

Table of Contents
Index
Full Description
Reviews
Reader reviews
Errata

XPath and XPointer

John E. Simpson
Publisher: O'Reilly
First Edition August 2002
ISBN: 0-596-00291-2, 224 pages

Referring to specific information inside an XML document is a little like
finding a needle in a haystack. XPath and XPointer are two closely related
languages that play a key role in XML processing by allowing developers
to find these needles and manipulate embedded information. By the time
you've finished XPath and XPointer, you'll know how to construct a full
XPointer (one that uses an XPath location path to address document
content) and completely understand both the XPath and XPointer features it
uses.

 1

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&mode=2
http://www.oreilly.com/catalog/xpathpointer/desc.html
http://www.oreilly.com/catalog/xpathpointer/reviews.html
http://www.oreilly.com/cgi-bin/reviews?bookident=xpathpointer
http://www.oreilly.com/catalog/xpathpointer/errata/
http://www.ora.com/catalog/xpathpointer/

Table of Content
Table of Content ... 2
Preface... 4

Who Should Read This Book?.. 4
Who Should Not Read This Book?... 4
Organization of the Book.. 5
Conventions Used in This Book ... 5
Comments and Questions ... 6
Acknowledgments... 7

Chapter 1. Introducing XPath and XPointer ... 8
1.1 Why XPath and XPointer?.. 8
1.2 Antecedents/History.. 9
1.3 XPath, XPointer, and Other XML-Related Specs .. 12
1.4 XPath and XPointer Versus XQuery .. 15

Chapter 2. XPath Basics ... 17
2.1 The Node Tree: An Introduction... 17
2.2 XPath Expressions .. 18
2.3 XPath Data Types ... 24
2.4 Nodes and Node-Sets.. 27
2.5 Node-Set Context.. 38
2.6 String-Values .. 40

Chapter 3. Location Steps and Paths... 43
3.1 XPath Expressions .. 43
3.2 Location Paths... 45
3.3 Location Steps... 48
3.4 Compound Location Paths Revisited.. 63

Chapter 4. XPath Functions and Numeric Operators.. 64
4.1 Introduction to Functions.. 64
4.2 XPath Function Types... 66
4.3 XPath Numeric Operators... 92

Chapter 5. XPath in Action... 95
5.1 XPath Visualiser: Some Background.. 95
5.2 Sample XML Document ... 97
5.3 General to Specific, Common to Far-Out ... 99

Chapter 6. XPath 2.0... 122
6.1 General Goals.. 123
6.2 Specific Requirements .. 126

Chapter 7. XPointer Background.. 141
7.1 XPointer and Media types... 141
7.2 Some Definitions .. 143
7.3 The Framework... 146

 2

7.4 Error Types ... 147
7.5 Encoding and Escaping Characters in XPointer ... 148

Chapter 8. XPointer Syntax .. 153
8.1 Shorthand Pointers .. 153
8.2 Scheme-Based XPointer Syntax ... 154
8.3 Using XPointers in a URI ... 163

Chapter 9. XPointer Beyond XPath .. 165
9.1 Why Extend XPath?.. 165
9.2 Points and Ranges ... 167
9.3 XPointer Extensions to Document Order ... 174
9.4 XPointer Functions ... 178

Appendix A. Extension Functions for XPath in XSLT .. 187
A.1 Additional Functions in XSLT 1.0... 187
A.2 EXSLT Extensions... 188

Colophon... 197

 3

Preface
XML documents contain regular but flexible structures. Developers can use those
structures as a framework on which to build powerful transformative and reporting
applications, as well as to establish connections between different parts of documents.
XPath and XPointer are two W3C-created technologies that make these structures
accessible to applications. XPath is used for locating XML content within an XML
document; XPointer is the standard for addressing such content, once located. The two
standards are not typically used in isolation but in support of two critical extensions to the
core of XML: Extensible Stylesheet Language Transformations (XSLT) and XLink,
respectively. They are also finding wide use in other applications that need to reference
parts of documents. These two closely related technologies provide the underpinning of
an enormous amount of XML processing.

Who Should Read This Book?

Presumably, if you're browsing a book like this, you already know the rudiments of XML
itself. You may have experimented with XSLT but, if so, haven't completely mastered it.
(You can't do much in XSLT without first becoming comfortable with at least the basics
of XPath.) Similarly, you may have experimented with XLinks; in this case, you've
probably focused on linking to entire documents other than the one containing the link.
XPointer will be your tool of choice for linking to portions of documents — external to or
within the document where the XLink reference is made.

As support for XPath is integrated into the Document Object Model (DOM), DOM
developers may also find XPath a convenient alternative to walking through document
trees. Finally, developers interested in hypertext and other applications where references
may have to cross node boundaries will find a thorough explanation of XPointer, the
leading technology for creating those references.

You need not be an XML document author or developer to read this book. The XPath
standard is fairly mature, and therefore is already incorporated in a number of high-level
tools. XPointer, by contrast, is not yet a final standard; for this reason, the use of
XPointers will probably be limited to experimental purposes in the short term.

Regardless of whether you're coming at the subject as primarily a document author or
designer, or as a developer, XPath and XPointer can be revisited as often as you need it:
for reference or as a refresher.

Who Should Not Read This Book?

If you don't yet understand XML (including XML namespaces) and have never looked at
XSLT, you probably need to start with an XML book. John E. Simpson's Just XML
(Prentice-Hall PTR) and Erik Ray's Learning XML (O'Reilly & Associates) are both good
places to start.

 4

Organization of the Book

Chapter 1 introduces you to the foundations of XPath and XPointer, and where they're
used.

Chapter 2 gets you started with XPath's node tree model for documents and XPath
syntax, as well as the set of node types accessible in XPath.

Chapter 3 moves deeper into XPath, detailing the use of XPath axes, node tests, and
predicates.

Chapter 4 explains the tools XPath offers for manipulating content once it has been
located.

Chapter 5 demonstrates XPath techniques with over 30 examples using a wide variety of
XPath parts.

Chapter 6 examines the upcoming 2.0 version of XPath, including new features and
interoperability issues.

Chapter 7 explains XPointer's perspective on XML documents and how its use in URLs
requires some changes from basic XPath.

Chapter 8 explains the details of using XPointer syntax, including "bare names," child
sequences, and interactions with namespaces.

Chapter 9 delves deeper into XPointer, exploring the techniques XPointer offers for
referencing points and ranges of text, not just nodes.

Conventions Used in This Book

The following font conventions are used throughout the book:

Constant width is used for:

• Code examples and fragments
• Anything that might appear in an XML document, including element names, tags,

attribute values, entity references, and processing instructions
• Anything that might appear in a program, including keywords, operators, method

names, class names, and literals

Constant-width bold is used for:

• User input
• Signifying emphasis in code statements

 5

Constant-width italic is used for:

• Replaceable elements in code statements

Italic is used for:

• New terms where they are defined
• Pathnames, filenames, and program names
• Host and domain names (www.xml.com)

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

Please note that XML (and therefore XPath and XPointer) is case sensitive. Therefore, a
BATTLEINFO element would not be the same as a battleinfo or BattleInfo element.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/xpathpointer

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly
Network, see the O'Reilly web site at:

http://www.oreilly.com

 6

http://www.oreilly.com/catalog/xpathpointer
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

Acknowledgments

It's almost laughable that any technical book has just a few names on the cover, if that
many. Such books are always the product of many minds and talents being brought to
bear on the problem at hand.

For their help with XPath and XPointer, I am especially indebted to a number of
individuals. Simon St.Laurent, my editor, has for years been a personal hero; I was
flattered that he asked me to write the book in the first place and am grateful for his
patience and support during its development. I came to XPath in particular by way of
XSLT, and for this reason I happily acknowledge the implicit contributions to this book
from that standard's user community, especially (in alphabetical order): Oliver Becker,
David Carlisle, James Clark, Bob DuCharme, Tony Graham, G. Ken Holman, Michael
Kay, Evan Lenz, Steve Muench, Dave Pawson, Wendell Piez, Sebastian Rahtz, and Jeni
Tennison. J. David Eisenberg, Evan Lenz, and Jeni Tennison served as technical
reviewers during the book's final preproduction stage; words cannot express how grateful
I am for their patience, thoroughness, and good humor. Acknowledging the (unwitting or
explicit) help of all those people does not, of course, imply that they're in any way
responsible for the content of this book; errors and omissions are mine and mine alone.

I am also grateful to my colleagues and superiors in the City of Tallahassee's Public
Works and Information Systems Services departments for their support during the writing
of XPath and XPointer. They have endured far more than their deserved share of blank,
preoccupied stares from me over the last few months.

Finally, to my wife Toni: to paraphrase Don Marquis's dedication to his Archie and
Mehitabel, thanks "for Toni knows what/and Toni knows why."

 7

Chapter 1. Introducing XPath and XPointer
The XPath and XPointer specifications promulgated by the World Wide Web Consortium
(W3C) aim to simplify the location of XML-based content. With software based on those
two specs, you're freed of much of the tedium of finding out if something useful is in a
document, so you can simply enjoy the excitement of doing something with it.

Before getting specifically into the details of XPath or XPointer, though, you should have
a handle on some concepts and other background the two specs have in common. Don't
worry, the details — and there are enough, it seems, to fill a phone directory (or this
book, at least) — are coming.

1.1 Why XPath and XPointer?

Detailed answers to the following questions are implicit throughout this book and explicit
in a couple of spots:

Why should I care about XPath and XPointer? What do they even do?

To answer them briefly for now, consider even a simple XML document, such as this:

<house_pet_hazards>
 <hazard type="cleanup">
 <name>hairballs</name>
 <guilty_party species="cat">Dilly</guilty_party>
 <guilty_party species="cat">Nameless</guilty_party>
 <guilty_party species="cat">Katie</guilty_party>
 </hazard>
 <hazard type="cleanup">
 <name>miscellaneous post-ingestion surprises</name>
 <guilty_party species="cat">Dilly</guilty_party>
 <guilty_party species="cat">Katie</guilty_party>
 <guilty_party species="dog">Kianu</guilty_party>
 <guilty_party species="snake">Mephisto</guilty_party>
 </hazard>
 <hazard type="phys_jeopardy">
 <name>underfoot instability</name>
 <guilty_party species="cat">Dilly</guilty_party>
 <guilty_party species="snake">Mephisto</guilty_party>
 </hazard>
</house_pet_hazards>

Even so simple a document as this opens the door to dozens of potential questions, from
the obvious ("Which pets have been guilty of tripping me up as I walked across the
room?") to the non-obvious, even baroque ("Which species is most likely to cause a
problem for me on a given day?" and "For hazards requiring cleanup, is there a
correlation between the species and the number of letters in a given pet's name?"). For
real-world XML applications — the ones inspiring you to research XPath/XPointer in the
first place — the number of such practical questions might be in the thousands.

 8

XPath provides you with a standard tool for locating the answers to real-world questions
— answers contained in an XML document's content or hidden in its structure. For its
part, XPointer (which in part is built on an XPath foundation) provides you with standard
mechanisms for creating references to parts of XML documents and using them as
addresses.

On a practical level, if you know and become comfortable with XPath, you'll have
prepared yourself for easy use not only of XPointer but also of numerous other XML-
related specifications, notably Extensible Stylesheet Language Transformations (XSLT)
and XQuery. Knowing XPointer provides you with a key to a smaller castle (the XLink
standard for advanced hyperlinking capabilities within or among portions of documents)
but without that key the door is barred.

1.2 Antecedents/History

An interesting portion of many W3C specs is the list of non-normative (or simply
"other") references at the end. After wading through all the dry prose whose overarching
purpose is the removal of ambiguity (sometimes at the expense of clarity and terseness),
in this section you get to peek into the minds and personalities of the specs' authors. (The
"non-normative" says, in effect, that the resources listed here aren't required reading —
although they may have profoundly affected the authors' own thinking about the subject.)

The XPath specification's "other references," without exception, are other formally
published standards from the W3C or other (quasi-)official institutions. But XPath, as
you will see, is a full-blown standard (the W3C refers to these as "recommendations").
XPointer is still a bit ragged around the edges at the time of this writing, and its non-
normative references (Appendix A.2 of the XPointer xpointer() Scheme) are consequently
more revealing of the background. This is especially useful, because there is some
overlap in the membership of the W3C Working Groups (WGs) that produced XPointer
and XPath.

Following is a brief look at a few of the most influential historical antecedents for XPath
and XPointer.

1.2.1 DSSSL

The Document Style Semantics and Specification Language (DSSSL) was developed as a
means of defining the presentation characteristics of SGML documents. Based
syntactically on a programming language called Scheme, DSSSL does for SGML roughly
what XSLT does for XML: it identifies for a DSSSL processor portions of the structure
of an input document and how to behave once those portions are located.

Of particular interest in relation to this book's subject matter is DSSSL's core query
language. This is the portion of a DSSSL instruction that locates content of a particular
kind in an SGML document. For instance:

 9

(element bottle
 [...instructions...])

tells the processor to follow the steps outlined in [...instructions...] for each
occurrence of a bottle element in the source document. You can also navigate to various
portions of the source document based on context. For example, the following starts with
the current node (the portion of the source document with which the processor is
currently working) to locate the nearest packaging ancestor:

(ancestor packaging (current-node)
 [...instructions...])

An ancestor is the parent of a given node, or that parent's parent, and so on up the tree of
nodes to the document root. The concepts of a tree of nodes, ancestors, children, and the
like all made their way eventually into XPath.

1.2.2 XSL

In August 1997, even before XML 1.0 became a W3C Recommendation itself, the W3C
received a first stab at a language for describing how an XML documents contents should
be displayed, such as in a web browser. The initial proposal called for the creation of the
Extensible Stylesheet Language (XSL). The W3C began work on its own version of XSL
in mid-1998, and the complete XSL only reached Recommendation status in October
2001. Along the way, its editors recognized its complex nature: like DSSSL, XSL
included both a language for locating content in a source document and a language for
describing processor behavior upon locating that content.

The principal editor of the XSL specification was James Clark, who had previously
developed the widely used Jade DSSSL processor. Unsurprisingly, then, XSL could be
characterized as a DSSSL wolf in an XML sheep's clothing. Taken together, the
specification of which portion of the source tree an instruction referred to, and the
instruction itself, were referred to as construction rules. The implication of this term was
that for a given bit of source tree content, the XSL stylesheet would construct a particular
result. A simple XSL construction rule might look something like this:

<rule>
 <target-element type="bottle"/>
 <p font-size="12pt">
 <children/>
 </p>
</rule>

The XSL processor would, for each occurrence of a bottle element in the source tree,
construct a resulting p element with the indicated type attribute, then the processor
would proceed to handle any children of that p element. (Elsewhere in the stylesheet,
presumably, would be construction rules describing what to do with these children.)

 10

One problem with XSL, as you can see above, is that it indiscriminately mixed elements
from its own vocabulary (such as rule, target-element, and children) with those
from the resulting documents (p, in this example). This was a perfect case for the use of
namespaces, which XSL integrated when that specification was ready.

XSL went through a couple of Working Draft iterations before a light bulb went on over
the editors heads: the ability to locate content in an XML source tree fit a general-purpose
need, not only for XSL transformations from source to result but also for other
applications, such as XPointer and eventually XQuery. The W3C eventually split the
original XSL project into XSLT and XSL-Formatting Objects (XSL-FO, covered in the
main XSL specification), and XPath emerged as a separate entity from XSLT soon after.
XSLT and XPath reached Recommendation status in late 1999, well ahead of the rest of
XSL.

1.2.3 TEI

The venerable and influential Text Encoding Initiative (TEI) first appeared in 1994 as a
joint product of three professional/academic bodies: the Association for Computers and
the Humanities (ACH), the Association for Computational Linguistics (ACL), and the
Association for Literary and Linguistic Computing (ALLC).

An authoritative list of references on the TEI is provided at
http://www.uic.edu/orgs/tei. As one of the resources there notes, the
1994 publication of "Guidelines for Text Encoding and Interchange"
followed five years of work — venerable indeed.

TEI's main product was a series of several hundred "textual feature definitions" in the
form of extensible SGML elements and attributes. With some exceptions, these SGML-
based features are readily understandable by anyone familiar with XML DTDs. Among
the supplementary tagsets provided is a group whose purpose is to establish links from
one portion of an SGML document to another within the same document or from one
SGML document to a completely separate one. (If this already sounds familiar, no
surprise there: these concepts later were carried over not just to the relatively recent
XPath and XPointer, but much earlier to HTML itself.)

Particularly important for XPath and XPointer was TEI's notion of extended pointers. A
regular TEI link or cross-reference depended on such language features as the SGML
equivalent of XML's ID- and IDREF-type attributes for its operation. Extended pointers
went further, permitting you to locate content on the basis of the content's markup
structure. As a TEI tutorial on "Cross-References and Links" (at http://www.tei-
c.org/Lite/U5-ptrs.html) puts it:

In this language, locations are defined as a series of steps, each one
identifying some part of the document, often in terms of the locations
identified by the previous step. For example, you would point to the third
sentence of the second paragraph of chapter two by selecting chapter two

 11

http://www.uic.edu/orgs/tei
http://www.tei-c.org/Lite/U5-ptrs.html
http://www.tei-c.org/Lite/U5-ptrs.html

in the first step, the second paragraph in the second step, and the third
sentence in the last step. A step can be defined in terms of SGML concepts
(such as parent, descendent, preceding, etc.) or, more loosely, in terms of
text patterns, word, or character positions.

Without this essential concept, it's doubtful that XPath and XPointer would have emerged
in the form they ultimately adopted.

Note that the most specific form of HTML linking possible depends
on the presence of named targets in the resource to which you're
linking. The smartest HTML link doesn't have any intelligence
remotely like that described in the above quotation.

1.2.4 Intermedia

Even before work began on the TEI Guidelines, various individuals at Brown University
had been exploring the possibilities of what they called hypertext. (The term itself was
coined in the 1960s by Ted Nelson, who by 1968 was an instructor at Brown.) In 1988,
the group published "Intermedia: The Concept and the Construction of a Seamless
Information Environment" in the professional journal IEEE Computer.

Intermedia was an ambitious research project that came, in time, to include such features
as text and graphics editors, a timeline editor, and so on. One of its crucial features was
dubbed the "Web view." (Remember, this was in the mid- to late 1980s. A capital-W
Web existed in almost no one else's mind at the time.)

The thorny problem that Intermedia's Web view attempted to tackle was the possibility of
becoming "lost in hyperspace." As the number of hypertext documents (and the points
within them) multiplied, the number of possible links among them quickly grew out of
control — to the point of unintelligibility.

The Web view's seminal contribution to the future of hypertext media — certainly as
codified in XPath and XPointer — was its provision for considering only the local
context. Instead of trying to deal with all possible links from a given point to all other
points, this local map view of the hypertext world allowed you to focus on a single (albeit
constantly shifting) path: start at A, then proceed to B (which shares some relationship
with A), then to C, and so on. As you will see by the end of this book, while
concentrating on individual paths causes you to lose sight of the "big picture," it also
enables you to get from any given point to any other. (Tellingly, Intermedia itself
eventually dropped support for the big-picture "global maps," having learned they were
so complicated that no one wanted to use them anyway.)

1.3 XPath, XPointer, and Other XML-Related Specs

It's highly unlikely, if you're at the point of wanting to learn about XPath and XPointer,
that you'll be surprised by one ugly reality: everything in XML seems to hinge on

 12

everything else. For a brief period of a year or two, you could pick up a couple of
general-purpose books on XML and learn everything you needed to know about the
subject; that time is long gone.

So let's pretend that XML as a whole is represented graphically by one of Intermedia's
global maps. It's a mess, isn't it? There's no way to figure it all out, even if by "it" you just
mean that part of it relating to XPath and XPointer — or so it seems. But let's narrow the
focus a bit, following the Intermedia Web view's local-map approach.

Let's start with XPath. Successfully getting your mind around XPath currently requires
that you have some knowledge of XML itself (including such occasionally overlooked
little dark corners as ID-type attributes and whitespace handling). It also requires that you
"get" at least the rudiments of XML namespaces.[1]

[1] Understanding certain XPath features seems to presume familiarity with such non-XML issues as how computers
perform floating-point arithmetic and the dozens of ways in which legitimate Uniform Resource Identifiers (URIs) may
be formed. I'd argue, though, that you don't need an intimate, profound familiarity with those issues — just some
common sense.

XPointer is a bit more complicated. First, it's built principally on an XPath foundation.
While it's possible to use XPointer with no knowledge at all of XPath, the range of
applications in which you can do so is quite limited.

Second, XPointers themselves are used by the XLink standard for linking from one XML
resource to another (in the same or a different document). You can come to understand
how to use XPointers quite completely without ever actually using them, and hence
without any working knowledge of XLink; nonetheless, an elementary grasp of at least
basic XLink terminology and syntax is necessary for true understanding.

Third, a couple of XML-related standards — XML Base and the XML Infoset — are
referenced by the XPointer spec but don't require that you understand much about them
to effectively use XPointer.

Finally, as you will see, an ability to use XPointer depends to a certain extent on a
number of non-XML standards (particularly, Internet media types, URIs, and character
encodings).

Don't panic; I'll cover what you need to know of these more-obscure
standards when the need arises.

In short, the route to XPath and XPointer mastery might look something like Figure 1-1.

Figure 1-1. Interdependencies among XML-related standards

 13

http://safari.oreilly.com/
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=13

In this diagram, the connections you really have to be concerned with are the ones
depicted with solid lines; the connections — and the one box — depicted with dashed
lines will be of less critical concern.

Intentional (and Temporary) Oversight
Not shown in Figure 1-1 is the 800-pound gorilla of XML standards, XML
Schema. The current version of XPath is already being revised to make the
collision between it and XML Schema less painful, at least in theory. This issue
is discussed at greater length in Chapter 6.

XPointer knows very little of XML Schema, though some of its parts can work
with ID values defined in XML Schema. Beyond that, the future is open. The
best we can hope at this point is that XML Schema will have some (ideally,
some pleasant) effect on XPointer.

1.3.1 Specs Dependent on XPath and XPointer

The other side — not what you need to know to use XPath and XPointer, but what you
need to know XPath and XPointer for — is rich. (One of this book's early reviewers said
that she gets "quite excited" by the range. I'm not sure I'd go that far, but I take her point.)
Here's a sampling.

First, XPath. As you already know from what I've covered, you can use XPath to
leverage yourself into practical use of XSLT, XPointer, and XQuery. XPath syntax is also
used in the following standards, which need to refer to portions of XML documents:

• XForms (current version at http://www.w3.org/TR/xforms/)
• The Document Object Model (DOM), level 3 (see http://www.w3.org/TR/DOM-

Level-3-XPath/xpath.html)
• XML Schema (see http://www.w3.org/TR/xmlschema-1/, particularly Section

3.11)

XPointer is more of a special-purpose tool than XPath and its range of usefulness is
therefore narrower. You already know about its usefulness to XLink. However, XPointer

 14

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=13
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=39
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/DOM-Level-3-XPath/xpath.html
http://www.w3.org/TR/DOM-Level-3-XPath/xpath.html
http://www.w3.org/TR/xmlschema-1/

is also at the heart of the XInclude spec for incorporating fragments of one document
within another. You can find the current version of XInclude at
http://www.w3.org/TR/xinclude/.

1.4 XPath and XPointer Versus XQuery

To get one other important question out of the way immediately: XPath and XPointer are
not XQuery. The latter is a recent addition to the (rather crowded) gallery of the W3C's
XML-related standards. Its purpose is to provide to XML-based data stores some (ideally
all) of the advantages of Structured Query Language (SQL) in the relational-database
world. In SQL, a very simple query might look something like this:

SELECT emp_id, emp_name
FROM emp_table
WHERE emp_id = "73519"

As you can see, this comprises a straightforward mix of SQL keywords (shown here in
uppercase), the names of relational tables and fields, operators (such as the equals sign),
and literal values (such as 73519). The result of "running" such a query is a list, in table
form (that is, rows and columns), of data values.

The XQuery form of the above SQL query might look as follows (note in particular the
relationship between the above WHERE clause and the boldfaced portion of the XQuery
query):

{for $b in document("emp_table.xml")//employee[emp_id = "73519"]
 return
 <p>{ emp_id }{ emp_name }</p>
}

The result of "running" this query is a well-formed XML document or document
fragment, such as:

<p>
 <emp_id>73519</emp_id>
 <emp_name>DeGaulle,Charles</emp_name>
</p>

XQuery is still wending its way through the sometimes-tortuous route prescribed for all
W3C specifications; at the time of this writing, it's still a Working Draft, dated April
2002. A number of controversies swirl about it. First is that, while its equivalent of the
SQL WHERE clause is based on XPath, it's not quite XPath as you will come to understand
it. (The XPath-based portion of the above XQuery statement is in boldface.) Second,
XQuery's approach to returning an XML result from an XML source conflicts with the
approach taken by the XSLT spec for the same purpose. And third is the XQuery syntax
itself, which though vaguely resembling XML,[2] is not exactly XML. The "meaning" of
an XQuery query is bound up not in elements and attributes but in special element text
content delimited by curly braces (the { and } characters).

 15

http://www.w3.org/TR/xinclude/
http://safari.oreilly.com/

[2] For example, the XQuery snippet here includes a <p> and </p> start tag/end tag pair.

Now, there are valid reasons for not using pure XML syntax in general-purpose
languages, such as XQuery and (as you will see) XPath and XPointer. Chief among these
reasons — the reason why these specs' authors almost always drop the use of purely
XML-based syntax after first considering it — is that the verbosity is overwhelming. For
instance, the W3C has prepared a Working Draft version (dated, as of this writing, June
2001) of something called XQueryX: a purely XML syntax representation of XQuery
queries. Section 3 of this document provides examples of XQuery queries and their
XQueryX counterparts; a typical XQuery query takes up seven lines, while the equivalent
XQueryX form is 57 lines long.

If you're interested in seeing some of these rather gruesome (in my
opinion) examples for yourself, you can find the current version of
the XQueryX standard at http://www.w3.org/TR/xqueryx.

Another problem with using purely XML syntax for general-purpose applications is
namespaces. If queries (or path/pointer language expressions) had to use XML syntax,
they'd need to include namespace qualifications to distinguish the queries, paths, and
pointers from the surrounding document's content, greatly increasing the complexity of
any document that needed to use them. That's why XPath and XPointer expressions are
served up in attribute values and why XQuery's counterparts appear in element content.

I don't mean to imply here, as you will see, that you can ignore namespace issues in
constructing path and pointer expressions. For instance, if you wish to locate an element
with a particular name in a document, you must still carry — at least in the back of your
head — the question, "Do I mean the name and its namespace prefix, if one, or just the
name itself?" My point here relates strictly to the syntax of the general-purpose
"querying" language itself. That said, XQuery's use of specially delimited and formatted
element content seems to me to fly in the face of XML's classic emphasis on supplying
meaning via markup (as opposed to embedding it in text strings outside the markup), in
not entirely satisfactory ways.

 16

http://www.w3.org/TR/xqueryx

Chapter 2. XPath Basics
Chapter 1 provided sketchy information about using XPath. For the remainder of the
book, you'll get details aplenty. In particular, this chapter covers the most fundamental
building blocks of XPath. These are the "things" XPath syntax (covered in succeeding
chapters) enables you to manipulate. Chief among these "things" are XPath expressions,
the nodes and node-sets returned by those expressions, the context in which an expression
is evaluated, and the so-called string-values returned by each type of node.

2.1 The Node Tree: An Introduction

You'll learn much more about nodes in this chapter and the rest of the book. But before
proceeding into even the most elementary details about using XPath, it's essential that
you understand what, exactly, an XPath processor deals with.

Consider this fairly simple document:

<?xml-stylesheet type="text/xsl" href="battleinfo.xsl"?>
<battleinfo conflict="WW2">
 <name>Guadalcanal</name>
 <!-- Note: Add dates, units, key personnel -->
 <geog general="Pacific Theater">
 <islands>
 <name>Guadalcanal</name>
 <name>Savo Island</name>
 <name>Florida Islands</name>
 </islands>
 </geog>
</battleinfo>

As the knowledgeable human eye — or an XML parser — scans this document from start
to finish, it encounters signals that what follows is an element, an attribute, a comment, a
processing instruction (PI), whatever. These signals are of course the markup in the
document, such as the start and end tags delimiting the elements.

XPath functions at a higher level of abstraction than this simple kind of lexical analysis,
though. It doesn't know anything about a document's tags and thus can't communicate
anything about them to a downstream application. What it knows about, and knows about
intimately, are the nodes that make up the document: the discrete chunks of information
encapsulated within and among the markup. Furthermore, it recognizes that these chunks
of information bear a relationship to one another, a relationship imposed on them by their
physical arrangement within the document. (such as the successively deeper nesting of
elements within one another) Figure 2-1 illustrates this node-tree view of the above
document as seen by XPath.

Figure 2-1. Above XML document represented as a tree of nodes

 17

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=9
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=17

There a few things to note about the node tree depicted in Figure 2-1:

• First, there's a hierarchical relationship among the different "things" that make up
the tree. Of course, all the nodes are contained by the document itself (represented
by the overall figure). Furthermore, many of the nodes have "offshoot" nodes.
The battleinfo element sits on top of the outermost name element, the comment,
and the geog element (which are all in turn subordinate to battleinfo).

• Some discrete portions of the original document contribute to the hierarchical
nature of the tree. The elements (solid boxes) and their offspring — subordinate
elements, text strings (dashed boxes), and the comment — are connected by solid
lines representing true hierarchical relationships. Attributes, on the other hand,
add nothing to the structure of the node tree (although they do have relationships,
depicted with dotted-dashed lines, to the elements that define them). And the xml-
stylesheet PI at the very top of the document is connected to nothing at all.

• Finally, most subtly yet most importantly, there is not a single scrap of markup in
this tree. True enough, the element, attribute, and PI nodes all have names that
correspond to bits of the original document's markup (such as the elements' start
and end tags). But there are no angle brackets here. All that the XPath processor
sees is content, stacked inside a tower of invisible boxes. The processor knows
what kind of box each thing is, and if applicable it knows the box's name, but it
does not see the box itself.

2.2 XPath Expressions

 18

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=17

If you've never worked with XPath before, you may be expecting its syntax to be XML-
based. That's not the case, though. XPath is not an XML vocabulary in its own right. You
can't submit "an XPath" to an XML parser — even a simple well-formedness checker —
and expect it to pass muster. That's because "an XPath" is meant to be used as an attribute
value.

Chapter 1 discussed why using XML syntax for general-purpose
languages, such as XPath and XPointer, is impractical. As mentioned
there, the chief reason might be summed up as: such languages are
needed in the context of special-purpose languages, such as XSLT
and XLink. Expressing the general-purpose language as XML would
both make them extremely verbose and require the use of
namespaces, complicating inordinately what is already complicated
enough.

"An XPath"[1] consists of one or more chunks of text, delimited by any of a number of
special characters, assembled in any of various formal ways. Each chunk, as well as the
assemblage as a whole, is called an XPath expression.

[1] Not that you'll see any further references to something by that name, in the spec or anywhere else.

Here's a handful of examples, by no means comprehensive. (Don't fret; there are more
detailed examples aplenty throughout the rest of the book.)

taxcut

Locates an element, in some relative context, whose name is "taxcut"

/

Locates the document root of some XML instance document

/taxcuts

Locates the root element of an XML instance document, only if that element's
name is "taxcuts"

/taxcuts/taxcut

Locates all child elements of the root taxcuts element whose names are "taxcut"

2001

The number 2001

 19

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=9
http://safari.oreilly.com/

"2001"

The string "2001"

/taxcuts/taxcut[attribute::year="2001"]

Locates all child elements of the root taxcuts element, as long as those child
elements are named "taxcut" and have a year attribute whose value is the string
"2001"

/taxcuts/taxcut[@year="2001"]

Abbreviated form of the preceding

2001 mod 100

Calculated remainder after dividing the number 2001 by 100 (that is, the number
1)

/taxcuts/taxcut[@year="2001"]/amount mod 100

Calculated remainder after dividing the indicated amount element's value by 100

substring-before("ill-considered", "-")

The string "ill"

2.2.1 Location Steps and Location Paths

Chapter 3 details both of these concepts. To get you started in XPath, here's a broad
outline.

Most XPath expressions, by far, locate a document's contents or portions thereof.
(Expressions such as the number 2001 and the string "2001" are exceptions; they don't
locate anything, you might say, except themselves.) These pieces of content are located
by way of one or more location steps — discrete units of XPath "meaning" — chained
together, usually, into location paths.

This XPath expression from the above list:

/taxcuts/taxcut

consists of two location steps. The first locates the taxcuts child of the document root
(that is, it locates the root element); the second locates all children of the preceding
location step whose names are "taxcut." Taken together, these two location steps make up
a complete location path.

 20

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23

2.2.2 Expression Syntax

As you can see from the previous examples, an XPath expression can be said to consist of
various components: tokens and delimiters.

2.2.2.1 Tokens

A token, in XPath as elsewhere in the XML world, is a simple, discrete string of Unicode
characters. Individual characters within a token are not themselves considered tokens. If
an XPath expression is analogous to a chemical molecule, the tokens of which it's
composed are the atoms. (And the individual characters, I guess, are the sub-atomic
particles.)

If quotation marks surround the token, it's assumed to be a string. If no quotation marks
adorn the token, an XPath-smart application assumes that the token represents a node
name.[2] I'll have more to say about nodes and their names in a moment and much more to
say about them throughout the rest of the book. For now, though, consider the first
example listed above. The bare token taxcut is the name of a node. If I had put it in
quotation marks, like "taxcut", the XPath expression wouldn't necessarily refer to
anything in a particular document; it would simply refer to a string composed of the
letters t, a, x, c, u, and t: almost certainly not what you want at all.

[2] Depending on the context, such an unquoted token may also be interpreted as a function (covered in Chapter 4), a
node test (see Chapter 3), or of course a literal number instead of a string.

