-12. On the other hand, the code:

With ActiveChart.Axes(xlValue, xlPrimary)
 .MajorUnit = 5
 .MaximumScale = 3
End With

results in the axis shown on the right in Figure 21-12.

Figure 21-12. Axis units and scale

21.6.11 ReversePlotOrder Property

This read/write Boolean property can be set to True to have Excel reverse the direction of an axis
(although the name is not very descriptive of the function). For instance, if the active chart is the
chart in Figure 21-13, then the code:

ActiveChart.Axes(xlValue, xlPrimary).ReversePlotOrder = True

changes this chart to the one in Figure 21-14, where the primary axis data is plotted from the top
down (so to speak).

Figure 21-13. Illustrating ReversePlotOrder (before)

 373

Figure 21-14. Illustrating ReversePlotOrder (after)

21.6.12 Type Property

The Type property returns or sets the axis type. It can be one of the following XlAxisType
constants:

Enum XlAxisType
 xlCategory = 1
 xlValue = 2
 xlSeriesAxis = 3
End Enum

21.7 The ChartArea Object

The ChartArea object represents the chart area of a chart. As shown in Figure 21-1, the chart area
on a 2-D chart contains essentially the entire chart: the axes, chart title, axis titles, and legend. On
the other hand, the chart area on a 3-D chart contains the chart title and the legend but does not
include the plot area, where the data is plotted.

 374

The ChartArea object has several children—Border, ChartFillFormat, Font, and Interior—that can
be used to set the characteristics of the entire chart. (These objects have been discussed earlier, in
connection with axis titles.)

Unfortunately, the documentation does not clearly define the differences between the
ChartFillFormat object (which represents fill formatting for chart elements) and its use and
between the Interior object and its use. Thus, some experimenting is in order. While both of these
objects have a Pattern property in common, they seem generally to have different properties and
methods. The ChartFillFormat object appears to relate more to gradient and texture fills, whereas
the Interior object seems to relate more to solid fills and pattern fills.

To illustrate, the following line sets the interior of a chart area to a solid color (ColorIndex 3 is
red):

ActiveChart.ChartArea.Interior.ColorIndex = 3

The following code creates a gradient pattern in the chart area, changing from red at the top to
violet at the bottom:

With ActiveChart.ChartArea.Fill
 .Visible = True
 .ForeColor.SchemeColor = 3
 .BackColor.SchemeColor = 7
 .TwoColorGradient Style:=msoGradientHorizontal, Variant:=1
End With

21.8 The ChartGroup Object

As you no doubt know, an Excel chart can contain more than one data series. We have remarked
that each series (that is, the Series object) has a ChartType property that can be used to set the
chart type of the series. Thus, a single chart may have one or more series with a column-type
format and one or more series with a line-type format.

A ChartGroup object represents one or more series that are plotted on a chart with the same chart
type. Note that a ChartGroup object is not a collection. To access the individual Series objects
represented by a ChartGroup, we must use the SeriesCollection property (discussed later in this
chapter).

The ChartGroup objects for a single chart are stored in the ChartGroups collection for the Chart
object. This collection is accessed using the ChartGroups property.

The Excel object model provides a way to get "subcollections" of the ChartGroups collection that
correspond to the major chart types (line, column, bar, etc.). To illustrate, the ColumnGroups
method applies to a 2-D chart and returns the collection of all ChartGroup objects that correspond
to the various column-type formats. The syntax is:

ChartObject.ColumnGroups

We can also access a single ChartGroup in this collection using the syntax:

ChartObject.ColumnGroups(Index)

 375

Note, however, that there is no ColumnChartGroups collection per se. The ColumnGroups method
actually returns a ChartGroups collection, but not the full collection that would be returned by:

ChartObject.ChartGroups

To illustrate, the chart in Figure 21-15 has two series. While each series has a line type, the
subtypes are different. One series has been formatted with a line type with no data point markers,
whereas the other has data markers. Accordingly, the code:

ActiveChart.LineGroups.Count

returns the value 2, since there are two distinct ChartGroup objects that fit in the LineGroups
collection.

Figure 21-15. Illustrating chart groups

The Chart object has the following methods that return corresponding collections of ChartGroup
objects:

• AreaGroups
• BarGroups
• ColumnGroups
• DoughnutGroups
• LineGroups
• PieGroups
• RadarGroups
• XYGroups

There are also some members of the Chart object that return chart groups for 3-D charts. They are:
Area3DGroup, Bar3DGroup, Column3DGroup, Line3DGroup, Pie3DGroup, and SurfaceGroup.
These members are singular because they return a single ChartGroup object.

The portion of the Excel object model that relates to ChartGroup objects is shown in Figure 21-16.

Figure 21-16. The ChartGroup object

 376

21.8.1 UpBars and DownBars

UpBars and DownBars are shown in Figure 21-17. These bars give a quick indication of the
difference between data values in two different data series of line type. The UpBars are in white
and DownBars are in black. The code to generate these bars is:

With ActiveChart.LineGroups(1)
 .HasUpDownBars = True
 .UpBars.Interior.Color = RGB(255, 255, 255)
 .DownBars.Interior.Color = RGB(0, 0, 0)
End With

Note that UpBars and DownBars apply only to 2-D line-type charts.

Figure 21-17. UpBars are in white and DownBars are in black

21.8.2 DropLines

DropLines are vertical lines that extend from the data markers on a line chart to the category axis.
The HasDropLines property of the ChartGroup object can be set to True to display DropLines.

 377

21.8.3 HiLoLines

HiLoLines are shown in Figure 21-18. The HasHiLoLines property of the ChartGroup object can
be set to True to display HiLoLines. HiLoLines apply only to two-dimensional charts.

Figure 21-18. HiLoLines

21.8.4 SeriesCollection and Series Objects

The SeriesCollection property of a ChartGroup object returns the SeriesCollection collection of all
Series objects that lie in that chart group. We will discuss Series objects later in the chapter.

21.8.5 SeriesLines

SeriesLines are shown in Figure 21-19. They apply only to stacked column or stacked bar chart
groups. The HasSeriesLines property can be set to True to display series lines for a chart group.

Figure 21-19. SeriesLines

TE
AM
FL
Y

Team-Fly®

 378

21.9 The ChartTitle Object

A ChartTitle object represents a chart title. The ChartTitle object is shown in Figure 21-20.

Figure 21-20. The ChartTitle object

As with several of the other chart-related objects, the ChartTitle object has Border, Characters,
ChartFillFormat, Font, and Interior children that are used to format the corresponding portion of
the chart title. We have discussed these objects before, so we will not comment further on them
here.

21.10 The DataTable Object

Figure 21-21 shows a data table. Data tables are represented by DataTable objects.

Figure 21-21. A data table

The Chart object has a property called HasDataTable. Setting this property to True displays a
data table, as in Figure 21-21. Indeed, the data table in Figure 21-21 was produced and given a
border with the following code:

ActiveChart.HasDataTable = True
ActiveChart.DataTable.HasBorderOutline = True

The DataTable object has a variety of self-explanatory properties, such as AutoScaleFont, Border,
Font, HasBorderHorizontal, HasBorderOutline, HasBorderVertical, and ShowLegendKey. (The

 379

ShowLegendKey property is responsible for the small squares on the far left portion of the data
table in Figure 21-21.)

21.11 The Floor Object

The Floor object applies only to 3-D charts and represents the floor of the chart. For instance, the
following code:

ActiveChart.Floor.Interior.Pattern = xlPatternChecker

sets the floor of the active 3-D chart to a checkered pattern, as shown in Figure 21-22. The Floor
object has Border, ChartFillFormat, and Interior children.

Figure 21-22. The floor of a 3-D chart (checkered)

21.12 The Legend Object

Legend objects represent legends. The Legend object and its children are shown in Figure 21-23.

Figure 21-23. The Legend object

 380

The Chart object has a Legend property that returns the Legend object for that chart. As expected,
the Legend object has Border, ChartFillFormat, Font, and Interior children that serve the same
purpose here as they do for the ChartTitle, AxisTitle, ChartArea, and other objects.

21.12.1 The LegendEntry Object

Figure 21-1 shows a chart legend with two legend entries. Legend entries are represented by
LegendEntry objects. The LegendEntry objects for a legend are kept in the LegendEntries
collection object for the Legend object. This collection is accessed using the LegendEntries
property of the Chart object.

Each legend entry has two parts: the text of the legend entry is the name of the series associated
with that entry and the entry key (also called an entry marker) is a small copy of the associated
series and its formatting.

Note that the text of a legend entry cannot be changed. However, the LegendEntry object does
have a Font property that can be used to change the font of the legend entry, as in:

ActiveChart.Legend.Font.Italic = True

In addition, LegendEntry objects can be deleted. However, after a legend entry has been deleted,
the only way to restore it is to remove and recreate the entire legend by setting the HasLegend
property for the chart first to False and then to True.

Also, no pattern formatting is allowed for legend entries, nor can a legend entry's position or size
be changed.

Note finally that there is no direct way to return the series corresponding to a given legend entry.

21.12.2 The LegendKey Object

A legend key is represented by a LegendKey object. This object has Border, ChartFillFormat, and
Interior children.

It is very important to note that formatting the LegendKey object will also automatically format
the actual series that the legend entry represents. In other words, the series and its legend key
always match.

Thus, for instance, the following code formats the first data series and its legend key with a red
interior and a thick border:

 381

With ActiveChart.Legend.LegendEntries(1).LegendKey
 .Interior.ColorIndex = 3
 .Border.Weight = xlThick
End With

21.13 The PageSetup Object

The PageSetup object represents all of the page formatting for a chart (or worksheet). The
members of the PageSetup object are shown in Table 21-3.

Table 21-3. Members of the PageSetup object
Application FitToPagesWide PrintErrors<v10>
BlackAndWhite FooterMargin PrintGridlines
BottomMargin HeaderMargin PrintHeadings
CenterFooter LeftFooter PrintNotes
CenterFooterPicture<v10> LeftFooterPicture<v10> PrintQuality
CenterHeader LeftHeader PrintTitleColumns
CenterHeaderPicture<v10> LeftHeaderPicture<v10> PrintTitleRows
CenterHorizontally LeftMargin RightFooter
CenterVertically Order RightFooterPicture<v10>
ChartSize Orientation RightHeader
Creator PaperSize RightHeaderPicture<v10>
Draft Parent RightMargin
FirstPageNumber PrintArea TopMargin
FitToPagesTall PrintComments Zoom

For instance, the following code sets the margins and then does a print preview for the active chart:

With ActiveChart.PageSetup
 .LeftMargin = Application.InchesToPoints(0.5)
 .RightMargin = Application.InchesToPoints(0.75)
 .TopMargin = Application.InchesToPoints(1.5)
 .BottomMargin = Application.InchesToPoints(1)
 .HeaderMargin = Application.InchesToPoints(0.5)
 .FooterMargin = Application.InchesToPoints(0.5)
End With
ActiveChart.PrintPreview

21.14 The PlotArea Object

The plot area of a chart (see Figure 21-1) is the area where the chart data is plotted. For a 2-D
chart, it consists of the data markers, gridlines, data labels, trend lines, and optional chart items,
but not the axes. For a 3-D chart, it also includes the walls, floor, axes, axis titles, and tick-mark
labels in the chart. The plot area is surrounded by the chart area (which does contain the axes on a
2-D chart).

The PlotArea object has Border, ChartFillFormat, and Interior children used for the formatting of
these items. The PlotArea object also has Top, Left, Height, and Width properties that can be used

 382

to set the size and position of the plot area within the chart area. Note that there are some
restrictions on how these values can be set. For instance, it appears that Excel will not let us set
the Top property in such a way that the bottom of the plot area would fall below the bottom of the
chart area (which makes sense).

21.15 The Series Object

The Series object represents a data series in an Excel chart. The Series object and its children are
shown in Figure 21-24.

Figure 21-24. The Series object and its children

The Series object has Border, ChartFillFormat, and Interior child object, which we have discussed
before. Let us look at some of its other children.

The Series objects for a chart are contained in a collection object named SeriesCollection. This
collection is returned by the SeriesCollection method of the Chart object. (We will see examples
later in this section.)

The members of the Series object are shown in Table 21-4.

Table 21-4. Members of the Series Object
Application ErrorBars MarkerForegroundColorIndex

 383

ApplyCustomType Explosion MarkerSize
ApplyDataLabels Fill MarkerStyle
ApplyPictToEnd Formula Name
ApplyPictToFront FormulaLocal Parent
ApplyPictToSides FormulaR1C1 Paste
AxisGroup FormulaR1C1Local PictureType
BarShape Has3DEffect PictureUnit
Border HasDataLabels PlotOrder
BubbleSizes HasErrorBars Points
ChartType HasLeaderLines Select
ClearFormats Interior Shadow
Copy InvertIfNegative Smooth
Creator LeaderLines Trendlines
DataLabels MarkerBackgroundColor Type
Delete MarkerBackgroundColorIndex Values
ErrorBar MarkerForegroundColor XValues

21.15.1 Adding a New Series

To add a new series to a chart, we use the Add method of the SeriesCollection object. The syntax
is:

SeriesCollectionObject.Add(Source, Rowcol, _
 SeriesLabels, CategoryLabels, Replace)

The Source parameter specifies the new data as a Range object.

The optional Rowcol parameter specifies whether the data series are in rows or columns in the
specified range. It can be one of the following XlRowCol constants:

Enum XlRowCol
 xlRows = 1
 xlColumns = 2 ' The default
End Enum

The optional SeriesLabels parameter applies only when Source is a range (not an array). It is
True if the first row or column contains the name of the data series and False if the first row or
column contains the first data point of the series. If this argument is omitted, Excel attempts to
determine the location of the series name from the contents of the first row or column. (As I have
stated several times before, my advice is to supply any values that you require, rather than letting
Excel guess.)

Similarly, the optional CategoryLabels parameter applies only when Source is a range (not
an array). It is True if the first row or column contains the name of the category labels and
False if the first row or column contains the first data point of the series. If this argument is
omitted, Excel attempts to determine the location of the category label from the contents of the
first row or column.

The optional Replace parameter has the following meaning: if CategoryLabels is True and
Replace is True, the specified categories replace the categories that currently exist for the series.
If Replace is False, the existing categories will not be replaced. The default value is False.

 384

To illustrate, consider the worksheet in Figure 21-25.

Figure 21-25. Illustrating the Add method: the data

The following code will create the chart in Figure 21-26:

Dim co As ChartObject
Set co = ActiveSheet.ChartObjects. _
 Add(100, 100, 300, 200)
co.Chart.ChartType = xlColumnClustered
co.Chart.SeriesCollection.Add _
 Source:=ActiveSheet.Range("A1:C7"), _
 Rowcol:=xlColumns, SeriesLabels:=True, _
 Categorylabels:=True

Note that the series labels are in the first row and the category labels are in the first column.

Figure 21-26. Illustrating the Add method: the chart

21.15.2 The DataLabel Object

A DataLabel object represents the data label of a chart data point (or trendline). (We discuss the
Point object later in the chapter.) Each Series object has a DataLabels collection that contains one
DataLabel object for each point in the series. The Data-Labels collection is returned by the
DataLabels method, as in:

If ActiveChart.SeriesCollection(1). _
 HasDataLabels Then
 MsgBox ActiveChart.SeriesCollection(1)._
 DataLabels.Count

 385

End If

Note that if there are no data labels for a given series, then the DataLabels method will generate an
error; we should check this first before calling the method, using the HasDataLabels property of
the Series object.

The visibility of a data label (not its existence) is governed by the HasDataLabel property of the
corresponding Point object (discussed later). Thus, the code:

ActiveChart.SeriesCollection(1).Points(1).HasDataLabel = False

suppresses the display of a data label for the first data point in the series.

We can use the ApplyDataLabels method to display or hide data labels and to change the type of
labels. The syntax for this method is:

expression.ApplyDataLabels(Type, LegendKey)

where expression can return either a Chart, Point, or Series object. When the method is applied
to a Chart object, it affects the data labels for all series in the chart at the same time.

The Type parameter is the data-label type and can be one of the following XlDataLabelsType
constants:

Enum XlDataLabelsType
 xlDataLabelsShowNone = -4142
 xlDataLabelsShowValue = 2
 xlDataLabelsShowPercent = 3
 xlDataLabelsShowLabel = 4
 xlDataLabelsShowLabelAndPercent = 5
 xlDataLabelsShowBubbleSizes = 6
End Enum

The optional LegendKey parameter can be set to True to show the legend key next to each data
point. The default value is False. Figure 21-27 shows data point legends in action.

Figure 21-27. Illustrating the data point legend

The properties and methods of the DataLabel object are shown in Table 21-5.

 386

Table 21-5. Members of the DataLabel Object
Application Font ReadingOrder
AutoScaleFont HorizontalAlignment Select
AutoText Interior Shadow
Border Left ShowLegendKey
Caption Name Text
Characters NumberFormatLinked Top
Creator Orientation Type
Delete Parent VerticalAlignment
Fill Position

Note that on a trendline (discussed later in this chapter), the DataLabel property returns the text
shown with the trendline. This text can be the equation, the R-squared value, or both (if both are
showing).

21.15.3 The Point Object

A Point object represents a single data point in a series. The Point object for the points in a given
series are contained in the Points collection for the Series object. This collection is returned by the
Points property of the Series object.

The Point object has the following children: Border, ChartFillFormat, DataLabel, and Interior. The
members of the Point object are shown in Table 21-6. Most of these members are self-explanatory.
Let us look briefly at some of the others.

Table 21-6. Members of the Point Object
Application Delete MarkerSize
ApplyDataLabels Explosion MarkerStyle
ApplyPictToEnd Fill Parent
ApplyPictToFront HasDataLabel Paste
ApplyPictToSides Interior PictureType
Border InvertIfNegative PictureUnit
ClearFormats MarkerBackgroundColor SecondaryPlot
Copy MarkerBackgroundColorIndex Select
Creator MarkerForegroundColor Shadow
DataLabel MarkerForegroundColorIndex

21.15.3.1 Explosion property

This property returns or sets the explosion value for a pie-chart or doughnut-chart slice. Figure 21-
28 shows an explosion value of 20, the result of the following code:

ActiveChart.SeriesCollection(1).Points(2).Explosion = 20

Note that the Explosion property can be applied to a data series, in which case it "explodes" all of
the segments. An explosion value of 0 corresponds to no explosion.

Figure 21-28. Explosion = 20

 387

21.15.3.2 MarkerSize and MarkerStyle

The MarkerSize property returns or sets the size of a data point in points (as a Long). The property
also applies to the Series object, in which case it sets all markers in the series at once.

The MarkerStyle property determines the style of the data point and can be one of the following
values:

Enum XlMarkerStyle
 xlMarkerStyleX = -4168
 xlMarkerStylePicture = -4147
 xlMarkerStyleNone = -4142
 xlMarkerStyleDot = -4118
 xlMarkerStyleDash = -4115
 xlMarkerStyleAutomatic = -4105
 xlMarkerStyleSquare = 1
 xlMarkerStyleDiamond = 2
 xlMarkerStyleTriangle = 3
 xlMarkerStyleStar = 5
 xlMarkerStyleCircle = 8
 xlMarkerStylePlus = 9
End Enum

To illustrate, the following code produces the rather odd-looking chart in Figure 21-29.

With ActiveChart.SeriesCollection(1)
 .MarkerSize = 10
 .MarkerStyle = xlMarkerStyleDiamond
 With .Points(2)
 .MarkerSize = 20
 .MarkerStyle = xlMarkerStyleCircle
 End With
End With

TE
AM
FL
Y

Team-Fly®

 388

Figure 21-29. Illustrating MarkerSize and MarkerStyle

21.16 Properties and Methods of the Chart Object

The 91 properties and methods of the Chart object are shown in Table 21-7.

Table 21-7. Members of the Chart Object
_ApplyDataLabels<v10> DoughnutGroups PieGroups
_CodeName DrawingObjects PivotLayout<v9>
_Dummy23 Drawings PlotArea
_Evaluate DropDowns PlotBy
_PrintOut<v9> Elevation PlotVisibleOnly
_Protect<v10> Evaluate Previous
_SaveAs<v10> Export PrintOut
Activate Floor PrintPreview
Application GapDepth Protect
ApplyCustomType GetChartElement ProtectContents
ApplyDataLabels GroupBoxes ProtectData
Arcs GroupObjects ProtectDrawingObjects
Area3DGroup HasAxis ProtectFormatting
AreaGroups HasDataTable ProtectGoalSeek
AutoFormat HasLegend ProtectionMode
AutoScaling HasPivotFields<v9> ProtectSelection
Axes HasTitle RadarGroups
Bar3DGroup HeightPercent Rectangles
BarGroups Hyperlinks Refresh

 389

BarShape Index RightAngleAxes
Buttons Labels Rotation
ChartArea Legend SaveAs
ChartGroups Line3DGroup Scripts<v9>
ChartObjects LineGroups ScrollBars
ChartTitle Lines Select
ChartType ListBoxes SeriesCollection
ChartWizard Location SetBackgroundPicture
CheckBoxes MailEnvelope<v10> SetSourceData
CheckSpelling Move Shapes
CodeName Name ShowWindow
Column3DGroup Next SizeWithWindow
ColumnGroups OLEObjects Spinners
Copy OnDoubleClick SubType
CopyChartBuild OnSheetActivate SurfaceGroup
CopyPicture OnSheetDeactivate Tab<v10>
Corners OptionButtons TextBoxes
CreatePublisher Ovals Type
Creator PageSetup Unprotect
DataTable Parent Visible
Delete Paste Walls
DepthPercent Perspective WallsAndGridlines2D
Deselect Pictures XYGroups
DisplayBlanksAs Pie3DGroup

Table 21-8 shows the members of the Chart object that return children of the Chart object, along
with the objects that they return. Note that several members can return a single object or a
collection of objects.

Table 21-8. Members that Return Children
Name Return Type

Application Application
Area3DGroup ChartGroup
AreaGroups ChartGroup(s)
Axes Axis/Axes
Bar3DGroup ChartGroup
BarGroups ChartGroup(s)
ChartArea ChartArea
ChartGroups ChartGroup(s)
ChartObjects ChartObject(s)
ChartTitle ChartTitle
Column3DGroup ChartGroup
ColumnGroups ChartGroup(s)
Corners Corners
DataTable DataTable
DoughnutGroups ChartGroup(s)

 390

Floor Floor
Hyperlinks Hyperlinks
Legend Legend
Line3DGroup ChartGroup
LineGroups ChartGroup(s)
Location Chart
OLEObjects OLEObject(s)
PageSetup PageSetup
Pie3DGroup ChartGroup
PieGroups ChartGroup(s)
PlotArea PlotArea
RadarGroups ChartGroup(s)
SeriesCollection Series/SeriesCollection
Shapes Shapes
SurfaceGroup ChartGroup
Walls Walls
XYGroups ChartGroup(s)

Let us discuss a few of the members of the Chart object. (We have encountered many of these
members in connection with other chart-related objects.)

21.16.1 ChartWizard Method

The ChartWizard method modifies the properties of a chart. Note that, unlike the PivotTable
wizard, the ChartWizard method does not create a chart. The ChartWizard method is useful for
applying several formatting properties to a chart at one time. The method changes only the
properties that are specified by the parameters that are included in the call to the method.

The syntax for the ChartWizard method is:

ChartObject.ChartWizard(Source, Gallery, Format, _
 PlotBy, CategoryLabels, SeriesLabels, HasLegend, _
 Title, CategoryTitle, ValueTitle, ExtraTitle)

Note that all parameters are optional.