As a special case, a node name can also be represented with an asterisk (*). This serves as
a wildcard (all nodes, regardless of their name) character. The expression taxcut/*
locates all elements that are children of a taxcut element.

You cannot, however, use the asterisk in combination with other
characters to represent portions of a name. Thus, tax* doesn't locate
all elements whose names start with the string "tax"; it's simply
illegal as far as XPath is concerned.

2.2.2.2 Delimiters

Tokens in an XPath expression are set off from one another using single-character
delimiters, or pairs of them. Aside from quotation marks, these delimiters include:

/

A forward slash separates a location step from the one that follows it. While I
introduced location steps briefly above, Chapter 3 will discuss them at length.

 21

http://safari.oreilly.com/
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=29
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23

[and]

Square brackets set off a predicate from the preceding portion of a location step.
Again, detailed discussion of predicates is coming in Chapter 3. For now,
understand that a predicate tests the expression preceding it for a true or false
value. If true, the indicated node in the tree is selected; if false, it isn't.

= , != , < , > , <= , and >=

These Boolean "delimiters" are used in a predicate to establish the true or false
value of the test. Note that when used in an XML document, the markup-
significant < and > characters must appear in their escaped forms to comply with
XML's well-formedness constraints, even when used in attribute values. (For
instance, to use the Boolean less-than-or-equal-to test, you must code the XPath
expression as <=.) While XPath itself isn't expressed as an XML vocabulary,
the documents in which XPath expressions most often appear are XML
documents; therefore, well-formedness will haunt you in XPath just as elsewhere
in the XML world.[3]

[3] Be careful on this issue of escaping the < and > characters. XPath is used in numerous contexts (such as
JavaScript and other scripting languages) besides "true XML"; in these contexts, use of a literal, unescaped
< or > character may actually be mandated.

::

A double colon separates the name of an axis type from the name of a specific
node (or set of nodes). Axes (more in Chapter 3) in XPath, as in plane and solid
geometry, indicate some orientation within a space. In an XPath expression, an
axis "turns the view" from a given starting point in the document. For instance,
the attribute axis (abbreviated @) looks only at attributes of some element or set of
elements.

// , @ , . , and ..

Each of these — the double slash, at sign, period, and double period — is an
abbreviated or shortcut form of an axis or location step. Respectively, these
symbols represent the concepts of descendant-or-self, attribute, self, and parent
(covered fully in Chapter 3).

|

A pipe/vertical bar in an XPath expression functions as a Boolean union operator.
This lets you chain together complete multiple expressions into compound
location paths. Compound location paths are covered at the end of Chapter 3.

(and)

 22

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23
http://safari.oreilly.com/
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23

Pairs of parentheses in XPath expressions, as in most other computer-language
contexts, serve two purposes. They can be used for grouping subexpressions,
particularly in cases where the ungrouped form would introduce ambiguities, and
they can be used to set off the name of an XPath function from its argument list.
Details on XPath functions appear in Chapter 4.

+ , - , * , div , and mod

These five "delimiters" actually function as numeric operators: ways of
combining numeric values to calculate some other value. Numeric operators are
also covered in Chapter 4. Note that the asterisk can be used as either a numeric
operator or as a wildcard character, depending on the context in which it appears.
The expression tax*income multiplies the values of the tax and income elements
and returns the result; it does not locate all elements whose names start with the
string "tax" and end with the string "income."

whitespace

When not appearing within a string, whitespace can in some instances delimit
tokens (and even other delimiters) for legibility, without changing the meaning of
an expression. For instance, the two predicates [@year="2001"] and [@year =
"2001"] are functionally identical, despite the presence in the second case of
blank spaces before and after the =. Because the rules for when you can and can't
use whitespace vary depending on context, I'll cover them in various places
throughout the book.

2.2.2.3 Combining tokens and delimiters into complete expressions

While the rules for valid combinations of tokens and delimiters aren't spelled out
explicitly anywhere, they follow the rules of common sense. (Whether the sense is in fact
common depends a little on how comfortable you are with the concepts of location steps
and location paths.)

For instance, the following is a syntactically illegitimate XPath expression; it also, if you
think a little about it, doesn't make practical sense:

book/

See the problem? First, for those of you who simply want to follow the rules without
thinking about them, you can simply accept as a given that the / (unless used by itself)
must be used as a delimiter between location steps; with no subsequent location step to
the right, it's not separating book from anything.

Second, there's a more, well, let's call it a more philosophical problem. What exactly
would the above expression be meant to say? "Locate a child of the book element
which...." Which what? It's like a sentence fragment.

 23

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=29
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=29

Note the difference here between XPath expressions and their
counterparts in some other "navigational" languages, such as Unix
directory commands and URIs. In these other contexts, a trailing
slash might mean "all children of the present context" (such as a
directory) or "the default child of the present context" (such as a web
document named index.html or default.html). In XPath, few of these
matters are implicit. If you want to get all children of the current
context, follow the slash with something, such as an asterisk
wildcard (to get all named children), as in book/*. Chapter 3
describes other approaches, particularly the use of the node() node
test.

I'll cover these kinds of common-sense rules where appropriate. (See Chapter 3,
especially.)

2.3 XPath Data Types

A careful reading of the previous material about XPath expressions should reveal that
XPath is capable of processing four data types: string, numeric, Boolean, and nodes (or
node-sets).

The first three data types I'll address in this section. Nodes and node-sets are easily the
most important single XPath data type, so I've relegated them to a complete section in
their own right, following this one.

2.3.1 Strings

You can find two kinds of strings, explicit and implicit, in nearly any XPath expression.
Explicit (or literal) strings, of course, are strings of characters delimited by quotation
marks. Now, don't get confused here. As I've said, XPath expressions themselves appear
as attribute values in XML documents. Therefore, an expression as a whole will be
contained in quotation marks. Within that expression, any literal strings must be
contained in embedded quotation marks. If the expression as a whole is contained in
double quotation marks, ", then a string within it must be enclosed in single quotation
marks or apostrophes: '. If you prefer to enclose attribute values in single quotes, the
embedded string(s) must appear in double quotes.

This nesting of literal quotation marks and apostrophes — or vice
versa — is unnecessary, strictly speaking. If you prefer, you can
escape the literals using their entity representations. That is, the
expressions "a string" and "a string" are
functionally identical. The former is simply more convenient and
legible.

 24

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23

For example, in XSLT stylesheets, one of the most common attributes is select, applied
to the xsl:value-of element (which is empty) and others. The value of this attribute is
an XPath expression. So you might see code such as the following:

<xsl:value-of select="fallacy[type='pathetic']"/>

If the string "pathetic" were not enclosed in quotation marks, of course, it would be
considered a node name rather than a string. (This might make sense in some contexts,
but even in those contexts, it would almost certainly produce quite different results from
the quoted form.) Note that the kind of quotation marks used in this example alternates
between single and double as the quoted matter is nested successively deeper.

Explicitly quoted strings aside, XPath also makes very heavy use of what might be called
implicit strings. They might be called that, that is, except there's already an official term
for them: string-values. I will have more to say about string-values later in this chapter.
For now, a simple example should suffice.

Consider the following fragment of an XML document:

<type>logical</type>
<type>pathetic</type>

Each element in an XML document has a string-value: the concatenated value of all text
contained by that element's start and end tags. Therefore, the first type element here has
a string-value of logical; the second, pathetic. An XPath expression in a predicate
such as:

type='logical'

would be evaluated for the two elements, respectively, as:

'logical'='logical'
'pathetic'='logical'

That is, for the first type element the predicate would return the value true; for the
second, false.

2.3.2 Numeric Values

There's no special magic here. A numeric value in XPath terms is just a number; it can be
operated on with arithmetic, and the result of that operation is itself a number. (XPath
provides various facilities for converting numeric values to strings and vice versa.
Detailed coverage of these facilities can be found in Chapter 4.) Formally, XPath
numbers are all assumed to be floating-point numbers even when their explicit
representation is as integers.

 25

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=29

While XPath assumes all numbers to be of floating-point type, you
cannot represent literal numbers in XPath using scientific notation.
For example, many languages allow you to represent the number
1960 as 1.96E3 (that is, 1.96 times 10 to the 3rd power); such a value
in XPath is not recognized as a legitimate number.

Although the XPath specification does not define "numeric-values" for nodes analogous
to their string-values, XPath-aware applications can treat as numeric any string-value that
can be "understood" as numeric. Thus, given this XML code fragment:

<page_ref>23</page_ref>

you can construct an XPath expression such as:

page_ref + 10

This would be understood as 23 (the numeric form of the page_ref element's string-
value) plus 10, or 33.

The XPath specification also defines a special value, NaN, for simple "Is this value a
number?" tests. ("NaN" stands for "not a number.") While the spec repeatedly refers to
something called NaN, it doesn't show you how to use it except as a string (returned by
the XPath string() function, as it happens). If you wanted to locate only those year
elements which had legitimately numeric values, you could use an XPath expression
something like this:

string(number(year)) != "NaN"

This explicitly attempts to convert the string-value of the year element to a number, then
converts the result of that attempt to a string and compares it to the string "NaN."[4] Only
those year elements for which those two values are not equal (that is, only those year
elements whose string-values are not "not a number") will pass.

[4] Note the importance here of quoting the string "NaN." If this code fragment had omitted the quotation marks, the
XPath processor would not be testing for the special NaN value but for the string-value of an element whose name just
happens to be NaN.

The string() function, covered at length in Chapter 4, is extremely
important in XPath. That's not because it's used that much in code —
in my experience it isn't used much at all — rather, its importance is
due to the XPath spec's being rife with phrases such as "...as if
converted to a string using the string() function." As a practical
matter, the string() function's use is implicit in many situations.
From a certain standpoint, you could almost say that all an XML
document's text content is understood by an XPath-aware application
"as if converted to a string using the string() function."

 26

http://safari.oreilly.com/
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=29

2.3.3 Boolean Values

As elsewhere, in XPath a Boolean value is one that equals either true or false. You can
convert a Boolean value to the string or numeric data types, using XPath functions. The
string form of the values true and false are (unsurprisingly) the strings "true" and "false";
their numeric counterparts are 1 and 0, respectively.

Probably the single most useful application of XPath Booleans is in the predicate portion
of a location step. As I mentioned earlier, the predicate tests some candidate node to see
if it fulfills some condition expressed as a Boolean true or false. Thus:

concerto[@key="F"]

locates a concerto element only if its key attribute has a value of "F".

Importantly, as you will see in Chapter 3, the predicate's true or false value can also test
for the simple existence of a particular node. If the node exists, the Boolean value of the
predicate is true; if not, false. So:

concerto[@key]

locates a concerto element only if it has any key attribute at all.

2.4 Nodes and Node-Sets

The fourth and most important data type handled by XPath is the node-set data type.

Let's look first at nodes themselves. A node is any discrete logical something able to be
located by an XPath location step. Every element in a document constitutes a node, as
does every attribute, PI, and so on.

2.4.1 Node Properties

Each node in a document has various properties. I've discussed one of these properties
briefly already — the string-value — and will provide more information about it at the
end of this chapter. The others are its name, its sequence within the document, and its
"family relationships" with other nodes.

2.4.1.1 Node names

Most (but not all) nodes have names. To understand node names, you need to understand
three terms:

qualified name

 27

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23

This term, almost always contracted to "QName," is taken straight from the W3C
"Namespaces in XML" spec, at http://www.w3.org/TR/REC-xml-names. The
QName of a node, in general, is the identifier for the node as it actually appears in
an instance document, including any namespace prefix. For example, an element
whose start tag is <concerto> has a QName of "concerto"; if the start tag were
<mml:concerto>, the QName would be "mml:concerto."

local-name

The local-name of a node is its QName, sans any namespace prefix. If an
element's QName is "mml:concerto," its local-name is "concerto." If there's no
namespace in effect for a given node, its QName and local-name are identical.

expanded-name

If the node is associated with a particular namespace, its expanded-name is a pair,
consisting of the URI associated with that namespace and the local-name.
Because the expanded-name doesn't consider the namespace prefix at all, two
elements, for example, can have the same expanded-name even if their QNames
are different, as long as both their associated namespace URIs (possibly null) and
their local-names are identical. For more information, see Expanded but Elusive
later in this chapter.

These three kinds of name conform to common sense in most cases, for most nodes, but
can be surprising in others. When covering node types, below, I'll tell you how to
determine the name of a node of a given type.

2.4.1.2 Document order

Nodes in a document are positioned within the document before or after other nodes.
Take a look at this sample document:

<?xml-stylesheet type="text/xsl" href="invoice.xsl"?>
<statement acct="112233">
 <history>
 <credits>
 <payment date="2001-09-09" curr="EU">13.99</payment>
 <adjustment date="2001-09-30" curr="USD">12.64</adjustment>
 </credits>
 <debits>
 <fin_chg date="2001-09-09" curr="USD">1.98</fin_chg>
 </debits>
 </history>
 <current>
 <!-- No current charges for this customer? -->
 </current>
</statement>

 28

http://www.w3.org/TR/REC-xml-names
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=20

If you were an XML parser reading this document from start to finish, you'd be following
normal document order. The xml-stylesheet PI comes before any of the elements in
the document, the history element precedes the current element, the fin_chg element
precedes the comment contained by the current element, and so on. Also note that XPath
considers the attributes to a given element to come before that element's children and
other descendants.

This all is pretty much common sense. Be careful when dealing with
attributes, though: XPath considers an element's attributes to be in no
particular document order at all. In the above document, whether the
various date attributes are "before" the corresponding curr
attributes is entirely XPath application dependent. As a practical
matter, most XPath applications will probably be indexing attributes
alphabetically, by their names — so each curr will precede its date
counterpart. But you cannot absolutely count on this behavior.

As you'll see in Chapter 3, under the discussion of axes, it's also possible to access nodes
in reverse document order.

2.4.1.3 Family relationships

XML's strict enforcement of document structure, even under simple well-formedness
constraints, ensures that nodes don't just have a simple document order — even the
"nodes" in a comma-separated values (or other plain text) file do that much — but also a
set of more complex relationships to one another. Some nodes are parents of others
(which are, in turn, children of their parents), and nodes may have siblings, ancestors, and
so on.

Because these family relationships are codified in the concept of XPath axes, I'll defer
further discussion of them until Chapter 3.

2.4.2 Node-Sets

XPath doesn't for the most part deal in nodes, but in node-sets. A node-set is simply a
collection of nodes, related to one another in some arbitrary way by means of an XPath
location step (or full location path). In some cases, sure, a node-set might consist of a
single node. But in most cases — especially when the location step is unqualified by a
predicate — this is almost an accident, an artifact of the XML instance being navigated
via XPath.

Here's a simple XML document:

<publications>
 <book>...</book>
 <book>...</book>
 <book>...</book>
 <magazine>...</magazine>

 29

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23

</publications>

This location path:

/publications/book

returns a node-set consisting of three book elements. This location path:

/publication/magazine

returns a single magazine node. Technically, though, there's nothing inherent in this
location path that forces only a single node to be located. This document just happens to
have a single magazine element, and as a result, the location path locates a node-set that
just happens in this case to consist of a single node.

This concept of node-sets returned by XPath radically departs from the more familiar
counterparts in HTML hyperlinking. Under HTML, a hyperlink "gets" an entire
document. This is true even if the given HTML link uses a fragment identifier, such as
#top or #section1. (The whole document is still retrieved; it's simply positioned within
the browser window in a particular way.) Using XPath, though, what you're manipulating
is in most cases truly not the entire target document, but one or more discrete portions of
it. In this sense, XPath isn't a "pointing-to" tool; it's an extraction tool.[5]

[5] XHTML, the "reformulation as XML" of the older HTML standard, is kind of a special case. Because an XHTML
document is an XML document, it may use XPath-based XPointers in the value of an href attribute. But you can't
assume that a browser, for now, will conform to the expected behavior of a true XPointer-aware application. Browser
vendors don't exactly leap out of the starting gate to adopt new standards.

Also worth noting at this point is that the term node-set carries some implicit baggage of
meaning: like a set in mathematical terms, a node-set contains no duplicate nodes
(although some may have duplicate string-values) and is intrinsically unordered. When
you use XPath to locate as a node-set all elements in a document, there's no guarantee
that you'll get the members of the node-set back in any particular sequence.

2.4.3 Node Types

The kinds of node(-set)s retrievable by XPath cover, in effect, any kind of content
imaginable: not just elements and attributes, but PIs, comments, and anything else you
might find in an XML document. Let's take a look at these seven node types.

Conspicuously missing from the following list of "any kind of
content imaginable" are entity references. There's no such thing as an
"entity reference node," for example. Why not? Because by the time
a document's contents are scanned by an XPath-aware application,
they've already been processed by a lower-level application — the
XML parser itself. All entity substitutions have already been made.
By the same token XPath can't locate a document's XML or DTDs

 30

http://safari.oreilly.com/

can't return to your application any of the contents of an internal
DTD subset, and can't access (for example) tags instead of elements.
XPath, in short, can't "read" a document lexically; it can only "read"
it logically.

(See the short section, Section 2.4.3.8 later in this chapter, for a
comparison of XPath node types with what the Infoset refers to as
"information items.")

2.4.3.1 The root node

Every XML document has one and only one root node. This is the logical something that
contains the entire document — not only the root element and all its contents, but also
any whitespace, comments, or PIs that precede and follow the root element's start and end
tags. This "something" is analogous to a physical file, but there may be no precise
physical file to which the root node refers (especially in the case of XML documents
generated or assembled on the fly and not saved in some persistent form).

In a location path, the root node is represented by a leading / (forward slash) character.
Any location path that starts with / is an absolute location path, instructing the XPath-
aware application, in effect, to start at the very top of the document before considering
the location steps (if any) that follow. The root node does not have an expanded-name. Its
local-name is an empty string.

2.4.3.2 Element nodes

Each element node in the document is composed of the element's start and end tags and
everything in between. (Thus, when you retrieve a document's root element, you're
retrieving everything in the document except any comments and PIs that precede or
follow it.) Consider a simple code fragment:

<year>
 <month monthnum="4">April</month>
 <month monthnum="8">August</month>
 <month monthnum="12">December</month>
 <month monthnum="2">February</month>
 <month monthnum="1">January</month>
 <month monthnum="3">March</month>
 <month monthnum="5">May</month>
 <month monthnum="6">June</month>
 <month monthnum="7">July</month>
 <month monthnum="11">November</month>
 <month monthnum="10">October</month>
 <month monthnum="9">September</month>
</year>

This location path (which says, "Locate all month children of the root year element
whose monthnum attributes have the value 3"):

 31

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=20

/year/month[@monthnum="3"]

selects the sixth month element in the fragment — that is, the element whose contents
(the string "March") are bounded by the <month monthnum="3"> start tag and the
corresponding </month> end tag. To emphasize, and to repeat a point made early in this
chapter: while the physical representation of the element is bounded by its start and end
tags, XPath doesn't have any understanding at all of tags or any other markup. It just gets
a particular invisible box corresponding to this physical representation and holding its
contents. Importantly, though, it selects the element as a single node with various
properties and subordinate objects (a name, a string-value, an attribute with its value).

Note especially that this example does not locate the third month
element. It selects all month elements with the indicated monthnum
attribute value.

You sometimes must take care, when selecting element nodes, not to be confused by the
presence of "invisible whitespace" in their string-values.

Yes, true: all whitespace is invisible. (That's why it's called whitespace, right?) But the
physical appearance of XML documents can trick you into thinking that some whitespace
"doesn't count," even though that's not necessarily true. For instance, consider Figure 2-2,
depicting a greatly simplified version of a document in the same vocabulary we've been
using in this section.

Figure 2-2. An XML document with no whitespace

In this figure, as you can see, there's no whitespace in any of the document's content, only
within element start tags (and not always there). While many real-world XML documents
(especially those that are machine generated) appear this way, it's just as likely that the
documents you'll be excavating with XPath will look like Figure 2-3.

Figure 2-3. The same XML document with whitespace

The human eye tends to ignore the whitespace-only blocks of text (represented with gray
blocks in the figure) in a document like this one, discarding them as insignificant to the
document's meaning. But XML parsers, bound by the XML spec's "all text counts"
constraint, are not free to ignore these scraps of whitespace. (Some parsers may flag the
whitespace as potentially "insignificant," leaving to some higher-order application the
task of ignoring it or not.) So consider now the effect of an XPath expression such as the
following, when applied to the document in Figure 2-3:

 32

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=20
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=20
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=20

/year

This location path doesn't return just the year element node, the month element node and
its attribute. It also returns:

• Some blank spaces, a newline, and some more blank spaces preceding the month
element

• A newline following the month element

Whether this will present you with a problem depends on your specific need. If it is a
problem, there's an XPath function, normalize-space() (covered in Chapter 4), that
trims all leading and trailing whitespace from a given element's content.

In XPath, as in many other XML-related areas, dealing with
whitespace can induce either euphoria or migraines. In addition to
the normalize-space() XPath function covered in Chapter 4, you
should consider the (default or explicit) behavior of XML's own
built-in xml:space attribute, and — depending on your application's
needs — the effects of the XSLT xsl:strip-space and
xsl:preserve-space elements, as well as the
preserveWhiteSpace property of the MSXML Document object (if
you're working in a Microsoft scripting environment).

The local-name of an element node is the name of the element type (that is, its generic
identifier (GI), as it appears in the element's start and optional end tags). Thus, its
expanded-name equals either its local-name (if there isn't a namespace in effect for that
element) or its associated namespace URI paired with the local-name. Consider this code
fragment:

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <html>
 ...
 </html>
 </xsl:template>
</xsl:stylesheet>

All elements in this document whose names carry the xsl: prefix are in the namespace
associated with the URI "http://www.w3.org/1999/XSL/Transform." Thus, the expanded-
name of the xsl:stylesheet element consists of that URI paired with the local-name,
"stylesheet."

Expanded but Elusive
The XPath spec is vague on how exactly the thing called an "expanded-name"

 33

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=29
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=29

should be represented. Those of you obsessed with such matters might wonder,
for example, if it's represented in the form of a simple string concatenation such
as "http://www.w3.org/1999/XSL/Transform:stylesheet" or as a tuple, such as
{"http://www.w3.org/1999/XSL/Transform", "stylesheet"}, or whatever.
As discussed in Chapter 3, there are XPath functions for returning a node's
QName, its local-name, and its namespace URI; tellingly, though, there's none
for returning its expanded-name.

In a note to the XML-DEV mailing list in 1998, the editor of the XPath
specification, James Clark, provided a sample Java function for generating an
expanded-name. (A copy of the note appears on Robin Cover's "XML Cover
Pages," at http://xml.coverpages.org/clarkNS-980804.html.) According to this
code, the expanded-name of a node associated with a namespace consists of the
namespace URI, a "+" character, and the local-name. Thus, the expanded-name
of the xsl:stylesheet element in the above example will be:

http://www.w3.org/1999/XSL/Transform+stylesheet

As it happens, few XPath-aware processors use Clark's algorithm. Instead, they
seem universally to represent the expanded-name as the namespace URI
enclosed in curly braces (the { and } characters), immediately followed by the
local-name. Therefore, you're more likely to encounter:

{http://www.w3.org/1999/XSL/Transform}stylesheet

Whether you can actually count on either result in your own application depends
on whether Clark's algorithm or the latter de facto "standard" — or something
altogether different — is in use by the processor. This shouldn't affect your
XPath processing directly but may be something to watch for if you dig into
implementation internals.

2.4.3.3 Attribute nodes

Attributes, in a certain sense, "belong to" the elements in which they appear, and in the
same sense, they might be thought to adopt the namespace-related properties of those
elements. For instance:

<xsl:template match="/" />

Logically, you might conclude that the match attribute is "in" the same namespace as the
xsl:template element — it does, after all, belong to the same XML vocabulary — and
that it, therefore, has something like an implied namespace prefix.

This isn't the case, though. An attribute's QName, local-name, namespace URI, and
hence, expanded-name are all determined solely on the basis of the way the attribute is
represented in the XML source document. Attributes such as match in the above example
— with no explicit prefix — have a null namespace URI. That is, unprefixed attributes

 34

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23
http://xml.coverpages.org/clarkNS-980804.html

are in no namespace, including the default one; thus, their QName and local-name are
identical.

Note that namespace declarations, which look like attributes (and indeed are attributes,
according to the XML 1.0 and "Namespaces in XML" Recommendations), are not
considered the same as other attributes when you're using XPath. As one example, the
start tag of a typical xsl:stylesheet root element in a typical XSLT stylesheet might
look something like this:

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml">

A location path intended to locate all this element's attributes might be:

/xsl:stylesheet/@*

(As a reminder, the wildcard asterisk here retrieves all attribute nodes, regardless of their
names.) In fact, this location path locates only the version attribute. The xmlns:xsl and
xmlns attributes, being namespace declarations instead of "normal" attributes, are not
locatable as attribute nodes.

If the document referred to by the XPath expression is validated
against a DTD, it may contain more attributes than are present
explicitly — visibly — in the document itself. That's because the
DTD may declare some attributes with default values in the event the
document author has not supplied those attributes explicitly. Always
remember that the "document" to which you're referring with XPath
is the source document as parsed, which may be only more or less
the source document that you "see" when reading it by eye.

2.4.3.4 PI nodes

Processing instructions, by definition, stand outside the vocabulary of an XML document
in which they appear. Nonetheless, they do have names in an XPath sense: the name of a
PI is its target (the identifier following the opening <? delimiter). For this PI:

<?xml-stylesheet type="text/css" href="mystyle.css"?>

the QName and local-name are both xml-stylesheet. However, because a PI isn't
subject to namespace declarations anywhere in a document — PIs, like unprefixed
attributes, are always in no namespace — its namespace URI is null.

The other thing to bear in mind when dealing with PI nodes is that their pseudo-attributes
look like, but are not, real attributes (hence, the "pseudo-" prefix). From an XPath
processor's point of view, everything between the PI target and the closing ?> delimiter is

 35

a single string of characters. In the case of the PI above, there's no node type capable of
locating the type pseudoattribute separate from the href pseudoattribute, for example.
(You can, however, use some of the string-manipulation functions covered in Chapter 4
to tease out the discrete pseudoattributes.)

2.4.3.5 Comment nodes

Each comment in an XML source document may be located independently of the
surrounding content. A comment has no expanded-name at all, and thus has neither a
QName, a local-name, nor a namespace URI.

2.4.3.6 Text nodes

Any contiguous block of text — an element's #PCDATA content — constitutes a text node.
By "contiguous" here I mean that the text is unbroken by any element, PI, or comment
nodes. Consider a fragment of XHTML:

<p>A line of text.
Another line.</p>

The p element here contains not just one but two text nodes, "A line of text." and
"Another line." The intervening br element breaks them up into two. The presence or
absence of whitespace in the #PCDATA content is immaterial. So in the following case:

<p>A line of text.
Another line.</p>

there's still a single text node, which, like a comment, has no expanded-name at all.

2.4.3.7 Namespace nodes

Namespace nodes are the chimeras and Loch Ness monsters of XPath. They have
characteristics of several other node types but at the same time are not "real," but rather
fanciful creatures whose comings and goings are marked with footprints here and there
rather than actual sightings.

The XPath spec says every element in a given document has a namespace node
corresponding to each namespace declaration in scope for that element:

• One for every explicit declaration of a namespace prefix in the start tag of the
element itself

• One for every explicit declaration of a namespace prefix in the start tag of any
containing element

• One for the explicit xmlns= declaration, if any, of a namespace for unprefixed
element/attribute nodes, whether this declaration appears in the element's own
start tag or in that of a containing element

Here's a simple fragment of an XSLT stylesheet:

 36

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=29

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml">

 <xsl:template match="/">
 <html xmlns:xlink="http://www.w3.org/1999/xlink/namespace">
 ...
 </html>
 </xsl:template>

</xsl:stylesheet>

Three explicit namespace declarations are made in this fragment:

• The xsl: namespace prefix is associated (in the xsl:stylesheet element's start
tag) with the XSLT namespace URI, "http://www.w3.org/1999/XSL/Transform."

• The default namespace — that is, for any unprefixed element names appearing
within the xsl:stylesheet element — is associated with the XHTML
namespace, "http://www.w3.org/1999/xhtml."

• The xlink: namespace prefix is associated (in the html element's start tag) with
the namespace URI set aside by the W3C for XLink elements and attributes,
"http://www.w3.org/1999/xlink/namespace."

There's also one other namespace implicitly in effect for all elements
in this, and indeed any, XML document. That is the XML namespace
itself, associated with the reserved xml: prefix. The corresponding
namespace URI for this implied namespace declaration is
"http://www.w3.org/XML/1998/namespace."

The namespace declarations for the xsl: and default namespace prefixes both appear in
the root xsl:stylesheet element's start tag; therefore, they create implicit namespace
nodes on every element in the document — including those for which those declarations
might not seem to make much sense. The html element, for instance, will probably not be
able to make much use of the namespace node associated with the xsl: prefix.
Nonetheless, in formal XPath terms that namespace node is indeed in force for the html
element.

The namespace declaration for the xlink: prefix, on the other hand, is made by a lower-
level element (html, here). Thus, there is no namespace node corresponding to that prefix
for the higher-level xsl:template and xsl:stylesheet elements.

Each namespace node also has a local-name: the associated namespace prefix. So the
local-name of the namespace node representing the XSLT namespace in the above
document is "xsl." When associated with the default namespace, the namespace node's
local-name is empty. The namespace URI of a namespace node, somewhat bizarrely, is
always null.

 37

In XPath, as in most — maybe all — XML-related subjects,
namespaces sometimes seem like more trouble than they're worth.
The basic purpose of namespaces is simple: to disambiguate the
names of elements, and perhaps attributes, from more than one XML
vocabulary when they appear in a single document instance. Yet the
practice of using namespaces leads one down many hall-of-mirrors
paths, with concepts and syntax nested inside other concepts and
syntaxes and folding back on themselves.

As a practical matter, you will typically have almost no use for
identifying or manipulating namespace nodes at all; your documents
will consist entirely of elements and attributes from a single
namespace.

2.4.3.8 XPath node types and the XML Infoset

The XML Information Set (commonly referred to simply as "the Infoset") is a W3C
Recommendation published in October 2001 (http://www.w3.org/TR/xml-infoset/). Its
purpose, as stated in the spec's Abstract, is to provide "a set of definitions for use in other
specifications that need to refer to the information in an XML document."

The definitions the Infoset provides are principally in terms of 11 information items:
document, element, attribute, processing-instruction, unexpanded entity reference,
character, comment, document type declaration, unparsed entity, notation, and
namespace. As you can see, there's a certain amount of overlap between this list and the
node types available under XPath — and also a certain number of loose ends not
provided at all by one or the other of the two Recommendations.

XPath 2.0 will resolve the conflicts in definitions of Infoset information items and XPath
node types; at the same time, XPath will continue to need things the Infoset does not
cover. For instance, XPath does not generally need to refer to atomic-level individual
character information items. Instead, it needs to refer to the more "molecular" text nodes.
For these "needed by XPath but not defined under the Infoset" information items, XPath
2.0 will continue to provide its own definitions.

For more information about XPath 2.0 and the Infoset, refer to Chapter 5.

2.5 Node-Set Context

It's hard to imagine a node in an XML document that exists in isolation, devoid of any
context. First, as I've already mentioned, nodes have relationships with other nodes in the
document — both document-order and "family" relationships. Maybe more importantly,
but also more subtly, nodes in the node-set returned by a location path also have
properties relative to the other nodes in that node-set — even when document order is
irrelevant and family relationships, nonexistent. These are the properties of context size,
context position, and namespace bindings.

 38

http://www.w3.org/TR/xml-infoset/
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=34

Consider the following XML document:

<ChangeInMyPocket>
 <Quarters quantity="1"/>
 <Dimes quantity="1"/>
 <Nickels quantity="1"/>
 <Pennies quantity="3"/>
 <!-- No vending-machine purchase in my immediate future -->
</ChangeInMyPocket>

It's possible, in a single location path, to locate only the four quantity attributes (or any
three, two, or one of them) and the comment; or just the root node and the comment; or
just the Quarters element, the Pennies element, and the quantity attribute of the
Nickels element. The nodes in the resulting node-set need not share any significant
formal relationship in the context of the document itself. But in all cases, these nodes
suddenly acquire relationships to others in a given node-set, simply by virtue of their
membership in that node-set.

The context size is simply the number of nodes in the node-set, irrespective of the type of
nodes. A location path that returned a node-set of all element nodes in the above
document would have a context size of 5 (one for each of the ChangeInMyPocket,
Quarters, Nickels, Dimes, and Pennies elements). A location path returning all the
quantity attributes and the comment would also have a context size of 5.

The context position is different for every member of the node-set: it's the integer
representing the ordinal position that a given node holds in the node-set, relative to all
other nodes in it, in document order. If a node-set consists of all child elements of the
ChangeInMyPocket element, the Quarters element will have a context position of 1, the
Dimes element, 2, and so on. In a different node-set, the Quarters element might be node
2 and Dimes, 1, and so on.

I've alluded to this before but just as a reminder: when determining
context position, particularly of elements, be aware of "invisible
whitespace" separating one element's end tag from the succeeding
one's start tag. In the above document, a location path that retrieves
all children of the ChangeInMyPocket element, not just the child
elements, will also locate all the newline and space characters used
for "pretty-printing"; each block of these characters constitutes a
text-node child of ChangeInMyPocket. Thus, the Quarters element
will have a context position of 2, the Dimes, 4, and so on.

Chapter 3 and Chapter 4 go into more detail about dealing with context position and
context size. Note especially, in Chapter 3, the material about reverse document order in
certain XPath axes, because this inverts the normal sequence of context positions.