The Source parameter is the range that contains the source data for the chart. If Source is
omitted, then Excel will use the selected embedded chart or the active chart sheet. If no embedded
chart is selected and no chart sheet is active, then an error will result.

The Gallery parameter specifies a general chart type and can be one of the following
XlChartType constants: xlArea, xlBar, xlColumn , xlLine, xlPie, xlRadar,
xlXYScatter, xlCombination , xl3DArea, xl3DBar, xl3DColumn, xl3DLine,
xl3DPie, xl3DSurface, xlDoughnut, or xlDefaultAutoFormat.

The Format parameter specifies the specific chart type, given the value of Gallery. The value
of Format can be a number from 1 through 10, depending on the gallery type. Note that this value
corresponds to the chart types in the Chart Format dialog. If this argument is omitted, Excel will
select a value based on the gallery type and data source.

 391

The PlotBy parameter specifies whether the data for each series is in rows or columns. It can be
one of the values xlRows or xlColumns.

The CategoryLabels parameter is an integer that specifies the number of rows or columns
within the source range that contain category labels. It can be any value from 0 through one less
than the maximum number of categories or series.

Similarly, SeriesLabels is an integer that specifies the number of rows or columns within the
source range that contain series labels. It can be any value from 0 through one less than the
maximum number of categories or series.

The HasLegend parameter should be set to True to include a chart legend.

The Title parameter should be set to the chart title text. Similarly, CategoryTitle is the
category axis title text, ValueTitle is the value axis title text, and ExtraTitle is the series
axis title for 3-D charts or the second value axis title for 2-D charts with a second value axis.

To illustrate, imagine that the chart in Figure 21-30 is the active chart The following code
reformats the chart in Figure 21-30, as shown in Figure 21-31:

ActiveChart.ChartWizard Gallery:=xlLine, _
 Format:=1, HasLegend:=True, Title:="Averages", _
 CategoryTitle:="Grades", ValueTitle:="Average".

Figure 21-30. Illustrating the ChartWizard method

Figure 21-31. Results of the ChartWizard method

21.16.2 Export Method

 392

The Export method exports a chart in a graphic format. The syntax is:

ChartObject.Export(FileName, FilterName, Interactive)

Here FileName is the name of the graphic file to create. FilterName is the name of the graphic
filter as it appears in the registry. Microsoft does not say where in the registry, but it seems likely
to be the key:

HKEY_LOCAL_MACHINE\Software\Microsoft\Shared Tools\Graphics
Filters\Export

The Interactive parameter can be set to True to display the dialog box that contains filter-
specific options. If this argument is False (the default), Excel uses the default values for the filter.

To illustrate, the following code creates three graphic files from the active chart:

ActiveChart.Export "d:\excel\test.png", "PNG"
ActiveChart.Export "d:\excel\test.jpg", "JPEG"
ActiveChart.Export "d:\excel\test.gif", "GIF"

Note that in these cases, setting Interactive to True seems to have no effect. Note also that
any file of the name FileName will be overwritten without warning.

21.16.3 PrintOut Method

The PrintOut method prints the chart. This method applies to a variety of other objects, such as
Charts, Worksheet(s), Workbook(s), and the Range object. The syntax is:

ChartObject.PrintOut(from, To, Copies, Preview, _
 ActivePrinter, PrintToFile, Collate)

Note that all of the parameters to this method are optional.

The From parameter specifies the page number of the first page to print, and the To parameter
specifies the last page to print. If omitted, the entire object (range, worksheet, etc.) is printed.

The Copies parameter specifies the number of copies to print. The default is 1.

Set Preview to True to invoke print preview rather than printing immediately. The default is
False.

ActivePrinter sets the name of the active printer. On the other hand, setting PrintToFile
to True causes Excel to print to a file. Excel will prompt the user for the name of the output file.
(Unfortunately, there is no way to specify the name of the output file in code.)

The Collate parameter should be set to True to collate multiple copies.

21.17 Example: Scrolling Through Chart Types

There are a total of 73 distinct chart types. This is too many to easily look at examples of each
type by hand. However, a bit of coding can produce a simple application that scrolls through the

 393

various chart types, so that we can determine which chart type is most appropriate for a particular
purpose.

Start by creating a chart (with some data such as that in Figure 21-6) in a chartsheet. Then add the
code in Example 21-3 to the chart sheet's code module.

Example 21-3. Code in the Chart Sheet's Code Module

Option Explicit

Dim bPause As Boolean

Sub ScrollChartTypes()
 Dim iType As Integer, sName As String
 Dim fr As Integer

 fr = FreeFile
 Open ThisWorkbook.Path & _
 "\charttypes.txt" For Input As #fr

 Do While Not EOF(fr)
 Input #fr, iType, sName

 On Error Resume Next

 ActiveChart.ChartType = iType
 ActiveChart.HasTitle = True
 ActiveChart.ChartTitle.Text = _
 iType & " -- " & sName

 Delay 2

 If bPause Then
 Do
 DoEvents
 Loop Until bPause = False
 End If
 Loop

 Close fr
End Sub

'-----

Sub Delay(rTime As Single)
'Delay rTime seconds (min=.01, max=300)
Dim OldTime As Variant
'Safty net
If rTime < 0.01 Or rTime > 300 Then rTime = 1
OldTime = Timer
Do
 DoEvents
Loop Until Timer - OldTime >= rTime
End Sub

'-----

Private Sub Chart_MouseDown(ByVal Button As Long, ByVal Shift As Long,
ByVal X As Long, ByVal Y As Long)
 If Button = xlPrimaryButton Then _

 394

 bPause = Not bPause
End Sub

This code contains three procedures. The main procedure is ScrollChartTypes, which sets the
chart type and adjusts the chart's title accordingly. The procedure uses a text file, ChartTypes.txt,
that contains a list of all chart types and their names. The contents of that text file are shown in
Example 21-4. This file will need to be in the same directory as the workbook.

Example 21-4. The ChartTypes.txt File

-4169 XYScatter
-4151 Radar
-4120 Doughnut
-4102 3DPie
-4101 3DLine
-4100 3DColumn
-4098 3DArea
 1 Area
 4 Line
 5 Pie
 15 Bubble
 51 ColumnClustered
 52 ColumnStacked
 53 ColumnStacked100
 54 3DColumnClustered
 55 3DColumnStacked
 56 3DColumnStacked100
 57 BarClustered
 58 BarStacked
 59 BarStacked100
 60 3DBarClustered
 61 3DBarStacked
 62 3DBarStacked100
 63 LineStacked
 64 LineStacked100
 65 LineMarkers
 66 LineMarkersStacked
 67 LineMarkersStacked100
 68 PieOfPie
 69 PieExploded
 70 3DPieExploded
 71 BarOfPie
 72 XYScatterSmooth
 73 XYScatterSmoothNoMarkers
 74 XYScatterLines
 75 XYScatterLinesNoMarkers
 76 AreaStacked
 77 AreaStacked100
 78 3DAreaStacked
 79 3DAreaStacked100
 80 DoughnutExploded
 81 RadarMarkers
 82 RadarFilled
 83 Surface
 84 SurfaceWireframe
 85 SurfaceTopView
 86 SurfaceTopViewWireframe
 87 Bubble3DEffect
 88 StockHLC
 89 StockOHLC

 395

 90 StockVHLC
 91 StockVOHLC
 92 CylinderColClustered
 93 CylinderColStacked
 94 CylinderColStacked100
 95 CylinderBarClustered
 96 CylinderBarStacked
 97 CylinderBarStacked100
 98 CylinderCol
 99 ConeColClustered
 100 ConeColStacked
 101 ConeColStacked100
 102 ConeBarClustered
 103 ConeBarStacked
 104 ConeBarStacked100
 105 ConeCol
 106 PyramidColClustered
 107 PyramidColStacked
 108 PyramidColStacked100
 109 PyramidBarClustered
 110 PyramidBarStacked
 111 PyramidBarStacked100
 112 PyramidCol

Note the use of the On Error line in ScrollChartTypes, which resumes execution in case
we try to set the chart type to a value that is not acceptable for the particular chart.

The Delay procedure simply waits for the prescribed number of seconds. Finally, the
MouseDown event changes the state of the module level Boolean variable bPause. When the left
mouse button is clicked, scrolling is paused until the mouse button is clicked again. To stop the
procedure completely, just hit Ctrl-Break.

21.18 Example: Printing Embedded Charts

We can now implement the PrintCharts feature of our SRXUtils application. This is designed
to provide a list of the embedded charts in the active workbook, so the user can select from this list
and print the selected charts. (To print a chart sheet, use the PrintSheets utility.)

Implementing the PrintCharts utility is similar to implementing the PrintSheets and
PrintPivotTables utilities, which we did earlier in the book. At the present time, this print
utility, located in the Print.utl add-in, simply displays a message box. To implement this feature,
we want the utility to first display a dialog box, as shown in Figure 21-32.

Figure 21-32. Print Charts dialog

 396

The list box contains a list of all embedded charts in the active workbook. The user can select one
or more charts and hit the Print button.

The following are the steps to create the print utility. All the action takes place in the Print.xls
workbook, so open this workbook. When the changes are finished, you will need to save Print.xls
as Print.utl as well. If Print.utl is loaded, the only way to unload it is to unload the add-in
SRXUlils.xla (if it is loaded) and close the workbook SRXUtils.xls (if it is open).

21.18.1 Create the UserForm

Create the dialog shown in Figure 21-32 in the Print.xls workbook. Name the dialog
dlgPrintCharts, change its caption to "Print Charts," and change the PrintCharts
procedure to:

Public Sub PrintCharts()
 dlgPrintCharts.Show
End Sub

The dlgPrintCharts dialog has two command buttons and one list box.

21.18.1.1 List box

Place a list box on the form as in Figure 21-32. Using the Properties window, set the properties
shown in Table 21-9.

Table 21-9. Nondefault Properties of the ListBox Control
Property Value

Name lstCharts
TabIndex 0
MultiSelect frmMultiSelectExtended

The MultiSelect property is set to frmMultiSelectExtended so that the user can use the
Control key to select multiple (possibly nonconsecutive) entries and the Shift key to select
multiple consecutive entries.

The TabIndex property determines not only the order in which the controls are visited as the user
hits the Tab key, but also determines which control has the initial focus. Since we want the initial
focus to be on the list box, we set its tab index to 0.

21.18.1.2 Print button

Place a command button on the form as in Figure 21-32. Using the Properties window, set the
properties shown in Table 21-10.

Table 21-10. Nondefault Properties of the Print Button
Property Value

Name cmdPrint
Accelerator P
Caption Print
TabIndex 1

21.18.1.3 Cancel button

 397

Place another command button on the form as in Figure 21-32. Using the Properties window, set
the properties shown in Table 21-11.

Table 21-11. Nondefault Properties of the Cancel Button
Property Value

Name cmdCancel
Accelerator C
Caption Cancel
TabIndex 2
Cancel True

When the Cancel property of the cmdCancel button is set to True, the button is "clicked" when
the user hits the Escape key. Thus, the Escape key will dismiss the print dialog.

21.18.2 Create the Code Behind the UserForm

Now it is time to create the code behind these controls.

21.18.2.1 The Declarations section

The Declarations section of the UserForm should contain declarations of the module-level
variables, as shown in Example 21-5.

Example 21-5. Module-Level Declarations in the UserForm's Declarations Section

Option Explicit
Dim cCharts As Integer
Dim sChartObjNames() As String
Dim sSheets() As String

21.18.2.2 Cancel button code

The Cancel button code is shown in Example 21-6.

Example 21-6. The Cancel Button's Click Event Handler

Private Sub cmdCancel_Click()
 Unload Me
End Sub

21.18.2.3 Print button code

The Print button calls the main print procedure and then unloads the form, as shown in Example
21-7.

Example 21-7. The cmdPrint_Click Procedure

Private Sub cmdPrint_Click()
 PrintSelectedCharts
 Unload Me
End Sub

21.18.2.4 The Form's Initialize event

TE
AM
FL
Y

Team-Fly®

 398

The UserForm's Initialize event, which is shown in Example 21-8, is the place to fill the list box
with a list of embedded charts. Our application uses a module-level array to hold the chart names,
a module-level array to hold the ChartObject object names, and a module-level integer variable to
hold the chart count. We fill these variables in the Initialize event and then use the arrays to fill the
list. The variables are used again in the main print procedure, which is why we have declared them
at the module level.

Note the use of the ReDim statement to redimension the arrays. This is necessary since we do not
know at the outset how many embedded charts there are in the workbook.

Example 21-8. The UserForm's Initialize Event Procedure

Private Sub UserForm_Initialize()
 ' Fill lstCharts with the list of embedded charts

 Dim ws As Worksheet
 Dim chObj As ChartObject
 ReDim sChartObjNames(1 To 10) As String
 ReDim sSheets(1 To 10) As String

 lstCharts.Clear
 cCharts = 0

 For Each ws In ActiveWorkbook.Worksheets
 For Each chObj In ws.ChartObjects
 ' Update chart count
 cCharts = cCharts + 1

 ' Redimension arrays if necessary
 If UBound(sSheets) < cCharts Then
 ReDim Preserve sSheets(1 To cCharts + 5)
 ReDim Preserve sChartObjNames(1 To cCharts + 5)
 End If

 ' Save name of chart and ws
 sChartObjNames(cCharts) = chObj.Name
 sSheets(cCharts) = ws.Name

 ' Add item to list box
 If chObj.Chart.HasTitle Then
 lstCharts.AddItem chObj.Chart.ChartTitle.Text & " (" & _
 sChartObjNames(cCharts) & " in " & sSheets(cCharts) & ")"
 Else
 lstCharts.AddItem "<No Title> (" & sChartObjNames(cCharts)
& " in " & _
 sSheets(cCharts) & ")"
 End If
 Next
 Next
End Sub

21.18.2.5 The PrintCharts procedure

The main printing procedure is shown in Example 21-9. Note that we have been careful to deal
with two special cases. First, there may not be any embedded charts in the workbook. Second, the
user may hit the Print button without selecting any charts in the list box.

 399

It is important to note also that list boxes are 0-based, meaning that the first item is item 0.
However, our arrays are 1-based (the first item is item 1), so we must take this into account when
we move from a selection to an array member; to wit, selection i corresponds to array index i+1.

Example 21-9. The PrintSelectedCharts Procedure

Sub PrintSelectedCharts()
 ' Print the selected charts in lstCharts

 Dim i As Integer
 Dim bNoneSelected As Boolean

 bNoneSelected = True

 If cCharts = 0 Then
 MsgBox "No embedded charts in this workbook.", vbExclamation
 Exit Sub
 Else
 For i = 0 To lstCharts.ListCount - 1
 If lstCharts.Selected(i) Then
 bNoneSelected = False

 ' List box is 0-based, arrays are 1-based
 Worksheets(sSheets(i + 1)). _
 ChartObjects(sChartObjNames(i + 1)).Chart.PrintOut
 End If
 Next
 End If

 If bNoneSelected Then
 MsgBox "No charts have been selected from the list box.",
vbExclamation
 End If
End Sub

21.19 Example: Setting Data Series Labels

As you may know, data labels can be edited individually by clicking twice (pausing in between
clicks) on a data label. This places the label in edit mode, as shown in Figure 21-33.

Figure 21-33. A data label in edit mode

 400

Once in edit mode, we can change the text of a data label (which breaks any links) or set a new
link to a worksheet cell. For instance, the code:

ActiveChart.SeriesCollection(1).DataLabels(2).Text =
"=MyChartSheet!R12C2"

sets the data label for the second data point to the value of cell B12. Note that the formula must be
in R1C1 notation. Unfortunately, however, Excel does not provide a way to associate all of the
data labels for a data series with a worksheet range in a simple way (beyond doing this one data
label at a time). So let us write a utility for this purpose and add it to SRXUtils.

When the utility is invoked, it presents a dialog (see Figure 21-34) with a list of all the data series
for the selected chart. The user can select a data series and then define a range to which the data
labels will be linked or from which the values will be copied. If the cell values are copied, no link
is established and so changes made to the range are not reflected in the chart. There is also an
option with regard to whether formatting is linked or copied.

Figure 21-34. Set Data Labels dialog

We begin by augmenting the DataSheet sheet by adding a row for the new utility, as in Figure 21-
35 (the new utility is listed in row 2).

Figure 21-35. DataSheet

 401

Next, create the dialog shown in Figure 21-34. We have used the RefEdit control, which simulates
the Excel feature of choosing a range using the mouse. Unfortunately, this control is not
documented in the help files. (You can get a list of its properties, methods, and events in the
Microsoft Object Browser, but no help.) In any case, we are interested in only one or two
properties, as shown in the upcoming code.

The LabelDataSeries procedure, which is called when the menu item is selected, should be
placed in a new standard code module called basDataLabels. The Declarations section of the
code module has some module-level declarations, which are shown in Example 21-10.

Example 21-10. The Declarations Section of the basDataLabels Code Module

Option Explicit

Private Type utDataLabels
 HasDataLabel As Boolean
 Label As String
 FontName As String
 FontSize As Single
 Color As Long
 Bold As Boolean
 Italic As Boolean
End Type

Public LabelsForUndo() As utDataLabels
Public DataSeries As Series
Public cPoints As Integer
Public bCopyFormatting As Boolean
Public oChart As Chart

Dim cSeries as Long

Note, in particular, the user-defined type declaration. This saves the original data labels for a
possible Undo operation. It can hold not only the data label's text, but also the formatting options
that can be set using this utility.

The LabelDataSeries procedure, which is shown in Example 21-11, first verifies that a chart
sheet or embedded chart is selected. Then it sets the global variable oChart to refer to this chart.
This variable will be used by the dialog, so it needs to be public. Next, it sets the global variable
cSeries to the number of data series in the chart. If the chart has no data series, a message is
displayed. If everything is satisfactory, the Set Data Labels dialog is displayed.

Example 21-11. The LabelDataSeries Procedure

Public Sub LabelDataSeries()
 ' Verify that a chart sheet or
 ' an embedded chart is active.
 ' If so, set it to oChart.

 Set oChart = Nothing

 If ActiveWorkbook.Sheets.Count = 0 Then

 402

 MsgBox "Active workbook has no charts. Exiting.", vbInformation
 Exit Sub
 End If

 On Error GoTo NoChartActive

 Set oChart = ActiveChart

 If Not oChart Is Nothing Then
 ' Check for data series
 cSeries = oChart.SeriesCollection.Count

 If cSeries = 0 Then
 MsgBox "Active chart has no data series.", vbInformation
 Exit Sub
 End If

 ' If so, display dialog
 dlgDataLabels.Show
 Else
 MsgBox "This utility requires that a chart be selected.",
vbInformation
 End If

 Exit Sub

 NoChartActive:
 MsgBox "This utility requires that a chart be selected.",
vbInformation
 Exit Sub
End Sub

After creating basDataLabels, you should create the dialog in Figure 21-34, name it
dlgDataLabels, and assign the string "Set Data Labels" to its Caption property. We have
created several custom dialogs earlier in the book, so we will not go into any details here. (You
can design your dialog differently if you wish. There is nothing sacred about my design.) The
control names are:

CmdCancel

For the Cancel button

CmdSetLabels

For the Set Labels button

cmdUndo

For the Undo button

LblSeries

For the "Choose a Series:" label

LstSeries

For the list box

 403

LblRange

For the "Choose a Range for the Labels" label

reditLabels

For the Reference Editor control

fraOptions

For the frame

OptLink

For the Link option button

OptCopy

For the Copy option button

chkOption

For the Copy Formatting check box

You should not have any trouble determining which name goes with which control (which is a
benefit of using a naming convention, after all).

Most of the code behind the dialog is pretty straightforward. The Initialize event, shown in
Example 21-12, first fills the list box (lstSeries) with a list of all of the data series in the chart
oChart. Then it initializes some of the other controls.

Example 21-12. The Initialize Event Procedure

Private Sub UserForm_Initialize()
 ' oChart is set to refer to the active chart
 ' cSeries has count of series

 Dim ds As Series

 ' Fill the lstSeries
 For Each ds In oChart.SeriesCollection
 lstSeries.AddItem ds.Name
 Next

 optCopy.Value = True
 chkOption.Caption = "Copy Formatting"
 chkOption.Accelerator = "F"
 cmdUndo.Enabled = False
End Sub

We want the caption (and accelerator key) of the check box at the bottom of the dialog to change
based on the choice of option button (Link or Copy). Hence, we need some code in the appropriate
Click events, as shown in Example 21-13.

Example 21-13. The Option Buttons' Click Events

 404

Private Sub optCopy_Click()
 ' Set correct check box label and enable
 chkOption.Caption = "Copy Formatting"
 chkOption.Accelerator = "F"
 chkOption.Enabled = True
End Sub

Private Sub optLink_Click()
 ' Set correct check box label and enable
 chkOption.Caption = "Link Number Format"
 chkOption.Accelerator = "N"
 chkOption.Enabled = True
End Sub

As usual, the command buttons' Click events are short. They are shown in Example 21-14.

Example 21-14. The cmdCancel and cmdSetLabels Click Events

Private Sub cmdCancel_Click()
 Unload Me
End Sub

Private Sub cmdSetLabels_Click()
 DoDataLabels
End Sub

The main portion of the code, the DoDataLabels procedure shown in Example 21-15 (and
housed in the UserForm module), checks to see if a data series and label range have been selected
and compares their sizes, which must match or else an error message is displayed.

Example 21-15. The DoDataLabels Procedure

Sub DoDataLabels()
 Dim i As Integer
 Dim rngLabels As Range
 Dim fnt As Font

 ' Is a data series selected? Get its size.
 If lstSeries.ListIndex = -1 Then
 MsgBox "You must select a data series.", vbInformation
 Exit Sub
 Else
 Set DataSeries = oChart.SeriesCollection(lstSeries.ListIndex +
1)

 ' There will be an error if the chart does not support data
points
 On Error Resume Next

 cPoints = DataSeries.Points.Count
 If Err.Number <> 0 Then
 MsgBox "Charts of the selected type do not support data
labels.", _
 vbCritical
 Unload Me
 Exit Sub
 End If
 End If

 405

 ' Get the labels range
 Set rngLabels = Range(reditLabels.Value)
 If rngLabels Is Nothing Then
 MsgBox "You must select a range of cells equal in number to " &
_
 "the number of data points in the series.", vbInformation
 Exit Sub
 End If

 ' Check counts
 If cPoints <> rngLabels.Count Then
 MsgBox "The number of label cells (" & rngLabels.Count & _
 ") does not equal the number of data points (" & cPoints & _
 ") in the selected series.", vbInformation
 Exit Sub
 End If

 ' Check for existing labels and save them
 If DataSeries.HasDataLabels Then
 ' Dimension the array
 ReDim LabelsForUndo(1 To cPoints)

 ' Fill array
 For i = 1 To cPoints
 LabelsForUndo(i).HasDataLabel =
DataSeries.Points(i).HasDataLabel

 If LabelsForUndo(i).HasDataLabel Then
 ' Save the label text
 LabelsForUndo(i).Label =
DataSeries.Points(i).DataLabel.Text

 ' Save the formatting
 With DataSeries.Points(i).DataLabel.Font
 LabelsForUndo(i).FontName = .Name
 LabelsForUndo(i).FontSize = .Size
 LabelsForUndo(i).Color = .Color
 LabelsForUndo(i).Bold = .Bold
 LabelsForUndo(i).Italic = .Italic
 End With
 End If
 Next

 cmdUndo.Enabled = True
 End If

 ' Now do data labels based on options
 If optLink Then
 For i = 1 To cPoints
 DataSeries.Points(i).HasDataLabel = True
 DataSeries.Points(i).DataLabel.Text = "=" &
rngLabels.Parent.Name _
 & "!" & rngLabels.Cells(i).Address(ReferenceStyle:=xlR1C1)

 If chkOption Then
 ' Set number format link
 DataSeries.Points(i).DataLabel.NumberFormatLinked = True
 End If
 Next
 Else
 For i = 1 To cPoints

 406

 DataSeries.Points(i).HasDataLabel = True
 DataSeries.Points(i).DataLabel.Text =
rngLabels.Cells(i).Value

 If chkOption Then
 bCopyFormatting = True

 With DataSeries.Points(i).DataLabel.Font
 .Name = rngLabels.Cells(i).Font.Name
 .Size = rngLabels.Cells(i).Font.Size
 .Bold = rngLabels.Cells(i).Font.Bold
 .Italic = rngLabels.Cells(i).Font.Italic
 .Color = rngLabels.Cells(i).Font.Color
 End With

 DataSeries.Points(i).DataLabel.NumberFormat = _
 rngLabels.Cells(i).NumberFormat
 Else
 bCopyFormatting = False
 End If
 Next
 End If
End Sub

The Undo command button's Click event, which is shown in Example 21-16, restores the original
data labels that are saved in the DoDataLabels procedure.