The term namespace bindings refers to any namespace declarations in effect at the time
an XPath expression is evaluated. In the previous document, which has no explicit

 39

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=29
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23

namespace declarations, the only namespace binding in any expression's evaluation
context will be the "built-in" namespace for elements and attributes whose names are
prefixed xml:. Note that any namespace binding is not tied to a particular prefix,
however; what's important is the URI to which the prefix is bound. Consider the
following fragment:

<myvocab:root
 xmlns:myvocab="http://myvocab.com/namespace"
 xmlns:yourvocab="http://myvocab.com/namespace">
 <yourvocab:subelem>
 [etc.]
 </yourvocab>
</myvocab>

A superficial consideration of the namespace bindings in effect for the above
yourvocab:subelem document might suggest that there are two, one for the myvocab:
prefix and one for yourvocab:. Not true. There's only one namespace URI in play at that
point (although it's aliased, after a fashion, by the two prefixes), and hence, there's only
one namespace binding in that element node's context.

2.6 String-Values

By definition, a well-formed XML document is a text document, incapable of containing
such "binary" content as multimedia files and images. Thus, it stands to reason that in
navigating XML documents via XPath the strings of text that make up the bulk of the
document (aside from the element names themselves) would be of supreme importance.
This notion is codified in the concept of string-values. And the importance of string-
values lies in the fact that most of the time, when you locate a node in a document via
XPath, what you're after is not the node per se but rather its string-value.

Each node returned by a location path has its own string-value. The string-value of a node
depends on the node type, as summarized in Table 2-1. Note that the word "normalized"
used to describe the string-value for the attribute node type is the same as elsewhere in
the markup world: it means stripped of extraneous whitespace, by trimming leading and
trailing whitespace and collapsing multiple consecutive occurrences of whitespace into a
single space. For example, given an attribute such as region=" NW SE" (note leading
blank spaces and multiple spaces between the "NW" and "SE"), its normalized value
would be "NW SE". Also note, though, that this normalization depends on the attribute's
type, as declared in a DTD or schema. If the attribute type is CDATA, those interior
blank spaces would be assumed to be significant and not normalized. Therefore, if the
region attribute is (say) of type NMTOKENS, the interior whitespace is collapsed; if it's
CDATA, the whitespace remains.

Table 2-1. String-values, by node type
Node type String-value
Root Concatenated value of all text nodes in the document
Element Concatenated value of all text nodes within the scope of the element's start and end tags,

 40

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=22

including the text nodes contained by any descendant elements
Attribute Normalized value of the attribute

PI Everything in the PI between its target (and whitespace following the target) and the closing
?> delimiter

Comment The comment's content — the text between the opening and closing <!-- and --> delimiters
Text The character data in the node (note that every text node consists of at least one character)
Namespace The namespace URI associated with the corresponding namespace prefix

If you're using DOM, note that Table 2-1 establishes a loose
correspondence between XPath string-values and the values
returned by the DOM nodeValue method. The exceptions — and
they're important ones — are that nodeValue, when applied to the
document root and element nodes, returns not a concatenated
string but a null value. The only way to get at these node types'
text content through the DOM is to apply nodeValue to their
descendant text nodes.

Consider an XML document such as the following:

<?xml-stylesheet type="text/xsl" href="4or5guys.xsl"?>
<quotation xmlns:xlink="http://www.w3.org/1999/xlink">
 <source>
 <author>Firesign Theatre</author>
 <work year="1970">Don't Crush that Dwarf, Hand Me The
Pliers</work>
 </source>
 <text>And there's hamburger all over the highway in Mystic,
Connecticut.</text>
 <!-- Following link last verified 2001-09-15 -->
 <allusion xlink:href="http://www.dern.com/ng_burgr.html"/>
</quotation>

All seven XPath node types are present in this document. String-values for some of them
are as follows:

root node

Concatenated values of all text nodes in the document, that is:

 Firesign Theatre
 Don't Crush that Dwarf, Hand Me The Pliers

And there's hamburger all over the Highway in Mystic,
Connecticut.

(Note how the whitespace-only text nodes, included for legibility in the original
document, are carried over into the string-value.)

 41

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=22

source element node

Concatenated value of all text nodes within the element's scope (including
whitespace-only text nodes):

Firesign Theatre
Don't Crush that Dwarf, Hand Me The Pliers

year attribute
1970

xml-stylesheet PI
type="text/xsl" href="4or5guys.xsl"

comment
Following link last verified 2001-09-15

first text node (not counting whitespace-only text nodes)
Firesign Theatre

namespace node on all elements

The namespace for the xlink: prefix, declared in the root quotation element,
does not apply to any elements, because none of their names use that prefix. All
of these elements have empty strings because they are not in a namespace.

2.6.1 String-Value of a Node-Set

Not only does each node in a node-set have a string-value, as described above; the node-
set as a whole has one.

If you followed the logic behind each of the previous examples, especially the
concatenation of text nodes that makes up the string-value of a root or element node, you
might think the string-value of a node-set containing (say) two or more element nodes is
the concatenation of all their string-values. Not so. The string-value of a multinode node-
set is the string-value of the first node in that node-set.

(Actually, the apparent inconsistency goes away if you just remember that last sentence,
eliminating the word "multinode." Thus, the value of any single node is just a special
case of the general rule; the node-set in this case just happens to be composed of a single
node — which is, of course, the first in the node-set.)

In the previous example, the source element has two child element nodes, author and
work. This location path:

/quotation/source/*

thus returns a node-set of two nodes. The node-set's string-value is the string-value of the
first node in the node-set, that is, the author element: "Firesign Theatre."

 42

Chapter 3. Location Steps and Paths
In Chapter 2, I covered the kinds of content XPath is capable of locating: essentially, any
content at all in an XML document. Now it's time to take a look at how exactly you
locate it — a look, in short, at XPath syntax.

3.1 XPath Expressions

As earlier chapters (notably Chapter 1) have explained, knowing XML's own syntax does
not prepare you for knowing XPath syntax. Unlike the languages that make use of XPath,
XPath itself is not an XML vocabulary. A given "XPath" doesn't contain all the
characteristic left and right angle brackets, ampersands, and other hallmarks of XML
syntax dear (or not) to your heart from your other XML work.

Instead, units of XPath meaning, called expressions, are typically used in attribute values.
Thus you'll be creating and using XML code that uses these expressions in ways such as:

<xsl:value-of select="expression"/>

and:

<a xlink:href="xpointer(expression)">Table of Contents

Sometimes, when you see the term XPath expression, what's being referred to is simply a
speck of meaning — a subatomic particle, as it were, that has a sort of abstract academic
interest but little practical value by itself. This sort of expression is a string or numeric
value. For instance, both of the following are valid XPath expressions in this limited
sense:

"I should have been a pair of ragged claws"
119.725

In the real world of XPath, though, such literal expressions are pretty pointless. If you
locate the literal string "I should have been a pair of ragged claws," you simply locate that
string — outside the context of an XML document or, for that matter, devoid of any
context at all. XPath expressions are meant primarily to locate content in context. The
most familiar real-world analogy for the syntax to accomplish this is a computer's
filesystem or a web server's directory structure.

Although I probably sounded scornful just now of literal-valued
XPath expressions, don't write them off. The ability to "find" a literal
value (instead of a chunk of content in the source document) is
actually quite useful. You'll see many examples later in this chapter,
particularly in the section on the predicate portion of an XPath
expression. There, you'll learn how to locate a particular node
(represented by a location path) when its value equals say some

 43

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=15
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=9

particular literal value. There's no way to represent the righthand side
of this equation other than with a literal XPath expression. The point
is merely that locating the literal value itself is absurd.

3.1.1 The Filesystem Analogy

In Chapter 2, Figure 2-1 depicted the structure of a well-formed XML document.
Although I didn't make the comparison explicit, you may have observed that Figure 2-1
could also represent a directory tree: there's a root directory, beneath which you find one
or more subdirectories, and so on. Within any directory along the way you might find one
or more files.

The analogy between locating files and other resources on the one hand and XML-based
content in a document on the other is not just abstract but explicit, codified in the syntax.
An expression such as the following might be a perfectly legitimate XPath expression as
well as a path to one or more files in a computer filesystem:

/root/dir1/dir1_1/file

If you're dealing with a computer operating system or a web URI, this entire syntactic
construct is called (among other things) a directory path; in XPath, it's known as a
location path.

3.1.2 Points of Similarity, Points of Difference

Before getting into the nuances of location paths in their own right, I want to make plain
some of the ways in which they are both similar to and different from directory paths.
First, the similarities:

• Most obviously, the syntax is very similar. Each incremental move through the
tree of directories or nodes is separated from others by a slash, /.

• The most common way to move through the directory or node tree is down: start
at the root, select one of its children, then one of that child's children, and so on,
until finding the resource at the very end of the path.

• Both a directory path and a location path can begin with a slash, in which case
they're referred to as absolute paths. They can also dive right in with the name of
some subordinate resource, with no leading slash, and in this case, they're called
relative paths. What they're relative to is "wherever you are" in the filesystem or
document in question.

• A syntactically correct path is no guarantee that you'll find anything there. When
navigating — or attempting to navigate — a directory path to a resource that
doesn't exist, you get a "File does not exist" error message from the operating
system, or an HTTP 404 message from the web server; an XPath expression that

 44

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=15
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=17
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=17

"locates" a nonexistent resource fails less egregiously, but fails nonetheless: it
returns an empty node-set.

And now the chief differences, neither of them obvious from the simple example already
presented:

• Within a filesystem, you can easily "move up" or "move down" the directory tree
to related resources (directories or files) in the same branch of the directory tree.
"Moving sideways" isn't so easily accomplished, though, especially if you need to
"move sideways" to different branches of the tree and/or to other resources whose
names share nothing in common. XPath, as you will see, is amazingly flexible in
terms of its knowledge of a document's tree of nodes and the multiple
relationships a given node has with others.

• While you can use wildcard characters such as * and ? to locate files that share
some common naming characteristics, you cannot locate files that share the same
type if their names share nothing in common. For instance, it's become common
to name text files with a filename extension of .txt. Using this ad-hoc and totally
unofficial "standard," however, both fails to locate text files with some other
extension and possibly locates some non-text files as well. That is, the name is no
absolute guarantee of the type. XPath, in contrast, can easily locate types of
content in a given document, as well as content with specific names.

3.2 Location Paths

"Understanding" a location path and how to code it requires no great intellectual leap. If
you know how to walk a filesystem directory tree, separating each level in the navigation
from the others with slashes, you already grasp the rudiments of location paths. Still, you
need to keep a few points in mind.

3.2.1 The Importance of Context

Chapter 2 discussed context, particularly the notion that each node in a given node-set
shares with all the others a context size, and has its own context position within that size
— the "Node X of Y" notion.

More subtly, using a multilevel location path imposes a successively finer sieve of
context on each level in the path. Consider:

/customers/customer/invoice/item/quantity

As you move to the right in this location path, you're not only "walking down" into the
document's nether regions, you're also almost certainly excluding from consideration
various portions of the document not of interest at the moment. That is, each level in the
location path implicitly changes the context node in terms of which levels to the right will
be evaluated. Figure 3-1 illustrates this process.

Figure 3-1. Filtering content via successive steps in a location path

 45

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=15
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=26

The full location path can be decomposed into five location steps, each separated from
the others by slashes; each step narrows the view already established by those that
preceded it. Step 1 limits the selection to the root customers element, and step 2, to the
customer elements that are children of that root element.

So far, there's been no filtering at all occurring; every element down to this level in this
sample document is still visible. In step 3, though, something interesting happens: the
location path selects the invoice children of each customer element. The first and
second customer elements have two and one such children, respectively; the third
customer element has no invoice children, and as a result this customer effectively
drops out of consideration as a match for further location steps. For purposes of content
retrieved by this location path, in other words, customer #3 might as well not exist at all.

The filtering continues in steps 4 and 5. For some reason — perhaps data entry in this
document is not complete — the invoice child of customer #2 has no item children and
thus disappears from view in step 4. In the fifth and final step, the location path says that
ultimately, only the quantity children of each item element are of interest, eliminating
the price children and selecting, in the end, only those quantity elements descended
from ("belonging to") the first customer.

What does this have to do with context? The point is that each succeeding location step
does not stand in isolation: the full location path doesn't select all customer elements, all
invoice elements, and so on. In fact, it selects only those nodes (elements, in this case) at
the very end of the location path, and of those, only the nodes that have met all preceding
conditions in the path.

3.2.2 Absolute Versus Relative Location Paths

As I've already mentioned, location paths — just like directory paths — can be either
absolute or relative. An absolute location path begins with a slash, which effectively
denotes the root node of the document. If the path starts with no leading slash, it's a
relative path.

Practically speaking, when you're using XPath in an XPointer context, you'll always use
an absolute path except when locating content within the same document containing the
XPointer.

 46

In an XSLT stylesheet, the situation's a little more complicated. A typical stylesheet
consists of numerous so-called template rules (one xsl:template element apiece), each
of which matches (via a location path) some portion(s) of the source document.[1] Within
the template rule may be any number of XPath-based references to other portion(s) of the
document, and these latter references are most commonly relative location paths — that
is, relative to the context established by the containing template rule. For instance, a
template rule might look something like this:

[1] Actually, to say the template rule "matches content via a location path" isn't quite accurate. The value of an
xsl:template element's match attribute is not, strictly speaking, a location path, but rather something
called a "location path pattern" or "match pattern" — whose syntax is dictated not by XPath, but by the XSLT spec.
There's also a practical difference, in that a match pattern doesn't really select something in the source document; it
simply (as the term indicates) matches that something, for purposes of specifying how the template will behave when a
match is found.

<xsl:template match="/books">
 <xsl:for-each select="book/title">
 <xsl:value-of select="."/>
 </xsl:for-each>
</xsl:template>

The location path bound to the template rule's match attribute is absolute, matching the
root books element. Within the template rule, however, the location path bound to the
xsl:for-each element's select attribute is relative — as is the one bound to the
xsl:value-of element's select attribute. The former select attribute locates each
title element of each given book child of books. The latter simply re-selects (for a
different purpose) the node already established by the containing xsl:for-each. (By the
way, note in this example the period, also called the "full stop," which may be familiar to
you from its occasional use in directory paths.)

In XSLT, template rules may invoke other template rules, using the
xsl:apply-templates element. The select attribute of this
element directs the XSLT processor to next process any template
rule that matches the indicated relative location path. Thus, the
example template rule I just provided could also be coded in the
form of two separate template rules, like this:

<xsl:template match="/books">
 <xsl:apply-templates select="book/title">
</xsl:template>
<xsl:template match="book/title">
 <xsl:value-of select="."/>
</xsl:template>
The practical effect of a stylesheet structured in this way is that only
one template rule's match pattern may be an absolute location path;
all others will "trickle down" to successively lower-level template
rules, chained together by linking the select attributes of
xsl:apply-templates elements to the corresponding template rules
(even when the latter's match attributes specify absolute rather than

 47

http://safari.oreilly.com/

relative paths).

3.2.3 Compound Location Paths

It's frequently desirable to select not just the nodes found by way of a single location
path, but all the nodes found by way of two or more paths. This is accomplished using the
union operator, a "pipe" or vertical-bar character, (|), to delimit the constituent paths.
(Whitespace on either side of the pipe is not significant.)

Referring back to the sample document depicted in Figure 3-1, you could select all the
invoice elements and all the cust_info elements with a single compound location path:

/customers/customer/invoice | /customers/customer/cust_info

Here, the selected nodes just happen to be elements at the same level
of the node tree. As you will soon see, however, there's no particular
requirement that this be the case; you can just as easily select a node-
set consisting of elements at different levels of the hierarchy and/or
nodes of any types at all, elements or otherwise.

3.3 Location Steps

Location paths are interesting on a grand, macroscopic level. But (at least to my way of
thinking) they're essentially unsophisticated, blunt instruments for extracting content
from an XML document. All the real action in XPath is found between the slashes in a
full location path — in the location steps.

The location steps you've seen so far in this chapter have been extremely simple. They've
walked you down into the given XML source document by way of the tree of element
nodes, and element nodes only, and only those element nodes with specific names. Easy
enough to understand, perhaps (not to deny the value of understandability!), and also
arguably the most common sort of location step, but not particularly eye opening. In fact,
these elementary location steps have simply taken advantage of various default values
and shortcuts for parts of the full location step syntax: the axis, the node test, and the
predicate. This syntax is:

axis::nodetest[predicate]

As you will see later in this chapter, it's possible for a location step to
include multiple predicates — one after the other or even nested.

 48

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=26

Of the three components that a location step may contain, only the node test is required.
If you omit the axis, you also omit the double colon (::) that delimits it from the node test.
If you omit the predicate, you also omit the square brackets ([and]) that enclose it.

Before getting into the details of these three pieces of a location step, let's take a look at
their general purposes.

3.3.1 The Big Picture

A common misconception about microscopes, magnifying glasses, telescopes, and
binoculars is that they enlarge the image presented to our eyes from some object or other
in the real world. Actually, they narrow the field of vision (assuming you're looking into
them the right way); the image presented to our eyes always stays the same size. Armed
with this information, take a look at Figure 3-2.

Figure 3-2. Narrowing the field of vision: "seeing" just boats with sails in a particular
direction

Here, you're standing on the rock at the end of a jetty projecting out into a bay, binoculars
held to your eyes. Everything outside the field of vision doesn't "exist" for you as long as
you're looking through the lenses: the boats on the water behind you and to either side,
the colony of seals on the rocks. You have, in effect, no peripheral vision.

But these are special binoculars. Not only can you use the typical thumbwheel to bring
perceived objects into and out of focus, or perhaps to zoom in (that is, narrow the field
even further) or out. You can also click a button or push a slider along their top edge,
which lets you see (in the chosen direction) only boats, or everything but boats, or boats
and buoys only, or just those objects whose names begin with the letter "b." (The

 49

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=27

lighthouse is within the field of vision, for example, but it doesn't fit any of those types of
"target.") And you can do even finer tuning: light up just those boats that have sails, or
black sails only, or those flying pirate flags, or only flying pirate flags with no cannons
visible.

There's your XPath location step: the axis selects the direction you're looking; the node
test selects particular generic kinds of objects to see; and the predicate highlights only
those objects of the right generic kinds that have other specific characteristics.

Let's start by examining the one required portion of a location step: the node test.

3.3.2 The Node Test

The node test singles out in a document the sort of nodes in which you're interested. You
have two approaches here: identify the names you're interested in or identify the types.
Table 3-1 summarizes the available options.

Table 3-1. Location step node tests
To select... Use...

elements with a
particular name

the element name in which you're interested (e.g., /books/book selects all
elements named book that are children of the root element named books)

elements with any
name

an asterisk (*) wildcard character in place of the element name (e.g., /books/*
selects all child elements of the root books element, regardless of those child
elements' names)

text nodes
The text() node test (e.g., paragraph/text() selects all text nodes that are
immediate children of the paragraph elements that are children of the context
node)

comment nodes The comment() node test (e.g., simply using comment() locates all comments
that are children of the context node)

processing
instructions with a
particular target

The processing-instruction(target) node test (e.g., /processing-
instruction('xml-stylesheet') selects all xml-stylesheet PIs
which are children of the root node)

processing
instructions
regardless of the
target

The processing-instruction() node test (e.g., /processing-
instruction() selects all PIs that are children of the root node)

all nodes, regardless
of their type or name

The node() node test (e.g., in an XHTML source document, /html/node()
locates not only the meta, head, and body elements, but also any comments
and/or PIs that are children of the root html element)

Neither attributes nor namespace nodes can be located using the node test alone. You
must use an axis in a location step to locate these two node types. See the information
about the attribute:: and namespace:: axes later in this chapter for more information.

One other point: Note that the text(), comment(), processing-instruction(), and
node() node tests — technically called node type tests — are not functions, and all
require the use of parentheses even though the parentheses are empty. This distinguishes

 50

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=27

these node tests from those simply seeking elements whose names just happen to be, for
example, comment and text.

3.3.3 The Axis

Having determined that you want a location step (via the node test) to "see" only nodes of
a certain kind, you can specify the direction — the line of sight, if you will — in which
you want to see them. (The direction is always relative to the context node at the point of
the location step.) This is accomplished using an axis.

The XPath spec defines 13 different axes, many of which are modeled on a "family" view
of the source document's nodes. That is, in a genealogical family tree, each person
represents a node; each node (except the one at the very top) has a parent and ancestors,
many have children and other descendants, siblings, and so on. So it is in an XML source
document, which — thanks to the rules of well-formedness — always contains at least
two strictly structured nodes (the root node and the root element).

Let's take a look at a summary of the 13 axes first, presented as Table 3-2. (I use the word
"visible" in this table advisedly. I mean, of course, whether nodes of a given type are
visible to an XPath-aware processor — not whether they're visible to a human reader of
the document. By the latter standard, whitespace-only text nodes might be considered
"invisible," even though they're just as substantial to a processor as any other nodes in the
tree.)

Table 3-2. Location step axes
Axis Description Direction Visible node types

child:: Locates node(s) immediately descended from the
context node Forward Elements, comments,

PIs, text nodes

parent:: Locates the one node immediately above the
context node in the node tree Reverse Root node, elements

descendant::
Extends the child:: axis all the way down the
node tree, locating children, children of children,
and so on

Forward Elements, comments,
PIs, text nodes

ancestor::
Extends the parent:: axis all the way up the
node tree, locating parents, parents of parents,
and so on

Reverse Root node, elements

descendant-or-
self::

Like the descendant:: axis, but locates the
context node itself as well as all descendants Forward Any but attributes or

namespaces
ancestor-or-
self::

Like the ancestor:: axis, but locates the
context node itself as well as all ancestors Reverse Root node, elements

following:: Locates all visible nodes that follow the context
node (excludes descendants) Forward

Any but root node,
attributes, or
namespaces

preceding:: Locates all visible nodes that precede the context
node (excludes ancestors) Reverse

Any but root node,
attributes, or
namespaces

following-
sibling::

Locates all visible nodes that both follow the
context node and share the same parent Forward Any but root node,

attributes, or

 51

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=27

namespaces

preceding-
sibling::

Locates all visible nodes that both precede the
context node and share the same parent Reverse

Any but root node,
attributes, or
namespaces

attribute:: Locates attributes of the context node Forward Attributes only
namespace:: Locates namespace nodes Forward Namespaces only
self:: Locates the context node itself (N/A) Any

In this table, note that each axis is designated as a forward or reverse axis. These terms
refer to the direction, relative to the context node, in which nodes are visible — in
document order or reverse document order, respectively.

Now let's look at some nuances of using axes in your own XPath location steps.

3.3.3.1 Defaults and shortcuts

First, there's a default axis, child::. Therefore, the following two location steps are
functionally identical:

child::circle
circle

Both locate all circle elements that are children of the context node.

Steps that access the parent node via the parent:: axis in XPath, as in common filesystem
directory path syntaxes, can be abbreviated using a double period. These two location
steps are thus equivalent:

parent::node()
..

Similarly, the self:: axis can be abbreviated with a single period. (As with the parent::
axis, this is technically an abbreviation for the axis in combination with the node() node
test.)

When using the parent:: and self:: axes, you almost never have to specify the name
of the node in question; no node in an XML document ever has more than one parent or
"self," and the name of that parent/self node is thus almost always immaterial. The
exception is when a given element type may appear at any of several levels of a
document conforming to a given vocabulary, and you want to select only those with a
particular parent element type.

Note that the self:: axis is useful for testing the name of the context node in the
predicate portion of a location step. (Predicates are covered in the next section of this
chapter.) The name() XPath function, covered in Chapter 4, can also be used for this
purpose. However, the self:: axis is "namespace aware" and works specifically with the
namespace prefix supplied as the tested value; the name() function permits the processor

 52

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=29

to substitute any prefix it wants, as long as the namespace URI is correctly mapped.
Consider these two examples:

self::someprefix:somename
name()="someprefix:somename"

The first example is true only if the context node's name is "somename" and its
namespace prefix is "someprefix"; the second is true if the context node's name is
"somename" and its namespace prefix, whatever it is, maps to the same namespace URI
as does "someprefix."

When seeking content along the attribute:: axis, you can replace that axis with a
simple at sign (@). Both of the following location steps locate the copyright attribute of
the context node:

attribute::copyright
@copyright

Finally, while not strictly a shortcut for an axis, the location step (plus separators)
/descendant-or-self::node()/ can be abbreviated with a simple double slash, //.
Here's a sample document, a peek into a particularly unruly kitchen pantry (entirely
fictional, of course):

<pantry>
 <shelf>
 <supplies>
 <paper_goods>
 <paper_good>paper towels</paper_good>
 <paper_good>paper plates</paper_good>
 </paper_goods>
 </supplies>
 <snack_foods>
 <snack_food>popcorn</snack_food>
 <snack_food>chips</snack_food>
 </snack_foods>
 </shelf>
 <shelf>
 <supplies>
 <paper_goods>
 <paper_good>napkins</paper_good>
 </paper_goods>
 </supplies>
 <snack_foods>
 <snack_food>dried tofu</snack_food>
 </snack_foods>
 </shelf>
</pantry>

To locate all snack_food elements descended from this document's root pantry element,
no matter where they are in its tree of descendants, either of the following will suffice:

 53

/pantry/descendant-or-self::node()/snack_food
/pantry//snack_food

If locating all nodes of a particular name or type, the double slash can begin the location
path alone — there is no need to precede them with yet another slash representing the
root node. For instance, to locate all elements in a document, use:

//*

and not:

///*

The double-slash shortcut is so useful that you will probably find yourself using it as a
shortcut for the descendant::node() location step as well — failing to recognize a
potential pitfall in doing so: the double slash is not associated with just the
descendant::node() location step, but with the descendant-or-self ::node()
location step. In many cases, the results of using either are identical. For instance:

/pantry//snack_food

works because selecting "all descendants of the pantry element, as well as the pantry
element itself, as long as the given node is a snack_food element" obviously eliminates
the pantry element itself, leaving only the snack_food descendants.

But if you use the wildcard asterisk or the node() node test together with the double
slash, you may get a surprise. The following two location paths each select the pantry
element in addition to all the desired descendants:

/pantry//*
/pantry//node()

3.3.3.2 Restrictions by context node type

The last column in Table 3-2 shows which node types are visible, looking from the
context node along the indicated axis. However, it's also important to note that the axes
available at a given moment vary depending on the type of the context node. An XPath
processor will not reject outright invalid axis/context node type combinations; it will
simply return an empty node-set for that location step. Table 3-3 summarizes these
restrictions.

Table 3-3. Valid axis/context node combinations
Axis Use when context node type is

child:: Root or element
parent:: Any but the root node (which has no parent)
descendant:: Root or element
ancestor:: Any but the root node (which has no ancestors)

 54

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=27
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=27

descendant-or-self:: Root or element
ancestor-or-self:: Any
following:: Any but root, attribute, or namespace
preceding:: Any but root, attribute, or namespace
following-sibling:: Any but root, attribute, or namespace
preceding-sibling:: Any but root, attribute, or namespace
attribute:: Element
namespace:: Element
Self:: Any

A curious side effect of the information in Table 3-2 and Table 3-3,
taken together, is that although attribute and namespace nodes
"belong to" their declaring elements — in the sense that such an
element acts as an attribute/namespace node's parent and is therefore
visible along the parent:: axis — the reverse is not true: you can't
see attribute or namespace nodes along an element's child:: axis.

3.3.3.3 Axes and efficiency

Something to remember when selecting axes to navigate around your XML documents is
while the end result achieved by using one axis may be identical to that achieved by using
another, one means to the end may be significantly more efficient than another. The
following XML document illustrates this:

<dictionary>
 <letter>
 <forms>
 <form type="upper">A</form>
 <form type="lower">a</form>
 </forms>
 <word>
 <spelling>aardvark</spelling>
 <part_of_speech>noun</part_of_speech>
 <definition>a nocturnal mammal of southern Africa with a
tubular
 snout and a long tongue</definition>
 </word>
 </letter>
</dictionary>

Both of the following location paths locate the definition element:

//definition
/dictionary/letter/word/definition

The second, however, is a much more direct route to the desired result. It leads the
processor down the tree with no side trips, right to the definition element. The first, in
contrast, takes a leisurely stroll through all descendants of the root node, picking up each

 55

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=27
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=27

one in turn and mulling it over ("Hmm, is this descendant a dictionary element . . . ?")
before proceeding further through the tree. This includes irrelevant detours into the forms
branch of the tree and to the spelling and part_of_speech siblings of the dictionary
node.

Of course, for this extremely simple example document, the difference in processing time
is negligible. Turn this document into an entire dictionary, though, and the difference is
considerable. (Of course, explicitly coding the full path to a desired descendant can be
more tedious — especially for large, deep node trees. It's hard to argue with performance
results, though.)

3.3.4 The Predicate

Those of you who may have suffered under the yoke of English grammar lessons may be
familiar with the term "predicate" as it's commonly used there: the predicate of the
sentence is the verb — the word or phrase that drives the sentence's action. So it is with
the optional predicate portion of a location step, which drives the filtering performed by
the rest of the step to its finest level of granularity.

A more useful way to understand the term as it's used in XPath, though, is to think of its
form in such constructions as "Whether Result X will be true is predicated upon the truth
of Condition Y." That's because a location step's predicate sets forth a Boolean test: if the
Boolean test returns true (for a given node selected by the preceding portion of the step),
then this node will be selected for inclusion in the resulting node-set. In all other cases,
the node is disregarded.

As with Boolean tests in other languages, XPath's predicates are usually coded (within
the enclosing square brackets) as Boolean statements of the general form:

value1 operator value2

where:

• value1 and value2 are XPath expressions.
• The whitespace to either side of operator is not significant — there can be

whitespace there for legibility, or not; and
• operator is one of the Boolean operators listed in Table 3-4.

Table 3-4. Boolean operators in XPath predicates
Operator Meaning

= Equal to
!= Not equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to

 56

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=27

If (as is likely) you're using XPath expressions within XML
documents (as opposed to scripting languages), you must escape any
operators that might cause your documents to fail well-formedness
constraints. For instance, the < character will need to be escaped as
<, and the > may need to be escaped using >. (When used in
an attribute value, the greater-than operator (>) never needs to be
escaped.)

As I mentioned, the two values being compared by the operator can be either location
paths in their own right or literal values. Importantly, any relative location paths
appearing in the predicate are considered relative to the context node established by the
portions of the location step that precede the predicate, not relative to the context node in
effect for the location step as a whole. Consider the following simple XML document:

<person name="John">
 <child name="John"/>
 <child name="Connie"/>
 <child name="Cindy"/>
 <child name="Mike"/>
</person>

Given this document, consider this location path, paying special attention to the
predicate:

/person/child[@name='John']

The context node for the final location step as a whole is the person element. The
predicate does not look at the name attribute of the person element, however, but rather
at the name attribute of each child element. Thus, this predicate results in the selection of
only the first child element.

Note that the Boolean condition established by the predicate is an "any node that..." rather
than an "all nodes that..." condition. For instance, given the above document, the
following location path selects the root person element as long as any of its child
children has the indicated name attribute value; the selection doesn't require that all its
child children meet the test.

/person[child/@name='Cindy']

There's no restriction on the number of location steps that might employ predicates,
although the simple examples above show predicates only on the last step. In navigating
around an XHTML document with XPath, you might use a location path such as this:

/html/body/p[@align="center"]/img[@border > 0]

 57

This selects each img element with a border attribute greater than 0, as long as the img
element's parent is a center-aligned p element that is a child of the body element (which
in turn is a child of the html element).

3.3.4.1 Nesting predicates

You may not use or encounter this too much in your own XPath location steps, but it's
entirely legal for an expression being tested by the predicate to include a predicate of its
own. (After all, the expressions on either side of the operator, being expressions, can be
and often are location steps in their own right.) Thus, you might see something like this:

//roofing_material[descendant::type[preceding-
sibling::manufacturer='Smith']]

This selects all roofing_material elements that have a type descendant for which, in
turn, there exists a manufacturer on the preceding-sibling:: axis whose name is
"Smith."

3.3.4.2 Compound predicates

You can test for multiple conditions in a single predicate by delimiting the multiple
conditions with logical and/or operators. For instance:

camera[brand/@name = 'Minolta' and brand/@list < 300]

selects a camera child of the context node only if:

• The camera element has a brand child with a name attribute whose value is
Minolta.

• The camera element has a brand child, which also has a list attribute whose
value is less than 300.

As in other computer languages, using multiple ands and ors can become quickly
indecipherable to the human eye and mind, so XPath allows you to group conditions
together, using parentheses to eliminate ambiguity. You can nest these grouped
conditions to any arbitrary depth.

Note, in the various example predicates here (and anywhere else in
the book), the escaping of markup-significant characters (such as
< for the < character). The escaping is required not by XPath
itself, but by the constraints imposed on XML documents by the
XML spec itself; such documents — for example, XSLT stylesheets
— are common (perhaps the most common) venues to find XPath
expressions. (That's why I'm escaping them.) But when using XPath
outside of an XML or other markup context, there's no particular
need to escape the special characters For example in a non-markup

 58

application, the preceding location step could be coded:

camera[brand/@name = 'Minolta' and brand/@list < 300]

Consider this document:

<weather>
 <day date="2001-12-12">
 <readings>
 <reading time="0600">
 <temp>23</temp>
 <wind_spd>5</wind_spd>
 <wind_dir>ESE</wind_dir>
 </reading>
 <reading time="1200">
 <temp>30</temp>
 <wind_spd>2</wind_spd>
 <wind_dir>SE</wind_dir>
 </reading>
 <reading time="1800">
 <temp>34</temp>
 <wind_spd>10</wind_spd>
 <wind_dir>S</wind_dir>
 </reading>
 <reading time="2400">
 <temp>29</temp>
 <wind_spd>15</wind_spd>
 <wind_dir>S</wind_dir>
 </reading>
 </readings>
 </day>
 ...etc....

</weather>

As a hypothetical case, you might be interested only in those readings meeting the
following conditions:

• The time at which the reading was taken was either noon or 6 p.m.
• The wind speed was less than 15 knots, as long as the wind direction was from the

south.
• The temperature was less than 25 degrees.