Example 21-16. The cmdUndo_Click Event Procedure

Private Sub cmdUndo_Click()
 ' Restore labels for DataSeries

 Dim i As Integer

 For i = 1 To cPoints
 If LabelsForUndo(i).HasDataLabel Then
 DataSeries.Points(i).HasDataLabel = True
 DataSeries.Points(i).DataLabel.Text = LabelsForUndo(i).Label

 If bCopyFormatting Then
 ' Restore formatting
 With DataSeries.Points(i).DataLabel.Font
 .Name = LabelsForUndo(i).FontName
 .Size = LabelsForUndo(i).FontSize
 .Color = LabelsForUndo(i).Color
 .Bold = LabelsForUndo(i).Bold
 .Italic = LabelsForUndo(i).Italic
 End With
 End If
 Else
 DataSeries.Points(i).HasDataLabel = False
 End If
 Next

 cmdUndo.Enabled = False
End Sub

 407

Chapter 22. Smart Tags
In this chapter, I discuss the programmatic control of smart tags. Note that to create custom smart
tags, we need to use an application that can create automation servers (COM DLLs), such as
Visual Basic or Visual C++. Custom smart tags cannot be created in Excel XP, although existing
smart tags can be controlled programmatically.

22.1 What Are Smart Tags?

Since smart tags are new to Office XP, let us begin with a brief description of their purpose. To
illustrate the concept of a smart tag, imagine that you type a date, such as January 1, 2002, in
Word XP (with smart tags turned on). The smart tag system recognizes the text "January 1, 2002"
as a date and underlines it with a dotted line. If you then place the mouse over the date, a small
button that looks like an "i" with a circle around it (a smart tag action button) appears. Clicking on
this button drops down a list of actions, as shown in Figure 22-1.

Figure 22-1. The smart tag actions menu

From this menu, as the name suggests, we can choose an action to perform, such as scheduling a
meeting on this date. Indeed, if we click on this action, Microsoft Outlook's appointment dialog
will open, wherein we can set up the meeting.

Figure 22-2 illustrates the use of smart tags in Excel XP. Here we have entered a stock ticker
symbol into a worksheet cell, whereupon leaving the cell Excel XP will recognize the symbol as a
smart tag type. (Excel XP comes with some built-in smart tag recognizers, as can be seen from the
smart tag tab of the AutoCorrect Options dialog box.)

Figure 22-2. A smart tag in Excel XP

TE
AM
FL
Y

Team-Fly®

 408

Thus, smart tags are tools that recognize certain types of data within an Office document and
present the user with a list of predefined actions. (At the user-interface level, the smart tag options
dialog can be reached through the AutoCorrect Options menu item under the Tools menu.)

22.2 SmartTagRecognizer Object

The object that is responsible for recognizing a particular type of data as a smart tag is called a
smart tag recognizer. These recognizers take the form of code in a Dynamic Link Library (DLL)
that is loaded into Excel's address space when Excel is first loaded. To illustrate, on my system,
the following code:

Dim str As SmartTagRecognizer
For Each str In Application.SmartTagRecognizers
 Debug.Print str.progID & "/" & str.Enabled
Next

produces the output:

FName.SmartTag/True
MOFL.SmartTag/True

indicating that two smart tag recognizer DLLs are loaded in Excel's address space. (A single DLL
may be used to recognize more than one type of smart tag.) We also see from this code that the
SmartTagRecognizers collection holds a SmartTagRecognizer object for each of the currently
available smart tag recognizers.

The SmartTagRecognizer object has a read-write Enabled property used to enable or disable the
recognizer, as well as read-only properties called progID and FullName, which return the name of
the recognizer (the FullName property includes the path).

22.3 SmartTag Object

The Range object has a SmartTags property that returns the collection of all SmartTag objects. Of
course, a SmartTag object represents a smart tag. Let us discuss the more important members of
the SmartTag object, listed next. (The Delete method is self-explanatory.)

• Delete method
• Name property
• DownloadURL property
• XML property
• SmartTagActions property

The Name property of the SmartTag object returns a fully qualified name for the smart tag. A fully
qualified name consists of a XML namespace URI followed by a number sign (#) and then the tag
name. For instance, referring to the smart tag in Figure 22-2, the code:

Debug.Print st.Name

prints:

 409

urn:schemas-microsoft-com:office:smarttags#stockticker

Do not confuse the name of the smart tag with the text, such as IBM, of the smart tag. There does
not appear to be a smart tag member that returns the smart tag's text.

The DownloadURL property is an optional URL that is specified by the smart tag's creator. It
provides an address where additional smart tag actions may be available for download.

According to the Microsoft documentation, the read-only XML property of the smart tag object
"Returns a String representing a sample of the XML that would be passed to the action handler."
The term "sample" could certainly use clarification. In any case, for the smart tag in Figure 22-2,
the code:

Debug.Print st.XML

produces the string:

<xml xmlns:fa1="urn:schemas-microsoft-
com:office:smarttags"><fa1:stockticker>IBM</fa1:stockticker></xml>

which contains the smart tag's fully qualified name as well as the tag's text (IBM).

22.4 SmartTagAction Object

The SmartTagActions property returns the SmartTagActions collection of SmartTagAction
objects. A SmartTagAction object represents an action that can be taken for a smart tag. As an
example, referring to Figure 22-2, the code:

Dim st As SmartTag
Set st = Application.Range("A1").SmartTags(1)
For i = 1 To st.SmartTagActions.Count
 Debug.Print st.SmartTagActions(i).Name
Next

produces the output:

Insert refreshable stock price...
LatestQuoteData
CompanyReportData
RecentNews

which corresponds to the four actions in Figure 22-2. Incidentally, the code:

Dim st As SmartTag
Dim sta As SmartTagAction
For Each sta In st.SmartTagActions
 Debug.Print sta.Name
Next

does not print anything, nor does it produce an error message!

The SmartTagAction object has an Execute method that executes an action. Here is an example
that executes the first action in Figure 22-2:

 410

Sub ExecuteASmartTag()
 Dim st As SmartTag
 Dim sAction As String
 Dim ws As Worksheet

 Set ws = Application.ActiveSheet

 sAction = "Insert refreshable stock price..."

 ' Invoke a smart tag for the Microsoft ticker symbol.
 Set st = ws.Range("A1").SmartTags(_
 "urn:schemas-microsoft-com:office:smarttags#stockticker")
 st.SmartTagActions(sAction).Execute
End Sub

22.5 SmartTagOptions Object

The SmartTagOptions object, returned by the SmartTagOptions property of the Workbook object,
has two useful properties. The DisplaySmartTags property takes a value from the following enum:

Enum XlSmartTagDisplayMode
 xlIndicatorAndButton = 0
 xlDisplayNone = 1
 xlButtonOnly = 2
End Enum

Thus, we can choose to display nothing, a button only, or a button and indicator for each smart tag.
The EmbedSmartTags property is a Boolean property that determines whether or not smart tags
are saved along with the workbook (although the term "embed" seems to be a rather poor choice
of terminology).

For more information on smart tags and how to create custom smart tags (which as we mentioned
earlier cannot be done from within Excel XP itself), you can check out the smart tag SDK on
Microsoft's web site at:

http://msdn.microsoft.com/downloads/default.asp?URL=/code/sample.asp?url=/MSDN-
FILES/027/001/652/msdncompositedoc.xml.

http://msdn.microsoft.com/downloads/default.asp?URL=/code/sample.asp?url=/MSDN-FILES/027/001/652/msdncompositedoc.xml
http://msdn.microsoft.com/downloads/default.asp?URL=/code/sample.asp?url=/MSDN-FILES/027/001/652/msdncompositedoc.xml

 411

Part IV: Appendixes
Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

 412

Appendix A. The Shape Object
Now we want to take a brief look at the issue of drawing pictures using VBA code. Since this
subject is not fundamental to Excel VBA programming, we will be very brief, but hopefully this
introduction will give you the necessary background for further study using the VBA help files.

A.1 What Is the Shape Object?

Each Excel sheet (chartsheet or worksheet) and each Excel chart has a drawing layer upon which
we can place drawing objects. A drawing object is represented by a Shape object.

As usual, the Shape objects for a sheet are stored in a Shapes collection. The Chart object and the
Worksheet object both have a Shapes property that returns the collection of all Shape objects
drawn on the chart or worksheet.

There is also a ShapeRange object that holds a collection of selected Shape objects, much as a
Range object can contain a collection of selected cells. The ShapeRange object allows us to set the
properties of a subcollection of all Shape objects.

The Shape-related objects are shown in Figure A-1.

Figure A-1. The Shape-related objects

A.2 Z-Order

 413

Every Shape object has an order, called its z-order , that indicates the object's relative position
with respect to an imaginary z-axis that comes directly out of the monitor at right angles, towards
the user, as pictured in Figure A-2.

Figure A-2. Illustrating z-order

The read-only ZOrderPosition property of a Shape object reports the current z-order of the object
which, incidentally, is the same as the object's index within the Shapes collection. Shape objects
with a larger z-order appear on top of objects with a smaller z-order. Hence, the Shape object with
z-order equal to 1 is Shapes(1) and lies at the bottom of the pile!

The ZOrder method sets the z-order of a Shape object relative to other objects. Note that the
method does not set the absolute z-order. The syntax is:

ShapeObject.ZOrder(ZOrderCmd)

where ZOrderCmd is one of the constants in the following enum (from the Microsoft Office
object model):

Enum MsoZOrderCmd
 msoBringToFront = 0
 msoSendToBack = 1
 msoBringForward = 2
 msoSendBackward = 3
End Enum

Thus, the z-order can only be set in the following ways:

• Move the object to the front of the z-order.
• Move the object to the back of the z-order.
• Move the object one forward in the z-order; that is, increase its index by 1.
• Move the object one backward in the z-order; that is, decrease its index by 1.

Incidentally, as we have seen, the ChartObject object has a read-only ZOrder property that returns
the z-order of the ChartObject. It also has BringToFront and SendToBack methods for changing
the z-order.

A.3 Creating Shapes

 414

An AutoShape is a Shape object that represents a built-in drawing. To add a new AutoShape
object, we use the AddShape method, whose syntax is:

ShapesObject.AddShape(Type, Left, Top, Width, Height)

The parameter Type is the type of AutoShape to create. It can be any one of the
MsoAutoShapeType constants in Table A-1.

The required parameters Left and Top specify the position (in points as a Single) of the upper-
left corner of the bounding box for the AutoShape object, measured relative to the upper-left
corner of the container object (chart, chart sheet, or worksheet).

The Width and Height parameters specify the width and height (in points as a Single) of the
bounding box for the AutoShape. Note that the type of a Shape object can be changed by setting
the AutoShapeType property.

Table A-1. MsoAutoShapeType Constants (and Values)

msoShape16pointStar (94) msoShapeFlowchartCard (75) msoShapeLineCallout2BorderandAccentBar
(122)

msoShape24pointStar (95) msoShapeFlowchartCollate (79) msoShapeLineCallout2NoBorder (118)
msoShape32pointStar (96) msoShapeFlowchartConnector (73) msoShapeLineCallout3 (111)
msoShape4pointStar (91) msoShapeFlowchartData (64) msoShapeLineCallout3AccentBar (115)

msoShape5pointStar (92) msoShapeFlowchartDecision (63) msoShapeLineCallout3BorderandAccentBar
(123)

msoShape8pointStar (93) msoShapeFlowchartDelay (84) msoShapeLineCallout3NoBorder (119)
msoShapeActionButtonBackorPrevious
(129)

msoShapeFlowchartDirectAccessStorage
(87) msoShapeLineCallout4 (112)

msoShapeActionButtonBeginning
(131) msoShapeFlowchartDisplay (88) msoShapeLineCallout4AccentBar (116)

msoShapeActionButtonCustom (125) msoShapeFlowchartDocument (67) msoShapeLineCallout4BorderandAccentBar
(124)

msoShapeActionButtonDocument
(134) msoShapeFlowchartExtract (81) msoShapeLineCallout4NoBorder (120)

msoShapeActionButtonEnd (132) msoShapeFlowchartInternalStorage (66) msoShapeMixed (-2)
msoShapeActionButtonForwardorNext
(130) msoShapeFlowchartMagneticDisk (86) msoShapeMoon (24)

msoShapeActionButtonHelp (127) msoShapeFlowchartManualInput (71) msoShapeNoSymbol (19)
msoShapeActionButtonHome (126) msoShapeFlowchartManualOperation (72) msoShapeNotchedRightArrow (50)
msoShapeActionButtonInformation
(128) msoShapeFlowchartMerge (82) msoShapeNotPrimitive (138)

msoShapeActionButtonMovie (136) msoShapeFlowchartMultidocument (68) msoShapeOctagon (6)
msoShapeActionButtonReturn (133) msoShapeFlowchartOffpageConnector (74) msoShapeOval (9)
msoShapeActionButtonSound (135) msoShapeFlowchartOr (78) msoShapeOvalCallout (107)
msoShapeArc (25) msoShapeFlowchartPredefinedProcess (65) msoShapeParallelogram (2)
msoShapeBalloon (137) msoShapeFlowchartPreparation (70) msoShapePentagon (51)
msoShapeBentArrow (41) msoShapeFlowchartProcess (61) msoShapePlaque (28)
msoShapeBentUpArrow (44) msoShapeFlowchartPunchedTape (76) msoShapeQuadArrow (39)

msoShapeBevel (15) msoShapeFlowchartSequentialAccessStorage
(85) msoShapeQuadArrowCallout (59)

msoShapeBlockArc (20) msoShapeFlowchartSort (80) msoShapeRectangle (1)
msoShapeCan (13) msoShapeFlowchartStoredData (83) msoShapeRectangularCallout (105)
msoShapeChevron (52) msoShapeFlowchartSummingJunction (77) msoShapeRegularPentagon (12)
msoShapeCircularArrow (60) msoShapeFlowchartTerminator (69) msoShapeRightArrow (33)
msoShapeCloudCallout (108) msoShapeFoldedCorner (16) msoShapeRightArrowCallout (53)

 415

msoShapeCross (11) msoShapeHeart (21) msoShapeRightBrace (32)
msoShapeCube (14) msoShapeHexagon (10) msoShapeRightBracket (30)
msoShapeCurvedDownArrow (48) msoShapeHorizontalScroll (102) msoShapeRightTriangle (8)
msoShapeCurvedDownRibbon (100) msoShapeIsoscelesTriangle (7) msoShapeRoundedRectangle (5)

msoShapeCurvedLeftArrow (46) msoShapeLeftArrow (34) msoShapeRoundedRectangularCallout
(106)

msoShapeCurvedRightArrow (45) msoShapeLeftArrowCallout (54) msoShapeSmileyFace (17)
msoShapeCurvedUpArrow (47) msoShapeLeftBrace (31) msoShapeStripedRightArrow (49)
msoShapeCurvedUpRibbon (99) msoShapeLeftBracket (29) msoShapeSun (23)
msoShapeDiamond (4) msoShapeLeftRightArrow (37) msoShapeTrapezoid (3)
msoShapeDonut (18) msoShapeLeftRightArrowCallout (57) msoShapeUpArrow (35)
msoShapeDoubleBrace (27) msoShapeLeftRightUpArrow (40) msoShapeUpArrowCallout (55)
msoShapeDoubleBracket (26) msoShapeLeftUpArrow (43) msoShapeUpDownArrow (38)
msoShapeDoubleWave (104) msoShapeLightningBolt (22) msoShapeUpDownArrowCallout (58)
msoShapeDownArrow (36) msoShapeLineCallout1 (109) msoShapeUpRibbon (97)
msoShapeDownArrowCallout (56) msoShapeLineCallout1AccentBar (113) msoShapeUTurnArrow (42)

msoShapeDownRibbon (98) msoShapeLineCallout1BorderandAccentBar
(121) msoShapeVerticalScroll (101)

msoShapeExplosion1 (89) msoShapeLineCallout1NoBorder (117) msoShapeWave (103)
msoShapeExplosion2 (90) msoShapeLineCallout2 (110)
msoShapeFlowchartAlternateProcess
(62) msoShapeLineCallout2AccentBar (114)

The short program in Example A-1 will display each AutoShape, along with its AutoShapeType,
for 0.5 seconds. (It should be run on a blank worksheet. You can interrupt this program at any
time by striking Ctrl-Break.) The Delay subroutine that it calls is shown in Example A-2.

Example A-1. Displaying Each AutoShape

Sub DisplayAutoShapes()
 Dim sh As Shape
 Dim i As Integer

 Set sh = ActiveSheet.Shapes.AddShape(1, 100, 100, 72, 72)
 For i = 1 To 138
 sh.AutoShapeType = i
 sh.Visible = True
 ActiveSheet.Cells(1, 1).Value = sh.AutoShapeType
 Delay 0.5
 Next i
End Sub

Example A-2. The Delay Procedure

Public Sub Delay(rTime As Single)
 'Delay rTime seconds (min=.01, max=300)
 Dim OldTime As Variant

 'Safty net
 If rTime < 0.01 Or rTime > 300 Then rTime = 1
 OldTime = Timer
 Do
 DoEvents
 Loop Until Timer - OldTime >= rTime
End Sub

 416

A.3.1 The TextFrame Object

Each Shape object has a text frame associated with it that holds any text associated with the object.
The TextFrame property returns this TextFrame object.

The TextFrame object has a Characters property that returns a Characters collection. This
collection can set the text in the text frame. For instance, the code in Example A-3 adds a
rectangle to the active sheet and also adds text to the rectangle and sets the alignment for the text
frame.

Example A-3. The AddRectangle Procedure

Sub AddRectangle()
 With ActiveSheet.Shapes.AddShape(msoShapeRectangle, 10, 10, 200,
100).TextFrame
 .Characters.Text = "This is a rectangle"
 .HorizontalAlignment = xlHAlignCenter
 .VerticalAlignment = xlVAlignCenter
 End With
End Sub

A.3.2 The FillFormat Object

The FillFormat object sets various formatting for a Shape object. It is accessed using the Fill
property of the Shape object. Among the properties of the FillFormat object are the BackColor,
ForeColor, Pattern, and Visible properties. To set one of the color properties, we use the RGB
color model, as in the following example:

sh.Fill.ForeColor.RGB = RGB(0, 0, 255)

A.3.3 Examples

To illustrate the use of AutoShapes, Example A-4 inserts a dampened sine curve of small stars in
the drawing layer.

Example A-4. DrawSine2, to Generate a Dampened Sine Curve of Small Stars

Sub DrawSine2()
 ' Dampened sine wave of small stars
 Const pi = 3.1416

 Dim i As Integer
 Dim x As Single, y As Single
 Dim rng As Range ' For starting point
 Dim n As Single ' Cycle length in inches
 Dim k As Integer ' k stars
 Dim ScaleY As Single ' Vertical scaling
 Dim sSize As Single ' Star size
 Dim sDamp1 As Single ' Dampening factor
 Dim sDamp2 As Single ' Dampening factor
 Dim cCycles As Integer ' Number of cycles
 Dim sh As Shape
 Dim StartLeft As Integer
 Dim StartTop As Integer

 ' Starting position
 StartLeft = ActiveCell.Left

 417

 StartTop = ActiveCell.Top

 cCycles = 3
 sDamp1 = 1
 sDamp2 = 0.2
 n = 2
 k = 20
 ScaleY = 0.5
 sSize = Application.InchesToPoints(0.1)

 ' Loop for first curve with phase shift
 For i = 1 To cCycles * k
 x = n * i / k
 y = ScaleY * Sin((2 * pi * i) / k + n) * _
 (sDamp1 / (x + sDamp2))
 y = Application.InchesToPoints(y)
 x = Application.InchesToPoints(x)
 Set sh = ActiveSheet.Shapes.AddShape _
 (msoShape5pointStar, StartLeft + x, StartTop + y, sSize,
sSize)
 sh.Fill.ForeColor.RGB = RGB(192, 192, 192) ' 25% gray
 sh.Fill.Visible = msoTrue
 Next i
End Sub

The output from this code is shown in Figure A-3.

Figure A-3. A dampened sine wave of stars

The code in Example A-5 produces a random series of stars, each containing a single letter that
together spells a name. Note that each time the program is run, the pattern is different.

Example A-5. Code to Produce a Random Series of Stars

Sub DrawName()
 ' Random placement of large stars with name
 Const pi = 3.1416

 Dim i As Integer
 Dim x As Single, y As Single
 Dim z As Single
 Dim rng As Range ' For starting point
 Dim n As Single ' Cycle length in inches
 Dim k As Integer ' k stars
 Dim sSize As Single ' Star size
 Dim sh As Shape
 Dim sName As String ' Name to display
 Dim StartLeft As Integer
 Dim StartTop As Integer

TE
AM
FL
Y

Team-Fly®

 418

 ' Starting position
 StartLeft = ActiveCell.Left
 StartTop = ActiveCell.Top

 sName = "Steven Roman"
 n = 5
 k = Len(sName)
 sSize = Application.InchesToPoints(0.5)

 Randomize Timer
 z = 0#

 ' Loop for first curve with phase shift
 For i = 1 To k
 If Mid(sName, i, 1) <> " " Then
 x = n * i / k
 x = Application.InchesToPoints(x)

 ' Get random 0 or 1. Go up or down accordingly.
 If Int(2 * Rnd) = 0 Then
 z = z + 0.2
 Else
 z = z - 0.2
 End If

 y = Application.InchesToPoints(z)
 Set sh = ActiveSheet.Shapes.AddShape _
 (msoShape5pointStar, StartLeft + x, StartTop + y, sSize,
sSize)

 ' Add shading
 sh.Fill.ForeColor.RGB = RGB(230, 230, 230)
 sh.Fill.Visible = msoTrue

 ' Add text
 sh.TextFrame.Characters.Text = Mid(sName, i, 1)
 sh.TextFrame.Characters.Font.Size = 10
 sh.TextFrame.Characters.Font.Name = "Arial"
 sh.TextFrame.Characters.Font.Bold = True
 End If
 Next i
End Sub

The output from this code is shown in Figure A-4.

Figure A-4. Random stars spelling a name

Example A-6 prints a hypocycloid. (It may take a few minutes to complete.)

Example A-6. The DrawHypocycloid Procedure

 419

Sub DrawHypocycloid()
 ' Draw hypocycloid of small stars
 Const pi = 3.1416

 Dim t As Single
 Dim i As Integer
 Dim x As Single, y As Single
 Dim rng As Range ' For starting point
 Dim n As Single
 Dim k As Integer
 Dim sSize As Single ' Star size
 Dim r As Integer
 Dim r0 As Integer
 Dim R1 As Integer
 Dim sh As Shape
 Dim sc As Single
 Dim StartLeft As Integer
 Dim StartTop As Integer

 ' Starting position
 StartLeft = ActiveCell.Left
 StartTop = ActiveCell.Top

 r = 1
 r0 = 3 * r
 R1 = 8 * r
 n = 400
 k = 4
 sc = 0.1
 sSize = Application.InchesToPoints(0.03)

 ' Start curve at insertion point
 Set rng = ActiveCell

 For i = 1 To n
 t = k * pi * i / n
 x = (R1 - r) * Cos(t) + r0 * Cos(t * (R1 - r) / r)
 y = (R1 - r) * Sin(t) - r0 * Sin(t * (R1 - r) / r)
 x = sc * x
 y = sc * y
 x = Application.InchesToPoints(x)
 y = Application.InchesToPoints(y)
 Set sh = ActiveSheet.Shapes.AddShape _
 (msoShape5pointStar, StartLeft + x, StartTop + y, sSize,
sSize)
 Next i
End Sub

The results are shown in Figure A-5. (The small vertical bar in Figure A-5 indicates the left edge
of the active cell.

Figure A-5. A hypocycloid

 420

A.4 Diagram, DiagramNode, and DiagramNodeChildren
Objects

Diagrams are special types of shapes that organize data visually. Figure A-6 shows a diagram.

Figure A-6. A diagram

There are six types of diagrams, as shown in the Diagram dialog box in Figure A-7.

Figure A-7. The Diagram dialog box

 421

Figure A-8 shows the portion of the Excel XP object model devoted to the Diagram object.

Figure A-8. The Diagram object and its children

Table A-2 shows the members of the Diagram object.

Table A-2. Members of the Diagram object
Application Convert Parent
AutoFormat Creator Reverse
AutoLayout Nodes Type

The members of the DiagramNode object are a bit more interesting, as shown in Table A-3.

Table A-3. Members of the DiagramNode object
AddNode Diagram ReplaceNode
Application Layout Root
Children MoveNode Shape
CloneNode NextNode SwapNode
Creator Parent TextShape
Delete PrevNode TransferChildren

Of course, the DiagramNodeChildren object represents the collection of Diagram nodes that are
children of a specific node. The DiagramNodeChildren object's members are shown in Table A-4.

Table A-4. Members of the DiagramNodeChildren object
_NewEnum Creator Parent
AddNode FirstChild SelectAll
Application Item
Count LastChild

We can use the Children property of the DiagramNode object to return this collection object. For
instance, to get the last child of a node, we can write:

ActiveSheet.Shapes(1).Diagram.Nodes(1).Children.LastChild

Unfortunately, the programmatic aspects of the Diagram-related objects do not seem to be
functioning correctly (as of Service Pack 1 of Excel XP), as we will see shortly.

To create a diagram programmatically, we use the AddDiagram method of the Shapes collection
of the worksheet. The following code creates the diagram in Figure A-6. Note, however, that there

 422

seems to be a problem in adding or editing text for the nodes in a diagram. Frankly, I could not get
the feature to work at all. Even Microsoft's own example generates an error (whose message is
totally useless) on my PC. (I even tried recording a macro that changes the text and then replaying
the macro, but that too generates an error!) Here is the code:

Sub Example_Diagram()
 Dim ws As Worksheet
 Set ws = Application.ActiveSheet

 Dim sh As Shape
 Dim dia As Diagram
 Dim node1 As DiagramNode
 Dim node2Of1 As DiagramNode
 Dim node3Of1 As DiagramNode
 Dim node4Of2 As DiagramNode

 Set sh = ws.Shapes.AddDiagram(msoDiagramOrgChart, 0, 0, 300, 300)

 ' Add first node. Note the odd syntax, since this node is not a
child.
 Set node1 = sh.DiagramNode.Children.AddNode

 ' Add subsequent nodes
 Set node2Of1 = node1.Children.AddNode
 Set node3Of1 = node1.Children.AddNode
 Set node4Of2 = node2Of1.Children.AddNode

 ' This works -- can read the text
 MsgBox node1.TextShape.TextFrame.Characters.Text

 ' This does not work -- cannot set the text!!
 node1.TextShape.TextFrame.Characters.Text = "Hamlet"
End Sub

 423

Appendix B. Getting the Installed Printers
As discussed in Chapter 10, the ActivePrinter property can set the active printer. This raises the
issue of how to determine the installed printers on a given computer. Unfortunately, VBA does not
seem to provide a way to do this. (Visual Basic has a Printers collection, but Visual Basic for
Applications does not.)

In this appendix, we describe a program for getting this printer information. As mentioned in
Chapter 10, this program uses the Windows API. To use this program, just type it into your own
code, as described here.

The first step is to declare some special constants in the Declarations section of a standard module:

Public Const KEY_ENUMERATE_SUB_KEYS = &H8
Public Const HKEY_LOCAL_MACHINE = &H80000002
Public Const SUCCESS = 0&

Next, we need to declare a user-defined type. We have not discussed these data structures in this
book, but a user-defined type is essentially just a custom data type. Enter the following code into
the Declarations section:

Type FILETIME
 dwLowDateTime As Long
 dwHighDateTime As Long
End Type

Then we need to declare three API functions. As you can see, these are relatively complicated
functions as VBA functions go, but not as API functions go. Enter the following in the
Declarations section:

Declare Function RegOpenKeyEx Lib "advapi32.dll" Alias _
 "RegOpenKeyExA" (ByVal hKey As Long, ByVal lpSubKey As _
 String, ByVal ulOptions As Long, ByVal samDesired As _
 Long, phkResult As Long) As Long
Declare Function RegEnumKeyEx Lib "advapi32.dll" Alias _
 "RegEnumKeyExA" (ByVal hKey As Long, ByVal dwIndex As _
 Long, ByVal lpName As String, lpcbName As Long, ByVal _
 lpReserved As Long, ByVal lpClass As String, lpcbClass _
 As Long, lpftLastWriteTime As FILETIME) As Long
Declare Function RegCloseKey Lib "advapi32.dll" _
 (ByVal hKey As Long) As Long

We are now ready for the main procedure, shown in Example B-1, which will extract the names of
the installed printers from the Windows registry.

Example B-1. The GetInstalledPrinters Procedure

Public Sub GetInstalledPrinters(ByRef sPrinters() As _
 String, ByRef cPrinters As Long)

 ' Sets cPrinters to the number of installed printers.
 ' Sizes and fills sPrinters array with the names
 ' of these printers.

 Dim ft As FILETIME

 424

 Dim KeyHandle As Long
 Dim KeyName As String
 Dim KeyLen As Long
 Dim Response As Long

 On Error GoTo ERR_INSTALLED_PRINTERS
 ReDim sPrinters(1 To 5)

 cPrinters = 0

 ' Open registry key whose subkeys are installed printers
 Response = RegOpenKeyEx(HKEY_LOCAL_MACHINE, _
 "SYSTEM\CurrentControlSet\Control\Print\Printers", _
 0, KEY_ENUMERATE_SUB_KEYS, KeyHandle)

 ' If Error display message and exit
 If Response <> SUCCESS Then
 MsgBox "Could not open the registry key."
 Exit Sub
 End If

 ' Loop to get subkeys
 Do
 KeyLen = 1000 ' Plenty of room for printer name
 KeyName = String(KeyLen, 0) ' Fill with 0s

 Response = RegEnumKeyEx(KeyHandle, cPrinters, _
 KeyName, KeyLen, 0&, vbNullString, 0&, ft)

 ' If unsuccessful, then exit
 If Response <> SUCCESS Then Exit Do

 ' Next free index
 cPrinters = cPrinters + 1

 ' Make room if necessary
 If UBound(sPrinters) < cPrinters Then
 ReDim Preserve sPrinters(1 To cPrinters + 5)
 End If

 ' Add to array
 sPrinters(cPrinters) = Left(KeyName, KeyLen)
 Loop

 RegCloseKey KeyHandle
 Exit Sub

 ERR_INSTALLED_PRINTERS:
 MsgBox Err.Description
 Exit Sub
End Sub

The GetInstalledPrinters procedure has two parameters: a String array named
sPrinters and a Long named cPrinters. The procedure will set the value of cPrinters to
the number of installed printers and resize and fill the sPrinters array with the names of the
printers.

Example B-2 shows how to use the GetInstalledPrinters subroutine. It simply gathers the
printer names in a single String variable and displays that variable.

 425

Example B-2. Calling the GetInstalledPrinters Procedure

Sub DisplayInstalledPrinters()
 Dim sPrinters() As String
 Dim cPrinters As Long
 Dim i As Integer
 Dim msg As String

 ' Get the installed printers
 GetInstalledPrinters sPrinters(), cPrinters

 ' Create the message and display it
 msg = ""

 For i = 1 To cPrinters
 msg = msg & sPrinters(i) & vbCrLf
 Next i

 MsgBox msg, , cPrinters & " Printers"
End Sub

The output of this macro on my system is shown in Figure B-1.

Figure B-1. Installed printers

One word of caution: before executing the GetInstalledPrinters subroutine for the first
time (through the DisplayInstalledPrinters macro or any by other means), be sure to save
all of your work in all of your open applications. If you have made an error in typing in this
program, the result may be a system-wide computer crash, in which case you will loose all
unsaved work

 426

Appendix C. Command Bar Controls
In this appendix, we present a list of built-in command-bar controls, along with their ID numbers
for use with the Add method of the CommandBarControls object.

C.1 Built-in Command-Bar Controls

Command-Bar Controls and Their Corresponding ID Numbers

<Custom> 1
&Spelling 2
&Save 3
&Print 4
&New 18
&Copy 19
Cu&t 21
&Paste 22
Open 23
Can't Repeat 37
&Microsoft Word 42
Clear Contents 47
Custom 51
&Piggy Bank 52
Custom 59
&Double Underline 60
Custom 67
Custom 68
&Close 106
AutoFormat 107
&Format Painter 108
Print Pre&view 109
Custom 112
&Bold 113
&Italic 114
&Underline 115
&Custom 117
&Dark Shading 118
&Align Left 120
&Align Right 121
&Center 122
&Justify 123
What's &This? 124
Custom 126
&Undo 128

 427

&Redo 129
&Line 130
Te&xt Box 139
&Find File 140
&Top Border 145
&Bottom Border 146
&Left Border 147
&Right Border 148
Apply Inside Borders 149
&Outside Borders 150
Clear Border 151
&Group 164
&Ungroup 165
Bring to Fron&t 166
Send to Bac&k 167
Bring &Forward 170
Send &Backward 171
F&ull Screen 178
&Select Objects 182
&Record New Macro 184
&Macros 186
Step Macro 187
Resume Macro 189
Flip &Horizontal 196
Flip &Vertical 197
Rotate &Right 198
Rotate &Left 199
&Freeform 200
&Borders 203
&Drawing 204
&Edit Points 206
Sort &Ascending 210
Sort Des&cending 211
&Edit Box 219
&Check Box 220
&Combo Box 221
Control Properties 222
Lock Cell 225
&AutoSum 226
&Arrow 243
Page Set&up 247
&Style 254
Routing Slip 259
Microsoft &Mail 262
Microsoft &Access 264
Microsoft &Schedule+ 265

TE
AM
FL
Y

Team-Fly®

 428

Microsoft Visual &FoxPro 266
Microsoft &PowerPoint 267
Microsoft P&roject 269
Custom 270
Custom 271
Custom 272
Custom 273
Custom 274
Custom 275
Custom 276
Custom 278
Custom 279
&Camera 280
Custom 281
&Button 282
Custom 283
Custom 286
&Strikethrough 290
Delete 292
Delete &Rows 293
Delete &Columns 294
C&ells 295
&Rows 296
&Columns 297
&Arrange 298
&Split 302
&New Window 303
&Accept or Reject Changes 305
R&eplace 313
Regr&oup 338
&3-D 339
Se&nd 363
&Set Print Area 364
&Insert MS Excel 4.0 Macro 365
&Clear Formatting 368
&Paste Formatting 369
&Paste Values 370
&Right 371
&Down 372
&Equal Sign 373
&Plus Sign 374
&Minus Sign 375
&Multiplication Sign 376
&Division Sign 377
&Exponentiation Sign 378
&Left Parenthesis 379

 429

&Right Parenthesis 380
&Colon 381
&Comma 382
&Percent Sign 383
&Dollar Sign 384
Paste Function 385
&Constrain Numeric 387
&XL Left Border 389
&XL Right Border 390
&XL Top Border 391
&Light Shading 393
&Shadow 394
&Currency Style 395
&Percent Style 396
&Comma Style 397
&Increase Decimal 398
&Decrease Decimal 399
&Font Color 401
&Merge and Center 402
&Increase Font Size 403
&Decrease Font Size 404
&Vertical Text 405
&Rotate Text Up 406
&Rotate Text Down 407
Distribute &Horizontally 408
&Scribble 409
Custom 417
&Area Chart 418
&Bar Chart 419
&Column Chart 420
&Stacked Column Chart 421
&Line Chart 422
&Pie Chart 423
&3-D Area Chart 424
&3-D Bar Chart 425
&3-D Clustered Column Chart 426
&3-D Column Chart 427
&3-D Line Chart 428
&3-D Pie Chart 429
&(XY) Scatter Chart 430
&3-D Surface Chart 431
&Radar Chart 432
&Volume/High-Low-Close Chart 434
&Default Chart 435
&Chart Wizard 436
&Value Axis Gridlines 437

 430

&Category Axis Gridlines 438
&Legend 439
&Show Outline Symbols 440
&Select Visible Cells 441
&Select Current Region 442
&Freeze Panes 443
&Zoom In 444
&Zoom Out 445
&Option Button 446
&Scroll Bar 447
&List Box 448
&Doughnut Chart 449
&Remove Dependent Arrows 450
Trace &Dependents 451
&Remove Precedent Arrows 452
Remove &All Arrows 453
&Attach Note 454
&Update File 455
&Toggle Read Only 456
&Wizard 457
Auto&Filter 458
&Refresh Data 459
&Field 460
Show &Pages 461
&Show Detail 462
Trace &Error 463
&Hide Detail 464
Distribute &Vertically 465
&Group Box 467
&Spinner 468
Ta&b Order 469
&Run Dialog 470
&Combination List-Edit 471
&Combination Drop-Down Edit 475
&Label 476
Custom 477
Custom 478
Custom 479
Custom 480
Custom 481
Custom 482
Custom 483
Custom 484
Toggle Grid 485
&Trace Precedents 486
&Code 488

 431

&Dialog 489
Page &Break 509
&Options 522
Para&meters 537
H&eight 541
&Width 542
&Object 546
Control T&oolbox 548
To &Grid 549
C&ancel 569
&More Controls 642
Align &Left 664
Align &Right 665
Align &Top 666
Align &Bottom 667
Align &Center 668
Align &Middle 669
&Clip Art 682
Free Ro&tate 688
&Line Style 692
&Dash Style 693
&Arrow Style 694
&Organization Chart 702
&Normal 723
&Page Break Preview 724
&Crop 732
Save &As 748
Propert&ies 750
E&xit 752
Paste &Special 755
&Go To 757
Lin&ks 759
&Header and Footer 762
&AutoFormat 786
&AutoCorrect 793
&Customize 797
&Merge Cells 798
Unmerge Cells 800
T&ext to Columns 806
Assign &Macro 825
&Window Name Goes Here 830
&Recent File Name Goes Here 831
&Create Microsoft Outlook Task 837
Mi&nimize 838
&Restore 839
&Close 840

 432

&Move 841
&Size 842
Ma&ximize 843
Save &Workspace 846
De&lete Sheet 847
&Move or Copy Sheet 848
&Formula Bar 849
&Status Bar 850
&Worksheet 852
C&ells 855
&Goal Seek 856
Sc&enarios 857
Assig&n Macro 859
F&orm 860
Su&btotals 861
&Table 862
Co&nsolidate 863
&Hide 865
&Unhide 866
&Up 867
&Left 868
&Across Worksheets 869
&Series 870
&Justify 871
&Formats 872
&Contents 873
Co&mments 874
&Define 878
&Paste 879
&Create 880
&Apply 881
&AutoFit 882
&Hide 883
&Unhide 884
&AutoFit Selection 885
&Hide 886
&Unhide 887
&Standard Width 888
&Rename 889
&Hide 890
&Unhide 891
&Show Auditing Toolbar 892
&Protect Sheet 893
Protect &Workbook 894
Relative Reference 896
Auto&Filter 899

 433

&Show All 900
&Advanced Filter 901
&Auto Outline 904
&Clear Outline 905
S&ettings 906
&Series 907
Sized with &Window 908
Add T&rendline 914
&Selected Object 917
Chart &Type 918
3-D &View 919
&Zoom 925
&About Microsoft Excel 927
&Sort 928
&Label 932
&Lotus 1-2-3 Help 936
&Answer Wizard 937
&Exchange Folder 938
Add-&Ins 943
&Insert 945
&Select All Sheets 946
Custom &Views 950
&Background 952
&Source Data 954
&Location 955
Chart &Options 956
&Sheet List 957
&Calculate Now 960
&Object 961
C&ells 962
&Contents and Index 983
Microsoft Excel &Help 984
&Data Table 987
Series in &Columns 988
Series in &Rows 989
&Enable Selection 991
&List Formulas 992
&Data 993
Label &and Data 994
&Label 995
&Fill Effects 1006
&Angle Text Upward 1013
&Angle Text Downward 1014
&Open 1015
&Start Page 1016
&Back 1017

 434

&Forward 1018
&Stop Current Jump 1019
&Refresh Current Page 1020
Open &Favorites 1021
&Add to Favorites 1022
&Show Only Web Toolbar 1023
&WordArt 1031
Rerou&te Connectors 1033
&Up 1035
&Down 1036
&Left 1037
&Right 1038
&Curve 1041
St&raight Connector 1042
&Elbow Connector 1043
C&urved Connector 1044
&Callouts 1047
&Flowchart 1048
Block &Arrows 1049
&Stars and Banners 1050
&More Fill Colors 1051
&More Line Colors 1052
&Patterned Lines 1053
&More Lines 1054
&More Arrows 1055
&Shadow Settings 1056
&3-D Settings 1057
&WordArt Shape 1058
&WordArt Alignment 1059
&WordArt Character Spacing 1060
&WordArt Vertical Text 1061
&WordArt Same Letter Heights 1063
&More Contrast 1064
&Less Contrast 1065
&More Brightness 1066
&Less Brightness 1067
&Nudge Shadow Up 1068
&Nudge Shadow Down 1069
&Nudge Shadow Left 1070
&Nudge Shadow Right 1071
&More Shadow Colors 1072
&More 3-D Colors 1073
&Left Align 1108
&Center 1109
&Line Callout 4 (Border and Accent Bar) 1110
&Rectangle 1111

 435

&Parallelogram 1112
&Trapezoid 1113
&Diamond 1114
&Rounded Rectangle 1115
&Octagon 1116
&Isosceles Triangle 1117
&Right Triangle 1118
&Oval 1119
&Hexagon 1120
&Cross 1121
&Cube 1122
&Plaque 1123
&Regular Pentagon 1124
&Wave 1125
&Can 1126
&Vertical Scroll 1127
&Horizontal Scroll 1128
&Folded Corner 1129
&Bevel 1130
&Smiley Face 1131
&Donut 1132
&"No" Symbol 1133
&Block Arc 1134
&Left Bracket 1135
&Right Bracket 1136
&Left Brace 1137
&Right Brace 1138
&Arc 1139
&Lightning Bolt 1140
&Heart 1141
&Right Arrow 1142
&Left Arrow 1143
&Up Arrow 1144
&Down Arrow 1145
&Left-Right Arrow 1146
&Up-Down Arrow 1147
&Quad Arrow 1148
&Left-Right-Up Arrow 1149
&Left-Up Arrow 1150
&Bent-Up Arrow 1151
&Bent Arrow 1152
&U-Turn Arrow 1153
&Striped Right Arrow 1154
&Notched Right Arrow 1155
&Pentagon 1156
&Chevron 1157

 436

&Circular Arrow 1158
&Curved Right Arrow 1160
&Curved Left Arrow 1161
&Curved Up Arrow 1162
&Curved Down Arrow 1163
&Right Arrow Callout 1164
&Left Arrow Callout 1165
&Up Arrow Callout 1166
&Down Arrow Callout 1167
&Left-Right Arrow Callout 1168
&Up-Down Arrow Callout 1169
&Quad Arrow Callout 1170
&Rectangular Callout 1172
&Rounded Rectangular Callout 1173
&Oval Callout 1174
&Cloud Callout 1175
&Line Callout 2 1176
&Line Callout 3 1177
&Line Callout 4 1178
&Down Ribbon 1179
&Up Ribbon 1180
&Curved Down Ribbon 1181
&Curved Up Ribbon 1182
&5-Point Star 1183
&8-Point Star 1184
&16-Point Star 1185
&24-Point Star 1186
&32-Point Star 1187
&Explosion 1 1188
&Explosion 2 1189
&Flowchart: Process 1190
&Flowchart: Alternate Process 1191
&Flowchart: Decision 1192
&Flowchart: Data 1193
&Flowchart: Predefined Process 1194
&Flowchart: Internal Storage 1195
&Flowchart: Document 1196
&Flowchart: Multidocument 1197
&Flowchart: Terminator 1198
&Flowchart: Preparation 1199
&Flowchart: Manual Input 1200
&Flowchart: Manual Operation 1201
&Flowchart: Connector 1202
&Flowchart: Off-page Connector 1203
&Flowchart: Card 1204
&Flowchart: Punched Tape 1205

 437

&Flowchart: Summing Junction 1206
&Flowchart: Or 1207
&Flowchart: Collate 1208
&Flowchart: Sort 1209
&Flowchart: Extract 1210
&Flowchart: Merge 1211
&Flowchart: Stored Data 1213
&Flowchart: Sequential Access Storage 1214
&Flowchart: Magnetic Disk 1215
&Flowchart: Direct Access Storage 1216
&Flowchart: Display 1217
&Flowchart: Delay 1218
&Line Callout 1 1219
&Line Callout 1 (Accent Bar) 1220
&Line Callout 2 (Accent Bar) 1221
&Line Callout 3 (Accent Bar) 1222
&Line Callout 4 (Accent Bar) 1223
&Line Callout 1 (No Border) 1224
&Line Callout 2 (No Border) 1225
&Line Callout 3 (No Border) 1226
&Line Callout 4 (No Border) 1227
&Line Callout 1 (Border and Accent Bar) 1228
&Line Callout 2 (Border and Accent Bar) 1229
&Line Callout 3 (Border and Accent Bar) 1230
&Right Align 1352
Le&tter Justify 1353
&Word Justify 1354
&Stretch Justify 1355
Very T&ight 1356
&Tight 1357
&Normal 1358
&Loose 1359
&Very Loose 1360
&Kern Character Pairs 1361
&Reset Picture 1362
&Automatic 1365
&Grayscale 1366
&Black && White 1367
&Watermark 1368
&3-D On/Off 1374
&Tilt Down 1375
&Tilt Up 1376
&Tilt Left 1377
&Tilt Right 1378
&Depth 1379
&Direction 1380