As a location path, these conditions could be expressed as follows:

//reading[(@time="1200" or @time="1800") or (wind_spd < 15 and
wind_dir="S")
 or (temp < 25)]

If the connecting operators were all either and or or, you wouldn't need to use any
grouping at all. The presence of that lone and, though, changes the situation considerably:

 59

omit the parentheses, or group (say) the test for wind_dir with the one for temp, and
you've suddenly got a subtly (or radically) different test, returning a subtly (or radically)
different node-set.

Operator precedence in XPath, in order of ascending importance, is as follows: or, and,
=, !=, <=, <, >=, and >, so in:

a = b or c = d and x = y

the and test takes precedence over the or, being evaluated as though they were coded:

x = y and (a = b or c = d)

When parentheses are used for grouping, conditions are evaluated at their innermost
levels first, "boiling up" the respective true or false values to a common level where they
can then be compared using operator precedence and left-to-right rules.

3.3.4.3 Predicates with a single value and no operator

Often, you don't need to determine that a node along some axis has some particular value.
You need merely to check for the existence of such a node. The way to use an XPath
predicate for this purpose is to take advantage of a special form of the predicate, which
simply uses a location path with no operator or value2 within the square brackets.

You could select only book elements that contain at least one table, for example:

//book[descendant::table]

This works because XPath treats an empty node-set as a Boolean false and a non-empty
node-set as a Boolean true.

Note that this does not disregard a book element that contains an empty table element; it
tests for the presence of any table element, empty or otherwise. If you want to be sure
you're selecting only those book elements with non-empty table descendants, you use an
explicit test in the predicate:

//book[descendant::table!=""]

An earlier note back discussed the general silliness of selecting a node with a particular
name on the parent:: axis, because that axis will always locate at most a single node
(irrespective of its name). (The root node has no parent, but all other nodes in a document
have exactly one parent.) In some XML vocabularies, though, a particular element type
may be allowed as a child of different element types. A classic case is the XHTML div
element, which can appear as a container almost anywhere within the body of an
XHTML document. Thus, you can productively use the parent:: axis in a case like this,
within a single-valued predicate, to isolate (say) only those div elements that are children
of a p element:

 60

//div[parent::p]

On the other hand, there are often a number of other approaches to the same problem,
including the (to my mind) much simpler and easier to digest:

//p/div

The point here is not to argue the merits of one approach or another in general; it's simply
to remind you that as a rule, XPath offers multiple routes to the same solution. If you find
yourself trapped by a particular technique that "solves" one problem but creates another,
don't forget to investigate an alternative before consigning XPath to the (ever more
crowded) dustbin of technologies long on the theoretical dimension but short on the
practical.

3.3.4.4 Special case: numeric-valued predicates

A very important second exception to the general form of the predicate is when the
predicate's value is (or evaluates to) a number. This form is used to select a node that has
a particular context position within the node-set selected by the preceding portion of the
location step.

Look back at the weather-readings example. If you wanted to select the third reading
child of all elements in the document, regardless of its contents, you could do so using:

//reading[3]

This numeric form of the predicate is actually an abbreviated form of the usual value1-
operator-value2 general syntax. The full form uses the XPath position() function
(covered in Chapter 4) in the following fashion:

//reading[position() = 3]

Note that to test a node's position and some other condition in a compound predicate, you
may not use the short, numeric form of the position test. Thus, the following:

//reading[3 or temp < 25]

is not correct, and must be coded as:

//reading[position() = 3 or temp < 25]

3.3.4.5 "Stacked" predicates

The XPath spec doesn't use this term, but I think the word "stacked" pretty well describes
what's going on. ("Chained" might work equally well. But in a chain, the order of the
particular objects usually doesn't make much difference; switch a couple of links and it's
still functionally the same chain. In a stack, the sequence can make all the difference in

 61

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=29

the world.) A location step can have multiple predicates, one following the other, in this
fashion:

axis::nodetest[predicate1]...[predicateN]

where the ellipsis (...) and [predicateN] indicate that you can have as many predicates
as you need.

In many cases, this works exactly as though you'd put the stacked predicates together in a
single predicate and connected them with and operators. For instance, the following two
location steps are functionally identical:

day[@date > "2001-12-01"][reading]
day[@date > "2001-12-01" and reading]

Both select a day element only if it has a date attribute whose value is greater than
2001-12-01 and if it has at least one reading child.

But the operation of these stacked predicates is slightly different from the merely anded-
together alternative. In effect, each succeeding stacked predicate is evaluated in terms of
the narrowed context provided by the preceding one(s), not just in terms of the general
context in which a single (perhaps compound) predicate is evaluated. This is especially
noticeable when one of the predicates on the stack is numeric, testing for a node's
position.

Consider a document that represents tosses of a coin:

<tosses>
 <toss result="heads"/>
 <toss result="heads"/>
 <toss result="tails"/>
 <toss result="heads"/>
 ...etc....

</tosses>

Now carefully consider the following two location paths into this document, each using a
stacked predicate:

(//toss)[@result="heads"][3]
(//toss)[3][@result="heads"]

See the difference? The first path locates (a) all toss elements whose result attribute
equals "heads," and then (b) the third one of those toss elements. Therefore, in the above
document, it selects the fourth toss element in the document.

The second path, though, starts out by selecting the third toss element; the stacked
predicate applies a further screen, selecting the third toss element only if its result

 62

attribute has a value of heads. Because the third toss element's result attribute is
tails, therefore, this location path returns an empty node-set.

Also note in these two examples the use of parentheses to isolate a portion of a location
path from a predicate. This enables the XPath to apply the predicate(s) to the
parenthetical portion as a whole, rather than just to the last location step in the path.

3.4 Compound Location Paths Revisited

Early in this chapter, I mentioned that you could join together multiple location paths into
a single one, using the "pipe" character, |. In that section, you saw this example:

/customers/customer/invoice | /customers/customer/cust_info

For any given location path, you could say that any given location step shifts the context
in which succeeding location steps are evaluated. Thus, for the first location path in this
compound location path, the context is narrowed first to the root customers element
(thereby excluding from consideration any content in the document that precedes or
follows the root element), then to customer children of the root element, and finally to
invoice children of those customer children.

What, you might reasonably wonder, happens to the context in succeeding location paths
of a compound location path? Every constituent location path is considered
independently — just as if it were the only location path. Obviously, if the location path
is absolute (as in the example from early in the chapter just repeated here), its context
node is immaterial. If the location path is relative, it is evaluated relative to whatever the
context node is at that point, disregarding any shifts in context effected by preceding
portions of the compound location path. Consider this example:

invoice | cust_info

The first location path selects all invoice children of the context node for the compound
location path as a whole. Likewise, the second selects all cust_info children of the
context node for the compound location path as a whole — not all cust_info children of
the invoice elements selected by the first location path. The results of the two selections
are simply unioned together into a single node-set.

Along these lines, also note that each constituent location path may employ "stacked"
predicates (as discussed earlier in the chapter), compound predicates, or any other
location path variations. Predicates used in location path A have no effect on those in
location path B and vice versa.

 63

Chapter 4. XPath Functions and Numeric
Operators
The XPath 1.0 Recommendation specifies a number of functions and numeric operations
that can be used to refine the results returned by an XPath expression.

Before getting into the details of these features' uses, let's take a look at a fundamental
question: what are functions in the first place? (If you're already familiar with the use of
functions in programming languages, such as Java, C++, and Visual Basic, feel free to
skip this section.)

4.1 Introduction to Functions

When I was a kid, I loved watching my father work on cars. He'd been a mechanic all his
life, and the automotive toolkit he'd acquired over the course of the years was exotic (to
my eyes, anyhow).

One of the smaller items in Dad's toolkit was something he called a "spark-plug gapper."
It was something like a Swiss-Army knife, with a half-dozen or so stiff steel prongs that
you could swivel out from the tool's main body. Each L-shaped prong was of a slightly
different thickness; depending on the model of car you were working on and the specific
spark plug's specifications, you'd tap the end of the spark plug on the pavement and,
using the gapper, ensure that the distance across which the spark was to jump was just
right. There was also a small, stiff plane of sheet metal attached to the gapper, which you
could use to spread the gap if you'd already closed it up too much. The objective was the
get the gap just right, to ensure that the spark plug fired in just exactly the right way.

A function in computer-language terms is like a spark-plug gapper. It's a tool provided by
a software developer. You use the tool in the same general way for a given task,
whenever you need to obtain some result you can't obtain (or obtain easily) without the
tool.

Almost without exception, regardless of the computer language in question, functions are
represented syntactically the same way:

function_name(arg1, ...)

Each function (like each tool in a mechanic's toolbox) has a distinct name. Depending on
the function, you may pass one or more arguments to it, which change its behavior in
various ways. The arguments are enclosed in parentheses. Thus, the spark-plug gapper
might be represented like this:

gapper(prong)

where gapper is the function name and prong, a single argument provided (or "passed")
to the function. Under many circumstances, you wouldn't pass a function like this the

 64

literal token p, r, o, n, g; rather, this is just a placeholder, a reminder to you of what you
do pass to it. In this form, the function syntax is called a prototype. When you actually
use (or "call" or "invoke") a function, you typically substitute a literal value for each
argument. So an actual call to our hypothetical gapper() function might look like this:

gapper(1)

Now, many functions are fussy about both the number of arguments and the type.
Depending on how the gapper() function is written, for example, the following might be
illegal calls to it:

gapper(3, 6)
gapper("1")

In the first example, there's more than one argument passed; in the second, the argument
being passed is a literal string rather than a literal number. If in fact a legal call to
gapper() passes only a single numeric argument, either of these two calls will fail —
probably resulting in an error message of some kind.

4.1.1 What Functions Do

The interesting thing about functions is that a call to one of them takes the place of some
literal value in a "sentence" in the programming language in question. That is, a function
returns a value.

So Dad, in my case, might say to me something like, "Here. Set the gap on this plug to
fifteen-thousandths of an inch." This would require me to know how to determine which
prong on the gapper produced exactly that effect. More likely, especially if this was my
first time handling the tool, he'd say, "Set the gap on this plug with prong number one"
(or whatever). In a hypothetical computer language to achieve this purpose, this English-
language instruction might be rendered:

setgap gapper(1)

This would achieve the same effect as:

setgap .015

That is, in formal terms, the gapper() function, when passed a numeric value of 1,
returns the numeric value .015.

4.1.2 Functions Within Functions

Given, then, that a function returns a value and that the arguments passed to functions are
themselves values, it's entirely legal — even desirable, in many circumstances — to pass
one function as an argument to another.

 65

Returning to the spark plug-gapping tool, as you can see from the preceding example, the
gapper() function returns a value in the form of a fraction of an inch, based on the
"prong number" selected. This was eminently reasonable back in Dad's day. Now,
though, most spark-plug gaps are expressed in terms of millimeters. So now we'd need a
separate method for gapping a plug in metric units instead. The hypothetical computer-
language expression of this might look something like:

setgap_mm inches_to_mm(gapper(1))

which is equivalent to:

setgap_mm inches_to_mm(.015)

which in turn is equivalent to:

setgap_mm .38

The gapper() function here still returns .015 — the value in inches of feeler #1's
thickness. This value in turn is passed to a hypothetical conversion function,
inches_to_mm(), which takes a single argument — a number of inches — and converts
it to millimeters.

4.2 XPath Function Types

The functions available for use in XPath expressions are categorized by the type of value
they return and/or by the type of values they operate on as arguments. These categories
are node-set, string, Boolean, and numeric functions.

In each of the function prototypes in this section, I'll use the following scheme to denote
the kind of arguments passed:

string

Argument is a string value, to be enclosed in quotation marks in the function call.
If a function call takes more than one string argument, I'll append a number to
each, as in string1, string2, and so on.

nodeset

Argument is a node-set, represented by an XPath location path. Note that if you're
using XPath in an XSLT stylesheet, this location path will (if it's a relative path)
be sensitive to the context established by the stylesheet at that point. Whether
you're using XPath in XSLT or an XPointer, earlier portions of a complete
location path can of course establish a context for node-set references in later
portions.

boolean

 66

Argument has a Boolean value of true or false.

number

Argument has a numeric value. If a function call takes more than one numeric
argument, I'll append a number to each, as in number1, number2, and so on.

anytype

Argument can be any of several types. For instance, you can pass certain
functions a string or a numeric argument, and the function will handle any
necessary data-type conversion.

?

A question mark appended to one of the above data types means the argument is
optional. For instance, a call to a hypothetical my_func() function might come
with a prototype such as my_func(string?). This would mean that when you
call my_func(), you may supply a string argument or no argument at all. In such
a case, the function will usually assume some default value for the argument,
perhaps derived from the context node at the point of the function call.

Note that the type of data returned by each function is documented in a table at the start
of the section dealing with the appropriate function type. Unlike functions in some
traditional programming languages, XPath functions always return a value.

XSLT and EXSLT both provide functions that go beyond XPath
itself. If you need something beyond what this chapter describes, see
Appendix A.

4.2.1 Node-Set Functions

A node-set function, as the name implies, operates on a node-set; one of these functions
also returns a node-set. Table 4-1 summarizes the functions in this category. Each
function is discussed in detail in a separate subsection following the table. These
discussions assume that the source document being referenced by XPath expressions is
the following fragment of an XML document:

<!DOCTYPE book:book
<!ATTLIST book:section id ID #IMPLIED>
]>
<book:book
 xmlns:book="http://mynamespace/uri"
 xmlns:xlink="http://www.w3.org/1999/xlink/ "
 xmlns="http://www.w3.org/2000/svg">

 <book:chapter>

 67

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=61
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=32

 <book:section id="sect_01">
 <book:para id="para_01">Some text...
 For more information, see:
 <book:ref
xlink:href="crossref_01.xml">crossref_01.xml</book:ref>
 </book:para>
 <svg>
 <circle style="fill:yellow"
 cx="100" cy="100" r="50"/>
 </svg>
 </book:section>
 </book:chapter>

 [...remainder of book...]

</book:book>

Note the ATTLIST declaration in this document's prolog. As you'll
see, your documents may need such a declaration (in either the
internal DTD subset, as here, or an external one) to determine that an
attribute is of the ID type. However, if you're using the MSXML
XSLT processor, be aware that the ATTLIST declaration alone will
not suffice to make the processor recognize the (in this case) id
attribute; the processor also requires that the attribute's parent
element (book:section, here) be declared.

Table 4-1. Node-set functions

Function prototype Returns Description
last() Number Returns the number of nodes in the context node-set

position() Number Returns the ordinal position of the context node within the context
node-set

count(nodeset) Number Returns the number of nodes in nodeset

id(string) Node-
set

Returns the element node with an ID-type attribute equal to the
value of the passed argument

local-
name(nodeset?) String Returns the local name (that is, the QName without a namespace

prefix) of the first node in nodeset
namespace-
uri(nodeset?) String Returns the URI associated with the namespace prefix of the first

node in nodeset
name(nodeset?) String Returns the QName of the first node in nodeset

4.2.1.1 last()

If the context node-set, at the point of the call to last(), contains 12 nodes, last()
returns 12.

Assume the context for the call to last() is established by a location path such as the
following, referencing the sample XML document above:

//book:section/*

 68

This locates a node-set consisting of two element nodes, book:para and svg. Therefore,
a call to last() at this point returns the value 2.

Probably the most common use of last() is in a location step's predicate, as in:

/book:book/book:chapter[last()]

which selects the last chapter in the book.

4.2.1.2 position()

This commonly used function returns the integer representing the context node's ordinal
position within the context node-set. These positions begin at 1 (for the first node in the
node-set) and increment up to the value of the last() function.

The sample XML document's root element, book:book, has six element nodes visible
along its descendant:: axis (book:chapter, book:section, book:para, book:ref, svg,
and circle). Therefore, this location path:

/book:book/descendant::*

locates a node-set consisting of those six element nodes. You could locate just the svg
node by adding a predicate, as here:

/book:book/descendant::*[position()=5]

That is, "locate the fifth node in the node-set."

Note that the value returned by the position() function is sensitive to the forward or
reverse direction of the axis in effect. For forward-type axes, such as descendant:: in
the preceding example, nodes are accessed in their natural document order; for reverse-
type axes, nodes are accessed in reverse document order. So we could build a location
path beginning, say, at the svg element node and locating the ancestor book:chapter
element with a location path such as:

//svg/ancestor::*[position()=2]

Here, the book:section element is ancestor #1 in reverse document order, and
book:chapter is ancestor #2.

The position() function is important, as I've said, for two reasons:

• It can be represented in a location step's predicate simply by the value of the
position for which you want to test. That is:

//svg/ancestor::*[position()=2]

 69

and:

//svg/ancestor::*[2]

are functionally identical.

• Many XSLT operations must be performed for every nth occurrence of some kind
of node in the source tree being transformed. For a simple example, perhaps you
want to shade every odd row of a table, leaving the even rows unshaded: in other
words, to shade every second row. This kind of processing can be achieved easily
using position() together with the mod numeric operator. I'll describe mod later
in this chapter and give an example of its use with position().

4.2.1.3 count(nodeset)

In every respect but one, the count() function operates identically to the last()
function covered earlier. What makes it different is that count() takes one argument;
last(), none. Thus, count() can be used to return the number of nodes in some
arbitrary node-set other than the current one.

The following XSLT template displays the number of the current section in the chapter
within which it appears, then displays (using count()) the total number of
book:section nodes in the document as a whole. Note the nested xsl:for-each
elements, which cause processing in the template rule to "loop" through some set of
operations for every node in a select node-set. Here, the outermost xsl:for-each
element loops through every book:chapter element; the innermost xsl:for-each
element loops through each book:section child of the selected book:chapter.

<xsl:template match="/">
 <xsl:for-each select="book:book/book:chapter">
 Chapter <xsl:value-of select="position()"/>:
 <xsl:for-each select="book:section">
 This is section #<xsl:value-of select="position()"/> of
 <xsl:value-of select="last()"/> within its chapter.
 </xsl:for-each>
 </xsl:for-each>
 The total number of sections in the book is: <xsl:value-of
 select="count(//book:section)"/>
</xsl:template>

When you apply this template to a sample document consisting of three book:chapter
elements — the first with one book:section child elements, the second with three, and
the third with two — the result is:

 Chapter 1:

 This is section #1 of
 1 within its chapter.

 70

 Chapter 2:

 This is section #1 of
 3 within its chapter.

 This is section #2 of
 3 within its chapter.

 This is section #3 of
 3 within its chapter.

 Chapter 3:

 This is section #1 of
 2 within its chapter.

 This is section #2 of
 2 within its chapter.

The total number of sections in the whole book is: 6

4.2.1.4 id(anytype)

Unlike the other functions in the node-set category, the id() function actually returns a
node-set, given its argument. (The argument is usually, but not always, a string; see
Section 4.2.1.5, for more information.) The value of the argument locates the set of all
element nodes with the indicated ID-type attribute; because the value of an ID-type
attribute, by definition, must be unique within a given document, the resulting node-set
thus will contain a single element node (or be empty, if no elements have an ID-type
attribute with this value). You can also use a whitespace-delimited list of values to return
all element nodes with any matching ID-type attributes. For instance:

id("sect_01 sect_05 sect_88")

returns a node-set consisting of up to three element nodes. If no element nodes match a
particular value, no error condition exists. In this example, if no element node has an ID-
type attribute whose value is sect_05 but there are matches for the other two values, the
resulting node-set would contain two elements.

It's important that you heed the phrase "ID-type attribute" here. The id() function
ignores any attributes whose names are "id," unless they are declared in the document's
DTD as being of the ID type. Thus:

id("sect_01")

successfully returns the book:section element with that id attribute value, while:

id("para_01")

 71

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=32

returns an empty node-set: the former id attribute is expressly declared to be an ID-type
attribute in the document's DTD, while the latter is not. Perhaps more importantly, if
there is no DTD at all — if the document is simply well formed — it doesn't make any
difference what value you pass to the id() function; it will always in this case return an
empty node-set. If you're uncertain whether an attribute named id is of the ID type — or
know for sure that it isn't — test the attribute value in a location step's predicate, as in:

[@id="para_01"]

or, if the context node is already the id attribute:

[.="para_01"]

Such an approach, while perhaps more prosaic, is also closer to failure-proof. (XSLT
users can also take advantage of keys to ensure unique identifiers.)

4.2.1.5 id() and node-set arguments

The id() function is unique among functions in the XPath spec in one regard. As with
the other functions, if you pass it a value that is not a string, the value is treated as if it
had been converted to a string by the string() function (covered later in this chapter).
Typically, when you pass string() a node-set, it returns the string-value of only the first
node in the node-set. However, when you pass id() a node-set, the function returns not
only a single node (whose ID-type attribute's value would presumably match the string-
value of the first node), but rather a node-set containing all element nodes whose ID-type
attributes match any of the string-values of nodes in the passed node-set.

4.2.1.6 local-name(nodeset?)

The local-name() function returns the name of a node, shorn of any namespace prefix.
(You might call this the un-QName.) If the optional argument is not supplied, the
function operates as if you had passed it a node-set consisting only of the context node. If
the node-set contains more than one node, the function returns the local-name of only the
first node (in document order) in the node-set:

local-name(//book:chapter)

returns the string chapter and:

local-name(//svg)

returns the string svg. On the other hand:

local-name(//book:section | //svg)

(note the compound location path) returns the string section — that is, the local-name of
only the first node in the node-set.

 72

4.2.1.7 namespace-uri(nodeset?)

When you need to know the URI associated with a given element or attribute's
namespace in an instance document, call the namespace-uri() function. If you omit the
optional argument, its default value is a node-set consisting of just the context node. If
the node-set passed as the argument consists of more than one node, the function returns
the URI associated with only the first node in the node-set. If the specified element or
attribute has no associated URI, the function returns an empty string.

In the sample XML document, each element node is associated with a namespace URI.
The elements with explicit book: prefixes are associated with the URIs tied to those
prefixes via the namespace declarations for that prefix. For instance:

namespace-uri(/book:book)

returns the string "http://mynamespace/uri."

Note that when an attribute node's name is unprefixed — even when there's an explicit
default namespace declaration (xmlns attribute) in effect for the node — the namespace-
uri() function returns a null value. This expression:

namespace-uri(//circle@style)

returns a null string.

An attribute also does not acquire the namespace URI associated with the corresponding
element automatically. For attributes in the sample document such as id, style, and cx,
an empty string is returned as the namespace URI. However, this expression:

namespace-uri(//book:ref/@xlink:href)

returns the string "http://www.w3.org/1999/xlink/" — the URI associated (via the
xmlns:xlink declaration) with the attribute's xlink: namespace prefix.

By the way, as always when dealing with namespaces, remember that the exact
namespace prefix is seldom relevant: what counts is the URI to which the namespace
prefix is bound. For instance, at the time the XPath expression is evaluated — say, in an
XSLT stylesheet or an XPointer — the namespace URI "http://mynamespace/uri" might
be associated with the prefix mybook:. In such a context, the following two function calls
return exactly the same results as long as the document containing the XPath expression
binds both prefixes to the same URI:

namespace-uri(/book:book)
namespace-uri(/mybook:book)

 73

The document being evaluated by the expression needn't use either of those two prefixes
in the element name, as long as whatever prefix it does use is bound to the
"http://mynamespace/uri" URI.

4.2.1.8 name(nodeset?)

If your applications must refer to nodes in a namespace-aware fashion (as most
applications do), the name() function will probably be the node-name function you'll use
least often. That's because it returns the QName of the node-set passed (or defaulted) as
its sole argument — the "intuitive" name, including both the namespace prefix and the
local-name portion. Therefore, name() is truly reliable only when processing elements
and attributes in no namespace at all. As in the other name-related functions, passing no
argument at all causes name() to operate on a node-set consisting of just the context
node; if the node-set argument includes more than one node, the function operates on
only the first.

On the face of it, using a function such as name() might seem superfluous. After all, the
most common form of a location step includes an explicit node name, and if you already
know the node's name, there's no need for a function to return it.

Where it comes in handy is when you don't (for one reason or another) know the name of
the node in question or simply need to test the name (particularly of an attribute) against a
string. For instance, you might need to isolate the nth child of a particular element,
displaying its name and the names and values of all its attributes. Here's another example
from XSLT using nested xsl:for-each elements:

<!-- Process the first child of each book:section element -->
<xsl:template match="/
 <xsl:for-each select="book:section/*[1]">
 <!-- Display this child's name... -->
 The first child's name is <xsl:value-of select="name()"/>,
 and it has the following attributes:

 <xsl:for-each select="@*">
 <!-- ...and the name and value of each attribute -->
 <xsl:value-of select="name()"/> = <xsl:value-of
select="."/>

 </xsl:for-each>
 </xsl:for-each>
</xsl:template>

Applied to the sample XML document for this section, this template rule generates the
text:

The first child's name is book:para, and it has the following
attributes:
id = para_01

A special case of "not knowing the name of the node in question" occurs in generic
XSLT stylesheets whose purpose is to describe the documents they process, displaying

 74

the names of the various nodes and their values. A portion of such a stylesheet might look
something like the following:

<!-- Process all element children of the context node -->
<xsl:template match="*">
 <!-- Display the child element's name -->
 Child's name: <xsl:value-of select="name()"/>
 <!-- Display the child element's (string) value -->
 Child's value: <xsl:value-of select="."/>
</xsl:template>

What makes this a special case is not necessarily that you really don't know the node's
name — you may know very well what element names occur in your source document —
rather, the general-purpose code doesn't care what the element's name is at this point; it
treats all (child) elements the same way.

In Chapter 2, you saw something called an "expanded-name" for the
various node types. I described an algorithm there for computing an
expanded-name, consisting of the namespace URI, a plus sign, and
the local-name of the node. You can use the same algorithm for
computing the expanded-name with an XPath expression, by
concatenating for a given name the value returned by the
namespace-uri() function, the +, and the value returned by the
local-name() function. I'll show you how to do this concatenation
in the next section, in the discussion of the concat() string function.

Names and Nodes
Although the node-set functions — such as count(), position(), and name()
— are most often (and most "naturally") employed in locating and otherwise
processing element and attribute nodes, nothing inherently constrains these
functions to operating on only those node types. (The exception is id(). Its
focus is strictly on dealing with element nodes, because they're the only node
type that can be accessed by way of ID-type attributes.)

For example, you can count the number of text nodes in a document with an
expression such as:

count(//text())

which uses the text() node-type test to restrict the resulting node-set only to
text nodes.

Remember too that not only elements and attributes but also PIs have names. A
PI's name isn't associated with any particular namespace so the name() function
always returns just the PI's target. In this case, the value returned by the local-

 75

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=15

name() function is identical to the value returned by the name() function.
(Indeed, that is true for all node types except elements and attributes.) The value
returned by the namespace-uri() function when applied to a PI is an empty
string.

If the first node in the node-set handled by local-name(), namespace-uri(),
or name() is the root node, a comment, or a text node, the returned value is
likewise an empty string. These node types do not have anything remotely like a
"name."

Rather bizarrely, in my opinion, namespace nodes have expanded names. The
local part of a namespace node's expanded-name is the prefix associated with
that namespace; if there is no prefix (in the case of elements and attributes in the
default namespace), this local-name is an empty string. The namespace URI for
a namespace node is always null. In the sample document, which declares three
namespaces in the root element, all elements thus have three namespace nodes
associated with them (counting the namespace implicitly associated with the
built-in xml: prefix); their expanded names are, respectively, book, xlink, xml,
and an empty string.

4.2.2 String Functions

The set of XPath functions that operate on string arguments and/or return strings is
extensive. Used in XSLT stylesheets, these functions give you enormous flexibility in
terms of generating new content based on content in the source tree. In XPointers, you'll
find yourself using them most often in the predicate of XPath location steps.

Examples in this section all assume that the following XML document is being navigated
via XPath:

<dated_relics xmlns="http://mynamespace">
 <relic>
 <name>Smurf</name>
 <price currency="USD">9.00</price>
 </relic>
 <relic>
 <name>lava lamp</name>
 <price currency="GBP">39.95</price>
 </relic>
 <relic>
 <name>beanbag chair</name>
 <price currency="EU">70.75</price>
 </relic>
 <relic>
 <name>love bead bracelet</name>
 <price currency="GBP">.37</price>
 </relic>
 <relic>
 <name>blacklight</name>

 76

 <price currency="USD">323.65</price>
 </relic>
 <relic>
 <name>VW mini-bus</name>
 <price currency="USD">8500.00</price>
 </relic>
 <relic>
 <name>open-hand chair</name>
 <price currency="JPY">16865.78</price>
 </relic>
</dated_relics>

Table 4-2 summarizes the XPath string functions. A detailed discussion of each follows
the table.

Table 4-2. String functions
Function prototype Returns Description

string(anytype?) String Returns the value of the anytype argument converted to a
string

concat(string1,
string2, ...) String Concatenates the values of the passed arguments into a single

string and returns that string's value
starts-with(string1,
string2) boolean Returns true if string1 begins with string2, false

otherwise
contains(string1,
string2) boolean Returns true if string1 contains string2, false otherwise

substring(string,
number1, number2?) String Returns the portion of string starting at character

number1, for a length of number2 characters
substring-
before(string1,
string2)

String Returns the portion of string1 occurring before string2

substring-
after(string1, string2) String Returns the portion of string1 following string2

string-length(string?) Number Returns the number of characters in string

normalize-
space(string?) String

Returns the whitespace-normalized value of string (that is,
stripped of leading and trailing spaces, with multiple
consecutive occurrences of whitespace replaced by a single
space)

translate(string1,
string2, string3) String Replaces individual characters appearing in both string1

and string2 with corresponding characters in string3

4.2.2.1 string(anytype?)

As you might guess from its name, the string() function converts the optional argument
to a string of characters. There's a set of rules for the way in which this conversion takes
place, dependent on the data type of the argument:

When anytype is a node-set. When the argument is a node-set (for example, one returned
by a location path), string() returns the string-value of the first node in the node-set. If
the indicated node-set is empty, the returned value is an empty string. If the argument is

 77

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=32

missing, it defaults to a node-set whose only member is the context node at the point of
the call to string().

When anytype is a number. If you pass string() an integer numeric argument, results
are pretty much what you'd expect: you get back the number in the form of a string (e.g.,
"365" instead of 365). A fixed- or floating-point number is converted to a string including
a decimal point, at least one number to the left and one to the right of the decimal point,
and an optional minus sign (for negative numbers only, obviously). The spec says that the
number of trailing zeros in the latter case will always be sufficient only to distinguish the
number from all other legal (IEEE 754) numeric values.

Refer back to the sample XML document. Passing string() the value of a price
element should produce different results, depending on the price element. Consider:

string(number(price))

Here, the price of a Smurf should be returned as the string "9" (no leading or trailing
zeros, because none are needed to distinguish this or any other integer from all other legal
numeric values), the price of a love bead bracelet as the string "0.37" (including a leading
zero), and the price of any of the other relics in the document as simply the string-value
of the element's text node (e.g., the string "39.95" for the lava lamp).

Any form of the number 0, including positive and negative 0, is converted to the string
"0." Positive infinity[1] is represented as the string "Infinity"; negative infinity is
represented the same way, prepended with a minus sign: "-Infinity."

[1] Which I think of as one more than a gazillion.

You may encounter one other oddball condition when passing string() a numeric
argument, which arises when the argument is only supposedly a number, but for one
reason or another is not. As mentioned in Chapter 2 in the discussion of data types, XPath
represents a number-that-isn't-a-number with the special value, NaN; if NaN (either
literally or as the result of some calculation or function call) is passed to string(), the
returned value is the string "NaN."

The XPath Recommendation points out that passing numeric values
to the string() function is not intended to solve the general
problem of formatting numbers as strings — for example, grouping
every three positions with commas, forcing specific numbers of
leading zeros, and so on. If you're using XSLT, you can do all this
with the format-number() function and the xsl:number element.

When anytype is a Boolean. A Boolean argument to string() returns either the value
"true" or "false," depending on the value of the argument.

When anytype is a string. A string argument passed to string() returns the same string.

 78

http://safari.oreilly.com/
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=15

When anytype is any other data type. In a burst of involuted prose, the XPath spec says,
"An object of a type other than the four basic types is converted to a string in a way that
is dependent on that type." Let's see, the data types allowed under XPath are string,
numeric, node-set, Boolean, and, uh....

This clause has been added to future-proof XPath against the introduction of new data
types. In theory, the specifier (W3C or otherwise) of such a new data type would be
obliged to provide some statement of how its values are to be represented as strings: how
to derive their string-values, in short.

For instance, some future version of XPath (or an XPath-aware spec) might include a
currency data type. This hypothetical spec might then say something like, "When
represented as a string, values of the currency data type will include at least one integer
(possibly 0) to the left of the decimal point, the decimal point itself, and at least a two-
digit integer to the right of the decimal point, preceded by an optional minus sign and
preceded or followed by an optional currency symbol." And there would be your
definition of how to expect string() to behave when passed a currency value.

(How, exactly, an XPath function such as string() is to know all these outside-of-XPath
data conversion rules is a tricky question wisely sidestepped by the XPath spec.)

4.2.2.2 concat(string1, string2, ...)

The concat() function takes at least two arguments and forges them into a single string.
The function provides no padding with whitespace, so if you're constructing (say) a list of
tokens, or a set of words into a phrase or sentence, you've got to include the " " characters
and perhaps punctuation separating one from the other. For instance, assume that the
context node at a given point is any of the relic elements in the sample XML document.
Then:

concat(price, " (", price/@currency, ")")

builds a string consisting of that relic's price, a space an opening parenthesis, the currency
in which the price is represented, and a closing parenthesis. Given our sample document,
for the seven relics in question, this would yield the strings (respectively):

9.00 (USD)
39.95 (GBP)
70.75 (EU)
.37 (GBP)
323.65 (USD)
8500.00 (USD)

Note that the figures 9.00, .37, and 8500.00 do not follow the rules outlined above for
representing numeric values as strings. If for some reason you want to force this
representation, you need to explicitly convert the price element nodes' string-values to

 79

numbers (using the number() function discussed later), pass this result to string(), and
finally, pass that function's result to concat() as its first argument. Like this:

concat(string(number(price)), " (",
 price/@currency, ")")

Also note in this case that the call to string() is optional. Because concat() expects a
string-type argument, it does any necessary conversion automatically.