TE
AM
FL
Y

Team-Fly®

 438

&Lighting 1382
&Surface 1383
&0 pt. 1384
&36 pt. 1385
&72 pt. 1386
&144 pt. 1387
&288 pt. 1388
&Infinity 1389
&Perspective 1390
P&arallel 1391
&Bright 1392
&Normal 1393
&Dim 1394
&Matte 1395
&Plastic 1396
Me&tal 1398
&Wire Frame 1399
Edit Te&xt 1401
To &Shape 1402
&Image Control 1403
&Basic Shapes 1405
&Callouts 1406
&Flowchart 1407
Block &Arrows 1408
&Stars and Banners 1409
Show WordArt Toolba&r 1410
&Exit Rotate Mode 1412
Show Picture Toolba&r 1413
&Add Point 1415
De&lete Point 1416
&Straight Segment 1417
&Curved Segment 1418
Close C&urve 1420
Au&to Point 1421
&Smooth Point 1422
St&raight Point 1423
&Corner Point 1424
Exit &Edit Point 1425
&No Color 1453
&Color Scheme 1455
&Standard Colors 1456
&Automatic Color 1459
&Color Scheme 1460
&Standard Colors 1461
&Color Scheme 1465
&Standard Colors 1466

 439

&Color Scheme 1470
&Standard Colors 1471
&View Code 1561
Open in New &Window 1574
&Copy Hyperlink 1575
Hyperl&ink 1576
Edit &Hyperlink 1577
&Select Hyperlink 1578
&Add to Print Area 1583
&Clear Print Area 1584
Reset All Page &Breaks 1585
&Exclude From Print Area 1586
Insert Page &Break 1588
Co&mment 1589
&Previous Comment 1590
&Next Comment 1591
Delete Co&mment 1592
Sh&ow Comment 1593
Hide All Comments 1594
Calculated &Field 1597
Calculated &Item 1598
Entire &Table 1600
[[TBTIP_SxUpdateM]] 1601
&Options 1604
&Design Mode 1605
&WordArt Gallery 1606
&Chart Type 1616
&Pattern 1617
&Border 1618
&Chart Objects: 1622
&Navigate Circular Reference: 1623
&Bubble Chart 1635
&3-D Cylinder Chart 1636
&3-D Pyramid Chart 1637
&3-D Cone Chart 1638
&Double Arrow 1639
&Fill Color 1691
&Line Color 1692
&Shadow Color 1693
&3-D Color 1694
&Visual Basic Editor 1695
&Bottom Double Border 1699
&Font: 1728
&Font Size: 1731
&Style: 1732
&Zoom: 1733

 440

&Scenario: 1737
&Address: 1740
M&ap 1741
&Merge Across 1742
From &Scanner 1764
&Inside Horizontal Border 1840
&Inside Vertical Border 1841
&Diagonal Down Border 1842
&Diagonal Up Border 1843
&Check Box 1848
&Find 1849
&Text Box 1850
&Command Button 1851
&Option Button 1852
&List Box 1853
&Combo Box 1854
&Toggle Button 1855
&Spin Button 1856
&Scroll Bar 1857
&Label 1858
&Semitransparent Shadow 1859
Search the &Web 1922
&Automatic Color 1926
&Color Scheme 1927
&Color 1928
&Color Scheme 1929
&Color 1930
Run &Web Query 1948
Run &Database Query 1949
&Edit Query 1950
D&ata Range Properties 1951
Refresh &All 1952
&Cancel Refresh 1953
&Refresh Status 1954
C&hart 1957
&Add Data 1963
&All 1964
&<verb> 1965
Pic&k From List 1966
Con&vert 1967
&Ungroup Sheets 1968
&Pattern 1988
&None 2012
&Average 2013
&Count 2014
C&ount Nums 2015

 441

&Max 2016
M&in 2017
&Sum 2018
&Copy Cells 2019
Fill &Series 2020
Fill &Formats 2021
Fill &Values 2022
Fill &Days 2023
Fill &Weekdays 2024
Fill &Months 2025
Fill &Years 2026
&Linear Trend 2027
&Growth Trend 2028
S&eries 2029
Insert Co&mment 2031
Va&lidation 2034
Circle Invalid Data 2035
R&eset Print Area 2038
S&hare Workbook 2040
&Highlight Changes 2042
Merge &Workbooks 2044
&Copy Here 2045
&Move Here 2046
Copy Here as &Formats Only 2047
Copy Here as &Values Only 2048
&Shift Down and Copy 2049
Shif&t Right and Copy 2050
Shift &Down and Move 2051
Shift &Right and Move 2052
Create &New Query 2054
&Clear Validation Circles 2055
&Image 2089
&Straight Connector 2091
&Elbow Connector 2092
C&urved Connector 2093
Edit Te&xt 2094
&Link Here 2158
Create &Hyperlink Here 2159
&Shadow On/Off 2175
Set AutoShape &Defaults 2179
Stop &Recording 2186
&Mail Recipient 2188
&New 2520
Print (HP LaserJet 4000 Series PS) 2521
Ch&art Window 2571
&From File 2619

 442

&AutoShapes 2630
&Lines 2631
&Basic Shapes 2632
Co&nnectors 2633
&Sun 2634
&Moon 2635
&Double Bracket 2636
&Double Brace 2637
&4-Point Star 2638
&Double Wave 2639
&Straight Arrow Connector 2640
&Straight Double-Arrow Connector 2641
&Elbow Arrow Connector 2642
&Elbow Double-Arrow Connector 2643
&Curved Arrow Connector 2644
&Curved Double-Arrow Connector 2645
&Fill Effects 2668
De&lete Segment 2692
Open C&urve 2693
Paste as &Hyperlink 2787
&Set Transparent Color 2827
&Solve Order 2914
&PivotTable Report 2915
&Web Toolbar 2934
&Custom Menu Item 2949
&Custom Button 2950
&Free Stuff 3021
&Product News 3022
Frequently Asked &Questions 3023
Online &Support 3024
&Web Help 5 3025
&Web Help 6 3026
&Web Help 7 3027
&Web Help 8 3028
Microsoft &Office Home Page 3029
Send Feedbac&k 3030
&Best of the Web 3031
Search the &Web 3032
Web &Tutorial 3033
&Web Help 14 3034
&Web Help 15 3035
&Web Help 16 3036
Con&ditional Formatting 3058
Protect and &Share Workbook 3059
Microsoft &Home Page 3091
Clear Co&ntents 3125

 443

&Automatic Color 3141
&Group 3159
&Ungroup 3160
&Increase Indent 3161
&Decrease Indent 3162

 444

Appendix D. Face IDs
The FaceID property of a CommandBarButton object defines the icon that's displayed on the
button's face. (For an example of using the FaceID property to define the image on a button's face,
see the section "Example: Creating a Toolbar," in Chapter 12.)

Figure D-1 through Figure D-5 show the icons that are available from Visual Basic, along with
their corresponding faceIDs. Each figure shows 400 icons whose beginning and ending faceIDs
are shown in the figure caption of the image. In addition, to make identifying a particular faceID
easier, a numbered grid has been superimposed on the image. The column numbers indicate the
one's digit; the row numbers indicate all other significant digits. For example, the faceID of the F
icon in Figure D-1 is 85, because it's in row 8x (the row containing faceIDs 80-89) and in column
x5 (the column containing faceIDs whose one's digit is 5).

Note that some numbers aren't used as faceIDs; in these cases, no icon is displayed in that faceID's
grid in Figure D-1 through Figure D-5.

Figure D-1. FaceIDs for icons 0 -799

 445

Figure D-2. FaceIDs for icons 800 -1599

 446

Figure D-3. FaceIDs for icons 1600 -2399

 447

Figure D-4. FaceIDs for icons 2400 -3199

TE
AM
FL
Y

Team-Fly®

 448

Figure D-5. FaceIDs for icons 3200 -3399

 449

 450

Appendix E. Programming Excelfrom Another
Application
In this appendix, we will briefly describe how the Excel object model can be programmed from
within certain other applications, including Microsoft Access, Word, and PowerPoint.

Briefly put, a well-known technique that Microsoft refers to as Automation (formerly called OLE
Automation) allows one application to gain access to the objects of another. An application that
"exposes" its objects is called an Automation server. An application that can access the objects of
an Automation server is called an Automation controller or Automation client. Since Microsoft
Word, Access, Excel, and PowerPoint are Automation servers and Automation controllers, as a
VBA programmer, you can program any of these applications from within any other.

E.1 Setting a Reference to the Excel Object Model

The first step in communicating with the Excel object model is to set a reference to its object
library. Each of the client applications (Word, Access, Excel, and PowerPoint) has a References
menu item under the Tools menu. Selecting this item displays the References dialog box shown in
Figure E-1. From here, we can select the object models that we want to access from within the
Automation controller.

Figure E-1. The References dialog box

E.2 Getting a Reference to the Excel Application Object

Once the proper references are set, we can declare an object variable of type Application:

 451

Dim XlApp As Excel.Application

which the Automation client will understand, because it can now check the server's object library.
Note that we need to qualify the object name, since other object models have an Application
object as well.

Next, we want to start the Excel Automation server, create an Excel Application object, and get a
reference to that object. This is done in the following line:

Set XLApp = New Excel.Application

At this point, we have complete access to Excel's object model. It is important to note, however,
that the previous line starts the Excel Automation server, but does not start Excel's graphical user
interface, so Excel will be running invisibly. To make Excel visible, we just set its Visible
property to True:

XLApp.Visible = True

We can now program as though we were within the Excel VBA IDE. For instance, the following
code creates a new workbook, adds a worksheet to it, puts a value in cell A1, and then saves the
workbook:

Sub MakeWorkbook()
 Dim XlApp As Excel.Application
 Dim wb As Excel.Workbook
 Dim ws As Excel.Worksheet

 Set XlApp = New Excel.Application
 XlApp.Visible = True

 Set wb = XlApp.Workbooks.Add
 Set ws = wb.Worksheets.Add

 ws.Name = "Sales"
 ws.Range("A1").Value = 123
 wb.SaveAs "d:\temp\SalesBook"
End Sub

Note that the Excel server will not terminate by itself, even if the XLApp variable is destroyed. If
we have made Excel visible, then we can close it programmatically, as well as from the user
interface in the usual way (choosing Exit from the File menu, for instance). But if the Excel server
is invisible, it must be closed using the Quit method:

XlApp.Quit

(If we fail to terminate the Excel server, it will remain running invisibly, taking up system
resources, until the PC is restarted.)

E.2.1 An Alternative Approach

The approach described for programming Excel from within another application is the preferred
approach, since it is the most efficient. However, there is an alternative approach that you may
encounter, so let us discuss it briefly. As before, we assume that a reference has been set to the
Excel object library.

E.2.1.1 The CreateObject function

 452

The CreateObject function can start an Automation server, create an object, and assign it to an
object variable. Thus, we can write:

Dim XLApp as Excel.Application
Set XLApp = CreateObject("Excel.Application")

This approach will execute more slowly than the previous approach using the New keyword, but it
is perfectly valid.

As before, we must remember to close Excel using the Quit method (or through normal means if
Excel is visible).

E.2.1.2 The GetObject function

If Excel is already running, the CreateObject function will start a second copy of the Excel
server. To use the currently running version, we can use the GetObject function to set a
reference to the Application object of a running copy of Excel. This is done as follows:

Set XLApp = GetObject(, "Excel.Application")

(The first parameter of GetObject is not used here.)

One of the problems with using GetObject is that it will produce an error if Excel is not running.
Thus, we need some code that will start Excel if it is not running or use the existing copy of Excel
if it is running.

The trick to this is to know that if GetObject fails to find a running copy of Excel, then it issues
error number 429 ("ActiveX component can't create object"). Thus, the following code does the
trick:

Dim XLApp As Excel.Application

On Error Resume Next

' Try to get reference to running Excel
Set XLApp = GetObject(, "Excel.Application")

If Err.Number = 429 Then
 ' If error 429, then create new object
 Set XLApp = CreateObject("Excel.Application")
ElseIf Err.Number <> 0 Then
 ' If another type of error, report it
 MsgBox "Error: " & Err.Description
 Exit Sub
End If

E.2.1.3 No object library reference

We have been assuming that the client application has a reference to the server's object library.
However, it is still possible for a client application (an Automation client) to program the objects
of an Automation server (such as Excel) without such a reference. Under these circumstances, we
cannot refer to objects by name in code, since the client will not understand these names. Instead,
we must use the generic Object data type, as in the following code:

Dim XLApp As Object
Dim wb As Object

 453

Set XLApp = CreateObject("Excel.Application")
XLApp.Visible = True
Set wb = XLApp.Workbooks.Add
wb.SaveAs "d:\temp\SalesBook"

This code will run even more slowly than the previous code, which, in turn, is slower than the first
version.

Thus, we have three versions of Automation:

• Using the New keyword syntax (requires an object library reference)
• Using CreateObject and specific object variable declarations (requires an object

library reference)
• Using CreateObject with generic As Object declarations (does not use an object

library reference)

These versions of automation are sometimes referred to by the names very early binding, early
binding, and late binding, respectively (although you may hear these terms used somewhat
differently).

These terms refer to the time at which VBA can associate (or bind) the object, property, and
method names in our code to the actual addresses of these items. In very early binding, all
bindings are done at compile time by VBA—that is, before the program runs. In early binding,
some of the bindings are done at compile time and others are done at run time. In late binding, all
bindings are done at run time.

The issue is now evident. The more binding that needs to be done at run time, the more slowly the
program will run. Thus, very early binding is the most efficient, followed by early binding, and
then late binding.

 454

Appendix F. High-Level and Low-Level Languages
In this appendix, we'll examine the position of Visual Basic as a programming language by taking
a somewhat closer look at high-level and low-level languages, with some examples for
comparison.

A low-level language is characterized by its ability to manipulate the computer's operating system
and hardware more or less directly. For instance, a programmer who is using a low-level language
may be able to easily turn on the motor of a floppy drive, check the status bits of the printer
interface, or look at individual sectors on a disk, whereas these tasks may be difficult, if not
impossible, with a high-level language. Another benefit of low-level languages is that they tend to
perform tasks more quickly than high-level languages.

On the other hand, the power to manipulate the computer at a low level comes at a price. L ow-
level languages are generally more cryptic—they tend to be farther removed from ordinary spoken
languages and are therefore harder to learn, remember, and use. High-level languages (and
application-level languages, which many people would refer to simply as high-level languages)
tend to be more user-friendly, but the price we pay for that friendliness is less control over the
computer and slower running programs.

To illustrate, consider the task of printing some text. A low-level language may only be able to
send individual characters to a printer. The process of printing with a low-level language might go
something like the following:

1. Check the status of the printer.
2. If the printer is free, initialize the printer.
3. Send a character to the printer.
4. Check to see if this character arrived safely.
5. If not, send the character again.
6. If so, start over with the next character.

The "lowest" level language that programmers use is called assembly language . Indeed, assembly
language has essentially complete control over the computer's hardware. To illustrate assembly
language code, the following program prints the message "Happy printing." Don't worry if these
instructions seem meaningless—you can just skim over them to get the feel. In fact, the very point
we want to make is that low-level languages are much more cryptic than high-level languages.
(Lines that begin with a semicolon are comments. We have left out error checking to save a little
space.)

; --------------------
; Data for the program
; --------------------
; message to print
Message DB 'Happy printing', 0Dh, 0Ah

; length of message
Msg_Len EQU $-Message

; --------------------
; Initialize printer 0
; --------------------
mov ah,1
mov dx,0
int 17h

 455

; ---------------------
; Printing instructions
; ---------------------
; get number of characters to print
mov cx,Msg_Len

; get location of message
mov bx,offset Message

; get printer number (first printer is printer 0)
mov dx,0

Print_Loop:

; send character to printer 0
mov ah,0
mov al,[bx]
int 17h

; do next character
inc bx
loop Print_Loop

For comparison, let us see how this same task would be accomplished in the BASIC programming
language:

LPRINT "Happy printing"

The difference is pretty obvious.

As we have discussed, high-level languages are usually designed for a specific purpose. Generally,
this purpose is to write software applications of a specific type. For instance, Visual C++ and
Visual Basic are used primarily to write standalone Windows applications. Indeed, Microsoft
Excel itself is written in Visual C++. As another example, FORTRAN (which is a contraction of
Formula Translation) is designed to write scientific and computational applications for various
platforms (including Windows). COBOL is used to write business-related applications (generally
for mainframe computers).

At the highest level in the programming language hierarchy, we find programs such as Excel VBA,
whose primary purpose is not to manipulate the operating system or hardware, nor to write
standalone Windows applications, but rather to manipulate a high-level software application (in
this case Microsoft Excel).

Just for fun, let us take a brief look at a handful of the more common programming languages.

F.1 BASIC

The word BASIC is an acronym for Beginners All-Purpose Symbolic Instruction Code, the key
word here being Beginners. BASIC was developed at Dartmouth College in 1963, by two
mathematicians: John Kemeny and Thomas Kurtz. The intention was to design a programming
language for liberal arts students, who made up the vast majority of the student population at
Dartmouth. The goal was to create a language that would be friendly to the user and have a fast
turn-around time so it could be used effectively for homework assignments. (In those days, a
student would submit a program to a computer operator, who would place the program in a queue,

 456

awaiting processing by the computer. The student would simply have to wait for the results—there
were no PCs in the 1960s!)

The first version of BASIC was very simple; indeed, it was primitive. For example, it had only
one data type: floating-point. (Data types are discussed in Chapter 5.) Since then BASIC has made
tremendous strides as a personal computer programming language, due mostly to the embrace of
the language by Microsoft.

Even to this day, however, the BASIC language, and its offshoot Visual Basic, do not get much
respect among computer scientists or academicians. The BASIC language gets a bad rap on two
fronts. First, it is generally considered a weak language in the sense that it does not provide very
much control over the computer's hardware (or operating system), at least as compared to other
languages such as C. Second, BASIC has a reputation for not "forcing" (or in some cases even
allowing) programmers to use good programming style.

For comparison with some other languages, here is a BASIC program that asks the user for some
numbers and then returns their average. Lines beginning with an apostrophe are comment lines
that are ignored by the computer.

' BASIC program to compute the average
' of a set of at most 100 numbers

' Ask for the number of numbers
INPUT "Enter the number of numbers: ", Num

' If Num is between 1 and 100 then proceed
' IF Num > 0 AND Num <= 100 THEN

 Sum = 0
 ' Loop to collect the numbers to average
 FOR I = 1 TO Num
 ' Ask for next number
 INPUT "Enter next number: ", NextNum
 ' Add the number to the running sum
 Sum = Sum + NextNum
 NEXT I

 ' Compute the average
 Ave = Sum / Num

 ' Display the average
 PRINT "The average is: "; Ave

END IF

END

F.2 Visual Basic

Microsoft took the BASIC programming language to new heights when it developed Visual Basic.
In the early 1990s, Microsoft faced a dilemma. Windows was (and is) a considerably more
complex operating system than DOS, so much so that only professional programmers could
effectively use Microsoft's main programming tool for creating Windows-based applications—the
Microsoft Windows SDK, which is based on the C language. (These days, this tool has given way

 457

to a more modern tool, Microsoft Foundation Classes, which is still not for the casual
programmer.)

But Microsoft wanted more people to be able to create Windows applications, since it was good
for business. So in 1991, the company introduced Visual Basic (VB for short), which essentially
combined the BASIC language with a visual programming environment so users could easily
create graphical components, such as windows, command buttons, text boxes, option buttons, and
menus that are required by Windows applications. The underlying language for VB is called
Visual Basic for Applications, or VBA for short, although this term was not coined until later in
the development of VB.

The first version of Visual Basic was little more than an interesting toy. It did not really have the
power to create serious Windows applications. However, it provided a necessary starting point for
further development of the product. Each successive version of Visual Basic has taken major steps
forward in sophistication, so that now VB is by far the most widely used programming language
for PCs. (Microsoft estimates that over three million people use some form of Visual Basic, about
half of whom program using some form of Office VBA, the rest using the standalone VB product.)

While Visual Basic has become a very respectable tool for creating standalone Windows
applications, the real popularity of Visual Basic for Applications (VBA) lies in the fact that it is
the underlying programming language for the Microsoft Office application suite, which probably
has closer to 100 million users, each of whom is a potential VBA programmer. Indeed,
presumably the reason that you are reading this book is that you want to join the group of VBA
programmers.

VBA is a high-level programming language that underlies several important Windows
applications, including Microsoft Word, Excel, Access, and PowerPoint, as well as Microsoft
Visual Basic. In addition, companies other than Microsoft can license VBA and use it as the
underlying programming language for their applications.

Each so-called host application provides extensions to VBA to accommodate its own needs and
idiosyncrasies. For instance, since Microsoft Word deals with documents, Word VBA needs to
understand such things as headers and footers, grammar checking, page numbering, and so on. On
the other hand, since Excel deals with worksheets, Excel VBA needs to understand such things as
cells, formulas, charts, and so on. Finally, since Visual Basic is designed for writing standalone
Windows applications, it must excel at manipulating Windows controls (text boxes, command
buttons, list boxes).

F.3 C and C++

The C programming language, a descendant of several older languages (including B), was
developed by Dennis Ritchie at Bell Laboratories in 1972. C is a simple language in its syntax,
with relatively few instructions. However, it has been extended considerably by Microsoft (among
others) for use in the PC environment.

The strength of C and its descendants, such as C++, are that it combines the advantages of a high-
level programming language, such as relative readability, with the ability to reach down to the
operating system and hardware levels of the computer. Unfortunately, the power of C can
sometimes be dangerous in the hands of, shall we say, programmers of only modest capability.
Also, the syntax of C allows for what some programmers consider "clever" or "elegant"
programming style, but which may be more accurately termed "highly unreadable."

TE
AM
FL
Y

Team-Fly®

 458

For comparison purposes, here is the C language version of the BASIC program that computes the
average of some numbers. I think you will agree that it is not quite as readable as the earlier
BASIC version. Lines beginning with // are comment lines that are ignored by the computer.

// C program to compute the average
// of a set of at most 100 numbers

#include <stdio.h>

void main(void)
{
 // Declare some variables
 int Num, i;
 float Sum, NextNum, Ave;

 // Ask for the number of numbers
 printf("Enter number of numbers: ");
 scanf("%u", &Num);

 // If Num is between 1 and 100 then proceed
 if((Num > 0) && (Num <= 100))
 {
 Sum = 0.0;
 // Loop to collect the numbers to average
 for(i = 1; i <= Num; i++)
 {
 // Ask for next number
 printf("Enter next number: ");
 scanf("%f", &NextNum);

 // Add the number to the running sum
 Sum += NextNum;
 }

 // Compute the average
 Ave = Sum / Num;

 //Display the average
 printf ("The average is: %f\n", Ave);
 }
}

An object-oriented extension to C, known as C++, was developed in the early 1980s by Bjarne
Stroustrup (also at Bell Labs).

F.4 Visual C++

Despite the significant strides that Visual Basic has taken, it is not, in general, the preferred
language for creating complex standalone Windows applications. That role belongs to Microsoft's
Visual C++.

Actually, this is a good thing. Microsoft must guard against trying to make any single language the
solution for too many diverse programming needs. Such an effort can only be counterproductive.
By increasing the power of Visual Basic (and VBA) in order to handle more diverse and
sophisticated application programming, the language becomes more complex and difficult to learn
and use. This will result in the language being used by fewer people.

 459

Visual C++ is a marriage between the C++ programming language and the Windows graphical
environment. Visual C++ is not nearly as user-friendly as Visual Basic. This is due in part to the
nature of the underlying language (C is less friendly than BASIC), in part to the fact that C++ is a
fully object-oriented language and therefore naturally more complicated, and in part to the fact
that Visual C++ is designed to control the Windows environment at a more fundamental level than
Visual Basic. For instance, Visual Basic does not provide ways to create a text box whose text can
use more than one color, set the tabs in a list box, or change the color of the caption in a command
button, and so on. Simply put, when programming in VB (or VBA), we must sacrifice power in
some directions in favor of power in other directions and a simpler programming environment.

F.5 Pascal

Pascal was developed by Niklaus Wirth (pronounced "Virt") in the late 1960s and early 1970s.
The goal was to produce a language that could be easily implemented on a variety of computers
and that would provide students with a model teaching language. That is to say, Pascal is full of
features that encourage well-written and well-structured programs. Indeed, many universities
teach Pascal to their computer science students as a first language. Pascal has also migrated to the
personal computer arena, first with Borland's Turbo Pascal and more recently with Borland's
visual programming environment called Delphi.

For contrast, here is how our program to compute the average would look in Pascal. Text
contained within curly braces ({,}) are comments that are ignored by the computer.

{ Pascal program to compute the average
 of a set of at most 100 numbers }

program average (input, output);
 { Declare some variables }
 var
 Num, i : integer;
 Ave, Sum, NextNum : real;
 begin
 { Ask for the number of numbers }
 writeln('Enter the number of numbers');
 readln(Num);
 { If Num is between 1 and 100 then proceed }
 if ((Num > 0) and (Num <= 100)) then
 begin
 Sum := 0;
 { Loop to collect the numbers to average }
 for i := 1 to Num do
 begin
 { Ask for next number }
 writeln('Enter next number');
 readln(NextNum);
 { Add the number to the running sum }
 Sum := Sum + NextNum;
 end

 { Compute the average }
 Ave := Sum / Num;

 { Display the average }
 writeln('The average is: ', Ave);
 end
 end

 460

F.6 FORTRAN

FORTRAN is a contraction of Formula Translation, a name that comes from a technical report
entitled "The IBM Mathematical FORmula TRANslating System," written by John Backus and his
team at IBM in the mid-1950s. FORTRAN is primarily designed for scientific calculations and
has the distinction of being the first widely used high-level programming language. Backus made
some rather interesting claims about FORTRAN; for instance, it was not designed for its beauty (a
reasonable statement) but it would eliminate coding errors and the consequent debugging process!

Here is the FORTRAN version of our little averaging program. (Lines that begin with a C are
comments.)

C FORTRAN PROGRAM TO COMPUTE THE AVERAGE
C OF A SET OF AT MOST 100 NUMBERS

 Real SUM, AVE, NEXTNUM
 SUM = 0.0

C Ask for the number of numbers
 WRITE(*,*) 'Enter the number of numbers: '
 READ(*,*) NUM

C If Num is between 1 and 100 then proceed
 IF NUM .GT. 0 .AND. NUM .LE. 100 then
 C Loop to collect the numbers to average
 DO 10 I = 1, NUM
 C Ask for next number
 WRITE(*,*) 'Enter next number: '
 READ(*,*) NEXTNUM
 C Add the number to the running sum
 SUM = SUM + NEXTNUM
10 CONTINUE
 C Compute the average
 AVE = SUM/NUM
 C Display the average
 WRITE(*,*) 'The average is: '
 WRITE(*,*) AVE
 ENDIF

 STOP
 END

F.7 COBOL

COBOL is an acronym for Common Business Oriented Language and it was developed in the late
1950s by Grace Hopper for the purpose of writing business-related programs, which she felt
should be written in English. However, it seems rather that the language was developed with the
express purpose of avoiding all mathematical-like notation. The inevitable consequence is that
conciseness and readability is also avoided.

At any rate, I could only bring myself to code a COBOL sample program that adds two numbers.

* COBOL PROGRAM TO ADD TWO NUMBERS

 461

IDENTIFICATION DIVISION.
PROGRAM-ID. ADD02.
ENVIRONMENT DIVISION.
DATA DIVISION.

WORKING-STORAGE SECTION.
01 FIRST-NUMBER PIC IS 99.
01 SECOND-NUMBER PIC IS 99.
01 SUM PIC IS 999.

PROCEDURE DIVISION.

PROGRAM-BEGIN.

DISPLAY "ENTER FIRST NUMBER ".
ACCEPT FIRST-NUMBER.

DISPLAY "ENTER SECOND NUMBER ".
ACCEPT SECOND-NUMBER.

COMPUTE SUM = FIRST-NUMBER + SECOND-NUMBER

DISPLAY "THE SUM IS: " SUM.

PROGRAM-DONE.
STOP RUN.

In BASIC, the preceding program would be:

INPUT "Enter first number: ", n1
INPUT "Enter second number: ", n2
PRINT "The sum is: ", n1 + n2

This clearly points out the extreme verbosity of COBOL.

F.8 LISP

BASIC, C, Pascal, and FORTRAN are in many ways quite similar. Also, programs written in
these languages can be made quite readable, especially if the programmer intends to make it so.
There are other languages that seem not to be readable under any circumstances. For instance,
LISP was developed in the late 1950s by John McCarthy and Marvin Minsky at MIT, for the
purpose of doing list processing (hence the name) in connection with artificial intelligence
applications.

In LISP, everything is a list. Here is a sample:

; LISP sample program to define a predicate
; that takes two lists and returns the value
; T (for true) if the lists are equal and F otherwise
(DEFINE (
 '(equal (LAMDBA (list1 list2)
 (COND
 ((ATOM list1) (EQ list1 list2))
 ((ATOM list1 NIL)
 ((equal (CAR list1) (CAR list2))

 462

 (equal (CDR list1) (CDR list2)))

 (T NIL)
)
))
))

This sample points out one fact. Whatever else we might think of Microsoft, we can at least thank
them for choosing BASIC (VBA) as the underlying language for the Microsoft Office suite!

 463

Appendix G. New Objects in Excel XP
Excel XP contains 37 new objects. This appendix presents a list, along with paths and a brief
description of each object. I also include a list of the object's members (omitting the almost
ubiquitous Application, Creator, and Parent properties).

AllowEditRange Object

Path: Application -- Range -- Worksheet -- Protection
-- AllowEditRanges - AllowEditRange

Object Methods Properties

AllowEditRange
Object

• ChangePassword(Password As String)
• Delete()
• Unprotect([Password] As Variant)

• Range() As Range
• Title() As String
• Users() As

UserAccessList

AllowEditRanges
Object

• Add(Title As String, Range As Range,
[Password] As Variant) As
AllowEditRange

• Count() As Long
• Item(Index As

Variant) As
AllowEditRange

The AllowEditRange object allows a specified range of cells on a worksheet to be password
protected from editing. Once a range has been protected in this way, and the entire worksheet has
been protected, any attempt at editing cells in that range will require the password.

The AllowEditRanges collection object holds the current AllowEditRange objects.

AutoRecover Object

Path: Application - AutoRecover

Object Properties

AutoRecover

• Enabled() As Boolean
• Path() As String
• Time() As Long

The AutoRecover feature allows for the possible recovery of data if Excel XP stops responding (or
should I say when Excel XP stops responding?). The user can set the location in which Excel will
save AutoRecover files as well as the time between saving.

 464

The AutoRecover object implements automatic recovery. Its Path property sets the location where
Excel will place the AutoRecover file and its Time property sets the time (in minutes) interval for
backing up the workbook to the AutoRecover file, as in:

Application.AutoRecover.Path = "d:\temp"
Application.AutoRecover.Time = 10' minutes

CalculatedMember Object

Path: Application -- Range -- PivotTable --
CalculatedMembers - CalculatedMember

Object Methods Properties

CalculatedMember • Delete()

• Formula() As String
• IsValid() As Boolean
• Name() As String
• SolveOrder() As Long
• SourceName() As String
• Type() As

XlCalculatedMemberType

CalculatedMembers

• Add(Name As String
• Formula As String
• [SolveOrder] As Variant
• [Type] As Variant) As

CalculatedMember

• Count() As Long
• Item(Index As Variant) As

CalculatedMember

The CalculatedMember object programmatically manipulates the calculated fields and calculated
items for PivotTables that are connected to external OLAP (Online Analytical Processing) data
sources. We will not discuss these data sources further in this book.

CellFormat Object

Path: Application - CellFormat

Object Methods Properties

CellFormat • Clear()

• AddIndent() As Variant
• Borders() As Borders
• Font() As Font
• FormulaHidden() As Variant
• HorizontalAlignment() As Variant
• IndentLevel() As Variant
• Interior() As Interior
• Locked() As Variant
• MergeCells() As Variant
• NumberFormat() As Variant
• NumberFormatLocal() As Variant

 465

• Orientation() As Variant
• ShrinkToFit() As Variant
• VerticalAlignment() As Variant
• WrapText() As Variant

The CellFormat object works in conjunction with the FindFormat and ReplaceFormat objects to
programmatically find and replace cell formatting. For more on this, please see Chapter 16.

CustomProperty Object

Path: Application -- Range -- Worksheet --
CustomProperties - CustomProperty

Object Methods Properties

CustomProperty • Delete() • Name() As String
• Value() As Variant

CustomProperties
• Add(Name As String, Value As

Variant) As CustomProperty

• Count() As Long
• Item(Index As Variant) As

CustomProperty

The Microsoft documentation, with its usual obscurity, states the following about the
CustomProperty object: "Represents identifier information. Identifier information can be used as
metadata for XML." However, the documentation does not bother to elaborate on how this
information can be used as metadata. In any case, it is not our intention in this book to cover the
XML-related features of Excel.

The CustomProperties collection holds CustomProperty objects.

Diagram, DiagramNode and DiagramNodeChildren Objects

Path: Application -- Chart -- Shapes -- Shape -
Diagram -- DiagramNodes --
Diagram-Node-DiagramNodeChildren

Object Methods Properties

Diagram • Convert(Type As MsoDiagramType)

• AutoFormat() As
MsoTriState

• AutoLayout() As
MsoTriState

• Nodes() As
DiagramNodes

• Reverse() As
MsoTriState

• Type() As

 466

MsoDiagramType

DiagramNode

• AddNode(pos As
MsoRelativeNodePosition, nodeType
As MsoDiagramNodeType) As
DiagramNode

• CloneNode(copyChildren As Boolean,
pTargetNode As DiagramNode, pos
As MsoRelativeNodePosition) As
DiagramNode

• Delete()
• MoveNode(pTargetNode As

DiagramNode, pos As
MsoRelativeNodePosition)

• NextNode() As DiagramNode
• PrevNode() As DiagramNode
• ReplaceNode(pTargetNode As

DiagramNode)
• SwapNode(pTargetNode As

DiagramNode, swapChildren As
Boolean)

• TransferChildren(pReceivingNode As
DiagramNode)

• Children() As
DiagramNodeChil
dren

• Diagram() As
IMsoDiagram

• Layout() As
MsoOrgChartLay
outType

• Root() As
DiagramNode

• Shape() As Shape
• TextShape() As

Shape

DiagramNodes

• Item(Index As Variant) As
DiagramNode

• SelectAll()

• Count() As
Signed machine
int

DiagramNodeChildren

• AddNode(Index As Variant,
nodeType As MsoDiagramNodeType)
As DiagramNode

• Item(Index As Variant) As
DiagramNode

• SelectAll()

• Count() As
Signed machine
int

• FirstChild() As
DiagramNode

• LastChild() As
DiagramNode

Diagrams are special types of shapes that organize data visually. There are six types of diagrams,
including flow charts (organizational charts) and various types of relationship charts. The
Diagram-related objects programmatically create and edit diagrams. For more on this, please see
Appendix A, The Shape Object.

Error Object

Path: Application -- Range -- Errors - Error

Object Properties

Error
• Ignore() As Boolean
• Value() As Boolean

 467

Error objects determine whether or not a particular type of error has occurred in a specified range.

In particular, the Errors property of the Range object returns an Errors collection. This collection
always contains exactly seven Error objects, corresponding to the seven types of available error-
checking options, as shown in the Error Checking tab of the Options dialog box (see the
ErrorCheckingOptions entry).

The Error object has a Boolean, read-only Value property that is set to True by Excel if there is
an error of the type corresponding to the Error object within the given range.

It is important to note that, in order for the Error object's Value property to function correctly, the
error-checking option must be enabled, either programmatically or through the Error Checking tab.

To illustrate, the following code first turns on global empty cell error checking. Then in cell A1, it
places a formula that references one or more empty cells. Finally, the code checks to see if there is
an empty cell reference error within the range denoted by rng.

Sub Example_ErrorObject()
 Dim rng As Range
 Set rng = Application.Range("A1")

 ' Make sure empty cell error checking is on globally
 Application.ErrorCheckingOptions.EmptyCellReferences = True

 ' Insert formula referencing empty cells
 ' in a cell within the range rng
 Range("A1").Formula = "=A12+A13"

 ' Check to see if there is an empty cell type error in the
specified range
 If rng.Errors.Item(xlEmptyCellReferences).Value = True Then
 MsgBox "Empty cell error in range " & rng.Address
 Else
 MsgBox "No empty cell error in range " & rng.Address
 End If
End Sub

Note that if we change the specified range to one that contains more than one cell, as in:

Set rng = Application.Range("A1:B2")

then the line:

If rng.Errors.Item(xlEmptyCellReferences).Value = True Then

generates a generic (and therefore totally useless) error message! There is certainly no reason why
the Errors property of the Range object could not work with multi-cell ranges and the
documentation mentions no such restriction. Of course, there is no way to tell whether there is
simply an omission in the documentation or an error in the Excel code. The only clue is that the
Error object does not have any properties that returns a list of the offending cells within the range.
This might lead us to believe that the Errors property was intended to apply only to one-cell
ranges.

TE
AM
FL
Y

Team-Fly®

 468

ErrorCheckingOptions Object

Path: Application - ErrorCheckingOptions

Object Properties

ErrorCheckingOptions

• BackgroundChecking() As Boolean
• EmptyCellReferences() As Boolean
• EvaluateToError() As Boolean
• InconsistentFormula() As Boolean
• IndicatorColorIndex() As XlColorIndex
• NumberAsText() As Boolean
• OmittedCells() As Boolean
• TextDate() As Boolean
• UnlockedFormulaCells() As Boolean

This object corresponds to the Error Checking tab under the Excel Options dialog box. The
ErrorCheckingOptions object's properties correspond to the check boxes in the aforementioned
dialog box tab, as shown in Figure G-1.

Figure G-1. The Error Checking tab

For instance, when the Boolean TextDate property of the ErrorCheckingOptions object is set to
True (corresponding to checking the check box labeled "Text date with 2 digit years"), Excel will
display an AutoCorrect options button next to text cells that express the year as a two-digit value
(rather than a four-digit value), for example Jan 1, 01.

The Errors collection object holds Error objects. The Errors object has the following members:

Properties

• Item(Index As Variant) As Error

Graphic Object

Path: Application -- Chart -- PageSetup - Graphic

Object Properties

Graphic

• Brightness() As Single
• ColorType() As MsoPictureColorType
• Contrast() As Single
• CropBottom() As Single
• CropLeft() As Single
• CropRight() As Single
• CropTop() As Single
• Filename() As String
• Height() As Single

 469

• LockAspectRatio() As MsoTriState
• Width() As Single

The Graphic object allows the programmer to set various properties of images that can appear in
Excel headers and footers. For example, you can set the file name, image size and various color
aspects of the image, as well as its location in the header or footer.

IRTDServer and IRTDUpdateEvent Objects

Path: Application -- IRtdServer; Path: Application -
IRTDUpdateEvent

Object Method Properties

IRtdServer

• ConnectData(TopicID As Long, Strings
As Array of Variant, GetNewValues As
Boolean) As Variant

• DisconnectData(TopicID As Long)
• Heartbeat() As Long
• RefreshData(TopicCount As Long) As

Array of Variant
• ServerStart(CallbackObject As

IRTDUpdateEvent) As Long
• ServerTerminate()

IRTDUpdateEvent
• Disconnect()
• UpdateNotify()

• HeartbeatInterval()
As Long

The IRTDServer object and the IRTDUpdateEvent relate to real-time data servers, which we do
not cover in this book.

PivotCell and PivotItemList Objects

Path: Application -- Range - PivotCell - PivotItemList

Object Methods Properties

PivotCell

• ColumnItems() As PivotItemList
• CustomSubtotalFunction() As

XlConsolidationFunction
• DataField() As PivotField
• PivotCellType() As XlPivotCellType
• PivotField() As PivotField
• PivotItem() As PivotItem
• PivotTable() As PivotTable
• Range() As Range

 470

• RowItems() As PivotItemList

PivotItemList
• Item(Index As Variant)

As PivotItem • Count() As Long

New to Excel XP is the PivotCell object, which represents a cell in a pivot table. For more on this
object (and the PivotItemList object), please see Chapter 20.

Protection Object

Path: Application -- Range -- Worksheet - Protection

Object Properties

Protection

• AllowDeletingColumns() As Boolean
• AllowDeletingRows() As Boolean
• AllowEditRanges() As AllowEditRanges
• AllowFiltering() As Boolean
• AllowFormattingCells() As Boolean
• AllowFormattingColumns() As Boolean
• AllowFormattingRows() As Boolean
• AllowInsertingColumns() As Boolean
• AllowInsertingHyperlinks() As Boolean
• AllowInsertingRows() As Boolean
• AllowSorting() As Boolean
• AllowUsingPivotTables() As Boolean

When you protect a worksheet, Excel permits you to specify that certain operations are still
permitted on unlocked cells. At the user level, this is done through the Protection dialog box. At
the programming level, it is done through the properties of the Protection object.

RTD Object

Path: Application - RTD

Object Methods Properties

RTD
• RefreshData()
• RestartServers() • ThrottleInterval() As Long

The RTD object represents a real-time data object, a subject that we do not cover in this book.

 471

SmartTag Related Objects

Path: Application -- Range -- SmartTags - SmartTag --
SmartTagActions -- SmartTagAction;
Path: Application -- Workbook -- SmartTagOptions;
Path: Application -- SmartTagRecognizers -
SmartTagRecognizer

Object Methods Properties

SmartTag • Delete()

• DownloadURL() As String
• Name() As String
• Properties() As

CustomProperties
• Range() As Range
• SmartTagActions() As

SmartTagActions
• XML() As String

SmartTags
• Add(SmartTagType As

String) As SmartTag • Count() As Long

SmartTagAction • Execute() • Name() As String

SmartTagActions

• Count() As Long
• Item(Index As Variant) As

SmartTagAction

SmartTagOptions

• DisplaySmartTags() As
XlSmartTagDisplayMode

• EmbedSmartTags() As
Boolean

SmartTagRecognizer

• Enabled() As Boolean
• FullName() As String
• progID() As String

SmartTagRecognizers

• Count() As Long
• Item(Index As Variant) As

SmartTagRecognizer
• Recognize() As Boolean

This collection of objects enables programmatic control over existing Smart Tags. Note that in
order to create custom Smart Tags, we need need to use an application that can create COM DLLs,
such as Visual Basic or Visual C++. Custom Smart Tags cannot be created in Excel XP. For more
on Smart Tags, please see Chapter 22.

Speech Object

 472

Path: Application - Speech

Object Methods Properties

Speech

• Speak(Text As String, [SpeakAsync] As
Variant, [SpeakXML] As Variant, [Purge] As
Variant)

• Direction() As
XlSpeakDirection

• SpeakCellOnEnter() As
Boolean

The Speech object is a very simple object that is used to implement speech in Excel XP. To obtain
a Speech object, use the Speech property of the Application object. The Speech object has only
two properties, Direction and SpeakCellOnEnter, and one method, Speak.

The Direction property sets the speech direction to one of the constants in the following enum:

Enum XlSpeakDirection
 xlSpeakByRows = 0
 xlSpeakByColumns = 1
End Enum

This sets the speech direction when using the Speak property of the Range object. For instance, if
the activesheet has content:

A1 = 1, B1 = 2
A2 = 3, B2 = 4

Then the code:

Range("A1:B2").Speak xlSpeakByRows

will speak "1, 2, 3, 4"

whereas the code:

Range("A1:B2").Speak xlSpeakByColumns

will speak "1, 3, 2, 4"

The SpeakCellOnEnter property is a Boolean property that specifies whether or not Excel will
speak the contents of the active cell when the Enter key is struck or when the focus moves to
another cell after editing of that cell. (The cell contents are not spoken just because focus is lost—
it only happens when the cell has been edited and focus is lost.)

The Speak method speaks text, as in:

Application.Speech.Speak "To be or not to be"

or:

Application.Speech.Speak ActiveSheet.Range("A1").Value

 473

SpellingOptions Object

Path: Application - SpellingOptions

Object Properties

SpellingOptions

• ArabicModes() As XlArabicModes
• DictLang() As Long
• GermanPostReform() As Boolean
• HebrewModes() As XlHebrewModes
• IgnoreCaps() As Boolean
• IgnoreFileNames() As Boolean
• IgnoreMixedDigits() As Boolean
• KoreanCombineAux() As Boolean
• KoreanProcessCompound() As Boolean
• KoreanUseAutoChangeList() As Boolean
• SuggestMainOnly() As Boolean
• UserDict() As String

The SpellingOptions object, returned by the SpellingOptions property of the Application object,
can set options for Excel's spell checking feature. The object has no methods, and its properties
generally correspond to the options available through the Spelling tab of Excel's Options dialog.

Tab Object

Path: Application -- Chart - Tab

Object Properties

Tab
• Color() As Variant
• ColorIndex() As XlColorIndex

The ability to change the color of worksheet and chart tabs is new for Excel XP. This is done
through the user interface by right-clicking on a tab and choosing Tab Color from the popup menu.
To change the color programmatically, we can write code such as:

Worksheets("Sheet2").Tab.Color = vbGreen

The Tab object is returned by the Tab property of the Worksheet and the chart objects, and it has
Color and ColorIndex properties that can set the color.

UsedObjects Object

Path: Application - UsedObjects

Object Properties

 474

UsedObjects
• Count() As Long
• Item(Index As Variant) As Object

The documentation for the UsedObjects collection object is incredibly bad, even by Microsoft
standards, which is saying a lot. It gives absolutely no clue as to what used objects might be, but it
does tell us how to count the number of used objects!

If you open a brand new workbook (with the default three empty worksheets), then the code:

Application.UsedObjects.Count

returns the number 7, so whatever is used object might be, there are 7 of them in a new workbook.

After some experimentation and much frustration, I conclude that if Microsoft does not consider it
worth spending time to write even a sentence explaining used objects, then it is probably not
worth your time or mine to try to figure it out.

UserAccessList andUserAccess Objects

Path: Application -- Range -- Worksheet -- Protection
-- AllowEditRanges --
AllowEditRange -- UserAccessList - UserAccess

Object Methods Properties

UserAccess • Delete() • AllowEdit() As Boolean
• Name() As String

UserAccessList

• Add(Name As String, AllowEdit As
Boolean) As UserAccess

• DeleteAll()

• Count() As Long
• Item(Index As Variant)

As UserAccess

UserAccess objects allow certain users to access a protected range without requiring the password.