Earlier in this chapter, in the discussion of name-related node-set functions, I mentioned
that the concat() function could be used to build an expanded-name for a given element.
Following the logic of James Clark's algorithm for this process, you can build an
expanded-name for a given name using:

concat(namespace-uri(node), "+", local-name(node))

Thus, if node is a relic element from our sample XML document, the function call
returns the string "http://mynamespace+relic."

4.2.2.3 starts-with(string1, string2)

The starts-with() function takes two arguments, returning either the Boolean value
true if the first argument starts with the value of the second, or false otherwise.

Returning Boolean values makes starts-with() useful primarily in a location step's
predicate. Thus:

//price[starts-with(., ".")]

selects all the price elements whose string-values start with decimal points (i.e., no
leading zeros or other digits). For our sample document, the resulting node-set consists of
a single price element: the one for the love bead bracelet, with a string-value of ".37."

4.2.2.4 contains(string1, string2)

Like starts-with(), the contains() function returns a Boolean true or false and,
hence, is most commonly used in a predicate. And it too takes two arguments. The value
returned by the function is true if the first argument contains the second, or false
otherwise.

In our sample document, we could extract a node-set consisting of all relics that are
chairs using a location path such as:

//relic[contains(name, "chair")]

This would locate a two-node node-set: the relic node representing a beanbag chair and
the relic node representing an open-hand chair.

 80

4.2.2.5 substring(string, number1, number2?)

Like most programming languages, XPath provides a substring() function for
extracting a portion of a larger string. (Some languages, notably those derived from
BASIC, call this the mid() function instead.) It takes at least two arguments: the larger
string from which you want to select a portion and the starting point for the selection. A
third optional argument can specify the number of characters to be extracted; if this
argument isn't supplied, the extraction starts at character number1 and goes to the end of
first string.

If you're coming to XPath from a programming language that uses 0-
based indexing (such as Java), in which the first item is #0, the
second #1, and so on, be aware that XPath is 1-based: the first item is
#1, and so on. That is, to select the first character of a string, use:

substring(string , 1 , 1)

not:

substring(string , 0 , 1)

What happens when the number passed as the third argument exceeds the length of the
string in question? This is not an error; the function behaves as though you hadn't passed
a third argument at all. If the value of the second argument is greater than the length of
the string, you'll get back an empty string as a result.

One way in which I occasionally use the substring() function is during testing of an
XSLT stylesheet. At this point, I really don't care to see the complete contents of text
nodes, particularly lengthy ones. All I care to see is that the correct text nodes are
showing up in the right places. So I use substring() to return, say, just the first five
characters of a text node, with an ellipsis (. . .) appended. Something like this:

concat(substring(node, 1, 5), "...")

Given the sample XML document used in this section, when iterating through a node-set
consisting of all the name elements, this returns a series of substrings such as the
following:

Smurf...
lava ...
beanb...
love ...
black...
VW mi...
open-...

 81

4.2.2.6 substring-before(string1, string2) and substring-after(string1, string2)

These two functions work very similarly. They each take two arguments: a string from
which you want a portion of text extracted and a string where you want the extraction
terminated or begun, respectively. In either case, the string2 argument doesn't appear in
the result returned by the function; it's simply used as a breakpoint. If string2 doesn't
appear in string1 at all, the function returns an empty string.

Consider a check-writing application using the values of the price elements from this
section's sample XML document. Such an application takes a number such as "12.34"
(assuming that what is represented is in U.S. dollars) and converts it to a phrase like "12
dollars and 34 cents." You could use the decimal point in the price element as the
string2 breakpoint for calling both substring-before() and substring-after(),
like this:

concat(substring-before(price, "."), " dollars and ",
 substring-after(price, "."), " cents")

This would naturally have to be tweaked in various ways to be perfectly workable. You'd
have to come up with alternative phrasing for non-U.S. currency and also provide for the
likelihood that a given price (such as that of the love beads) lacks anything at all to the
left of its decimal point. But as a demonstration of the two functions in action, it works
just fine.

4.2.2.7 string-length(string?)

Given a passed string argument, the string-length() function returns the number of
characters it contains. If no argument is passed, the function operates on the context
node's string-value.

This function is sometimes directly useful in its own right. For example, you can use it to
tell you whether one string is longer than another (apply it to the two strings and compare
the two values returned). More often, though, you'll see string-length() used as an
argument passed to another function — or the values returned by other functions as
arguments passed to it. For instance:

string-length(substring-before(price, "."))

This returns the number of digits to the left of the decimal point in a price element's
string-value, which might be useful information in formatting the number a certain way.

4.2.2.8 normalize-space(string?)

If you've spent any time at all poking around XML-related specifications, you've
probably come across the verb "normalize" and its variants. The issue here is that an
XML parser is required to preserve whitespace found in a source document — to pass it
unchanged to a downstream application. To normalize content is to remove extraneous

 82

whitespace — to trim leading and trailing whitespace from strings (such as text nodes)
and replace multiple successive occurrences of whitespace within a string with a single
blank space.

That's what the normalize-space() function does, cleaning up the extraneous
whitespace in a string so that what's left is "pure content." Why would you want to do
this? Because if the text content of a document has been hand-entered, you want to be
sure that no extra space has crept in as a result of keyboard errors. This extra space can
make comparing one string-value to another fail, even when the two nodes are apparently
identical. For instance:

item1

and:

item1

are not "equal," although they may appear so to a casual human observer; the second
item1 is preceded and followed by newlines. That is, their normalized values — as
returned by normalize-space(), say — are equal, but their "raw" values are not.

Note that fixing up extraneous whitespace within a string isn't the same as removing
whitespace-only text nodes. Needing to do that isn't necessarily a problem in its own
right, but can be a very big problem in XSLT applications, where the extra text nodes can
play havoc with operations, such as processing even-numbered nodes one way and odd-
numbered nodes a different way. This is such a big issue in XSLT that the specification
includes some of its own facilities for handling such text nodes. For example, there are
both xsl:strip-space and xsl:preserve-space elements for identifying the
whitespace-only text nodes you want collapsed or preserved, respectively.

The normalize-space() function addresses this potential problem by ensuring that
you're dealing only with the true #PCDATA content in a complete document or any of its
nodes: pass it a string, get back the normalized result; pass it any other data type, get back
the normalized corresponding string-value; and pass it nothing at all to get back the
normalized string-value of the context node.

4.2.2.9 translate(string1, string2, string3)

The translate() function replaces individual characters in one string with different
individual characters. The string1 argument is the string whose characters you want to
replace; string2 includes the specific characters in string1 that you want to replace;
and string3 includes the characters with which you want to replace those string2
characters. So:

translate("1234567890", "126", "ABX")

 83

replaces each occurrence of any of the single characters "1," "2," or "6," with the single
character "A," "B," or "X," respectively. The value returned from this function call would
thus be the string "AB2345X7890."

Like normalize-space(), the translate() function can be valuable in ensuring that
two strings are equal, especially when their case — upper vs. lower — is possibly
different, even though they're otherwise apparently identical. Instead of comparing the
two strings directly, compare their case-folded values using translate(). Thus:

translate(somestring,
 "abcdefghijklmnopqrstuvwxyz",
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ")

Every lowercase "a" in somestring is replaced with a capital "A," every "b" with a "B,"
and so on. Characters in somestring that don't match any characters in string2 appear
unchanged in the result.

Note that the lengths of string2 and string3 are usually identical but don't need to be.
If string2 is longer than string3, translate() serves to remove characters from
string1. So:

translate(somestring,
 "abcdefghijklmnopqrstuvwxyz",
 "")

removes from somestring all lowercase letters, while:

translate(somestring,
 "abcdefghijklmnopqrstuvwxyz",
 "ABCDEFGHIJKLM")

uppercases all lowercase letters in somestring in the first half of the alphabet and
removes all those appearing in the second half. If somestring is "VW mini-bus," this
returns the string "VW MII-B": the uppercase letters "VW" (uppercase letters don't
appear in string2, so they're passed unchanged), a space, the uppercased "mi" and "i"
from "mini," the hyphen, and the uppercased "b" from "bus." The "n" in "mini" and the
"us" in "bus" are suppressed.

If for some reason it's desirable, string3 may be longer than string2. This is not
necessary, because the function considers only those characters in string3 up to the
length of string2; it's just like you omitted those characters from string3 in the first
place.

One interesting use of translate(), in conjunction with normalize-space(), is to
"depunctuate" a string. Thus, you can turn the string "Eek!!! Is that a mouse, or what?"
into "Eek Is that a mouse or what" using:

normalize-space(translate("Eek!!! Is that a mouse, or what?", "!,?",

 84

 " "))

Here, the translate() function itself replaces each occurrence of the exclamation mark,
comma, and question mark characters with a blank space; the outer call to normalize-
space() then squashes all the resulting multiple blank spaces between words into one. (If
you need to do this, be sure that the length of string3 — the blank spaces — matches
the number of characters in string2 exactly.)

While translate() can be useful for limited cases, it's not really a good general-purpose
"search-and-replace" tool — particularly because you can use it only to do single-
character matches and replacements. If you need to replace a single character with two or
more characters, two or more characters with a single one, or two or more characters with
a different set of characters — or a word or phrase with an entirely different one —
translate() won't help much, if at all.

In this case, you'll have to do more exotic string manipulation, perhaps with XSLT or a
programming language.

4.2.3 Boolean Functions

As the term implies, the XPath Boolean functions all return Boolean true or false values.
(And when you hear the word Boolean in an XPath context, a little flag should go up in
your head as you think, "Predicate." Hold that thought.)

These functions are all quite simple, with few little gotchas or complications. Thus, I
don't think it's necessary to provide a sample XML document for them. But following
Table 4-3, which summarizes the Boolean functions, I will provide discussion and
examples of each.

Table 4-3. Boolean functions
Function prototype Returns Description

boolean(anytype) boolean Converts anytype to a Boolean true or false value
not(boolean) boolean Returns true if boolean is false, and false if boolean is true
true() boolean Returns the value true
false() boolean Returns the value false

lang(string) boolean Returns true or false, depending on whether the language in which the
context node is presented matches the value of the string argument

4.2.3.1 boolean(anytype)

The boolean() function is similar to the string() function introduced in the last
section: it examines the argument passed to it and returns a value (true or false)
depending on the argument's value and data type. Also like the string() function, you
will almost never need to use boolean() explicitly: in contexts (particularly predicates)
where a logical true or false is expected, the anytype argument will be converted
implicitly, according to the type (string, numeric, node-set, or Boolean) of the argument.

 85

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=32

Thus, each of the following subsections describes these implicit conversions as well as
the result of explicit calls to boolean().

When anytype is a string. If anytype is at least one character long, the call to boolean()
returns true; otherwise, it returns false. Thus, the following two XPath expressions are
functionally identical (the value true):

boolean("some string")
string-length("some-string") > 0

Remember that a text node may consist entirely of whitespace, as discussed earlier. This
whitespace may fool the human eye but won't fool the boolean() function; newlines,
spaces, tabs, and so on each count as a string with a length greater than 0.

When anytype is numeric. A call to boolean() with a numeric argument returns true if
the argument is a legitimate number (i.e., not the special NaN value) and does not equal
either positive or negative zero.

Positive and Negative Zero?
This positive-or-negative-zero business is consistent with Java and other
specifications, although it seems to fly in the face of common sense. (After all,
isn't a number either positive or negative or zero? What does it mean when a
number is both positive and zero, or both negative and zero?)

In general, the plain-old number 0 is "positive" (but unsigned) zero. Using this
in numeric operations with negative numbers can result in what's called
"negative" 0; for instance, -2 times 0 equals "negative zero." The rule is that for
multiplication and division, if the operands share the same (perhaps implicit)
sign, then the result is positive; otherwise, the result is negative.

In other words, while you may be called upon to know the formal distinction
between positive and negative zero, in practice, they're both plain old 0. Also in
practice, don't expect to be called upon to know the formal distinction (unless
you're taking an exam or writing a spec yourself).

In discussing the behavior of boolean() with a string argument, I showed you two
expressions that produced the same result. To these two we can now add a third:

boolean(string-length("some string"))

The nested call to string-length() returns a number, which is then passed to
boolean(). If the number passed is 0 — that is, if the string is empty — boolean()
returns false, otherwise true.

 86

When anytype is a node-set. You already know, from the previous chapter, that you can
use a location path in a predicate to test for a particular node's existence. For example:

//employee[emp_address]

selects only those employee elements that have at least one emp_address child.

This form of the predicate is essentially a shortcut for using the boolean() function with
a node-set argument. It returns true if the node-set has at least one member, or false
otherwise. That is, the following is equivalent to the short form just presented:

//employee[boolean(emp_address)]

When anytype is a Boolean value. If anytype is itself a Boolean value, the value
returned by boolean() is identical to the value of anytype itself. If anytype is true,
boolean() returns true; if false, it returns false.

4.2.3.2 not(boolean)

The not() function simply flips the value of its passed argument. If the value of boolean
is true, not() returns false and vice versa.

This function is rarely useful in its own right; rather, you pass as an argument some other
expression returning a true or false value, enabling not() to test for the negation of the
other expression's value. So you can select all employee elements that do not have at
least one emp_address child using an expression such as:

//employee[not(emp_address)]

Many comparison operations in XPath look and behave peculiarly, and a particular trap
to watch out for when using not() is how it behaves differently from the ! (exclamation
point) Boolean operator in comparisons. Consider the following two location paths:

//employee[@id != "emp1002"]
//employee[not(@id = "emp1002")]

The first example selects all employee element nodes whose id attributes' values do not
equal emp1002 (or that do not have an id attribute at all); the second selects all employee
element nodes that do not have an id attribute whose value is emp1002. If you read those
two clauses carefully, you'll realize that the two location paths produce different results
when encountering an element such as:

<employee>...</employee>

This employee element will not be located by the first example, because it has no id
attribute at all; it will be located by the second example, though, because it has no id
attribute with a value of emp1002.

 87

4.2.3.3 true() and false()

These two Boolean functions are of rather limited utility. You pass them no arguments,
and they always return the Boolean value corresponding to their names: true() always
returns the value true, and false() always returns false. I've found them useful in
making explicit — documenting, as it were — the purpose of some other Boolean test.
Something like this:

//book/title[contains(., "XML") = true()]

selects a book element only if the string-value of its title child contains the string
"XML." Including the = true() doesn't change the test at all, it simply clarifies what
you're testing for.

Maybe the most common use of true() and false(), though, is in XSLT. While I don't
want to plunge further here into the details of that language, it's possible to build XSLT-
based "subroutines" called named templates. You can pass parameters to a named
template in a manner similar to passing arguments to a function; if the named template is
driven by parameters whose values it expects to be true or false, the simplest way to pass
it either of those values is with the true() or false() function.

4.2.3.4 lang(string)

Use of this function depends on the use of an xml:lang attribute (either directly, in an
instance document, or indirectly, via its DTD). If there is no such attribute in scope at the
point of the call to lang(), the function returns false.

However, if there is such an attribute in scope, lang() returns true if the context node is
"in" the language specified by the string argument passed to it. Consider this code
fragment:

<word xml:lang="EN">tarradiddle</word>

Assuming that this element or its text-node child is the context node, the following
function call returns true:

lang("EN")

More subtly, lang() also returns true in a case-insensitive way; you could also use:

lang("en")
lang("En")

and so on, all of which would return true.

Now, the language codes the xml:lang attribute uses needn't specify major languages
only, such as "EN" for English or "DE" for German. They can also specify sublanguages,

 88

or language groups, using a hyphen to separate the major language code from the one for
the sublanguage. English, for example, can be represented as American English or British
English using xml:lang values such as "en-us" and "en-uk." Suppose the code fragment
above specified an xml:lang attribute as follows:

<word xml:lang="EN-UK">tarradiddle</word>

In this case, both of the following would return true:

lang("EN")
lang("en-uk")

The inverse is not true. Whether lang() returns true or false, according to the spec,
depends on whether the xml:lang value in force for the context node "is the same as or is
a sublanguage of the language specified by the argument string." Thus, if you pass
lang() a string that itself identifies a sublanguage, lang() will not return true when the
xml:lang value in force is a major language. That is:

lang("en-uk")

returns false when applied to the following code fragment:

<word xml:lang="EN">tarradiddle</word>

4.2.4 Numeric Functions

Numeric functions operate on their arguments to produce numeric results. Table 4-4
summarizes these functions; each is discussed separately following the table.

Examples in this section refer to the following simple XML document:

<weights>
 <weight label="1kg">1</weight>
 <weight label="2.5kg">2.5</weight>
 <weight label="1ton">1016.0469</weight>
</weights>

Table 4-4. Numeric functions
Function prototype Returns Description

number(anytype?) Number Converts anytype to numeric value

sum(nodeset) Number Returns the sum of all nodes in nodeset, after converting each to a
number

floor(number) Number Returns the largest integer that is less than or equal to number
ceiling(number) Number Returns the smallest integer that is greater than or equal to number

round(number) Number Returns the integer nearest in value to number (rounds up if number has
a decimal portion of .5)

4.2.4.1 number(anytype?)

 89

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=32

Like the string() and boolean() functions discussed earlier, number() converts an
optional argument to some basic XPath data type — numeric, in this case — based on the
data type of the passed argument. If no argument is supplied, the function by default
converts the context node's string-value to a number.

When anytype is a string. To be converted to a number, a string argument must consist of
optional whitespace, followed by an optional minus sign (-), followed by the numeric
value itself, followed by optional whitespace. Any other kind of string is converted to the
special value NaN. Note in particular that the string may not include a leading plus sign
(+) or formatting characters, such as grouping commas or currency symbols. Among
other effects, this also causes "strings" expressing numbers as scientific notation (such as
"3.296E3") to be converted to NaN.

When anytype is a Boolean value. If the Boolean value is true, the value returned by
number() is 1; if false, number() returns 0. Thus, in this location step:

weight[number(contains(@label, "kg"))]

number() returns 1 for both the first and second weight elements, and 0 for the third.

When anytype is a node-set. In this case, the argument is first converted to a string as if it
had been passed to the string() function discussed earlier in this chapter, and then
converted to a number according to the rules for converting strings to numbers. This
follows common sense; using the sample XML document in this section, for example,
this expression:

number((//weight)[3])

first locates the third weight element in the document, then returns the numeric value
1016.0469.

When anytype is numeric. Passing the number() function a numeric argument simply
returns the value of that argument.

4.2.4.2 sum(nodeset)

You can do simple summations across a node-set using the sum() function; just pass it
the node-set in question. Each node is first converted to a number using the rules of
conversion laid out for the number() function, then the summation is performed. We
could sum up the values of all the weight elements in the sample document with an
expression like:

sum(//weight)

which would return the value 1 + 2.5 + 1016.0469, or 1019.5469.

 90

Be careful when using sum() to ensure that you don't run into a not-a-number wall; it
takes only a single node with a non-numeric value to make the sum non-numeric as well.
Applied to our sample document, this expression:

sum(//weight/@label)

returns NaN, because not all of the label attributes in the selected node-set are numeric.
(Any node failing the numeric test is sufficient to produce a NaN result.)

4.2.4.3 floor(number) and ceiling(number)

The floor() and ceiling() functions perform similar operations on their arguments.
Both return integers nearest in value to that of the argument. For floor(), the result is
the largest integer less than or equal to the argument; for ceiling(), the smallest integer
greater than or equal to the argument. So:

floor(//weight[3])

returns 1016, while:

ceiling(//weight[3])

returns 1017.

Note that these are not exactly rounding-down and up functions. Although they consider
the fractional part of the passed argument, they simply check that it's greater than 0. If so,
floor() returns the integer portion of the argument and ceiling(), the integer portion
plus 1. If not, floor() and ceiling() both return the same result: the integer portion of
the argument.

Be careful when using floor() and ceiling() with negative arguments. A function call
like:

floor(3.2)

returns 3, but:

floor(-3.2)

returns -4.

4.2.4.4 round(number)

Unlike floor() and ceiling(), round() rounds the argument up or down, depending
on which direction the nearest integer lies. Thus, the result will always be identical to that
of either floor() or ceiling():

 91

round(//weight[3])

returns 1016, for example (the same result obtained using floor()).

If the fractional part of the passed argument is exactly .5, the round() function rounds
up, consistent with common use (and therefore always behaving just like ceiling()).
So:

round(//weight[2])

returns 3.

As with floor() and ceiling(), round() can produce unexpected effects when passed
a negative argument. (At least, they're unexpected until you think a little about them.)

The calls:

round(-3.4)
round(-3.5)
round(-3.8)

Return the values -3, -3, and -4, respectively.

4.3 XPath Numeric Operators

XPath includes a set of numeric operators for performing basic arithmetic operations.
Don't go looking for net-present-value or square-root operators; they don't exist. But if
you simply need to add, subtract, multiply, divide, or find a remainder of two numeric
values, here's your answer. Table 4-5 summarizes these numeric operators.

Table 4-5. XPath numeric operators
Operator Description Example

+ Adds two values (//weight)[1] +
(//weight)[2]

- Subtracts one value from another (//weight)[3] -
(//weight)[1]

* Multiplies one value times another (//weight)[3] * 5

div Divides one value by another (//weight)[3] div 1016.0469

mod Returns the remainder after dividing one value by
another (//weight)[3] mod 1016.0469

Most of these are straightforward, not requiring any further explanation; however, both
the div and mod operators could use bit more explanation.

4.3.1 div

 92

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=33

Why use a special div operator at all? Why not just use the more familiar forward slash
character, /, to divide one value by another?

The answer is that a slash in an XPath expression is already freighted with meaning: it
operates as a delimiter between location steps. (A good analogy, in XML terms, might be
the required use of entity references, such as < instead of the literal < character.)

4.3.2 mod

Unlike div, the mod operator is common in other application languages as well as in
XPath. The term "mod" comes from modulus or modulo — the formal arithmetic term
for the remainder following a division. (Some languages use a single character, like the
percent sign, %, to perform the same operation.)

I promised, earlier in this chapter, to show you how to use mod with the position()
function to process every nth node in a given node-set.

The basic idea is first to isolate what n is, then compare the remainder of dividing a given
node's position in the node-set by n. If the remainder is 0, the node in question gets the
special "every nth node" processing, otherwise it doesn't.

Suppose we have a list of employees in an XML document, coded something like this
(irrelevant details omitted):

<employees>
 <employee>...</employee>
 <employee>...</employee>
 <employee>...</employee>
 <employee>...</employee>
 <employee>...</employee>
 <employee>...</employee>
</employees>

As you can see, this document includes six employee elements within the employees
container element. If we want to perform some particular operation just for the employee
elements in even-numbered positions within the node-set, we could use an XPath
expression such as:

//employee[position() mod 2 = 0]

If we want this operation to occur on every odd-numbered employee in the list, we
change the predicate as in this example:

//employee[position() mod 2 = 1]

If we want to select every third employee, change the 2 in the above examples to 3; for
every fourth, change it to 4; and so on.

 93

The mod() function is also useful for certain conversion-type operations, such as
converting raw quantities of something to dozens-of-something-plus-leftover-units and
four-digit years to their two-digit values. For instance:

1960 mod 100

returns the value 60.

 94

Chapter 5. XPath in Action
Taken on its own terms, as a teaching tool, XPath might not seem to meet the test for a
practical standard: it's useful only in the context of some other standard. How do you
demonstrate something like XPath without requiring the novice to learn that other
standard as well? Luckily, several tools have emerged to simplify this task. These tools
allow you to enter and modify an XPath expression — typically, a full location path —
returning to you in some highlighted form a selected portion of a target document. (The
portion in question might or might not be contiguous, of course, depending on how exotic
the location path is.) In this chapter, I'll demonstrate XPath using a tool called XPath
Visualiser, developed by Dmitre Novatchev.

XPath Visualiser can be downloaded from the VBXML site, at
http://www.vbxml.com.

5.1 XPath Visualiser: Some Background

XPath Visualiser runs under Microsoft Windows, from Windows 95 on up, and is built
on top of the Microsoft MSXML XML/XSLT processor included with the Internet
Explorer browser. This operating environment for the tool implies some advantages and
disadvantages to its use.

An important practical advantage of this tool is that the results are visual. As we go
through the examples in this chapter, you'll be able instantly to see the effects — subtle or
grand — of changes in XPath expressions. (You don't even need to use Windows, let
alone XPath Visualiser itself, because all these effects are captured in screen shots for
you.) Trying to explain verbally what an XPath expression "does" is a convenient way to
extend a book's length, but it's not simple, and it's prone to misinterpretation. (A picture
of an XPath expression is worth a thousand words of description.)

Next, because XPath Visualiser uses a current version of the MSXML processor, its
"understanding" of the XPath Recommendation is complete. If an expression is legal
under the terms of that standard, you can illustrate it with XPath Visualiser.

Interestingly, though, a significant disadvantage of using XPath Visualiser is also that it's
based on MSXML. That's because MSXML supports not only the current versions of
XPath and XSLT, but also an early version of XSLT (called plain-old XSL). I described
this early version in Chapter 1 and Chapter 2. Among the differences in this "backward-
compatible" XSL processor is that it included numerous Microsoft-only capabilities; for
example, you could use their version of what became XPath to select a valid document's
document type declaration. (Note that this isn't a problem with XPath Visualiser itself,
which deals only with true-blue XPath; it may be something to consider if you're
planning to use MSXML for other purposes of your own.)

 95

http://www.vbxml.com/
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=9
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=15

XPath Visualiser is not a "program" per se. It's a plain-old frames-based set of HTML
documents and a customized version of Microsoft's default XSL(T) stylesheet, which
work only when viewed through Internet Explorer Versions 5 and up. (More precisely, it
works only with MSXML Versions 3 and up. Internet Explorer 5 and 5.5 do not come
with MSXML 3, although you could download and install MSXML 3 to run under them.
Internet Explorer 6 comes with the next version of MSXML, Version 4.) Figure 5-1
shows a portion of how the browser window appears when you first open this frameset.

Figure 5-1. Startup view of XPath Visualiser

I've suppressed all toolbars except the standard one, to give me as much screen real estate
as possible for displaying actual documents. (I've also tweaked the XPath Visualiser
default stylesheet; as distributed, the tool displays the document's contents against a pale-
blue background, which reproduces poorly in grayscale screen shots.) As you can see, the
upper frame includes a number of user-interface controls for specifying the document to
be viewed and the location path to be tested or demonstrated. By default, the location
path is:

//*

which selects all element nodes in the loaded document. When you've loaded a document
using the controls at the top of this frame and clicked on the Select Nodes button, the
nodes your location path has selected are highlighted in any of various ways. (The
buttons labeled Variables and Keys have to do with XSLT processing and will not be
covered here.) The document itself appears in the bottom frame; its display is an
enhanced version of the default MSXML/Internet Explorer view of XML documents,
showing the document as an expandable/collapsible "tree" of nodes. Because there's no
document loaded when you first fire up XPath Visualiser, the main document window
initially displays the simple text "XML source document." Once you load a document
and specify a location path, the lower frame changes in a manner resembling Figure 5-2.

Figure 5-2. A document loaded into XPath Visualiser

 96

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=36
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=36

The lower frame of the window in Figure 5-2 contains an XML document used in
Chapter 3. There are a couple important things to observe about this changed display.
First, XPath Visualiser's interface includes a series of "VCR buttons" (the series of
arrowheads beneath the location path in the top frame), which you can use to step through
a selected node-set. These VCR buttons are labeled to indicate which node in the node-
set is currently selected and how many nodes are in the node-set altogether ("0 of 22/22
matches," in this case). Second, the node(s) selected by the location path in the top frame
are highlighted in the lower frame. This highlighting appears in Figure 5-2 and
throughout the rest of this chapter, as a pale gray background. (In the case of elements, as
you can see, only the start tags are highlighted.) Finally, note the small vertical black bars
to the left of certain elements' start tags. On screen, these are simply shaded + and -
signs, placed there to expand and collapse the tree of nodes descending from elements
that have descendants. (As you can see, the name and price elements' start tags don't
have these black bars, since they don't have expandable/collapsible sub trees.)

For the remainder of the screen shots in this chapter, I'll simply show
portions of the lower frame, preceded by the location path in regular
code-style font such as:

//elementname
This will enable me to show larger portions of the document.

5.2 Sample XML Document

To keep a consistent base for all the example location paths in this chapter, I'll refer to the
same XML source document. This document is short but contains at least one of every
XPath node type:

<!-- Basic astrological data for C's and J's signs -->
<?xml-stylesheet type="text/xsl" href="astro.xsl"?>
<astro xmlns:xlink="http://www.w3.org/1999/xlink">
 <sign start-date="03-21" end-date="04-20">

 97

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=36
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=36

 <name type="main">Aries</name>
 <name type="alt">The Ram</name>
 <!-- aries.gif corresponds to Unicode 3.0 #x2648 -->
 <symbol xlink:type="simple" xlink:href="aries.gif"/>
 <ruling_planet>Mars</ruling_planet>
 <ruling_planet>Pluto</ruling_planet>
 <element>Fire</element>
 <energy>Feminine</energy>
 <quality>Cardinal</quality>
 <anatomy>
 <part>Head</part>
 <part>Face</part>
 </anatomy>
 </sign>
 <sign start-date="05-21" end-date="06-22">
 <name type="main">Gemini</name>
 <name type="alt">The Twins</name>
 <!-- gemini.gif corresponds to Unicode 3.0 #x264A -->
 <symbol xlink:type="simple" xlink:href="gemini.gif"/>
 <ruling_planet>Mercury</ruling_planet>
 <element>Air</element>
 <energy>Feminine</energy>
 <quality>Mutable</quality>
 <anatomy>
 <part>Hands</part>
 <part>Arms</part>
 <part>Shoulders</part>
 <part>Lungs</part>
 </anatomy>
 </sign>
</astro>

The document in question describes elementary properties of two of the Western-style
astrological signs, Aries and Gemini. When first loaded into XPath Visualiser with the
default "all elements" location path selected, it appears as shown in Figure 5-3.

Figure 5-3. Sample astrological document loaded into XPath Visualiser

 98

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=37

5.3 General to Specific, Common to Far-Out

I'll start out with some fundamental location paths, such as those selecting elements of a
particular name, and move on to some special cases (such as examples using axes and
predicates). The chapter will include a number of bizarre location paths probably unlike
any you'd actually use, but at least theoretically (if not practically!) legitimate. Along the
way, I'll poke into XPath functions, numeric operators, and so on. Each screen shot of
XPath Visualiser's lower frame is accompanied by a brief English-language description
of what's depicted.

(If you're feeling sufficiently adventurous, you might want to guess what the location
paths select before looking at the corresponding screen shots.)

5.3.1 The Node Test

As a reminder, XPath is capable of locating the following seven types of nodes: root;
element, attribute, comment, PI, namespace, and text. There's also a special node()
"node test," which locates nodes of any type along the selected axis. I'll cover the
attribute and namespace node types in a moment, but for now, here's how XPath (via
XPath Visualiser) selects on the other types.

The simplest of these is, of course, the root node itself. The location path to the root node
consists of a single slash:

/

XPath Visualiser depicts the result as shown in Figure 5-4.

Figure 5-4. "Locating" the root node

 99

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

Actually, the first thing you see when selecting on the simple /
location path is an error message; only after clearing this error
message are you greeted by the above. XPath Visualiser seems not to
know how to visually represent the root node — not that I know how
to, either!

Of course, as in Figure 5-2 and Figure 5-3, you've already seen the results of selecting all
elements in the document. Figure 5-5 is based on a location path identifying specific
elements: the part elements, in this case:

//part

Figure 5-5. Locating all elements with the same name

Notice how the highlighting has shifted; only those element nodes whose names are
"part" are now selected. The sample document contains three comments. To select them,
use the following (the results are as shown in Figure 5-6):

//comment()

Figure 5-6. Locating all comments

 100

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=36
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=37
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

There's only one PI in the sample document, which is the xml-stylesheet PI in the
document's prolog. You can select it using either of the following two location paths. In
either case, the result is the same, as shown in Figure 5-7.

//processing-instruction()
//processing-instruction("xml-stylesheet")

Figure 5-7. Locating a PI

Path Efficiency
It might pay to heed the relative efficiency of one location path over another.
While starting off a location path with the // shortcut certainly works, it forces
the processor to navigate through the entire document tree even though the PI
we're after is right there in the prolog. Thus, it'd be a much better use of
processor resources to replace the double slash with a single one, as in these two

 101

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

examples:

/processing-instruction()
/processing-instruction("xml-stylesheet")

Of course, if what you're really after is either all PIs in the document, or all xml-
stylesheet PIs, the double slashes do just that.

To select all text nodes, use:

//text()

This isolates all text nodes in the document; see Figure 5-8 for XPath Visualiser's
depiction.

Figure 5-8. Locating text nodes

Finally, to select all element, comment, PI, and text nodes in a single step, use the node()
special node type:

//node()

See Figure 5-9 for the result.

Figure 5-9. Locating all elements, comments, PIs, and text nodes

 102

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

One interesting note about these results is that — as discussed in Chapter 3 — neither
attribute nor namespace nodes are "visible" (or highlighted in Figure 5-9) along the
default child:: axis. To access either, you must employ the attribute:: or namespace::
axis, respectively. For instance, either of the following works to select all attributes in the
sample document:

//attribute::*
//@*

As you can see in Figure 5-10, XPath Visualiser selects the attributes as complete name-
value pairs.

Figure 5-10. Locating attribute nodes

Namespace nodes are a special case, in XPath Visualiser as in most other contexts. As the
README file accompanying the utility says:

 103

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

This tool will not display selected nodes that were not explicitly specified
in the text of the xml source document. Most notably this is true for
(propagated) namespace nodes

However, the containing nodes are still [highlighted].