Watch Object

Path: Application -- Watches - Watch

Object Methods Properties

Watch • Delete() • Source() As Variant

Watches
• Add(Source As Variant) As Watch
• Delete()

• Count() As Long
• Item(Index As Variant) As Watch

 475

The Excel XP Watch window toolbar is a very simple, yet useful tool. It enables the user to view
the contents of a cell even when the portion of the worksheet that contains the cell is not visible.
Figure G-2 shows the Watch Window Toolbar.

Figure G-2. The Watch Window

The Watch object implements the Watch Window programmatically.

The Watches property of the Application object returns a Watches collection that contains all of
the open Watch objects. The Watch object itself has only one really useful property—the Source
property, which specifies the cell to watch. The Watch object has only one method—Delete,
which deletes the watch.

To illustrate, the watch in Figure G-2 can be created in either of the following ways:

Dim wa As Watch
Set wa = Application.Watches.Add("A1")
Set wa = Application.Watches.Add(Range("A1"))

 476

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

The animal on the cover of Writing Excel Macros with VBA, Second Edition, is a blue jay
(Cyanocitta cristata), a vociferous, aggressive bird common in the eastern half of the United
States and southern Canada. The blue-crested jay is also an agile flyer and occasional nest-robber.
The term "blue jay" is also applied to the Steller's jay (Cyanocitta stelleri), a larger, darker jay
common in much of the western U.S. and Canada, as well as several other species.

Blue jays eat primarily nuts, seeds, and insects, sometimes planting acorns in the ground, thus
helping tree growth. Known for their loud, harsh, and easily identifiable calls, blue jays (related to
crows and ravens) often spoil the hunting forays of other animals by warning potential prey.

Blue jays are bright blue, white, and black, with both sexes similar in appearance. They are about
10 to 12 inches in length, and build large tree nests about 25 feet off the ground, into which are
laid 3 to 6 spotted olive-colored eggs. The male is very attentive during the nesting periods. Jays
are sociable and frequently travel in groups, ranging from a mating pair to a larger flock.

Catherine Morris was the production editor and Tatiana Apandi Diaz was the proofreader for
Writing Excel Macros with VBA, Second Edition. Darren Kelly and Claire Cloutier provided
quality control. Joe Wizda wrote the index. Interior composition was done by Sarah Sherman and
Catherine Morris.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced
the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted to FrameMaker 5.5.6 with a
format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that
uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe
Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations
that appear in the book were produced by Robert Romano and Jessamyn Read using Macromedia
FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing.
This colophon was written by Nancy Kotary.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools
written and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

	sample.pdf
	sterling.com
	Welcome to Sterling Software

	Writing Excel Macros with VBA 2e.pdf
	Table of Content
	Preface
	Preface to the Second Edition
	
	Figure P-1. New objects in the Excel XP object hierarchy

	The Book's Audience
	Organization of This Book
	The Book's Text and Sample Code
	About the Code
	Conventions in this Book
	Obtaining the Sample Programs
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	1.1 Selecting Special Cells
	
	Figure 1-1. Selecting unique values
	Figure 1-2. The Select Special utility
	Figure 1-3. Select Special dialog

	1.2 Setting a Chart's Data Point Labels
	
	Figure 1-4. A data label in edit mode
	Figure 1-5. Set Data Labels dialog

	1.3 Topics in Learning Excel Programming

	Part I: The VBA Environment
	Chapter 2. Preliminaries
	2.1 What Is a Programming Language?
	
	Table 2-1. Some Programming Languages
	Table 2-2. Assignment in Various Languages

	2.2 Programming Style
	2.2.1 Comments
	2.2.2 Readability
	2.2.3 Modularity

	Chapter 3. The Visual Basic Editor, Part I
	
	
	Figure 3-1. The Excel VBA IDE

	3.1 The Project Window
	
	Figure 3-2. The Project Explorer

	3.1.1 Project Names
	3.1.2 Project Contents
	3.1.2.1 The ThisWorkbook object
	3.1.2.2 Sheet objects
	3.1.2.3 Standard modules
	3.1.2.4 Class modules
	3.1.2.5 UserForm objects
	Figure 3-3. A UserForm dialog box

	3.2 The Properties Window
	
	Figure 3-4. The Properties window

	3.3 The Code Window
	3.3.1 Procedure and Full-Module Views
	3.3.2 The Object and Procedure List Boxes
	3.3.2.1 A workbook or sheet object
	Figure 3-5. The events for a workbook object
	3.3.2.2 A standard module
	Figure 3-6. The Procedure box
	3.3.2.3 A UserForm object
	Figure 3-7. The Object box
	Figure 3-8. The Procedure box

	3.4 The Immediate Window
	
	Figure 3-9. The Immediate Window

	3.5 Arranging Windows
	
	Figure 3-10. A split screen approach

	3.5.1 Docking
	Figure 3-11. The Docking options

	Chapter 4. The Visual Basic Editor, Part II
	4.1 Navigating the IDE
	4.1.1 General Navigation
	4.1.1.1 Navigating the code window at design time
	4.1.1.2 Tracing code
	4.1.1.3 Bookmarks

	4.2 Getting Help
	4.3 Creating a Procedure
	
	Figure 4-1. The Add Procedure dialog box

	4.4 Run Time, Design Time, and Break Mode
	
	Figure 4-2. An error message

	4.5 Errors
	4.5.1 Design-Time Errors
	Figure 4-3. The Options dialog box
	Figure 4-4. A syntax error message

	4.5.2 Compile-Time Errors
	Figure 4-5. A compilation error message

	4.5.3 Run-Time Errors
	Figure 4-6. A run-time error message

	4.5.4 Logical Errors
	Figure 4-7. The result of a logical error

	4.6 Debugging
	
	Figure 4-8. Top-and-bottom windows for easy debugging
	Example 4-1. A Simple Program to Trace

	4.6.1 Tracing
	Example 4-2. Sample Code for Tracing Methods
	4.6.1.1 Stepping into
	4.6.1.2 Step Over (Shift-F8 or choose Step Over from the Debug menu)
	4.6.1.3 Step Out (Ctrl-Shift-F8 or choose Step Out from the Debug menu)
	4.6.1.4 Run To Cursor (Ctrl-F8 or choose Run To Cursor from the Debug menu)
	4.6.1.5 Set Next Statement (Ctrl-F9 or choose Set Next Statement from the Debug menu)
	4.6.1.6 Breaking out of Debug mode

	4.6.2 Watching Expressions
	4.6.2.1 Quick Watch (Shift-F9)
	Figure 4-9. The Quick Watch window
	4.6.2.2 The Locals and Watches windows
	Figure 4-10. The Locals and Watches windows
	Figure 4-11. The Add Watch dialog box

	4.7 Macros
	4.7.1 Recording Macros
	4.7.2 Running Macros
	Figure 4-12. Excel's Macro dialog box

	Part II: The VBA Programming Language
	Chapter 5. Variables, Data Types, and Constants
	5.1 Comments
	5.2 Line Continuation
	5.3 Constants
	5.3.1 Enums
	Figure 5-1. Example message box

	5.4 Variables and Data Types
	
	Table 5-1. VBA Data Types

	5.4.1 Variable Declaration
	Table 5-2. Type-Declaration Suffixes

	5.4.2 The Importance of Explicit Variable Declaration
	Example 5-1. A Procedure with a Typo
	5.4.2.1 Option Explicit

	5.4.3 Numeric Data Types
	5.4.4 Boolean Data Type
	5.4.5 String Data Type
	5.4.6 Date Data Type
	5.4.7 Variant Data Type
	5.4.8 Excel Object Data Types
	5.4.8.1 The generic As Object declaration
	5.4.8.2 The Set statement

	5.4.9 Arrays
	5.4.9.1 The dimension of an array
	5.4.9.2 Dynamic arrays
	5.4.9.3 The UBound function

	5.4.10 Variable Naming Conventions
	Table 5-3. Naming Convention for Standard Variables
	Table 5-4. Naming Convention for Some Object Variables

	5.4.11 Variable Scope
	5.4.11.1 Procedure-level (local) variables
	Figure 5-2. Examples of variable scope
	5.4.11.2 Module-level variables

	5.4.12 Variable Lifetime
	5.4.12.1 Static variables
	Example 5-2. ToComic() Modified to Use a Static Variable
	Figure 5-3. Dialog that appears if the static NotFirstTime is false

	5.4.13 Variable Initialization

	5.5 VBA Operators
	
	Table 5-5. VBA Operators and Relations

	Chapter 6. Functions and Subroutines
	6.1 Calling Functions
	
	Example 6-1. The AddOne Function
	Figure 6-1. The message dialog displayed by Example 6-1
	Example 6-2. Assigning a Function's Return Value

	6.2 Calling Subroutines
	6.3 Parameters and Arguments
	6.3.1 Optional Arguments
	Example 6-3. Using an Optional Argument

	6.3.2 Named Arguments
	6.3.3 ByRef Versus ByVal Parameters
	Example 6-4. Testing the ByVal and ByRef Keywords
	Example 6-5. Passing an Argument by Value

	6.4 Exiting a Procedure
	
	Example 6-6. Using the Exit Sub Statement

	6.5 Public and Private Procedures
	6.6 Project References
	
	Figure 6-2. The References dialog box

	6.6.1 Fully Qualified Procedure Names

	Chapter 7. Built-in Functions and Statements
	
	
	Table 7-1. VBA Functions[1]

	7.1 The MsgBox Function
	
	Table 7-2. The MsgBox Buttons Argument Values
	Figure 7-1. A MsgBox dialog box
	Table 7-3. MsgBox Return Values

	7.2 The InputBox Function
	
	Figure 7-2. An InputBox dialog box

	7.3 VBA String Functions
	7.4 Miscellaneous Functions and Statements
	7.4.1 The Is Functions
	7.4.1.1 The IsDate function
	7.4.1.2 The IsEmpty function
	7.4.1.3 The IsNull function
	7.4.1.4 The IsNumeric function

	7.4.2 The Immediate If Function
	7.4.3 The Switch Function
	Example 7-1. The Switch Function

	7.4.4 Units Conversions
	7.4.5 The Beep Statement

	7.5 Handling Errors in Code
	7.5.1 The On Error Goto Label Statement
	Figure 7-3. An error dialog

	7.5.2 The Error Object
	7.5.3 The On Error GoTo 0 Statement
	7.5.4 The On Error Resume Next Statement
	7.5.5 The Resume Statement
	Example 7-2. Error Handling with the Resume Statement

	Chapter 8. Control Statements
	8.1 The If...Then Statement
	8.2 The For Loop
	8.2.1 Exit For
	Example 8-1. Finding the First Nonempty Cell

	8.3 The For Each Loop
	8.4 The Do Loop
	8.5 The Select Case Statement
	8.6 A Final Note on VBA
	8.6.1 File-Related Functions
	Table 8-1. Some VBA File and Directory Functions

	8.6.2 Date- and Time-Related Functions
	Table 8-2. Some Date- and Time-Related Functions

	8.6.3 The Format Function
	Table 8-3. Format Function Examples

	Part III: Excel Applications and the Excel Object Model
	Chapter 9. Object Models
	9.1 Objects, Properties, and Methods
	9.1.1 Properties
	9.1.2 Methods

	9.2 Collection Objects
	
	Table 9-1. Some Excel Collection Objects

	9.2.1 The Base of a Collection

	9.3 Object Model Hierarchies
	
	Figure 9-1. A small portion of the Excel object model (the tag <vX> means that the object is new in version X of Excel)

	9.4 Object Model Syntax
	9.5 Object Variables
	9.5.1 The With Statement
	9.5.2 Object Variables Save Execution Time
	9.5.3 An Object Variable Is a Pointer
	Figure 9-2. Integer variables in memory
	Figure 9-3. An object variable in memory
	Figure 9-4. Two object variables referencing the same object

	9.5.4 Freeing an Object Variable: the Nothing Keyword
	9.5.5 The Is Operator
	9.5.6 Default Members
	9.5.7 Global Members
	Table 9-2. Excel global members

	Chapter 10. Excel Applications
	10.1 Providing Access to an Application's Features
	
	Figure 10-1. Dialog for a charting utility

	10.1.1 Working with Toolbars and Menus Interactively
	Figure 10-2. The Toolbars tab of the Customize dialog
	Figure 10-3. The Commands tab of the Customize dialog

	10.1.2 Assigning Macros to Menus and Toolbars

	10.2 Where to Store an Application
	10.2.1 The Excel Startup Folder
	10.2.2 Excel Templates
	Figure 10-4. The New dialog showing template icons

	10.2.3 Excel Add-Ins
	Figure 10-5. The Add-Ins dialog
	10.2.3.1 Creating an add-in
	Figure 10-6. Add-in properties
	Figure 10-7. The Add-Ins dialog
	Figure 10-8. VBA project properties
	Figure 10-9. Protection tab
	10.2.3.2 Characteristics of an add-in
	10.2.3.3 Debugging add-ins
	10.2.3.4 Deleting an add-in

	10.3 An Example Add-In
	10.3.1 Creating the Source Workbook
	10.3.2 Setting Up the Custom Menus
	Example 10-1. The Workbook's Open and BeforeClose Event Handlers
	Example 10-2. The CreateCustomMenuItem Procedure
	Example 10-3. The DeleteCustomMenuItem Procedure

	10.3.3 Implementing the Features of the Add-In
	10.3.4 Final Steps

	Chapter 11. Excel Events
	11.1 The EnableEvents Property
	11.2 Events and the Excel Object Model
	11.3 Accessing an Event Procedure
	
	Figure 11-1. Events for the Worksheet object

	11.4 Worksheet Events
	
	Table 11-1. Worksheet Events (DocEvents)

	11.5 WorkBook Events
	
	Table 11-2. Workbook Events

	11.6 Chart Events
	
	Table 11-3. Chart Events

	11.7 Application Events
	
	Table 11-4. Application Events
	Figure 11-2. Application-level events

	11.8 QueryTable Refresh Events
	
	Table 11-5. Refresh Events

	Chapter 12. Custom Menus and Toolbars
	12.1 Menus and Toolbars: An Overview
	
	Figure 12-1. The menu and toolbar portion of the Office object model

	12.1.1 Menu Terminology
	Figure 12-2. An Office menu

	12.1.2 The CommandBar Object
	12.1.3 Command-Bar Controls
	12.1.3.1 Popup controls
	12.1.3.2 Button controls

	12.1.4 Adding a Menu Item

	12.2 The CommandBars Collection
	
	Example 12-1. Listing Excel's CommandBar Objects

	12.3 Creating a New Menu Bar or Toolbar
	
	Example 12-2. Creating a New Toolbar

	12.4 Command-Bar Controls
	12.4.1 Creating a New Command-Bar Control
	Table 12-1. msoControlType Values for the Type Parameter

	12.5 Built-in Command-Bar-Control IDs
	
	Example 12-3. Code to Generate a List of Control IDs
	Example 12-4. Outputting the IDs of Command-Bar Controls

	12.6 Example: Creating a Menu
	
	Figure 12-3. An example custom menu
	Example 12-5. An Example Menu

	12.7 Example: Creating a Toolbar
	
	Figure 12-4. A custom toolbar
	Example 12-6. An Example Toolbar
	Example 12-7. The ExampleMacro Macro
	Example 12-8. Macro Invoked by Selecting a Composer from the List Box

	12.8 Example: Adding an Item to an Existing Menu
	
	Example 12-9. Adding a Menu Item to an Existing Menu

	12.9 Augmenting the SRXUtils Application
	12.9.1 Creating the Data Worksheet
	Figure 12-5. DataSheet of SRXUtils.xls

	12.9.2 Setting Up the Custom Menus
	Example 12-10. The Revised Versions of ThisWorkbook's Open and Close Events
	Example 12-11. The CreateCustomMenus Procedure
	Example 12-12. The CreateCustomMenu Procedure

	12.9.3 Implementing the Features of the Add-in
	Example 12-13. Code for the Printing Procedures
	Example 12-14. The RunUtility Procedure
	Example 12-15. The IsBookOpen Function

	12.9.4 Closing Any Open Add-Ins
	Example 12-16. The Workbook_BeforeClose Event Handler
	Example 12-17. The DeleteCustomMenus Procedure

	Chapter 13. Built-In Dialog Boxes
	
	
	Table 13-1. XlBuiltInDialog constants and values
	Table 13-2. Additional XlBuiltInDialog Constants and Their Values for Excel 9.0
	Figure 13-1. The Open File dialog box

	13.1 The Show Method

	Chapter 14. Custom Dialog Boxes
	14.1 What Is a UserForm Object?
	14.2 Creating a UserForm Object
	
	Figure 14-1. A UserForm dialog box (design time)

	14.3 ActiveX Controls
	14.4 Adding UserForm Code
	
	Figure 14-2. A Sort dialog box

	14.5 Excel's Standard Controls
	
	Figure 14-3. Control toolbars
	Figure 14-4. Response to placing a standard Excel command button

	14.6 Example: The ActivateSheet Utility
	
	Figure 14-5. The activate sheet dialog

	14.6.1 Back to SRXUtils
	14.6.2 Create the UserForm
	14.6.2.1 List box
	Table 14-1. Nondefault Properties of the ListBox Control
	14.6.2.2 Activate button
	Table 14-2. Nondefault Properties of the Activate Button
	14.6.2.3 Cancel button
	Table 14-3. Nondefault Properties of the Cancel Button

	14.6.3 Create the Code Behind the UserForm
	14.6.3.1 Cancel button code
	14.6.3.2 ActivateSelectedSheet procedure
	Example 14-1. The ActivateSelectedSheet Procedure
	14.6.3.3 Activate button code
	14.6.3.4 Double-click lstSheets code
	14.6.3.5 Enter key event
	Example 14-2. The lstSheets_KeyDown Event Procedure
	14.6.3.6 Fill the lstSheets list box
	Example 14-3. The UserForm_Initialize Event Procedure

	14.6.4 Trying the Activate Utility

	14.7 ActiveX Controls on Worksheets
	14.7.1 Referring to a Control on a Worksheet
	Table 14-4. Members of the OLEObject object

	14.7.2 Adding a Control to a Worksheet Programmatically
	Table 14-5. ProgIDs for ActiveX Controls

	Chapter 15. The Excel Object Model
	15.1 A Perspective on the Excel Object Model
	
	Table 15-1. Some Object Model Statistics for Office 97
	Table 15-2. Excel 10 objects and their child counts
	Table 15-3. Excel 10 objects with 5 or more children

	15.2 Excel Enums
	
	Table 15-4. The Excel Enums and their number of constants (Excel 8)
	Table 15-5. Additional enums for Excel 9.0
	Table 15-6. Additional enums for Excel 10

	15.3 The VBA Object Browser
	
	Figure 15-1. The Microsoft Object Browser

	Chapter 16. The Application Object
	
	
	Figure 16-1. The Excel Application object and its children (the tag <vX> means that the object is new in version X of Excel)
	Figure 16-2. The Excel Application object along with its hidden children

	16.1 Properties and Methods of the Application Object
	
	Table 16-1. Application object members[2]

	16.1.1 Members that Return Children
	Table 16-2. Members that return child objects

	16.1.2 Members that Affect the Display
	16.1.3 Members that Enable Excel Features
	16.1.4 Event-Related Members
	16.1.4.1 OnKey method
	Table 16-3. Special Keys for the Key Parameter
	16.1.4.2 OnTime method

	16.1.5 Calculation-Related Members
	16.1.5.1 Calculate method
	16.1.5.2 CalculateFullRebuild method
	16.1.5.3 Calculation property (R/W Long)
	16.1.5.4 CalculateBeforeSave property (R/W Boolean)
	16.1.5.5 CheckAbort method

	16.1.6 File-Related Members
	16.1.6.1 DefaultFilePath property (R/W String)
	16.1.6.2 DefaultSaveFormat property (R/W Long)
	Table 16-4. XLFileFormat constants
	16.1.6.3 FileDialog property
	16.1.6.4 FindFile method
	16.1.6.5 GetOpenFilename method
	16.1.6.6 GetSaveAsFilename method
	16.1.6.7 RecentFiles property (Read-Only)
	16.1.6.8 SaveWorkspace method

	16.1.7 Members that Affect the Current State of Excel
	16.1.8 Members that Produce Actions
	16.1.8.1 ConvertFormula method
	16.1.8.2 Evaluate method
	16.1.8.3 Goto method
	16.1.8.4 Quit method

	16.1.9 Miscellaneous Members
	16.1.9.1 CellFormat, FindFormat and ReplaceFormat object
	16.1.9.2 InputBox method
	Table 16-5. Values for the InputBox Method's Type Parameter
	Figure 16-3. Illustration of Type = 64
	16.1.9.3 Selection property
	16.1.9.4 StatusBar property (R/W String)
	16.1.9.5 Intersect method
	16.1.9.6 Union method

	16.2 Children of the Application Object
	
	Figure 16-4. The Excel Application object and its children

	16.2.1 Name Objects and the Names Collections
	16.2.2 The Windows Collection and Window Objects
	Table 16-6. Members of the Window object

	16.2.3 The WorksheetFunction Object

	Chapter 17. The Workbook Object
	
	
	Figure 17-1. The Workbook object

	17.1 The Workbooks Collection
	17.1.1 Add Method
	17.1.2 Close Method
	17.1.3 Count Property
	17.1.4 Item Property
	17.1.5 Open Method
	17.1.6 OpenText Method
	Figure 17-2. A comma-delimited text file opened in Excel
	Figure 17-3. A fixed-width text file opened in Excel

	17.2 The Workbook Object
	
	Table 17-1. Members of the Workbook object
	Figure 17-4. Children of the Workbook object
	Table 17-2. Members of Workbook that return children

	17.2.1 Activate Method
	17.2.2 Close Method
	17.2.3 DisplayDrawingObjects Property
	17.2.4 FileFormat Property (Read-Only Long)
	17.2.5 Name, FullName, and Path Properties
	17.2.6 HasPassword Property (Read-Only Boolean)
	17.2.7 PrecisionAsDisplayed Property (R/W Boolean)
	17.2.8 PrintOut Method
	17.2.9 PrintPreview Method
	17.2.10 Protect Method
	17.2.11 ReadOnly Property (Read-Only Boolean)
	17.2.12 RefreshAll Method
	17.2.13 Save Method
	17.2.14 SaveAs Method
	17.2.15 SaveCopyAs Method
	17.2.16 Saved Property (R/W Boolean)

	17.3 Children of the Workbook Object
	
	Figure 17-5. Children of the Workbook object

	17.3.1 The CustomView Object
	Figure 17-6. Example of the CustomView object
	Figure 17-7. A filtered view

	17.3.2 The Names Collection
	17.3.3 The Sheets Collection
	17.3.4 The Styles Collection and the Style Object

	17.4 Example: Sorting Sheets in a Workbook
	
	Figure 17-8. Augmenting the DataSheet worksheet
	Example 17-1. The SortSheets Procedure
	Example 17-2. The SortAllSheets Procedure

	Chapter 18. The Worksheet Object
	
	
	Figure 18-1. The Worksheet object

	18.1 Properties and Methods of the Worksheet Object
	
	Table 18-1. Members of the Worksheet Object
	Table 18-2. Members That Return Objects
	Figure 18-2. A data form