That is for namespace nodes, XPath Visualiser does not highlight all elements within
scope of the element declaring a given namespace, but only the declaration within the
declaring element itself. For instance, this location path:

//namespace::xlink

results in a display like Figure 5-11.

Figure 5-11. Locating namespace nodes

In Figure 5-11, I've shown the "X of Y/Z matches" information in the upper frame. For
other node types, the Y value in this phrase equals the Z. For namespace nodes, though,
XPath Visualiser sets Y equal to the number of namespace-declaring elements matching
the location path and Z equal to the number of elements within scope of the selected
namespace declarations. If you refer back to the full code listing, you will see that (as
Figure 5-11 shows) there are 26 elements, including the astro element itself, within
scope of the astro element's declaration of the xlink namespace.

(Remember, by the way, the built-in namespace associated with all XML documents, the
one bound to the xml: prefix. If you change the above location path to:

//namespace::*

XPath Visualiser changes the "Z" in "X of Y/Z" to 52 — that is, 26 namespace nodes for
the xlink namespace and 26 for the xml namespace.)

 104

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

Finally, to select a document's entire contents, you'd use a compound location path:

//node() | //@* | //namespace::*

Figure 5-12 depicts the result.

Figure 5-12. Locating all nodes in a document

5.3.2 Axes

Previous examples have already demonstrated some of the simpler axes, that is, the
child::, attribute::, and namespace:: axes. (Many of the previous examples also
demonstrated, without explicit comment, the use of the descendant-or-self:: axis, as
abbreviated //.) Let's take a look at some of the other axes now. Note that to use many of
these other "family relationships," we'll typically use one or more location steps to
navigate to some particular node-set in the document followed by a location step, which
"turns the viewpoint" along the axis in question.

The parent:: axis, usually abbreviated .., looks "up" from the context node one level in
the document's tree of nodes. A location path like:

//part/parent::*

locates all parent elements of any elements named "part" — in the case of our sample
document, as shown in Figure 5-13, the two anatomy elements.

Figure 5-13. Locating the parents of any part elements

 105

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

The parent of an attribute, comment, text node, or PI is the element that contains it (or,
for comments and PIs in the document prolog, the root node). So:

//comment()/../@*

(as you can see in Figure 5-14) selects all attributes of all elements that are parents of
(that is, that contain) any comment nodes.

Figure 5-14. Using the parent:: axis to locate attributes of a comment's parent element

An important concept this screen shot illustrates is that although a full location path may
contain references to many nodes at many levels of the document tree, only the final
location step in the path identifies the nodes that will actually be selected. Here, neither
the comment nodes nor their parents are highlighted by XPath Visualiser. As the final
location step in the path indicates, only the attributes of those parents are ultimately
selected.

 106

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

XPath does not define a simple sibling:: axis; to get all siblings of a given node, you
must use the preceding-sibling:: and following-sibling:: axes together. Something
like this (note that this is a single compound location path wrapped over two lines):

//processing-instruction("xml-stylesheet")/preceding-sibling::node() |
//processing-instruction("xml-stylesheet")/following-sibling::node()

This selects the siblings of the xml-stylesheet PI, as shown in Figure 5-15.

Figure 5-15. Selecting all siblings of a PI in the prolog

As the xml-stylesheet PI is located in this document's prolog, it has one preceding
sibling (the opening comment) and one following (the document's root astro element).

As discussed in Chapter 3, the preceding:: and following:: axes locate nodes that
terminate before or begin after (respectively) the full scope of a given node's markup.
They differ from preceding-sibling:: and following-sibling:: in not requiring a
"shared parent" condition. The following location path:

//quality[.="Cardinal"]/following::*

as you can see in Figure 5-16, selects not only that quality element's anatomy sibling,
but also that anatomy element's children and all the other elements that follow the close
of the quality element — even those otherwise unrelated (except distantly) to it.

Figure 5-16. Locating elements along the following:: axis

 107

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

The ancestor:: and descendant:: axes, of course, restrict the view from a given node to
the same branch of the family tree in an up or down direction, respectively. Thus:

//part[.="Face"]/ancestor::*

locates (as shown in Figure 5-17) the anatomy parent of that part element, the sign
parent of that anatomy element, and the astro parent of that sign element. (It also
locates the root node but, as explained earlier, XPath Visualiser has no way to "highlight"
the root node.)

Figure 5-17. Locating an element's ancestors

Adding the -or-self qualifier to the ancestor:: or descendant:: axis, on the other
hand, selects not only that chain of parents but also the context node itself. The location
path:

//part[.="Face"]/ancestor-or-self::*

 108

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

thus adds to the node-set selected by the preceding example the indicated part element
itself. Figure 5-18 illustrates.

Figure 5-18. Adding an element to its ancestor node-set, using the ancestor-or-self:: axis

5.3.3 Predicates

Chapter 3 noted that while the axis "turns the view" in a particular direction from the
context node, to further refine the list of nodes to be selected from among all those visible
in that direction you must use a predicate. For instance:

//name[@type="alt"]

selects only those name elements whose type attributes have the value alt. As you can
see from Figure 5-19, this prunes the node-set of all name elements in the document down
to just two — the ones whose string-values are The Ram and The Twins — and excludes
those (string-values Aries and Gemini) whose type attributes have some value other
than alt.

Figure 5-19. Trimming a node-set using a predicate

 109

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=23
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

While on the subject of selecting via attribute values, by the way, this might be a good
moment to illustrate the different effects produced by two similar but not identical
predicates. First, consider this location path:

//*[@type!="alt"]

Figure 5-20 shows how this selects all elements in the source document whose type
attribute does not equal alt.

Figure 5-20. Selecting all elements with an attribute whose value does not meet a
condition

Only four elements have a type attribute, and of those only two do not have the indicated
value.

Chapter 4, under the discussion of the not() function, described how in some cases it
seemed "obviously" to but did not actually perform identically to the != "not equal to"
operator. That is, the preceding location path behaves differently from the following:

 110

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=29

//*[not(@type="alt")]

As you can see from Figure 5-21, this location path selects all element nodes which do
not have a type attribute whose value is alt — including all element nodes with no type
attribute at all. Quite a difference!

Figure 5-21. Selecting all elements lacking a particular attribute with a particular value

Arguably the most common predicate test is one that selects nodes from among a
candidate node-set based on their positions within that node-set. You can use the
position() function for this test; when simply testing for a single specific position, you
can use the literal position number (or an expression that evaluates to a number) as the
predicate. Thus, the following two location paths are identical:

//*[position()=3]
//*[3]

Using the sample document as its source, XPath Visualiser displays the result shown in
Figure 5-22.

Figure 5-22. Locating nodes based on their positions

 111

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

As you can see, the result is a little surprising. The location path doesn't select simply the
third element in the document; it selects the third child element of every element in the
document. (As long as the parent element has at least three children, of course. Elements
with fewer than three children have none of their children selected. The location path
//*[3] might be read as, "Locate all elements in the document whose position along the
(default) child:: axis equals 3.")

Also remember that a node's position along a given axis depends on the axis's direction,
forward or reverse. In particular, the ancestor::, ancestor-or-self::, preceding::, and
preceding-sibling:: axes are reverse axes. All others (except the special case self::
axis, for obvious reasons) are forward axes. The position is counted starting at the context
node and proceeding in the direction of the axis towards the beginning of the document
(reverse axes) or the end of the document (forward axes). Consider this location path:

//quality[.="Mutable"]/preceding-sibling::*[1]

XPath Visualiser selects the first preceding sibling of the Mutable quality element in
reverse document order, as you can see in Figure 5-23.

Figure 5-23. Node position on a reverse-direction axis

 112

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

If all axes were in the forward direction only, the preceding location path would have
located the first Gemini name element — that is, the first preceding sibling in document
order of the Mutable quality element. If you want to get the first node in document
order when using a reverse axis, don't use the absolute position 1 in the predicate; use the
last() function, as here:

//quality[.="Mutable"]/preceding-sibling::*[last()]

Now XPath Visualiser (or any other XPath 1.0-compliant processor) will indeed select
that first Gemini name element, as shown in Figure 5-24.

Figure 5-24. Using last() on a reverse-direction axis

5.3.4 Functions

For the most part, as explained in Chapter 4, XPath functions are useful primarily in the
predicates of location steps. They serve to narrow the focus to particular nodes in a

 113

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=29

candidate node-set in ways that can't be tested directly, for example, by checking the
nodes' string-values.

Among the node-set functions, the most esoteric are probably those having to do with
namespaces. Still, these can be useful in ways completely unapproachable by any other
means. In our sample document, we've got both an href pseudoattribute (on the xml-
stylesheet PI) and a couple of xlink:href attributes (on the symbol elements).
Because the strings "href" and "xlink:href" are clearly not equal — and because a PI's
pseudoattributes are invisible along the regular attribute:: axis — it might seem
impossible to construct a location path that locates all hyperlink references in the
document (assuming all such references appear either in a PI or as values of xlink:href
attributes) with a compound location path such as:

//@*[local-name()="href"]/.. | //processing-instruction()[contains(.,
"href")]

This location path, applied to our sample document, locates the nodes shown in Figure 5-
25.

Figure 5-25. Locating href pseudoattributes and xlink:href attributes with a single location
path

Note in Figure 5-25 that the local-name() function serves to strip the namespace prefix
from the attributes associated with the xlink: namespace. Testing for some value in the
PI requires use of a string function, like contains() here, because everything except the
PI's name itself is considered (in XPath terms) one big string-value.

The Boolean XPath functions, boolean() can be used to explicitly test for the very
existence of a node, especially relative to the context node. For instance:

//*[boolean(child::*)]

 114

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

selects all elements in the document that have any child elements at all. This can also be
abbreviated, taking advantage of various defaults and shortcuts, to the more enigmatic
form:

//*[*]

In either case, the result of applying this location path to our sample document is as
shown in Figure 5-26.

Figure 5-26. Using boolean() to locate all elements that are parents of other elements

When you turn to XPath string functions, you really start to open up the doors to fine-
tuned (sometimes almost bizarrely so) location paths. If for some reason you wanted to
locate all elements whose string-values began with a capital "M" or ended with a
lowercase "e," you could use this location path:

//node()[starts-with(., "M") or substring(., string-length(), 1)="e"]

(Note that because there's no ends-with() function available under XPath 1.0, we have
to simulate its purpose using the substring() function, starting with position N in an N-
length string for a length of one character.)

This location path, applied to our sample document, is processed by XPath Visualiser as
shown in Figure 5-27.

Figure 5-27. Using XPath string functions

 115

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

5.3.5 Sublimely Ridiculous

As I've said, it's nearly impossible to theorize a portion of an XML document's content
that cannot be located with XPath. That said, even some straightforward English-
language questions can be answered only by very complex, even bizarre, XPath location
steps. And even when the questions can be answered simply, it's possible — if your
inclinations run to the perverse — to come up with incredible convolutions of syntax.
Here are a couple of examples.

For starters, look back at the sample document of astrological data, particularly at the
contents of the part elements. Perhaps it's just coincidence (or perhaps it's got something
to do with the alignment of heavenly bodies), but note that the two signs described by our
document are different in one respect: for one sign, the text nodes within the part
elements are all singular in number, and for one, plural. So let's ask this question:

What are the main names of all astrological signs with at least one plural
part element?

The easiest way to build up a long XPath location path is step by step, confirming that
each step along the way does what it needs to do. In this case, the place to start might be
at the end of the question: which part elements have plural text nodes? A location path
to accomplish this might look something like this:

//part[substring(., string-length(),1)="s"]

That is: locate all part descendants of the root node, substring the last character in each
of their string-values, and select only those for which that substring equals "s." (Of
course, this would fail to locate any part element whose string-value is "Teeth." This is
not an issue given the two astrological signs in question but be aware of such little
wrinkles in making assumptions about your own documents' contents.) Applied to our
sample document, XPath Visualiser comes up with the selection shown in Figure 5-28.

 116

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

Figure 5-28. Locating all "plural body parts"

Working backwards through our English-language question and comparing it to the
sample document structure, the next thing we're evidently seeking is the sign element
corresponding to any of the selected "plural body parts" located by the existing location
path. As is usual with XPath, there are a number of ways to locate this sign element. One
way would be to use the ancestor:: axis, as here (additional location step boldfaced):

//part[substring(., string-length(.),1)="s"]/ancestor::sign

As Figure 5-29 illustrates, the location path now walks the selection back up the
document tree to the corresponding sign element.

Figure 5-29. Locating the sign elements with "plural body parts"

The English-language question now says we need to locate the "main names" of all these
signs. In terms of the document's structure, this can be interpreted as "all child name

 117

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

element(s) of the selected sign element(s) that have a type attribute whose value is
main." Now the location path looks as follows:

//part[substring(., string-
length(.),1)="s"]/ancestor::sign/name[@type="main"]

Figure 5-30 shows how this location path works in practice.

Figure 5-30. Locating the main name element for each sign with "plural body parts"

One further refinement: as you can see from Figure 5-30, the location path as it stands
locates the desired name element(s) (with their start tags highlighted by XPath
Visualiser). If we really want to locate the main names of the selected signs, we need to
locate not the elements themselves, but rather the text nodes that make up their string-
values. So our full location path would be:

//part[substring(., string-
length(.),1)="s"]/ancestor::sign/name[@type="main"]
/text()

(Note that this location path breaks across two lines here, but actually is a single line for
XPath Visualiser's purposes; in XPath's own terms, breaking this expression across two
lines like this is quite acceptable.)

In Figure 5-31, as you can see, XPath Visualiser finally answers our original question. It
locates that actual name for which we're looking.

Figure 5-31. Locating the true name of each sign with "plural body parts"

 118

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

One more example, this one based on (perhaps quite unreasonable!) assumptions about
the way this document (and any other in the same vocabulary) is structured: each symbol
element is immediately preceded by a comment identifying the Unicode 3.0 character
corresponding to the image file for that sign's symbol. Also note that a sign may have one
or more ruling planets (Mars and Pluto for Aries, just Mercury for Gemini). Given these
assumptions, we might frame a question such as the following:

What is the name of the image file and the Unicode character equivalent
for the symbol of each sign with more than one ruling planet?

As with the previous example, let's begin at the end of the question by locating all the
signs with more than one ruling planet:

//sign[count(ruling_planet) > 1]

Figure 5-32 shows that this selects only one sign element (Aries).

Figure 5-32. Locating signs with more than one ruling planet

 119

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

How to proceed next may seem a little complicated, thanks to the presence in our
question of the word "and." All it really means, though, is that we'll be constructing a
compound location path. We can work on either the "image file" or the "Unicode
character" subordinate location path first; however, because we're going for baroque
(sorry) here, let's assume that we want to get to the Unicode character by way of the
corresponding image. The image for this sign element can be singled out thus:

//sign[count(ruling_planet) > 1]/symbol/@xlink:href

That is, from the selected signs, walk down to their symbol children and then select each
symbol's xlink:href attribute. Figure 5-33 illustrates the result.

Figure 5-33. Locating the image file for the symbol of each sign with more than one ruling
planet

Now we've got to add a second location path, joined to the first by the union (|, vertical
bar or pipe symbol). For this second location path, we're going to navigate down to the
same point as the first, but then go back to the preceding comment node:

 120

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

//sign[count(ruling_planet) > 1]/symbol/@xlink:href |
//sign[count(ruling_planet) > 1]/symbol/@xlink:href/../preceding-
sibling::comment()

An important part of this second location path is the /.. buried within it, which shifts the
context for succeeding location steps back up the document tree from the xlink:href
attribute, to its parent symbol element. If you omit this location step, the location path
attempts to select all preceding siblings of the attribute itself — which is almost never
what you want (in answering this question or any other: it always returns an empty node-
set).

As you can see in Figure 5-34, we've succeeded in locating all information in the
document about the symbols of all signs with more than one ruling planet.

Figure 5-34. Locating all Unicode and image-file representations of the symbols for all
signs with more than one ruling planet

By the way, although it doesn't matter for this particular sample document, note that the
compound location path is susceptible to breaking — returning an incorrect result — in at
least one case. If there's more than one comment that is a preceding sibling for a given
symbol, the location path will select them all. Thus, to make the location path more
robust, you might consider adding a predicate to the final location step, like this:

/comment()[contains(.,"corresponds to Unicode 3.0")]

Again, adding this predicate has no effect in the case of this particular document. There
are other built-in assumptions in the full location path that may or may not be true in
other documents in the "astrology markup language." For example, the location path
takes it for granted that each symbol element will have an xlink:href attribute; to be
even more bullet-proof, the path might choose to ignore symbol elements without that
attribute. This depends of course on your application's specific needs. Just remember that
as a rule, if you don't cover the unexpected in your location paths, XPath won't cover it
for you!

 121

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=38

Chapter 6. XPath 2.0
Even when the W3C promulgates a spec in its final Recommendation form, the spec does
not become fixed in stone.[1] Any product expressed in human language always requires
further tweaking — filling gaps, fixing ambiguities, and making room for new
developments in related specs and technologies. This is the case with the next, still-
upcoming version of XPath: Version 2.0.

[1] The main exception — and it's a biggie — has been the Extensible Markup Language (XML) 1.0 standard itself, still
mostly unchanged (except for minor editorial buffing) after four years. In my opinion, this is a testament to XML 1.0's
concise expression of far-reaching goals, especially in contrast to certain other specs' swollen expression of minutiae.
On the other hand, some would argue that the minutiae are the "hard part" and therefore warrant all the verbiage.

The XPath 2.0 spec, as of late 2001, still exists in a very tentative state. Not only is it a
Working Draft (one of the very first rungs a spec must negotiate on its way up the ladder
to full Recommendation status). It's not yet a specification of syntax, but rather a simple
statement of requirements. All you'll learn from perusing the XPath 2.0 documentation at
this point is what XPath 2.0 may ultimately permit you to accomplish — not the specific
means you will use to accomplish those ends.

The XPath 2.0 Requirements document explored in this chapter was issued in February,
2001. You can find it on the W3C web site, at http://www.w3.org/TR/xpath20req.

In December 2001, the W3C finally published a Working Draft of
the XPath 2.0 spec. In April 2002, this December WD was followed
up by another version. This chapter will make occasional reference
to this version of the WD as well as the Requirements document.

XPath 2.0 and XQuery 1.0
XPath 2.0 needs to support not only XSLT 2.0 and XPointer 1.0, but the
emerging XML Query (XQuery) standard as well.

XQuery is intended to be a general-purpose "interrogator" of XML content,
roughly analogous to the way that Structured Query Language (SQL) behaves in
a relational database context. The connections between XPath 2.0 and XQuery
1.0 are so critical that the two languages are being developed in lockstep, so to
speak.

Of course, XPath 1.0 already exists and is in wide use, while XQuery is still in
its infancy as a W3C spec. This might seem to imply that XPath would be the
"favored child" of the two languages, but don't bet on it: XQuery is under
development with full knowledge of the recently — finally — approved XML
Schema Recommendations, of which XPath 1.0 is entirely ignorant. More on
XML Schema, as well as its implications for XPath 2.0, later in this chapter.

 122

http://safari.oreilly.com/
http://www.w3.org/TR/xpath20req

An important document for you to consider, in these circumstances, is the
"XQuery 1.0 and XPath 2.0 Functions and Operators Version 1.0" Working
Draft, at http://www.w3.org/TR/xquery-operators/. This document, published in
August 2001, provides a first-cut look at what XPath 2.0 syntax may resemble,
at least regarding function calls and operators. You'll find much the same and —
alas — much different. For instance, function names will now (possibly) be
qualified with a namespace prefix, xf:, mapped to the URI
http://www.w3.org/2001/08/xquery-operators. So while the count() function
will still be present, under this guideline it would be called xf:count(). (In this
chapter, I will omit these namespace prefixes. the namespace prefixing of
function names is unlikely to be required, despite the "Functions and Operators"
implication that it will be.)

Be prepared to be overwhelmed by this so-called "F&O" document. Using fairly
conservative margins and font size, its length sprawls over 165 pages when
printed on my laser printer. I'm one of a dwindling minority who remain
optimistic that XML as such needn't be rocket science, but specs this long and
complex give pause to even us starry-eyed innocents.

6.1 General Goals

The XML 1.0 Recommendation implicitly established something of a precedent for
future XML-related standards, particularly in its opening statement of 10 "design
principles" from which all the individual details flowed. Likewise, the XPath 2.0
Requirements document (which I'll hereafter most often refer to as "XPath 2.0") states
eight general goals it hopes to accomplish. The general goals are distinct from the five
general requirements XPath 2.0 lays out in some detail. I'll discuss each of the former
briefly, then in the next section, break down the latter.

Be aware that I'm not a member of the joint Working Group
preparing the standard and not privy to their confidential discussions;
what follows in this section, therefore, is at best informed
interpretation of publicly available documents.

6.1.1 Simplify Manipulation of XML Schema-Typed Content

Well before the W3C's XML Schema standard acquired Recommendation status, it
loomed large in the thinking of other W3C Working Groups preparing — or even having
finished — specs of their own.

That's what this general XPath 2.0 goal shoots for: reconciling, in XPath 2.0, the
existence of XPath 1.0 with the existence of XML Schema 1.0. For instance, it might be
useful for XPath 2.0 processors to locate all of a Schema-based document's dates or
integers, ignoring the floating-point values and string-values.

 123

http://www.w3.org/TR/xquery-operators/
http://www.w3.org/2001/08/xquery-operators

6.1.2 Simplify Manipulation of String Content

XPath 1.0 provides a core set of string-handling features — particularly the string
functions. But users coming to XPath from other computing languages are occasionally
often frustrated by the things you can't do with strings.

For example, the translate() function provides easy one-for-one character substitution.
What it doesn't provide is the ability to substitute, say, a multicharacter string for a given
single character (or for a given pair of characters, or whatever).

6.1.3 Support Related XML Standards

Aside from XML Schema, XPath 2.0 also needs to take into consideration the
requirements of certain other XML-based standards dependent on it. In particular, it
needs to address the upcoming XSLT 2.0 and XML Query specifications. The joint W3C
Working Group currently responsible for XPath 2.0 is composed of individuals from the
two separate Working Groups responsible for those two standards, so this should be (in
theory!) an easily achieved goal.

Potentially more problematic is how to continue to support XPointer 1.0, which kind of
falls into a crack in the timeline between XPath 1.0 and 2.0.

6.1.4 Improve Ease of Use

On the whole, I think XPath 1.0 is much easier to use than it seems at first glance. But
there's no denying that it's got its share of idiosyncrasies and counterintuitive crotchets,
too, and this goal of XPath 2.0 addresses these obstacles.

For instance, as you know, you can use the union operator, |, to construct compound
location paths. But — somewhat arbitrarily — you can't use it in a location step. XPath
2.0 will let you do that.

6.1.5 Improve Interoperability

While XPath 2.0 doesn't use the word "interoperability" (or any of its other forms)
anywhere else but in the statement of this goal, it seems pretty clear what it's referring to.
This is not interoperability among products — XPath-aware processors — but among
XPath and other standards.

How does "interoperability among" differ from "support for"? Well, it's conceivable that
some hypothetical XPath 2.0 standard might support XSLT, XPointer, and XML Query
equally well but use different syntaxes, say, or different data models. This goal mandates
the development of common solutions to common problems. An XPath 2.0 processor,
you might say, should be plug-compatible whether it's used in the context of a larger
XSLT application, XPointer application, or XML Query application. That said, there's

 124

little likelihood of XPath 2.0's use in an XPointer application — given (as you will see)
XPointer's lagging progress through the standards process.

A little more tricky may be that word "improve." XSLT has been around for a while and
thus has a fairly large base of processors based on it, which by necessity understand
XPath 1.0 expressions. XPointer and XML Query are still in their infancy; hence, in one
respect, there wouldn't seem to be much in the way of any interoperability at all,
improvable or otherwise. But remember that this isn't a question so much about the
interoperability of processing applications as the interoperability of related standards
behind the applications.

6.1.6 Improve i18n Support

The term "i18n" is a shorthand expression. To expand it, simply take the initial "i,"
follow it with 18 other letters, and conclude with the letter "n": the word
internationalization. This goal is going to be both important and (I think) rather difficult
to meet. Importantly, the goal says that i18n support should be improved, not outright
resolved. Its intention is to facilitate the use of XPath with documents in non-Western
languages, particularly those requiring the use of full Unicode-based character sets.

This goal addresses such questions, for instance, as:

• Must an XPath-aware processor be able to perform mathematical operations,
particularly with the (explicit or implicit) number() function, on non-Arabic
representations of the text string "2"?

• What should happen when you convert a character from a caseless language, such
as Japanese, to upper- or lowercase?

6.1.7 Maintain Backward Compatibility

This one's easy to explain, if not necessarily to achieve. One implication of this goal is
that a processor that fully supports XPath 1.0 should still be able to operate in an XPath
2.0 context (albeit with a mere subset of the latter's functionality). More importantly, an
XPath 1.0 expression should "mean" the same thing to an XPath 2.0 application that it
does to an application that's been doing useful work for years. (You might want to recode
your XSLT stylesheets to take advantage of new XPath 2.0 features, but you wouldn't
expect — let alone want — them to break outright.)

6.1.8 Enable Improved Processor Efficiency

One of the knocks on using XML as a data-storage format, especially relative to
established tools such as database management systems (DBMSs), is that the tool for
locating specific content (XPath) is rather cumbersome for processors to implement, let
alone to implement efficiently. In a database, for example, you can construct an index on
virtually any field or combination of fields; when a new record is added, all the

 125

corresponding indexes are added to or updated as well. For a DBMS to work efficiently
in this regard, it simply needs to load all indexes up-front, not all tables.

XML itself, and particularly XPath 1.0, provide a halfway kind of solution to this
problem, by using ID-type attributes to ensure that each element (or at least each element
that we particularly care about) has a unique identifier. It's common for XML parsers, or
rather the processors built on them, to then build indexes to the uniquely-identified
elements for speedy location. XSLT builds further on this, allowing you to construct non-
unique keys on almost any kind of content in a given document, even one lacking any
attributes at all. There's a point of diminishing returns, of course, where it takes longer
and is generally less efficient to build a host of indexes (unique or otherwise) than it does
to simply hold the document in memory. And still, there's no way for an XML
document's "index" to be somehow part and parcel of the document itself; even a
document heavily keyed with ID-type attributes still has to be read in from beginning to
end to be sure you've collected all the key values.

My reading of this goal might be considered a pessimistic one — not so much that
processor efficiency will be outright improved (despite the goal's wording). Rather,
processor efficiency should not be made worse, even with the addition of new and
improved XPath 2.0 features.

6.2 Specific Requirements

XPath 2.0 breaks down a list of 25 specific requirements into five general categories:

1. Must support the XML "family" of standards
2. Must improve ease of use
3. Must support string matching using regular expressions
4. Must add support for XML Schema primitive data types
5. Should add support for XML Schema structures

XPath 2.0 does not explicitly tie these five general categories back to the list of eight
overall goals. That said, a careful reading of the spec might result in a grid something like
that represented by Table 6-1. To see the general goal(s) addressed by a category of
requirements, read down; to see which requirement(s) address a given general goal, read
across.

Table 6-1. XPath 2.0 requirements, by general goal

General Goals Support XML
"family"

Improve ease
of use

Regular-expression
matching

Schema data
types

Schema
structures

XML Schema-typed
content yes yes

Simpler string
manipulation yes yes

Support of related
standards yes yes yes

 126

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=42

Improve ease of use yes yes yes yes yes
Improve
interoperability yes yes yes yes

Improve i18n support yes yes
Backward
compatibility yes

Processor efficiency yes yes yes

One thing about the list of categories is very interesting: the use of the words "must" and
"should." Categories 1 through 4 are pretty clearly meant to represent nonoptional things
XPath 2.0 must achieve; category 5 is a bit more weasel-worded, implying (at the least) a
certain amount of ambivalence among the XPath 2.0 authors. The distinction between
these two words continues throughout the XPath 2.0 Requirements document.

It's such an important distinction, in fact, that I'm going to depart from the structure of the
document itself in discussing the 25 specific requirements. Rather than list them on a
category-by-category basis, I'm going to break them down into separate "must-do" and
"should-do" sections. Note that within a given category, regardless of the must/should
associated with it, specific requirements are must-/should-valued independently. Also
note that one of the general categories (#3, "Support string matching with regular
expressions") is not further broken down into specific requirements.

Alongside the heading for each specific requirement discussed below, I'll indicate the
number assigned to it by the XPath 2.0 Requirements document; you can use this number
to trace, via the numbered list of requirements categories above, to which of the five
categories it belongs. For instance, the "MUST requirement" headed "Provide a
conditional expression" is requirement #2.2, making it one of the "Improve ease of use"
categories.

"Must" Versus "Should": The Back Story
The use of these terms didn't originate with and is not exclusive to W3C
documents. They were actually introduced by the Internet Engineering Task
Force (IETF), in a document known as Request for Comment (RFC) 2119.

RFC 2119 sets forth a number of key words, including "must" and "should," to
be used in specific ways in formal Internet specifications. "MUST" — the
special words are generally capitalized — means "the definition is an absolute
requirement of the specification." (Other words you may see, which assert the
same level of requirement, are "REQUIRED" and "SHALL.") "SHOULD"
means "there may exist valid reasons in particular circumstances to ignore a
particular item, but the full implications must be understood and carefully
weighed before choosing a different course." (The alternative is
"RECOMMENDED.")

RFC 2119 also defines the term "MAY" ("an item is truly optional") and offers

 127

negations of each of these key words as well ("MUST NOT," "SHOULD NOT,"
and so on). The XPath 2.0 Requirements document uses only "MUST" and
"SHOULD," though.

You can find a copy of RFC 2119 (a scant three pages long) at the IETF web
site, at http://www.ietf.org/rfc/rfc2119.txt.

6.2.1 XPath 2.0 MUSTs

The following sections describe those things that are required by the spec.

6.2.1.1 Express its data model in terms of the XML Infoset (1.1)

A data model is a formal expression of the kinds of objects and their properties accessible
under the terms of a particular data storage/transmission specification, such as XPath.
The XML Infoset is a W3C Recommendation (finalized October 2001) that sets forth the
data model — the information set — of XML documents. The XML Infoset spec is
located at http://www.w3.org/TR/xml-infoset.

This information set is defined as a collection of 11 information items. An information set
is analogous to the tree of nodes in a document; information items, to nodes in the tree.

Most of the information items possible in an XML document conform to what you'd
expect: the document itself, elements, attributes, and so on. There are a couple of
nonobvious information items, though, such as unexpanded entity references (the
"things" that exist in a document when a parser does not, for one reason or another,
actually expand the entity references to their full forms) and notations. Also noteworthy
are the things you might find in a document that are not considered part of the Infoset:
content models, whitespace outside the document element and immediately following the
target of a PI, and so on. (The complete list of 20 excluded object types appears in
Appendix D of the spec.)

What this requirement means for XPath 2.0 is probably that the language used to name
various object types and properties will be brought into synch with that used in the XML
Infoset spec, to eliminate ambiguities among XPath 2.0 and other XML specifications
(such as XML Query and XSLT) that refer to the same object types. It may also result in
the introduction of new object types and properties into XPath. For instance, the Infoset
defines a "Base URI" property for various information items such as the document entity
itself and each element in the document. (Personally, I hope that the language isn't
brought too much into synch with the Infoset's. Carried to a zealous extreme, this might
produce such awful terms as "information item-set" instead of "node-set." I'm all in favor
of consistency, but I think reasonable people can be expected to make the intellectual
leap, in this case, from "node" to "information item" without having to actually say the
latter.)

6.2.1.2 Provide common core syntax and semantics for XSLT and XML Query (1.2)

 128

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/xml-infoset

As I mentioned, the XPath 2.0 Requirements document is a joint product of two separate
W3C bodies: the XSL Working Group (responsible for XSLT 2.0) and the XML Query
Working group (XML Query, or XQuery, 1.0). This requirement says that XPath 2.0 will
boil down the content-location needs of the two specs into a single common body of
features, which may be extended by the separate specs as required to cover their distinct
needs. The general idea is illustrated by Figure 6-1.

Figure 6-1. XPath 2.0, XSLT 2.0, and XML Query 1.0

In this classic Venn-diagram figure, the core syntax and semantics to be provided by
XPath 2.0 is the shaded area where the other two specs overlap. Content may also be
located by extension features provided by the other two specs — features of no common
use. For instance, XSLT 1.0 extended the XPath set of core functions with a document()
function for accessing the contents of other XML documents (source trees) than the one
nominally being processed by a given stylesheet. This function is considered desirable by
XML Query as well, and it has accordingly moved into XPath 2.0's set of core functions
and out of XSLT 2.0.

The XPath 2.0 Requirements document asserts that while the XSL
Working Group has consensus on this XPath 2.0 requirement, the
XML Query WG does not: the latter "is discussing what
functionality constitutes a common core."

6.2.1.3 Support explicit "for any" and "for all" Boolean operations (1.3)

Here's a typical XPath 1.0 location path with a predicate:

//book[price > 5.00]

This location path selects all book elements for which the first price child has a numeric
value greater than 5.00. Now consider that location path in light of the following
document:

<books>
 <book>
 <price type="wholesale">12.00</price>
 <price type="retail">16.95</price>
 </book>
 <book>
 <price type="wholesale">4.95</price>
 <price type="retail">6.95</price>
 </book>

 129

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=42

 <book>
 <price type="retail">5.25</price>
 <price type="wholesale">4.75</price>
 </book>
</books>

Under XPath 1.0, all three of the above book elements would be selected, because XPath
1.0 works in what might be termed "any mode" — selecting the book elements, in this
case, for which any price child is greater than 5.00. This requirement of XPath 2.0 says
it would also be nice to be able to select a book element if all its price children are
greater than 5.00 (which would select only the first book element in the above document).

6.2.1.4 Extend the existing set of aggregate functions (1.4)

The XSLT user community has been especially vocal in its requests (verging on outright
demands in some cases) that extra functions be made available for processing across a
single selected node-set. Currently there are only two such functions, sum() and
count(). Why not min() and max() functions? Why not avg()? Why not a distinct()
function to locate unique nodes?

For meeting this requirement, the XPath 2.0 authors will look primarily to XML Query
for inspiration. That spec, which will be informed by its authors' experience with and
knowledge of database manipulation languages such as SQL, is almost certain to provide
a richer set of aggregate functions than XPath 1.0's.

That said, there will probably be some difficult decisions ahead on
this requirement. For instance, if XML Query defines an npv()
function for returning the net present value based on a series of
arguments, is this of general utility among the core functions of
XPath 2.0 and, therefore, available for use in XSLT and XPointer as
well?

6.2.1.5 Loosen restrictions on location steps (2.1)

XPath 1.0 places some bizarre, seemingly arbitrary constraints on what you can do in a
location step:

• You can't use a node-set function itself as a location step. It might be very useful,
for example, to retrieve a descendant of an element with a particular ID-type
attribute using something like:

id("Belkin")/price

• You can't use the union operator, |, within a location step — only to delimit the
components of a compound location path. In the previous chapter, you saw a
rather complicated location step that looked like this:

• //sign[count(ruling_planet) > 1]/symbol/@xlink:href |

 130

//sign[count(ruling_planet) > 1]/symbol/preceding-
sibling::comment()

• This would be much more naturally coded (and easier to understand!) as:
• //sign[count(ruling_planet) > 1]/symbol/(@xlink:href |

 preceding-sibling::comment())

(Note the parentheses enclosing the alternatives in the final location step.)

• When used in XPointer, a location path cannot end with a node-set function, such
as count() or sum(). Thus, the following would be an illegal location path in an
XPointer:

//last()

This goal of XPath 2.0 would minimize these kinds of restrictions.

6.2.1.6 Provide a conditional expression (2.2)

Many computer languages provide a function that evaluates one argument for a true or
false value, returning one value if the result of that evaluation is true or a different value
if false. For instance, in a Microsoft Visual Basic program, you might see an expression
such as:

iif(flasher = "yellow", "slow", "go")

The iif() function here tests the value of a variable called flasher; if flasher's value
is the string "yellow," the function returns the string "slow," or otherwise returns the
string "go." Providing a similar "if condition X, then result A, else result B" logic is the
intention behind this goal of XPath 2.0. The April 2002 Working Draft of the spec spells
out a syntax that looks as follows:

if (expr1) then expr2 else expr3

The idea here, as you might expect, is to locate either the content identified by expr2 or
expr3, depending on the true or false value of expr1. Thus, you might do something like
the following:

if (title="Callings" or title="Wishcraft") then title else "Unknown
Title"

This first evaluates the string-value of the title child of the context node. If the string-
value is "Callings" or "Wishcraft," the value of the conditional expression as a whole is
that string-value; otherwise, the conditional expression as a whole has the value
"Unknown Title."

6.2.1.7 Define consistent implicit semantics for collection-valued subexpressions (2.3)

 131

To figure out what this is saying, let's start with that phrase at the end. A subexpression,
clearly, is a component (or possibly the entirety) of a normal XPath expression. The term
collection-valued refers to those bits of an expression that are the names of groups of
objects — particularly node-sets.

Thus, this goal asserts that any reference to (say) a node-set must always inherently
"mean" the same thing, no matter what its syntactic context might be at the moment.

The XPath 2.0 Requirements document provides an example showing how XPath 1.0
fails to meet this requirement. Here's a slight modification of that example. Consider an
XML-based library application. In an XPath expression designed to locate content in a
document built according to this application, you might do something like this:

shelf[books = 31]

This selects all shelf elements that have at least one books child with a value of 31.
However, if you use the books element in a subexpression, you get a slightly different
result:

shelf[books + 1 = 32]

This returns all shelf elements for which only the first books element equals 31.
(Slightly different, indeed!) Ironing out this and similar inconsistencies will make XPath
2.0 easier both to learn and use than its predecessor.

6.2.1.8 Support string matching with regular expressions (3)

Many computer languages — especially those with a background in the Unix operating
system — support the use of regular expressions to manipulate string content. You've
probably already been exposed to some of the more common types of regular expression,
such as wildcard asterisks (meaning "zero or more occurrences of any characters") and
question marks ("exactly one occurrence of any character") in listing the contents of a
filesystem directory. Being able to use even these simple regular expressions in XPath
would make the language terrifically more powerful. For instance:

//employee[name = "Simon*" or name = "*Lenz"]

would locate all employee elements with a child name element whose string-value starts
with the string "Simon" or ends with the string "Lenz."

But fully supporting regular expressions would go beyond simple wildcard matching.
Whole books have been written about the nuances and more exotic forms of regular
expressions, and this isn't the place to learn about them. But with them, you could tailor
your selections to do things like:

• Search for the strings "Calendar" or "calendar" (upper- and lowercase "C,"
respectively) in a single step, without using the translate() function.

 132

• Locate all strings formatted like a conventional U.S. telephone number (numeric
strings separated into three-digit area code, three-digit exchange, and four-digit
number, delimited by hyphens)

For more information on regular expressions, you might want to hunt
down a copy of O'Reilly's "owl book," Mastering Regular
Expressions, by Jeffery E.F. Friedl.

6.2.1.9 Define the operator matrix and conversions (4.1)

Well, that's the way the requirement is worded in the spec. It's followed by this
explanation, evidently meant to be at least as helpful:

XPath 2.0 MUST support the operators and type-coercion rules defined by
the joint XSLT/Schema/Query task force on operators.

You'll search in vain, though, for more information on this joint task force or the
"operator matrix." What you can do productively is read further in the spec, looking
especially at the four use cases (that is, specific reasons to pursue the requirement):
general, DateTime, Boolean, and QName.

The requirement's purpose is given away in the last three use cases. DateTime, Boolean,
and QName are all data types supported by XML Schema alone or in concert with XPath.
And what all this jargon about the operator matrix and type-coercion rules has to do with
is, in short, the selection and manipulation of content on the basis of the content's data
type — not simply on the basis of its value.

Consider the DateTime data type, for example. In most fully-featured data systems,
knowing that a particular datum is of DateTime type permits operations such as:

• Subtracting one DateTime value from another, yielding an interval that is itself of
the DateTime type

• Adding an interval to a DateTime, yielding an end-time
• Comparing one DateTime to another, yielding a Boolean true or false

For another example, given content of Boolean type, without meeting this XPath 2.0
requirement the language will still lack a fundamental component of a serious data
manipulation language: the ability to test for a literal Boolean value, such as true and
false (as opposed to strings which have those values).

6.2.1.10 Allow scientific notation for numbers (4.2)

This simple requirement — again, intended primarily to bring XPath into XML Schema
conformance — fine-tunes the number data type, assuring that any floating-point or
double-precision content can be handled properly as long as it's in one of the various
numeric formats defined by XML Schema. The Schema language supports not only

 133

scientific notation (such as 7.25e2, representing 7.25 times 10 squared, or 725) but also
certain exotic forms such as INF and -INF for positive and negative infinity.

6.2.1.11 Define cast and constructor functions (4.3)

Cast and constructor functions permit XPath-based applications to force a particular bit of
content to a desired data type. Some of these are available already under XPath 1.0, in the
form of the number(), string(), and boolean() functions. To align XPath 2.0 with
XML Schema, this requirement mandates the addition of equivalent functions for
converting content to XML Schema's URI and DateTime types.

Early in the chapter, a sidebar discussed a new spec, called XQuery
1.0 and XPath 2.0 Functions and Operators — the "F&O" document.
In that spec, constructor and cast functions are defined differently. A
cast function will take an expression (such as a location path) as an
argument. A constructor function will always operate on literal
arguments. (That is, in the latter case, a literal argument, such as
123.45, might be considered a typeless argument; to make it a value
of a particular type, the function must construct a datum of that type
and assign the argument's value to that datum.)

6.2.1.12 Support accessing the simple-type values of elements and attributes (4.5)

As with the cast/constructor functions mentioned in the previous item, XPath 1.0 already
satisfies part of this requirement by supporting content of the string, numeric, Boolean,
and node-set data types. But then along comes XML Schema, which adds quite a few
new data types to the stew, including binary, byte, century, double, QName, URI, and so
on. XPath 2.0 must be able to address and manipulate these simple data types, as well as
the four existing ones, without converting such content to (say) string values.

6.2.1.13 Define the behavior of operators for null arguments (4.6)

No matter whether you're dealing with XPath or some other language for locating or
otherwise handling data, the language needs to lay out some ground rules for processing
data with a null value.

Null values are different from empty-string values. Nulls say something like "nothing at
all," as if the content were never assigned in the first place; an empty string, on the other
hand, is a string of length 0. The issue with this requirement is that XML Schema allows
content to be explicitly assigned a type of null if the content is not provided in the
instance document.

What is the value, for example, of an empty element? of a legal attribute that is neither
explicitly assigned in a document nor defaulted via a DTD or Schema? You already know
what this XPath expression "means":

 134

unit_price * qty

It calculates the product of the unit_price child of the context node and the qty child of
the context node. But what if there is no unit_price child at all and/or no qty child, and
if unit_price and qty are both explicitly typed as null when unavailable? Should the
result of this calculation be some "default" value useful in other computational contexts,
like 0, or should the result itself be null?

6.2.2 XPath 2.0 SHOULDs

The following sections describe those things that are recommended by the spec.

6.2.2.1 Maintain backward compatibility with XPath 1.0 (1.5)

This may qualify as the very least surprising of all XPath 2.0 requirements. But it's
important that it's made explicit. It says, in effect, "Do not break a given XPath 1.0
expression simply, because it's being evaluated in an XPath 2.0 context."

The only surprise may be that this requirement falls into the "SHOULD" category, rather
than the "MUST." I don't know but am fairly certain that this simply recognizes the
pragmatic truth of life in the post-XPath 1.0 world — particularly, the looming XSLT 2.0
and XML Schema. It may very well be possible that satisfying one or more of the
MUSTs may make something about XPath 1.0 "break." For instance, consider the last
item in the MUST section which has to do with XML Schema-typed null values. Instead
of treating an empty (i.e., null) element as having an empty string-value, XPath 2.0 will
treat it as if it has the special null value. This may very well cause changes in the way
processors treat an expression such as:

concat(title, ". ", surname)

if a given surname element is empty-and-null as a result of the source document's
Schema.

6.2.2.2 Provide intersection and difference functions (1.6)

As you know, XPath 1.0 permits you to "union together" two or more node-sets with the
union operator, |. For full set-processing functionality, XPath 2.0 should also allow you
to extract the intersection (overlapping content) and the difference (areas of non-overlap)
between two node-sets.

Consider a simple XML document such as the following:

<animations>
 <short>
 <title>A Grand Day Out</title>
 <character>Wallace</character>
 <character>Grommit</character>
 <character>Tin Robot</character>

 135

 </short>
 <short>
 <title>The Wrong Trousers</title>
 <character>Wallace</character>
 <character>Grommit</character>
 <character>Feathers McGraw (The Penguin)</character>
 <character>Techno Trousers</character>
 </short>
 <short>
 <title>A Close Shave</title>
 <character>Wallace</character>
 <character>Grommit</character>
 <character>Shawn</character>
 <character>Wendolene</character>
 </short>
</animations>

The ability to select by intersection would allow you to easily locate all short animations
in which Wallace, Grommit, and Wendolene appeared. The ability to select by difference
would allow you to easily locate all films in which Grommit but not Feathers McGraw
(The Penguin) appeared. According to the XPath 2.0 WD released in April 2002, the
intersection might be accomplished as follows:

short[character = 'Wallace'] intersect
 short[character = 'Grommit'] intersect
 short[character = 'Wendolene']

The difference operation would be achieved using a special except operator:

short[character = 'Grommit'] except
 short[character = 'Feathers McGraw (The Penguin)']

6.2.2.3 Support the unary plus operator (1.7)

This requirement, if satisfied in XPath 2.0, will simply correct what to my mind is an
oversight in XPath 1.0: the failure to recognize a leading + sign as a legitimate portion of
a numeric value. (A value of -2.0 is already recognized as numeric; +2.0, though, is read
as a string — or more exactly, if you pass it to the number() function, the result returned
is the special NaN value.)

6.2.2.4 Simplify string replacement (2.4.1)

I mentioned earlier in this chapter a cardinal limitation of the translate() string
function: it permits you to replace characters only on a one-by-one basis. (Or, if the third
argument is shorter than the second, to remove single characters.) This constantly
frustrates newcomers to XPath, who'd like (along with the rest of us!) to be able to
replace single characters with multiples, or vice versa.

As a simple example, consider an XML document of data concerning a company's
employees. Such applications frequently make heavy use of single-character codes to

 136

represent different employee statuses (full- versus part-time and temporary versus
permanent), job categories, and so on. Under XPath 2.0, there's a new replace()
function whose syntax is (the slightly scary-looking):

replace(string1?, string2?, string3)

Here's what the April 2002 WD of the XQuery 1.0/XPath 2.0 Functions and Operators
spec says about this function:

Returns the value of [string1] in which every substring of the value of
[string1] that is matched by the regular expression that is the value of
[string2], has been replaced by a copy of the value of [string3].

Teased apart into something a little less convoluted (albeit less concise), this says to pass
replace() the following arguments:

• string1 is the entire string to be scanned for text to be replaced.
• string2 represents the value to be located within string1. (Note that this is a

regular expression, and hence can use various special characters such as an
asterisk to represent "any number of any characters.")

• string3 represents the value with which to replace every occurrence, within
string1, of string2.

Thus, in our hypothetical employee-information application, we might encounter XPath
expressions such as:

replace(emp_status, "T", "Temporary Worker")

This evaluates the emp_status child of the context node, returning a string in which the
single character "T" is replaced with the string "Temporary Worker."

6.2.2.5 Simplify string padding (2.4.2)

The issue here is that in many applications, it's useful to know that a particular string
always has a length of N characters (or possibly more). If the string is shorter, it should
be padded with, for example, spaces or leading zeros.

Note that it's possible to do this kind of string manipulation with XSLT. But it's non-
intuitive and, in any case, of no use if an XPointer or XQuery expression requires that the
returned string have a particular length.

6.2.2.6 Simplify string case conversions (2.4.3)

As with the preceding "should" requirement, there already exists a way to achieve this
objective: use the translate() function, specifying the entire uppercase alphabet as the
second argument and the lowercase equivalents as the third (or vice versa, if trying to
force a string to uppercase). Just as with the preceding requirement, though, it would be

 137

much simpler to have a pair of functions — call them upper() and lower(), perhaps —
to achieve the same result more simply and intuitively (to say nothing of its virtues in
supporting i18n goals!).

6.2.2.7 Support aggregation functions over collection-valued expressions (2.5)

Under XPath 1.0, as you know, some functions operate across all members of a node-set.
For example:

sum(price)

This expression totals up the values of all price children of the context node, returning
the resulting sum. What you can't do with XPath 1.0, though, is pass to such an
aggregation function even a simple, non-node-set expression. Assume what you're after
isn't a simple sum of a single node-set, but a sum of some set of calculated values. For
example:

sum(unit_price *qty)

You can't do this because the sum() function operates only on arguments of the node-set
data type — and whatever else it may be, the expression unit_price * qty is definitely
not a node-set. This kind of arbitrary (in truth, artificial) limitation on aggregation
functions (including any new ones to be added, such as min() and max()) will be lifted if
this requirement makes its way into the final version of the XPath 2.0 spec.

6.2.2.8 Add a "list" data type (4.4)

Some computer languages, such as Python, include not only simple data types such as
Boolean and string, but also a list data type. As the name implies, a list is a sequence of
individual data objects that can be treated, alternatively, as a sequence or as separate
items, depending on the need.

XPath 2.0 is expected to include a list data type as well. This will simplify the
manipulation of such common XML "plural attribute types" as NMTOKENS and IDREFS. It
will also permit XPath 2.0 to handle user-defined lists, locate the first or last item in the
list, return the range of integers between two adjacent list members, and so on.

6.2.2.9 Select elements/attributes based on an explicit XML Schema type (5.1)

Beginning with requirement 5.1, the XPath 2.0 Requirements document trails off into a
final set of four SHOULDs, all having to do with support for XML Schema-defined
documents.

This requirement in particular seems both very important and very likely to make an
appearance in XPath 2.0 in its final form. It will allow a location path to select elements
and attributes not on the basis of their values, but on the basis of the types of their values.
And note that by "type," the selection criteria won't be limited just to simple types such as

 138

integer, Boolean, URI, and so on. For instance, with XML Schema you can build up
application-specific "type molecules" from the many simple types predefined by the
standard. Thus, you could define an ISBN complex type, made up of the various pieces in
a full ISBN (each of which would have a simple type like integer or string). Then, with
XPath 2.0, you could easily extract all elements and/or attributes of this ISBN type.

6.2.2.10 Select elements/attributes based on an XML Schema type hierarchy (5.2)

Not only does XML Schema allow for building application-specific types from simple
data types; it allows the designer to build types based on other types. (That is, there's a
hierarchy of content types analogous to the hierarchy of content nodes in the document
tree.) An Address type, for example, might be derived from a Street type or City type.
Satisfying this requirement would allow you to locate content of any "subtype"
descended from a higher-order one and to locate any content of higher-order type(s)
derived from a given subtype.

6.2.2.11 Select elements based on XML Schema substitution groups (5.3)

XML Schema provides a feature called substitution groups as a means whereby you can
declare a generic element type, such as (say) paragraph, and then declare (in this case)
specific kinds of paragraph elements: narrative, blockquote, and so on. The specific
element types can be assigned to substitution groups, such that anywhere in an instance
document where a paragraph can appear, so can one of the specific types in the
substitution group.

Given that freedom, this requirement says that XPath 2.0 should be able to easily select
the generic paragraph element as well as any member of its substitution group and
perhaps simply to test whether a given element is a member of the substitution group for
paragraph.

6.2.2.12 Support lookups based on XML Schema unique constraints and keys (5.4)

As you already know, you can do a simple lookup of any ID-typed element in XPath 1.0,
using the id() node-set function.

XSLT goes a step further, allowing you to construct an index for and
then reference any element, even with nonunique values, using a
key() function.

XML Schema permits multipart keys to be assigned to elements. For instance, in a simple
CD-catalog application, the artist's name alone (except in the case of "one-hit wonders")
isn't sufficient to locate a particular CD — and in many cases, the CD's title alone
wouldn't be enough. But you could define a CDKey key, for example, made up of the
Artist and Title elements. Under XPath 2.0, you could then get ID-attribute-like
indexing into the document simply by invoking (say) an XPath index() function,
passing it the name of the key and the value sought:

 139

index("CDKey", concat("Talking Heads", "Stop Making Sense")

(Again, I emphasize that the name of this function is speculative — which is to say,
purely a product of my imagination. Don't look for it in the XPath 2.0 spec!)

 140

Chapter 7. XPointer Background
This chapter introduces the concepts and language of the XPointer 1.0 family of
specifications. XPointer 1.0 Candidate Recommendation was a single document in
September 2001 but was fragmented into a group of smaller specifications in July 2002.
Most of these specifications were published as Last Call Working Drafts and are likely to
move forward through the W3C process without significant changes, though the largest
of them, the XPointer xpointer() Scheme, may have a longer process ahead.

To quickly rehash some of the material covered in Chapter 1, the purpose of the XPointer
specifications is to provide a formal mechanism for identifying fragments of an XML
document. This is accomplished, just as it was with (X)HTML, by appending to a
standard URI a pound sign/hash character, #, followed by the fragment identifier itself —
the XPointer, in this case. Just as with "regular" URIs, a URI including an XPointer may
be relative instead of absolute even beginning with the #. In such cases, what precedes
the # still exists after a fashion; it's implied, based on the context in which the URI is
found.

The latest version of XPointer includes four specifications:

• XPointer Framework (http://www.w3.org/TR/xptr-framework/)
• XPointer xmlns() Scheme (http://www.w3.org/TR/xptr-xmlns/)
• XPointer element() Scheme (http://www.w3.org/TR/xptr-element/)
• XPointer xpointer() Scheme (http://www.w3.org/TR/xptr-xpointer/)

The Framework provides a foundation describing how XPointer works as a whole and
defines the simplest kind of XPointer: a shorthand pointer. The other specifications
define particular pieces of more complex XPointers, providing support for XML
namespaces (xmlns), a simple element-structure pointer (element), and the full-strength
XPath-based approach of the original XPointer work (xpointer).

Considering all the ground it has to cover, the XPath 1.0 Recommendation (the subject of
the first part of this book) is a remarkably concise document (the hardcopy from my laser
printer clocks it at a mere 29 pages). The XPointer 1.0 specifications, by contrast, seem
on their face to be tackling a much simpler subject but in many more pages — 42, to be
exact, 22 of which cover just the xpointer() scheme. Why the disparity?

XPointer's subject matter is not self-contained but rather spills over into and from other
areas of Internet technology. First, of course, there's the need to describe its relationship
with XPath. Second, XPointers can be used in XLink documents, so that interface must
also be satisfied. Third, there's some duplication of information. And finally, using
XPointers requires considering certain standards that are the domain not of the W3C but
of the Internet Engineering Task Force (IETF): media types.

7.1 XPointer and Media types

 141

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=9
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xptr-xmlns/
http://www.w3.org/TR/xptr-element/
http://www.w3.org/TR/xptr-xpointer/

The general purpose of any low-level hyperlinking standard, such as XPointer, is the
location and retrieval of content to be found at some location other than that of the
reference to the content. Most such standards confine themselves to content of a
particular type; for instance, an XHTML document's a (anchor) elements can easily
locate (X)HTML content but not a bookmark in a Microsoft Word document. XPointer is
designed expressly to locate fragments of XML documents' content.

Now, over the Internet, content types — media types — are identified not by such more
or less obvious cues as filename extensions or, for that matter, even the nature of the
content itself (e.g., "This document begins with an XML declaration, therefore, it must be
an XML document"). Rather, what determines the media type of a given resource is how
the resource is delivered over the network by its server. If a server broadcasts a stream of
what looks like XHTML but declares it to be mere text, an application receiving that
stream is supposed to treat it as text.

Of course, nothing is ever that simple. In the first place, how a given data stream is
served depends on the proper configuration — by an imperfect human server
administrator — of the server itself. If that person hasn't instructed the server how to
serve an XHTML document, for instance, it may be transmitted to the network not as
XHTML but as plain text.

At the other end of the pipe, client applications bear the burden of interpreting media
types "correctly," regardless of how "correctly" they're being served. A browser vendor's
product, in theory, should recognize as (X)HTML only documents that are being served
as such and not jump to conclusions based on possibly faulty guesswork about the
filename extension, whether the first character is a left angle bracket, and so on. This kind
of guesswork both contributes to the bloated size of client software and risks subverting
the intention of the resource's nominal "owner," the server. (On the other hand, of course,
it also makes clients such as web browsers seem more robust than they might otherwise.)

For details about working with XML media types, see the IETF
Request for Comment (RFC) 3023 at
http://www.ietf.org/rfc/rfc3023. Note that this RFC does not require
the use of XPointers to locate XML fragments, although it does
mention the W3C work in progress.

Media types are commonly identified in two parts, the top-level type and the subtype,
separated by a slash. The top-level type is the general class of data being delivered; the
subtype, the specific form of that class of data.

In the case of the XML resources that XPointer can locate, the XPointer Framework
specification says that XPointer addresses documents of any of the following four media
types: text/xml, application/xml, text/xml-external-parsed-entity, and
application/xml-external-parsed-entity. As a general rule, the text top-level
media types identify resources that in normal everyday use, would be readable by
humans; application media types identify resources meant to be processed by software.

 142

http://www.ietf.org/rfc/rfc3023

RFC 3023 recommends the use of application media types rather than text for serving
XML, in the absence of reasons to the contrary. If the specific subtype — xml or xml-
external-parsed-entity, in this case — is unknown to the client application, it will be
treated in a generic manner. Thus, human readers of an XML document served as text
over the Web, for example, might be treated to a stream of angle brackets, PIs, and the
like. Not many such readers would welcome this kind of display.

(Note that the RFC also defines a fifth XML media type, application/xml-dtd, for
serving and identifying DTD-type entities. XPointers into DTDs are not possible.)

7.2 Some Definitions

The XPointer specifications, like most W3C documents, are very careful to use
terminology in well-constrained ways. This can lead to confusion, ironically, because
some of these terms are used in loose form in everyday English. That said, let's look at
some of the most important such terms as they appear in the standard.

7.2.1 Resource

Unlike some of the rest of the terms in this section, "resource" is not defined directly.
Instead, under its definition of subresources, the previous version of the XPointer spec
said, "...the whole resource being referred to is an XML document or external parsed
entity."[1] That is, a resource is the entity within which some specific content resides.

[1] An "external parsed entity," unlike an XML document, need not be well-formed. In particular, it may lack a single
root element. These quasi-documents are often used for such purposes as holding boilerplate text. They're meaningful
— and parseable — only when included (using external entity references) within containing documents.

Note that XPointer uses "resource" rather differently than the way it's used in "Uniform
Resource Identifier" — the familiar URI of the Web. The authoritative reference for
URIs is IETF RFC 2396 ("Uniform Resource Identifiers (URI): Generic Syntax," located
at http://www.ietf.org/rfc/rfc2396.txt), which defines the term in this way (emphasis
added):

A resource can be anything that has identity. Familiar examples include an
electronic document, an image, a service (e.g., "today's weather report for
Los Angeles"), and a collection of other resources. Not all resources are
network "retrievable"; e.g., human beings, corporations, and bound books
in a library can also be considered resources.

The resource is the conceptual mapping to an entity or set of entities, not
necessarily the entity that corresponds to that mapping at any particular
instance in time. Thus, a resource can remain constant even when its
content — the entities to which it currently corresponds — changes over
time, provided that the conceptual mapping is not changed in the process.

 143

http://safari.oreilly.com/
http://www.ietf.org/rfc/rfc2396.txt

Thus, in a URI such as http://www.example.org/index.html, the resource is not the
document so pointed to but the address that points to it. In practice, XPointer works
differently: if a given XPointer is to work at all, it must be applied to a portion of a
particular XML document, not just to the address of whatever document happens to be
there at the time. (On the other hand, one might be excused for wishing that a resource
would always be a resource, regardless of the context in which she encounters the term.)

7.2.2 Subresource

A subresource is the specific fragment of content identified by the XPointer. This may,
but will almost never, be an entire document; it's far more likely, because XPointer uses
XPath, that the subresource in question will be a single element, or an attribute, or some
other (perhaps more complex) node-set. (As you'll see in a moment, however, XPointer
expands on XPath's notion of node-sets, in the form of location-sets.)

7.2.3 Location

If the subresource is the what — the content — identified by an XPointer, the location is
the where.

(I wouldn't be surprised to see the terms subresource and location being used
interchangeably, although this would make purists crazy. If I'm standing at a stove
preparing a meal and ask you to "hand me that can," I of course hope you will not empty
the can first — that you will deliver it to me contents and all. In the same way, people
exchanging URIs often say that someone "sent me a web page"... even though, if
anything, they are being sent to the page rather than the other way around.)

The spec makes an analogy between the term "node" as used in XPath and the term
"location" as used in XPointer. Why then do we need a new term? Because XPointer can
handle (via XPath) not only nodes, but two other forms of addressing: points and ranges.
Both of these terms are discussed in the sections that follow.

7.2.4 Location-set

As an XPointer location is to an XPath node, an XPointer location-set is to an XPath
node-set. That is, a location-set is the complete list of locations identified by an XPointer.
(And as in the XPath counterparts, if an XPointer has only a single location, it might just
as well be considered a location-set containing only a single member.)

Note that the addition of the point and range location types requires enhancing the
concept of document order established by XPath. This subject is addressed further in
Chapter 9.

7.2.5 Point

 144

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=55

A point in XPointer terms is the abstract location between two adjacent chunks of text
content. Figure 7-1 illustrates.

Figure 7-1. Point-type locations

Ignoring the newline characters and other whitespace added for legibility, Figure 7-1
highlights the following point-type locations (among many others present in the
document):

• Immediately following the gerund element's start tag (before the capital B)
• Immediately following the emph element's start tag (before the p in prime)
• Between the m and y in my

Point-type locations also exist at the interstices between the element boundaries. For
instance, although not highlighted in Figure 7-1, there's a point-type location following
the close of the gerund element. Just as important, though, are the places where there are
no point-type locations at all. For instance, there is no point-type location between any
adjacent characters in the name of an element in the element's start tag.

7.2.6 Range

An XPointer range is the entire block of text content bounded by two points. In Figure 7-
1, each individual word in the document exists in a range between the points immediately
following and preceding the containing element's start and end tags, respectively. Each
individual character also exists in its own range (the points in question immediately
precede and follow the character). Note that a point alone doesn't "contain" anything; it
must be paired in a range with another point first.

 145

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=46
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=46
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=46
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=46
http://safari.oreilly.com/framude.asp?bookname=xpathpointer&snode=46

There's no particular requirement that a range be limited to a single containing element.
For instance, you could establish a range by fixing one point before the p in prime and
another point after the n in senility. The resulting range (again, ignoring whitespace)
would be primeofmysen.

7.2.7 Points and Ranges: Flattening the Logical Hierarchy

One interesting aspect of these two XPointer location types, as opposed to the node types
available under XPath, is that points and ranges more closely reflect a document's
physical characteristics, not its logical or structural ones. There's no hierarchical
containment going on in a range (except in the limited sense of "text contained within
two points").

This difference is reflected in the common applications to which ranges and points might
be put to use. In particular, they're useful as a way of formally expressing the physical act
of selecting text, such as with a mouse or with keyboard commands. XPath nodes, on the
other hand — while they of course are defined by a given document's physical
characteristics, sequences of characters, and such — are purely logical constructs with no
physical user-interface counterparts.

On the other hand, because points can't be located within certain portions of the markup
(such as in element names), a range can't span just any text physically present in the
document — as if you had the source code open in a text editor. What you can select is
still constrained by certain features of the logical node tree.

You'll learn much more about points and ranges in the rest of this chapter and the two
that follow, especially Chapter 9.

7.3 The Framework

The XPointer Framework provides a basic set of rules for creating fragment identifiers.
The original XPointer specifications defined a single set of rules for processing
XPointers, though later versions offered two levels of conformance. The new framework
takes a different approach, defining a more extensible system with a tiny core and an
extensible scheme mechanism.

Rather than having to conform to a particular set of rules about how to identify
fragments, XPointer processors now have to identify which schemes they support, and
then deal with conformance at the scheme level. Error handling has also been
generalized, with some syntax errors defined at the Framework level and other errors
defined in particular schemes.

The W3C has provided three schemes beyond the XPointer Framework. One of these
schemes, xmlns(), is designed to provide namespace context for other schemes,
effectively declaring namespaces for use in other parts of the XPointer. The element()
scheme can be used to describe locations inside documents by walking the document tree

 146

http://safari.oreilly.com/framude.asp?bookname=xpathpointer&cnode=55

from the root element (or from an ID value in the document) to the desired location. The
most ambitious of the schemes, the xpointer() scheme, builds on XPath to create a
mechanism for locating content that extends XPath's node-based mechanisms to support
locations that cross node boundaries.

An xpath() scheme that stuck to XPath 1.0 might also be useful, but
the W3C hasn't defined such a scheme, preferring to use xpointer()
for that.

All XPointer processors will have to support the shorthand pointer syntax, but beyond
that, developers will have to know what kind of XPointer processor their documents are
going to face.

7.4 Error Types

Like any application working on information on the Web, XPointers face a number of
potential error conditions. The XPointer specifications describe a variety of errors, but
they all fall into the three rough categories.

7.4.1 Syntax Errors

Syntax errors are to an XPointer processor what well-formedness errors are to an XML
processor — or, indeed, what syntax errors are to the compiler of a traditional
programming language: they violate the rules of the language itself. In XPointer as in
other languages meant for machine processing, when the standard says "A given left
parenthesis must be balanced by a right parenthesis and vice versa," it means just that.
You can't "balance" a left parenthesis with a square bracket, an asterisk, or the digit 9. If
an XPointer fails syntactically, it doesn't make any difference if it falls into one of the
other error classifications — the processor won't even be able to figure it out. Thus,
syntax errors might be considered the most "catastrophic" and unrecoverable sort of
XPointer error.

7.4.2 Resource Errors

Once an XPointer passes muster syntactically, it's still not out of the woods as a "valid"
XPointer. At this point, considering the XPointer as a simple string of characters —
which is, after all, what a processor does when it verifies an XPointer's syntax — gives
way to determining its usefulness for XPointer's stated purpose: locating some portion(s)
of an XML-based document. When the document in question — the resource itself —
doesn't exist, the processor must report a resource error to the controlling application.

7.4.3 Subresource Errors

 147

A subresource error, on the other hand, must be reported when a given XPointer
identifies a specific subresource that doesn't exist — even though the document itself
does. For example, consider this document:

<villain>
 <name>Blofeld</name>
 <film>Thunderball</film>
</villain>

A syntactically correct XPointer (one passing the syntax-error check) could point,
correctly, to this document itself (and therefore pass the resource-error check); but if the
XPath expression built into the XPointer referred to some descendant of the root element
named, say, evil_world_dominaton_plan, the processor would report a subresource
error. That is, the resource as a whole exists but not the particular portion of the resource
identified by the XPointer.

Note in particular that while an empty node-set is perfectly legitimate in pure XPath
terms — XPath allows for such a thing — an empty node-set is an XPointer error, called
a "failure" by the XPointer Framework.

7.5 Encoding and Escaping Characters in XPointer

As you know, authoring any XML document requires care not to confuse the XML
processor. Ampersands must be escaped using the & entity reference, for instance,
and greater-than symbols with >. Documents containing XPointers have an additional
burden imposed on them, even when the XPointers in question are used in some context
other than an XML document: because an XPointer is meant to be included as a part of a
URI, it must adhere to the special escaping rules that pertain to that Internet standard as
well.