	18.2 Children of the Worksheet Object
	
	Figure 18-3. Illustrating Excel outlines
	Figure 18-4. The end result
	Figure 18-5. Outline collapsed to level 2
	Table 18-3. Members of the PageSetup Object
	Figure 18-6. A worksheet and the PrintTitleRows property

	18.3 Protection in Excel XP
	18.3.1 The Protection Object
	18.3.2 The AllowEditRange Object
	18.3.3 The UserAccess Objects

	18.4 Example: Printing Sheets
	
	Figure 18-7. Print sheets dialog

	18.4.1 Create the UserForm
	18.4.1.1 List box
	Table 18-4. Nondefault Properties of the List Box
	18.4.1.2 Print button
	Table 18-5. Nondefault Properties of the Print Button
	18.4.1.3 Cancel button
	Table 18-6. Nondefault Properties of the Cancel Button

	18.4.2 Create the Code Behind the UserForm
	18.4.2.1 The Declarations section
	Example 18-1. Module-Level Variable Declarations
	18.4.2.2 Cancel button code
	Example 18-2. The cmdCancel_Click Event Handler
	18.4.2.3 Print button code
	Example 18-3. The cmdPrint_Click Event Handler
	18.4.2.4 The Form's Initialize event
	Example 18-4. The UserForm's Initialize Event Procedure
	18.4.2.5 The PrintSheets procedure
	Example 18-5. The PrintSelectedSheets Procedure

	Chapter 19. The Range Object
	
	
	Table 19-1. Members of the Range Object

	19.1 The Range Object as a Collection
	19.2 Defining a Range Object
	
	Table 19-2. Excel Members That Return a Range Object

	19.2.1 Range Property
	19.2.2 Cells Property
	19.2.3 Column, Columns, Row, and Rows Properties
	Figure 19-1. A noncontiguous range
	Figure 19-2. The range as a union

	19.2.4 Offset Property

	19.3 Additional Members of the Range Object
	19.3.1 Activate Method
	19.3.2 AddComment Method
	19.3.3 Address Property (Read-Only String)
	19.3.4 AutoFill Method
	Figure 19-3. Worksheet to autofill range B1:B5
	Figure 19-4. Autofilling B1:B5 in Figure 19-3

	19.3.5 AutoFilter Method
	Figure 19-5. A worksheet before autofiltering

	19.3.6 AutoFit Method
	19.3.7 AutoFormat Method
	19.3.8 BorderAround Method
	19.3.9 Calculate Method
	19.3.10 Clear Methods
	19.3.11 ColumnDifferences and RowDifferences Methods
	Figure 19-6. The result of the ColumnDifferences method

	19.3.12 ColumnWidth and RowHeight Properties
	19.3.13 Width, Height, Top, and Left Properties
	19.3.14 Consolidate Method
	Figure 19-7. Sheet2 before consolidation
	Figure 19-8. Sheet3 before consolidation
	Figure 19-9. Sheet1 after consolidation with TopRow set to False
	Figure 19-10. Sheet1 with TopRow set to True

	19.3.15 Copy and Cut Methods
	19.3.16 CopyFromRecordset Method
	19.3.17 CreateNames Method
	19.3.18 CurrentRegion Property
	Figure 19-11. Illustrating CurrentRegion

	19.3.19 Delete Method
	19.3.20 Dependents and DirectDependents Properties
	Figure 19-12. Illustrating the Dependents property

	19.3.21 Precedents and DirectPrecedents Properties
	19.3.22 End Property
	19.3.23 EntireColumn and EntireRow Properties
	19.3.24 Fill Methods
	19.3.25 Find Method
	19.3.26 FindNext and FindPrevious Methods
	19.3.27 Formula and FormulaR1C1 Properties
	Figure 19-13. Illustrating the Formula property

	19.3.28 FormulaArray Property
	Figure 19-14. Illustrating the FormulaArray property

	19.3.29 FormulaHidden Property (R/W Boolean)
	19.3.30 HasFormula Property (Read-Only)
	19.3.31 HorizontalAlignment Property
	19.3.32 IndentLevel Property and InsertIndent Method
	19.3.33 Insert Method
	19.3.34 Locked Property
	19.3.35 Merge-Related Methods and Properties
	19.3.36 Next and Previous Properties
	19.3.37 NumberFormat Property
	19.3.38 Parse Method
	19.3.39 PasteSpecial Method
	19.3.40 PrintOut Method
	19.3.41 PrintPreview Method
	19.3.42 Replace Method
	19.3.43 Select Method
	19.3.44 ShrinkToFit Property
	19.3.45 Sort Method
	19.3.46 SpecialCells Method
	19.3.47 TextToColumns Method
	Table 19-3. FieldInfo Values for xlDelimited Text
	Figure 19-15. A worksheet with text to be parsed in A1:A3
	Figure 19-16. A worksheet with fixed-width data to be parsed in A1:A3

	19.3.48 Value Property
	19.3.49 WrapText Property

	19.4 Children of the Range Object
	
	Figure 19-17. Children of the Range object

	19.4.1 The Areas Collection
	Figure 19-18. A range with three areas

	19.4.2 The Borders Collection
	Figure 19-19. Illustrating the Border object
	Figure 19-20. The xlDiagonalDown constant
	Figure 19-21. The xlInsideVertical constant

	19.4.3 The Border Object
	19.4.3.1 Color property
	Figure 19-22. Assigning the Colors property of the Borders collection
	Table 19-4. Some Common Colors
	19.4.3.2 ColorIndex property
	19.4.3.3 LineStyle property
	19.4.3.4 Weight property

	19.4.4 The Characters Object
	Figure 19-23. Boldfacing the first word of a cell

	19.4.5 The Comment Object
	19.4.6 The Font Object
	Table 19-5. Properties of the Font Object

	19.4.7 The FormatConditions Collection
	Figure 19-24. A conditionally formatted range

	19.4.8 The Interior Object
	19.4.8.1 Color and ColorIndex properties
	19.4.8.2 Pattern property
	19.4.8.3 PatternColor and PatternColorIndex properties

	19.4.9 The PivotField, PivotItem, and PivotTable Objects
	19.4.10 The QueryTable Object
	19.4.11 The Validation Object
	Figure 19-25. The Settings tab of the Data Validation dialog
	Figure 19-26. The Input Message tab of the Data Validation dialog
	Figure 19-27. The Error Alert tab of the Data Validation dialog

	19.5 Example: Getting the Used Range
	
	Example 19-1. The GetUsedRange Function

	19.6 Example: Selecting Special Cells
	
	Figure 19-28. Selecting unique values
	Figure 19-29. Augmenting the DataSheet worksheet

	19.6.1 Designing the Utility
	19.6.2 Designing the Dialog
	Figure 19-30. Select Special dialog
	19.6.2.1 The Frame control
	19.6.2.2 Control names
	19.6.2.3 Tab Order
	Figure 19-31. The Tab Order dialog
	19.6.2.4 Some final tips

	19.6.3 Writing the Code
	Example 19-2. The SelectSpecial Procedure
	Example 19-3. dlgSelectSpecial Module-Level Declarations
	Example 19-4. The Initialize Event Procedure
	Example 19-5. The cmdClose_Click Event Procedure
	Example 19-6. The cmdUndo_Click Event Procedure
	Example 19-7. Event Handlers for the Option Buttons
	Example 19-8. The GetSearchRange Procedure
	Example 19-9. The cmdSelect_Click Event Procedure
	Example 19-10. The SelectIfDifferent Procedure
	Example 19-11. The SelectIfSame Procedure
	Example 19-12. The SelectIfEmpty Procedure
	Example 19-13. The cmdCompleteColumns_Click Procedure

	Chapter 20. Pivot Tables
	20.1 Pivot Tables
	
	Table 20-1. Source Data for PivotTable (for 1998)

	20.2 The PivotTable Wizard
	
	Figure 20-1. Step 1 in the PivotTable wizard
	Figure 20-2. Step 2 in the PivotTable wizard
	Figure 20-3. Step 3 in the PivotTable wizard
	Figure 20-4. Step 4 in the PivotTable wizard
	Figure 20-5. Step 5 in the PivotTable wizard
	Figure 20-6. The PivotTable

	20.3 The PivotTableWizard Method
	
	Figure 20-7. Illustrating page field order
	Figure 20-8. An empty PivotTable

	20.4 The PivotTable Object
	
	Example 20-1. The CreatePivotFields Procedure
	Example 20-2. The ShowFields Procedure

	20.4.1 Naming Data Fields
	20.4.2 The Complete Code
	Example 20-3. The CreatePivot Procedure
	Example 20-4. Creating a Pivot Table Using the AddFields Method

	20.5 Properties and Methods of the PivotTable Object
	
	Table 20-2. Members of the PivotTable Object

	20.5.1 Returning a Fields Collection
	20.5.1.1 ColumnFields property
	20.5.1.2 DataFields property
	20.5.1.3 HiddenFields property
	20.5.1.4 PageFields property
	20.5.1.5 PivotFields property
	20.5.1.6 RowFields property
	20.5.1.7 VisibleFields property

	20.5.2 Totals-Related Members
	Figure 20-9. No grand totals
	Figure 20-10. No totals at all

	20.5.3 Returning a Portion of a PivotTable
	20.5.3.1 ColumnRange property
	Figure 20-11. The ColumnRange range
	20.5.3.2 DataBodyRange property
	Figure 20-12. The DataBodyRange range
	20.5.3.3 DataLabelRange property
	Figure 20-13. The DataLabelRange range
	20.5.3.4 PageRange and PageRangeCells properties
	Figure 20-14. The PageRange range
	Figure 20-15. The PageRangeCells range
	20.5.3.5 RowRange property
	Figure 20-16. The RowRange range
	20.5.3.6 TableRange1 property
	Figure 20-17. The TableRange1 range
	20.5.3.7 TableRange2 property
	Figure 20-18. The TableRange2 range

	20.5.4 PivotSelect and PivotSelection
	Figure 20-19. Selecting the company label and data for Boston
	Figure 20-20. Reversing the word order to select company data for Boston only

	20.5.5 Additional Members of the PivotTable Object
	20.5.5.1 AddFields method
	20.5.5.2 CalculatedFields method
	Figure 20-21. Illustrating a calculated field
	20.5.5.3 Errors-related properties
	20.5.5.4 Null-related properties
	20.5.5.5 EnableDrillDown property
	Figure 20-22. Illustrating DrillDown
	20.5.5.6 Formatting properties and methods
	20.5.5.7 Refreshing a pivot table
	20.5.5.8 PageField-related properties
	20.5.5.9 Name property
	20.5.5.10 SaveData property (R/W Boolean)
	20.5.5.11 ShowPages method
	20.5.5.12 SourceData property

	20.6 Children of the PivotTable Object
	
	Figure 20-23. Children of the PivotTable object

	20.7 The PivotField Object
	
	Table 20-3. Members of the PivotField Object

	20.7.1 AutoShow-Related Members
	Figure 20-24. Illustrating AutoShow

	20.7.2 Sorting Pivot Fields
	Figure 20-25. Illustrating AutoSort

	20.7.3 The Fundamental Properties
	20.7.3.1 Function property
	20.7.3.2 NumberFormat property
	20.7.3.3 Orientation property
	20.7.3.4 Position property

	20.7.4 Selecting Ranges
	20.7.4.1 DataRange property
	Figure 20-26. DataRange for Store Type
	20.7.4.2 LabelRange property

	20.7.5 Dragging Pivot Fields
	20.7.6 Name, Value, and SourceName Properties
	20.7.7 Grouping
	Figure 20-27. Illustrating the Group method

	20.7.8 Data Field Calculation
	20.7.8.1 Calculation property
	20.7.8.2 Calculations not requiring a BaseField/BaseItem
	Figure 20-28. Calculation = xlRunningTotal
	Figure 20-29. Calculation = xlPercentOfRow
	Figure 20-30. Calculation = xlPercentOfColumn
	Figure 20-31. Calculation = xlPercentOfTotal
	20.7.8.3 Calculations requiring a BaseField/BaseItem
	Figure 20-32. Illustrating a calculation
	Figure 20-33. The finished calculation
	Figure 20-34. Illustrating the Calculation property

	20.7.9 CurrentPage Property
	20.7.10 DataType Property
	20.7.11 HiddenItems and VisibleItems Properties
	20.7.12 MemoryUsed Property
	20.7.13 ServerBased Property
	20.7.14 ShowAllItems Property
	Figure 20-35. ShowAllItems = False
	Figure 20-36. ShowAllItems = True

	20.7.15 Subtotals Method
	Table 20-4. Values for the Subtotals Method's Index Parameter

	20.8 The PivotCache Object
	20.8.1 Refreshing a Pivot Cache
	20.8.2 MemoryUsed Property
	20.8.3 OptimizeCache Property
	20.8.4 RecordCount Property
	20.8.5 SourceData Property
	20.8.6 Sql Property

	20.9 The PivotItem Object
	
	Table 20-5. Members of the PivotItem Object

	20.9.1 DataRange Property
	Figure 20-37. DataRange for Store Type = Company

	20.9.2 LabelRange Property
	Figure 20-38. LabelRange for Store Type = Company

	20.9.3 IsCalculated Property
	20.9.4 Name, Value, and SourceName Properties
	20.9.5 Position Property
	20.9.6 RecordCount Property
	20.9.7 ShowDetail Property
	Figure 20-39. Illustrating ShowDetail

	20.9.8 Visible Property

	20.10 PivotCell and PivotItemList Objects
	
	Figure 20-40. The PivotCell object

	20.10.1 ColumnItems, RowItems, and DataField Properties
	20.10.2 CustomSubtotalFunction Property
	20.10.3 PivotCellType Property
	Figure 20-41. PivotCell values

	20.10.4 PivotTable, PivotField, and PivotItem Properties

	20.11 Calculated Items and Calculated Fields
	
	Figure 20-42. Illustrating a calculated item (CompanyX2)
	Figure 20-43. Illustrating a calculated field and calculated item
	Figure 20-44. The output of ListFormulas

	20.12 Example: Printing Pivot Tables
	
	Figure 20-45. Print pivot tables

	20.12.1 Create the UserForm
	Example 20-5. The PrintPivotTables Procedure
	20.12.1.1 List box
	20.12.1.2 Print button
	20.12.1.3 Cancel button

	20.12.2 Create the Code Behind the UserForm
	20.12.2.1 The Declarations section
	Example 20-6. Module-Level Variables in the user form's Declarations Section
	20.12.2.2 Cancel button code
	Example 20-7. The cmdCancel_Click Event Procedure
	20.12.2.3 Print button code
	Example 20-8. The cmdPrint_Click Event Procedure
	20.12.2.4 The Form's Initialize event
	Example 20-9. The Initialize Event
	20.12.2.5 PrintPTs procedure
	Example 20-10. The PrintSelectedPTs Procedure

	Chapter 21. The Chart Object
	
	
	Figure 21-1. Some chart terminology
	Figure 21-2. The Chart object

	21.1 Chart Objects and ChartObject Objects
	
	Figure 21-3. Step 4 in the chart wizard

	21.2 Creating a Chart
	21.2.1 Creating Chart Sheets
	21.2.2 Creating Embedded Charts
	Example 21-1. Creating an Embedded Chart
	Figure 21-4. The results of creating an embedded chart object

	21.2.3 An Example of Chart Creation
	Figure 21-5. The results of CreateChart
	Example 21-2. The CreateChart Procedure

	21.2.4 Z-Order and ChartObject Objects
	Figure 21-6. Illustrating z-order

	21.3 Chart Types
	
	Figure 21-7. The Chart Type dialog

	21.3.1 ChartType property
	Table 21-1. ChartType Constants
	21.3.1.1 ApplyCustomType method
	Figure 21-8. Illustrating ApplyCustomType

	21.4 Children of the Chart Object
	
	Figure 21-9. Children of the Chart object

	21.5 The Axes Collection
	
	Figure 21-10. Axes-related objects

	21.6 The Axis Object
	
	Table 21-2. Members of the Axis Object

	21.6.1 AxisGroup Property
	21.6.2 Axis Titles and Their Formatting
	21.6.2.1 HasTitle property (R/W Boolean)
	21.6.2.2 The Border property and the Border object

	21.6.3 CategoryNames Property
	21.6.4 CategoryType Property and BaseUnit Property
	21.6.5 Crosses and CrossesAt Properties
	21.6.6 Display Units
	Figure 21-11. Display unit labels

	21.6.7 Gridline-Related Properties and the Gridline Object
	21.6.8 Position- and Dimension-Related Properties
	21.6.9 Tick Mark-Related Properties
	21.6.9.1 The TickLabels object

	21.6.10 Units-Related Properties
	Figure 21-12. Axis units and scale

	21.6.11 ReversePlotOrder Property
	Figure 21-13. Illustrating ReversePlotOrder (before)
	Figure 21-14. Illustrating ReversePlotOrder (after)

	21.6.12 Type Property

	21.7 The ChartArea Object
	21.8 The ChartGroup Object
	
	Figure 21-15. Illustrating chart groups
	Figure 21-16. The ChartGroup object

	21.8.1 UpBars and DownBars
	Figure 21-17. UpBars are in white and DownBars are in black

	21.8.2 DropLines
	21.8.3 HiLoLines
	Figure 21-18. HiLoLines

	21.8.4 SeriesCollection and Series Objects
	21.8.5 SeriesLines
	Figure 21-19. SeriesLines

	21.9 The ChartTitle Object
	
	Figure 21-20. The ChartTitle object

	21.10 The DataTable Object
	
	Figure 21-21. A data table

	21.11 The Floor Object
	
	Figure 21-22. The floor of a 3-D chart (checkered)

	21.12 The Legend Object
	
	Figure 21-23. The Legend object

	21.12.1 The LegendEntry Object
	21.12.2 The LegendKey Object

	21.13 The PageSetup Object
	
	Table 21-3. Members of the PageSetup object

	21.14 The PlotArea Object
	21.15 The Series Object
	
	Figure 21-24. The Series object and its children
	Table 21-4. Members of the Series Object

	21.15.1 Adding a New Series
	Figure 21-25. Illustrating the Add method: the data
	Figure 21-26. Illustrating the Add method: the chart

	21.15.2 The DataLabel Object
	Figure 21-27. Illustrating the data point legend
	Table 21-5. Members of the DataLabel Object

	21.15.3 The Point Object
	Table 21-6. Members of the Point Object
	21.15.3.1 Explosion property
	Figure 21-28. Explosion = 20
	21.15.3.2 MarkerSize and MarkerStyle
	Figure 21-29. Illustrating MarkerSize and MarkerStyle

	21.16 Properties and Methods of the Chart Object
	
	Table 21-7. Members of the Chart Object
	Table 21-8. Members that Return Children

	21.16.1 ChartWizard Method
	Figure 21-30. Illustrating the ChartWizard method
	Figure 21-31. Results of the ChartWizard method

	21.16.2 Export Method
	21.16.3 PrintOut Method

	21.17 Example: Scrolling Through Chart Types
	
	Example 21-3. Code in the Chart Sheet's Code Module
	Example 21-4. The ChartTypes.txt File

	21.18 Example: Printing Embedded Charts
	
	Figure 21-32. Print Charts dialog

	21.18.1 Create the UserForm
	21.18.1.1 List box
	Table 21-9. Nondefault Properties of the ListBox Control
	21.18.1.2 Print button
	Table 21-10. Nondefault Properties of the Print Button
	21.18.1.3 Cancel button
	Table 21-11. Nondefault Properties of the Cancel Button

	21.18.2 Create the Code Behind the UserForm
	21.18.2.1 The Declarations section
	Example 21-5. Module-Level Declarations in the UserForm's Declarations Section
	21.18.2.2 Cancel button code
	Example 21-6. The Cancel Button's Click Event Handler
	21.18.2.3 Print button code
	Example 21-7. The cmdPrint_Click Procedure
	21.18.2.4 The Form's Initialize event
	Example 21-8. The UserForm's Initialize Event Procedure
	21.18.2.5 The PrintCharts procedure
	Example 21-9. The PrintSelectedCharts Procedure

	21.19 Example: Setting Data Series Labels
	
	Figure 21-33. A data label in edit mode
	Figure 21-34. Set Data Labels dialog
	Figure 21-35. DataSheet
	Example 21-10. The Declarations Section of the basDataLabels Code Module
	Example 21-11. The LabelDataSeries Procedure
	Example 21-12. The Initialize Event Procedure
	Example 21-13. The Option Buttons' Click Events
	Example 21-14. The cmdCancel and cmdSetLabels Click Events
	Example 21-15. The DoDataLabels Procedure
	Example 21-16. The cmdUndo_Click Event Procedure

	Chapter 22. Smart Tags
	22.1 What Are Smart Tags?
	
	Figure 22-1. The smart tag actions menu
	Figure 22-2. A smart tag in Excel XP

	22.2 SmartTagRecognizer Object
	22.3 SmartTag Object
	22.4 SmartTagAction Object
	22.5 SmartTagOptions Object

	Part IV: Appendixes
	Appendix A. The Shape Object
	A.1 What Is the Shape Object?
	
	Figure A-1. The Shape-related objects

	A.2 Z-Order
	
	Figure A-2. Illustrating z-order

	A.3 Creating Shapes
	
	Table A-1. MsoAutoShapeType Constants (and Values)
	Example A-1. Displaying Each AutoShape
	Example A-2. The Delay Procedure

	A.3.1 The TextFrame Object
	Example A-3. The AddRectangle Procedure

	A.3.2 The FillFormat Object
	A.3.3 Examples
	Example A-4. DrawSine2, to Generate a Dampened Sine Curve of Small Stars
	Figure A-3. A dampened sine wave of stars
	Example A-5. Code to Produce a Random Series of Stars
	Figure A-4. Random stars spelling a name
	Example A-6. The DrawHypocycloid Procedure
	Figure A-5. A hypocycloid

	A.4 Diagram, DiagramNode, and DiagramNodeChildren Objects
	
	Figure A-6. A diagram
	Figure A-7. The Diagram dialog box
	Figure A-8. The Diagram object and its children
	Table A-2. Members of the Diagram object
	Table A-3. Members of the DiagramNode object
	Table A-4. Members of the DiagramNodeChildren object

	Appendix B. Getting the Installed Printers
	
	
	Example B-1. The GetInstalledPrinters Procedure
	Example B-2. Calling the GetInstalledPrinters Procedure
	Figure B-1. Installed printers

	Appendix C. Command Bar Controls
	C.1 Built-in Command-Bar Controls

	Appendix D. Face IDs
	
	
	Figure D-1. FaceIDs for icons 0 -799
	Figure D-2. FaceIDs for icons 800 -1599
	Figure D-3. FaceIDs for icons 1600 -2399
	Figure D-4. FaceIDs for icons 2400 -3199
	Figure D-5. FaceIDs for icons 3200 -3399

	Appendix E. Programming Excelfrom Another Application
	E.1 Setting a Reference to the Excel Object Model
	
	Figure E-1. The References dialog box

	E.2 Getting a Reference to the Excel Application Object
	E.2.1 An Alternative Approach
	E.2.1.1 The CreateObject function
	E.2.1.2 The GetObject function
	E.2.1.3 No object library reference

	Appendix F. High-Level and Low-Level Languages
	F.1 BASIC
	F.2 Visual Basic
	F.3 C and C++
	F.4 Visual C++
	F.5 Pascal
	F.6 FORTRAN
	F.7 COBOL
	F.8 LISP

	Appendix G. New Objects in Excel XP
	
	
	Figure G-1. The Error Checking tab

	Properties
	Figure G-2. The Watch Window

	Colophon