7.5.1 Characters Significant to XPointer Itself

A couple of characters have special significance to the XPointer standard itself. The first
of these is the parenthesis, which in XPointer (as in other languages) is always expected
to appear in left/right pairs. Under certain (and probably extremely rare) circumstances,
you may need to use a parenthesis as a literal character in an XPointer, unbalanced by the
opposite parenthesis. In this case, you escape the parenthesis by prefixing it with a
circumflex character, ^. Thus, a literal left or right parenthesis would be legally
represented by ^(or ^), respectively.

The second XPointer-significant character, therefore, is the circumflex itself. To escape a
circumflex — that is, to cause the processor to recognize the character as a literal, not as
an escaping character — prefix it with another circumflex. Thus, a literal circumflex can
appear in an XPointer as ^^. All other uses of the circumflex character in an XPointer are
illegal, resulting in a syntax error.

 148

This is not to say, of course, that a literal circumflex may not be used elsewhere in an
instance document. Remember that this constraint applies only to a circumflex within an
XPointer.

7.5.2 URI-Significant Characters

It's common for an Internet address — a URI — to include somewhere within it certain
special characters such as spaces, percent signs, and so on. Web browsers and other
Internet applications may or may not choke on these special characters. But if they follow
the URI standard, they're supposed to choke; this standard requires that such characters in
a URI be escaped, using a percent sign and the Unicode value for the character.

For instance, consider the following URI:

http://my.dot.com/my documents/index.html

The space between my and documents is supposed to be escaped, using the hexadecimal
Unicode value for the space character, so its correct form is:

http://my.dot.com/my%20documents/index.html

Like other standards built on the Internet's basic linking infrastructure, XPointer follows
the rules established for URIs — including, in this case, the rules for escaping special
characters. These rules (as well as the others for URIs) are laid out in two IETF RFCs,
numbers 2396 and 2372, which you can find at http://www.ietf.org/rfc/rfc2396.txt and
http://www.ietf.org/rfc/rfc2732.txt, respectively.

7.5.2.1 URIs versus IURIs

The old XPointer 1.0 spec distinguished between plain-old garden-variety URIs and
Internationalized URIs, (IURIs). An ordinary URI is limited to ASCII characters; an
IURI may consist of any characters directly representable via Unicode. For instance,
currently the official home page of the President of the French Republic (currently
Jacques Chirac) is http://www.elysee.fr/pres/. All the characters in that URI are ASCII
and so it's both a legal URI and a legal IURI. If we were using an IURI-aware
application, though, it might be desirable to employ a more correctly French version of
the URI: http://www.elysee.fr/prés/. The presence of the é character here is what makes
the address both an illegal URI and a legal IURI.

In an IURI, the only difficulty occurs when the address itself includes a literal percent
sign. In this case, escape the percent (%) with %25. (25 is the hexadecimal Unicode value
for the percent sign.)

The current XPointer Framework doesn't mention IURIs, but this issue is likely to
reappear.

7.5.3 Characters in XML Documents

 149

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.elysee.fr/pres/
http://www.elysee.fr/pres/

Finally, of course, XPointer — being often used in XML documents — is no exception to
the general rules of XML well-formedness. If your XPointer appears in an XML
document and includes special XML-significant literal characters, such as greater-than
signs or ampersands, you must escape them with standard XML entity references (such as
> and &, respectively). Also remember that you must escape, with character
entity references, any character(s) in the XPointer that can't be expressed in your instance
document's own encoding; if you're working in a U.S.-ASCII-encoded document,
therefore, you have to escape additional characters in the ISO-8859 encoding. In this
scenario, for example, you'd have to escape Á (capital A with an acute accent) as either
Á (hexadecimal form) or Á (decimal form).

7.5.4 Progressive Escaping

XPointer specifications often use syntax that cannot be used directly in a URL. To
implement them, you must use a prodecure called progressive escaping. This term is
defined nowhere in the spec; but from the context, it clearly refers to how you, an
XPointer-using document author, might apply successive levels of the above escaping
types to a XPointer.

1. Start with the completely unescaped form. You might consider this to be the
plain-text, common-sense version.

2. Escape any XPointer-significant characters meant to be interpreted as literals —
that is, any parentheses or circumflexes.

3. Escape any percent signs in the URI portion of the XPointer, to ensure a legal
IURI. (This may not be necessary if XPointer specifications continue to ignore
IURIs.)

4. If the XPointer appears in an XML document, escape any XML-significant
characters meant to be interpreted as literals, such as ampersands, double
quotation marks, and so on.

5. Escape the entity-reference XML escaping forms as URI escaping forms, for
example, replace " with %22.

To repeat, this progressive-escaping mechanism does not suggest that this stack of
escaping sieves is to be implemented in an XPointer processor: it's meant to make an
XPointer acceptable to such a processor in the first place. On the processing side, each
successive application layer — XML, the HTTP-aware application, and XPointer itself
— unescapes the XPointer in reverse order, from the outside in as it were.

7.5.4.1 Progressive escaping: a (perverse) example

Showing you an example of progressive escaping in practice is, to put it mildly, a
challenge at this point. In the first place, you don't yet know enough (if anything) about
XPointer syntax. Second, you seldom will have to pass even a full-blown URI, including
an XPointer, through all five steps.

 150

Still, you do already know something about XPointers: they can include XPath
expressions. So let's imagine you're working on some kind of text-processing application
and need to construct an XPointer to be used in an XML document; the XPointer includes
the following (unescaped) XPath expression:

translate(., "()%&^", "[]@v")

This function call scans the string-value of the context node (that's the . used as the first
argument) for any of the characters in the second argument, if it finds any of those
characters, the function replaces it with the corresponding character in the third argument.
So a left parenthesis is replaced with a left square bracket, a percent sign with @, and so
on.

In this form, the XPath expression has been subject only to step 1 of all those required
above: it's in its "natural language" form (well, as such things go). Now let's walk through
the expression and fix it up according to the remaining steps in progressive escaping, so it
can be used in an XPointer included in a URI.

2. Escaping XPointer-significant characters. There are two parentheses and a single
circumflex in the XPath expression. To avoid confusing the XPointer processor
downstream somewhere, you have to escape these XPointer-significant
characters. Do this by preceding them with circumflexes:

translate(., "^(^)%&^^", "[]@v")

Note, by the way, that the parentheses enclosing the translate() function's
arguments do not require escaping, since these are used in a "natural" way.

3. Escaping IURI-forbidden characters. Our XPath expression has only one percent
sign in it, but that's sufficient to choke a processor expecting a valid
Internationalized URI. To be sure the processor treats the literal percent sign as
such, it must be escaped using an entity reference:

translate(., "^(^)%25&^^", "[]@v")

4. Escaping XML-significant characters. The ampersand in the first argument and
the quotation marks enclosing the function's arguments are the only characters
requiring escaping for XML's purposes. Thus:

translate(., "^(^)%25&^^", "[]@v")

5. Escaping URI-forbidden characters. Finally, all spaces and any remaining special
characters need to be "entitized" in the URI to be acceptable to a URI-aware
processor. The expression to this point includes two spaces and the " and
& entity references, all of which must be escaped. Furthermore, the
expression includes a number of other special characters that are illegal in URIs in
their unescaped form: the very circumflexes we so carefully escaped, in step 3.

 151

Thus, after passing it through this last step in progressive escaping, we have our
final, fully escaped (although, granted, completely incomprehensible) expression:

translate(.,%20%22%5E(%5E)%25%26%5E%5E%22,%20%22[]@v%22)

This is nearly as painful to look at as it was to construct. Just remember that when and if
the XPointer specifications make it to full Recommendation status, the XPointer-
constructing toolkit (source code editors, automatic code generators, etc.) will certainly
obviate the need to build these monstrosities by hand.

(One final caveat: while this example has shown progressive escaping applied to the
XPointer portion of a URI, remember that steps 2 through 5 must be taken for special
characters in the rest of the URI as well.)

The notion of progressive escaping was covered at some length in
the previous version of the XPointer spec but removed in the
versions published July 10, 2002. Nonetheless, its an important
concept, and one that may find its way back into the final XPointer
Recommendations.

 152

Chapter 8. XPointer Syntax
Like XPath, XPointer is not in itself an XML vocabulary. Rather, it's meant to be used
within the markup in XML documents — most often in XLink or XLink-like situations
requiring a URI. This chapter covers the details of coding the various XPointer forms.
There are two approaches to defining XPointers as described in the XPointer Framework.
Shorthand pointers use a very brief syntax, while scheme-based XPointers use a more
complex syntax composed of pointer parts.

8.1 Shorthand Pointers

In XHTML hyperlinking, as you know, you can locate a subresource using a combination
of a named anchor (the sort of tag) and a normal anchor (...). Notwithstanding the limitations of XHTML subresource
hyperlinking, the XPointer spec's authors recognized its principal value: simplicity. Thus,
they carried it forward into XPointer, enhanced slightly for the new standard's use with
XML documents of any vocabulary. This form of an XPointer is called a shorthand
pointer; it includes neither scheme nor XPath expression, just the "name" of the target
resource:

name

In an XPointer, as in an XHTML fragment identifier, the pound sign/hash mark, #, is not
itself part of the XPointer or other fragment identifier. It merely serves to delimit the
fragment from the full URI preceding it. Section 8.3 at the end of this chapter addresses
this issue more fully.

The value of name is the value of an ID-type attribute assigned to some element in the
target resource. Thus, the shorthand form is in essence a shortcut for the longer XPointer
form:

xpointer(id("name"))

Consider the following simple XML document:

<gaming_platforms currency="sadly-outdated">
 <gaming_platform id="A">Atari</gaming_platform>
 <gaming_platform id="S">Sega</gaming_platform>
 <gaming_platform id="SN">Super Nintendo</gaming_platform>
 <gaming_platform id="P">Pong</gaming_platform>
</gaming_platforms>

Assuming the id attributes are in fact ID-type attributes, therefore, you could locate the
Pong gaming_platform element with this simple XPointer:

P

 153

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=54

Chapter 4 described how the XPath id() function works, how it depends on ID attributes
having been declared in DTDs, and how it depends on those DTDs having been
processed. XPointer's shorthand pointers have the same set of issues, but the XPointer
Framework specification adds one more: in addition to IDs defined in XML 1.0 DTDs, it
recognizes IDs defined in the W3C's XML Schema vocabulary.

In DTDs, IDs are pretty simple. An ID is plainly identified as an attribute of type ID. The
only real problem with IDs is the requirement that a DTD be provided and processed.
XML Schema offers a number of different options, including IDs provided as child
attributes. This means that, if XML Schema processing took place and a Post-Schema
Validation Infoset (PSVI) is available, shorthand pointers must look for IDs in that PSVI.

or more on how XML Schema defines and uses IDs, see XML
Schema, by Eric van der Vlist (O'Reilly).

Schema-aware ID processing is also specified for the element() scheme, but is not
required for the xpointer() scheme, most likely because it builds on XPath 1.0, which is
not XML Schema-aware.

8.2 Scheme-Based XPointer Syntax

Scheme-based XPointers follow this general form:

scheme(schemedata)...

The ellipsis (...) indicates that XPointers can be chained together in sequence. Each
scheme/schemedata item in the chain is referred to as a pointer part; thus, some
XPointers consist of just a single pointer part and some consist of multiple pointer parts.
When multiple pointer parts are used, they may be delimited from one another with
optional whitespace. You'll see more information about these chains of pointers in
Section 8.2.8.

8.2.1 The Scheme

The scheme of a pointer part functions something like the protocol of a URI (such as
http:, ftp:, gopher:, and so on). Its purpose, said the previous draft of the spec, is to
"[identify] the particular notation" used by the XPointer; you'll probably agree this isn't
an especially descriptive definition. From the examples provided in the spec, though, we
can come up with a simple definition like: the scheme tells us what kind of pointer part
we're dealing with.

A pointer part is typically one of two predefined kinds, denoted by three predefined
schemes:

 154

http://safari.oreilly.com/main.asp?bookname=xpathpointer&cnode=29
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=53

• A scheme of xpointer — easily the most common scheme — says that this
pointer part is to be used in XPointer's typical manner: to identify some portion of
an XML document of interest.

• A scheme of element indicates that this pointer part will identify a portion of an
XML document using a "child sequence" notation for walking the document tree.

• A scheme of xmlns marks this pointer part as a prelude to the pointer parts that
follow. By itself, it doesn't locate any resource at all; it simply declares a
namespace context in which succeeding pointer parts (within the same scheme-
based XPointer) are to be evaluated. More information on xmlns-type schemes
appears later in this chapter.

You may also use custom schemes instead of these three predefined kinds. More
information on this option is found in Section 8.2.7 later in this chapter.

8.2.2 The schemedata

The schemedata contents of pointer parts vary with their schemes, and the XPointer
Framework itself does very little to constrain them. Each scheme specification provides
its own set of rules describing how its schemedata is to be interpreted.

8.2.3 Contents of the xmlns() Scheme

When the scheme of a pointer part is xmlns, the expr_or_decl declares the namespace
associated with a particular namespace prefix used in subsequent pointer parts. This
namespace declaration takes the form:

prefix=namespaceURI

For instance:

xmlns(xsl=http://www.w3.org/1999/XSL/Transform) [subsequent pointer
parts]

asserts that the namespace prefix xsl: appearing in the rest of the multipart XPointer is to
be associated with the indicated namespace URI (that is, in this case, the namespace for
XSLT elements and attributes).

8.2.4 Contents of the element() Scheme

You can locate content without knowing anything at all about the specific named nodes
of a target resource. This XPointer form, which uses the element() scheme and
schemedata known as child sequences, uses a conventional tree-navigation syntax to
locate the nth child of each succeeding level in the document.

Consider the gaming-platform document again:

<gaming_platforms currency="sadly-outdated">

 155

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=53

 <gaming_platform id="A">Atari</gaming_platform>
 <gaming_platform id="S">Sega</gaming_platform>
 <gaming_platform id="SN">Super Nintendo</gaming_platform>
 <gaming_platform id="P">Pong</gaming_platform>
</gaming_platforms>

To locate the Sega gaming_platform element, aside from any other options you can use
the element() scheme:

element(/1/2)

This simply directs the processor to walk the tree, getting the first child (that is, the root
gaming_platforms element) of the root node, and then selecting that child's second child
(the Sega gaming_platform element).

Note a few things about XPointers built using the element() scheme. First, they can
locate elements only; all other "children" (such as PIs contained within the element's start
and end tags) are effectively invisible. Second — barring some way of resetting the
context in which the child sequence is to be evaluated — the very first integer in a child
sequence will nearly always be 1; this follows from XML's well-formedness requirement
that a document have no more than one root element.

As the XPointer spec mentions, while a well-formed XML document
must have only one root element, XPointer can be used for locating
content in possibly non-well-formed external unparsed entities as
well. such entities may have multiple "root" elements, leading to the
possibility of a child sequence such as:

/12/3/7

Third, although it may not be as obvious as with shorthand pointers, child sequences are
also shortcuts for scheme-based XPointers. To locate the Sega gaming_platform
element as described above, using element(/1/2) is effectively an abbreviated form of
the scheme-based XPointer:

xpointer(/*[position()=1]/*[position()=2])

or, more simply:

xpointer(/*[1]/*[2])

Finally, child sequences are both robust (the simplest ones won't break at all) and fragile
(when they break, they're liable to break in more or less subtle and difficult-to-diagnose
ways).

To understand this last point, consider an XML document such as the following:

 156

<books>
 <book>
 <title>XML in a Nutshell</title>
 <author>Harold & Means</author>
 </book>
 <book>
 <title>DocBook: The Definitive Guide</title>
 <author>Walsh & Muellner</author>
 </book>
 <book>
 <title>Learning XML</title>
 <author>Ray</author>
 </book>
 <book>
 <title>HTML & XHTML: The Definitive Guide</title>
 <author>Musciano & Kennedy</author>
 </book>
 <book>
 <title>Building Oracle XML Applications</title>
 <author>Muench</author>
 </book>
</books>

Using a child sequence, we could construct an XPointer to the author of the last book,
which would look as follows:

element(/1/5/2)

This locates the second child of the fifth child of the first child of the root node. Note the
right-to-left reading of the child sequence. This is often the simplest way to express in
everyday language what a child sequence points to. Thus, this child sequence is
functionally equivalent to an XPointer using the more robust xpointer() scheme, such
as:

xpointer(//author[../title = "Building Oracle XML Applications"])

If, however, the document changes — particularly with the addition or removal of book
elements — the child sequence will now point to a different author element or, worse,
return an empty location-set altogether. The xpointer() approach, on the other hand,
continues to point to the author of that book as long as a book with that title exists in the
document, regardless of where in the document it is.

(Whether this is desirable, of course, depends on your application's specific needs.
Personally, I'm much more comfortable knowing what I'm pointing to than I am knowing
where it's supposed to be.)

Potential fragility aside, child sequences feature what can be a killer advantage: a
processor can simply read only as much of a document as it needs to locate the desired
node. Relying on loading the entire document — as other kinds of XPointers must — can
make processing very large documents practically infeasible.

 157

8.2.5 Combining Names and Child Sequences

Because shorthand pointers — at least, assuming liberal use of ID-type attributes — are
so convenient and simple, XPointer provides an option that combines them with child
sequences. These open using the same rules for connecting names to ID values as
shorthand pointers, followed by a child sequence starting at the element so identified.

Assume the following XML fragment is coded in a vocabulary in which each attribute
named id has been declared as an ID-type attribute:

...
<brewery id="petes">
 <brew>
 <name>Wicked Ale</name>
 <alc_pct>5.3</alc_pct>
 <calories>174</calories>
 <carbs>17.7</carbs>
 <plato>13.65</plato>
 </brew>
 <brew>
 <name>Strawberry Blonde</name>
 <alc_pct>5.0</alc_pct>
 <calories>160</calories>
 <carbs>13.6</carbs>
 <plato>12.05</plato>
 </brew>
 <brew>
 <name>Helles Lager</name>
 <alc_pct>5.0</alc_pct>
 <calories>163</calories>
 <carbs>14.6</carbs>
 <plato>12.30</plato>
 </brew>
</brewery>
...

Using the element() scheme, you could locate the carbs element corresponding to
Helles Lager this way:

element(petes/3/4)

Note that this combines the content awareness of a shorthand pointer with the structure
awareness of a child sequence and thus avoids some of the problems associated with
each.

8.2.6 Contents of the xpointer() Scheme

When the scheme is xpointer, what appears within the required parentheses of a
scheme-based XPointer is based on an XPath expression, locating some subresource
within a target resource.

 158

The XPath expression in an xpointer-type pointer part is not set off from what
surrounds it with quotation marks. This makes XPointer syntax notably different from
that of XSLT, XPath's other big "client." XPath expressions in XSLT stylesheets always
appear as attribute values and therefore must be enclosed in quotation marks. (On the
other hand, remember that XPointer will almost never be used by itself; rather, it will be
used to locate a subresource of a resource located by XLink or a similar standard. Just as
in XHTML, these resources as a whole — URIs — will almost always appear within
quotation marks, as attribute values.)

For example, consider the following simple XML document:

<gaming_platforms currency="sadly-outdated">
 <gaming_platform id="A">Atari</gaming_platform>
 <gaming_platform id="S">Sega</gaming_platform>
 <gaming_platform id="SN">Super Nintendo</gaming_platform>
 <gaming_platform id="P">Pong</gaming_platform>
</gaming_platforms>

You could locate all gaming_platform elements whose names begin with S using a
scheme-based XPointer such as this:

xpointer(//gaming_platform[starts-with(., "S")])

Or you could locate any given gaming_platform simply by referring to its id attribute
(assuming, of course, that the attribute by that name is explicitly declared as an ID-type
attribute):

xpointer(id("P"))

This latter approach is very similar to the shorthand pointers described earlier. More
detailed coverage and examples of the xpointer() scheme appear in Chapter 9.

8.2.7 Custom Schemes

The XPointer Framework's mechanisms are generic enough that developers can extend
XPointer by devising custom schemes beyond the predefined element, xpointer and
xmlns. These schemes would be used in locating subresources in documents of a specific
XML vocabulary.

For instance, assume a street-mapping vocabulary in which you might code a document
like the following:

<map>
 <street name="Main" segment="1001_3498"
 xstart="34.3" ystart="679.2"
 xend="145.7" yend="1003.0"/>
 <street name="Main" segment="1001_3499"
 xstart="145.7" ystart="1003.0"
 xend="145.7" yend="1372.2"/>

 159

http://safari.oreilly.com/main.asp?bookname=xpathpointer&cnode=55

</map>

The developers of this vocabulary could adopt the XPointer syntax to their own purposes,
enabling an application to locate a particular street (consisting of all segments sharing the
same name) with a scheme-based XPointer such as:

streetseg(name("Main"))

where streetseg is the custom scheme.

Note that what appears within the parentheses following such a custom scheme may or
may not be an XPath expression or a namespace URI. The Framework doesn't constrain
schemes or schemedata very much, leaving the meaning and significance of the
expression up to the conventions of the application in question.

Real-World Custom Schemes
I confess I don't fully know what to make of the XPointer spec's "generosity" in
making its syntax freely extensible through custom schemes. Indeed, I'd argue
that a custom-schemed XPointer isn't an XPointer at all — just a snippet of code
that happens to use a string followed by a left parenthesis followed by another
string followed by a right parenthesis. It can't be processed in any practical way
by a generic XPointer-aware application (except that the XPointer processor can
look at it and decide that it doesn't know how to deal with it, and move on to the
next part of the XPointer).

That said, custom schemes are already making their way into the real world of
XML-based applications. For example, the Scalable Vector Graphics (SVG)
specification uses a custom scheme as one alternative to the xpointer scheme
for linking to a particular "view" within an SVG document. Here, the custom
scheme is svgView(), as in this example from the spec:

MyDrawing.svg#svgView(viewBox(0,200,1000,1000))

(More information on using this form of SVG fragment identifiers is available at
http://www.w3.org/TR/SVG/linking.html#SVGFragmentIdentifiers.)

An IETF Internet-Draft by Jonathan Borden ("A generic fragment identifier
syntax for URI references," at http://www.ietf.org/internet-drafts/draft-borden-
frag-00.txt) also singles out custom schemes as a valuable generic format for
identifying fragments of any given resource. In this case, the custom scheme is
associated with a namespace by way of a Resource Directory Description
Language (RDDL) description. RDDL provides a formal mechanism for
describing a namespace's characteristics; for more information about RDDL, see
http://www.rddl.org.

 160

http://www.w3.org/TR/SVG/linking.html
http://www.ietf.org/internet-drafts/draft-borden-frag-00.txt
http://www.ietf.org/internet-drafts/draft-borden-frag-00.txt
http://www.rddl.org/

8.2.8 Multiple Pointer Parts

When an XPointer consists of more than one pointer part, the XPointer-aware processor
evaluates the XPointer from left to right. This enables the XPointer to serve either or both
of two purposes: failure-proofing the XPointer and/or using namespace contexts in the
XPointer.

8.2.8.1 "Failure-proofing" XPointers

If the first pointer part has an unrecognized scheme, or results in a resource or
subresource error, the processor can fall back on the second; if the second fails, it can fall
back on the third, and so on.

This makes XPointer much more robust than its simple XHTML counterpart. Assume the
following XHTML hyperlink:

If the current document contains a named anchor whose value is speech-para2, all is
well; the browser scrolls the document to place that named anchor at the top of the
window. But if there is no named anchor, the only fallback possible for the browser is a
rather crude one: to align the top of the document at the top of the window.

An XLink/XPointer solution to this problem might look like the following:

<anchor xlink:href="xpointer(id('speech-para2')) xpointer(id('speech-
para3'))"

Thus, the processor would first try to locate an element whose ID-type attribute has a
value of speech-para2; if no such element is located, the processor attempts to locate an
element with an ID-type attribute of speech-para3; and if that attempt fails, the
processor reports a subresource error.

8.2.8.2 Declaring and using namespaces

The other principal reason for using a multipart XPointer is to establish namespace
contexts for evaluating XPath expressions in other pointer parts. When an xmlns-
schemed pointer part is encountered, any pointer parts to its right may freely use elements
and attributes with the associated namespace prefix. Note that to declare multiple
namespaces, you must use multiple xmlns pointer parts; you can't declare more than one
namespace in a given pointer part.

Consider this example (taken directly from the XPointer xmlns() Scheme spec):

<doc>
 <x:a xmlns:x="http://example.com/foo">
 <x:a xmlns:x="http://example.org/bar">This element and its parent
are in

 161

 different namespaces."</x:a>
 </x:a>
</doc>

The following XPointer will fail, not because it fails to locate a (sub-)resource but
because the reference to the x:a element can't be unambiguously evaluated by the
processor:

xpointer(//x:a)

To get around this problem, you'd use a multipart scheme-based XPointer, such as:

xmlns(x=http://example.com/foo) xpointer(//x:a)

or:

xmlns(x=http://example.org/bar) xpointer(//x:a)

Note that you need to use an xmlns pointer part every time you need to use a namespace-
qualified element or attribute name in a subsequent XPointer expression. Otherwise, the
XPointer processor is unable to resolve namespace prefixes used in XPath expressions in
the XPointer; the processor has no way, for example, to peek inside the target document
to retrieve the namespace declarations that the latter makes.

One final note here: the spec explicitly says that the prefix used in your pointer parts
needn't match the prefixes used in the resource. In effect, each occurrence of a namespace
prefix — both in your XPointers and in a target resource as located by them — behaves
as though it were physically replaced by the namespace URI prior to the act of locating
the (sub-)resource. Thus, the preceding two examples might just as well be coded:

xmlns(abc=http://example.com/foo) xpointer(//abc:a)

and:

xmlns(fershlugginer=http://example.org/bar) xpointer(//fershlugginer:a)

For clarity of intent, though, it never hurts to use exactly the same prefixes in an XPointer
as appear in the target.

8.2.8.3 Mixing it up

When using multipart XPointers that declare namespaces, although it may seem natural
to always begin with the xmlns pointer part, it's not a requirement. In fact, not starting off
with the xmlns might be less confusing or otherwise desirable in certain circumstances.
For instance:

xpointer(id("JSimpson")) xmlns(mydoc=http://mydoc.com)
xpointer(/mydoc:root)

 162

Here, the "fallback" convention for multipart XPointers says to attempt to locate the
element whose ID-type attribute has a value of JSimpson; if that attempt fails, fall back
to the alternative: locate the root mydoc:root element of the target resource. The only
requirement is that a corresponding xmlns pointer part must appear to the left of any
pointer part that uses a namespace prefix; the xmlns pointer parts need not, however,
precede all other pointer parts.

Also note that succeeding xmlns parts for the same prefix override one another. Thus
(this is a single complete XPointer broken over two lines for clarity):

xmlns(w=http://wexample1.com) xpointer(//w:bush)
 xmlns(w=http//wexample2.com) xpointer(//w:bush)

This attempts to return a location set consisting of all bush elements in the
http://wexample1.com namespace; failing that, the XPointer falls back and attempts to
return a location-set consisting of all bush elements in the http://wexample2.com
namespace. (Remember not to be confused by the w: prefix, which may or may not
actually be used in the target document. What counts is the namespace URI, regardless of
the prefix associated with it.)

8.3 Using XPointers in a URI

You may already have concluded how to do this, based on a handful of examples in this
chapter. Syntactically, including an XPointer fragment identifier in a URI is the same as
doing so in XHTML: separate the XPointer from what precedes it using a hash/pound
character, #, as in these examples (using scheme-based XPointer, shorthand pointer, and
two flavors of the element() scheme, respectively):

http://www.example.com/lucy.xml#xpointer(//character[@castmember="arnaz
"])
http://www.example.com/lucy.xml#ricky
http://www.example.com/lucy.xml#element(/1/2/4/3)
http://www.example.com/lucy.xml#element(cast/3)

If the XPointer is locating content in the same document in which the XPointer itself
appears, simply prefix the XPointer with a hash, as in:

#xpointer(//character[@castmember="arnaz"])

As a final note, remember a couple of additional considerations when using XPointer in
URIs, which I've pointed out in this and the previous chapter:

• Escape special characters as needed, both to comply with XPointer's own
constraints and those of the standards with which XPointer must interoperate.
These special characters include the circumflex (^) for escaping unbalanced
parentheses, the percent sign (%), markup-significant characters such as the less-

 163

than sign (left angle bracket, <), and spaces, as well as other characters in non-
ASCII encodings.

• While XPointer itself does not require the use of quotation marks, XPath
expressions used in scheme-based XPointers frequently do. Furthermore, because
XPointers in XLink and other hyperlinking contexts are used in attribute values,
you need to remain aware of nested-quotation-mark issues in the event that your
scheme-based XPointers do use quotation marks of their own (such as in
embedded XPath expressions).

 164

Chapter 9. XPointer Beyond XPath
Using XPath, in conjunction with XPointer, provides a wide (seemingly infinite) variety
of ways to locate XML content. But it stops short of being able to "locate" everything.
This chapter covers XPointer extensions to XPath's already rich facilities, extensions that
plug the gap between what XPath does and what users might expect of a full-fledged
"point to some XML-based content" standard.

In this chapter, when I refer to "XPointer" or "the XPointer spec," I'm referring to the
XPointer xpointer() Scheme Working Draft dated July 10, 2002.

9.1 Why Extend XPath?

After you've worked with XPath for a while — especially in XSLT — you may start to
get a little cocky. It seems impossible that something in an XML document might be
unlocatable. From everything in the document down to individual PIs, comments, even
individual characters (in the sense of using functions such as substring() and
translate()) — what's left? The reason your cockiness may be unjustified is that you've
overlooked a small but disproportionately significant class of activities for which
XPointer would be useful, but for which XPath provides absolutely no support.

Consider XPointer's unintelligent counterpart in XHTML: simple fragment identifiers
that use named anchors; then consider the activity XHTML supports: web browsing. The
Web is already driven by content authors and browser capabilities, no? What could
possibly be missing?

What's missing is the third party in a web-based transaction: the user. The web site
visitor. The human sitting at her PC, mouse, or other pointing device probably at the
ready. Ready, in short, to select content in ways that cannot be anticipated by a document
author or browser vendor.

Imagine this hypothetical user sees something like Figure 9-1 on her screen. For one
reason or another, she decides to select the portion of this document depicted in Figure 9-
2.

Figure 9-1. Hypothetical web document (as displayed)

Figure 9-2. Hypothetical web document (with selection)

 165

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=57
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=57
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=57

Now ask yourself: How do I construct an XPath-based XPointer that corresponds to the
selected text? To answer this question, you'll need to examine the XHTML code behind
the page, the relevant portion of which may look something like the following:

<h1>Why extend XPath?</h1>
<!-- Intro paragraph -->
<p>After you've worked with XPath for a while-especially in XSLT-you
start to get a little cocky. It seems impossible that something in an
XML document might be unlocatable.</p>

You can construct such an XPointer, but it will be extremely ad hoc and ungainly,
involving, first, acquiring all text in the document and then sub-stringing it from the "X"
in the level-1 heading through the "d" in "worked." And somehow you'd need to grab that
comment, too, and ensure — to preserve the source's integrity — that the comment was
somehow placed where it belonged: smack in the middle of the two partial text nodes.
The resulting mutant XPointer might look something like this:

xpointer(substring(//h1[1], 12, 6) | //comment()[1] |
 substring(//p[1], 1, 19))

And you'd really be frustrated when the XPointer processor fails (because the result of
this XPointer is a simple string).

XPointer would be much more natural and easy-to-use if there were an XPointer analog
to the real-world practice of selecting text with a pointing device: starting at one point in
the document and continuing over a contiguous range of content to a second point. That's
the function of XPointer's handful of extensions to XPath.

Holes in the Analogy
The analogy between XPointer's "selecting" mechanism and the real world has a
number of seemingly loose ends.

The most important of these, I think, is: why do you need an XPointer to handle
selection? Isn't this why we have user interfaces (UIs) in the first place? Yes, as
long as the UI in question actually supports visual text selection. Selecting text
is meant to communicate something to the operating system, in a way that feeds
back to the user "this is what I've selected" prior to his actually doing anything
with the selection. In a purely graphical UI, the feedback is in the form of
highlighted, reverse-video, or similar text-representation device. If the UI isn't
graphical, though, how to provide feedback — let alone how to communicate

 166

the selection to the underlying operating system — is a much murkier problem.

Such non-graphical UIs include text-to-speech interpreters and other interfaces
for visually impaired users. They're likely to become more important to the non-
disabled as well, with the prospect of making content available to users who
simply need their eyes for other things at the moment: cooks, automobile
drivers, jet pilots, and so on.

And then there's a whole class of potential applications for which the use of
human eyes isn't an option anyway — because the principal "consumers" of
such applications aren't human but machine. Imagine an application, for
example, that selects a paragraph from a target document using plain-old XPath-
based XPointer, then within that paragraph, selects a sentence or phrase for
highlighting of some kind, regardless of the underlying markup or node tree.

9.2 Points and Ranges

I mentioned these extensions to XPath's basic node types first in Chapter 7 (elements,
attributes, and so on). Now let's look at them in detail.

9.2.1 Points

A point is simply a location in a document — a location between two characters of
interest. Like a point in plane geometry, a point in XPointer has no dimension at all: a
single point "contains" nothing at all, not even a single character. There's also a point at
the start of the string-value and at its end (and, as you will see, before and after each node
in the document).

Note that points are found not only in text nodes, but in any string-value. An attribute's
value, a comment, a PI, indeed the root node itself — all have string-values as well and
are thus potential targets in which to locate points.

Each point has two properties, a container node and an index. The container node,
obviously, is the point's parent — the context in which the point is located. The index is a
positive integer ranging from 0 through the number of points (less 1) in that container
node.

Consider the following fragment:

<storage>disk</storage>

The storage element's string-value — its text node child — consists of four characters;
within the text node, the interstice between each pair of characters (d and i, i and s, and
s and k) is one point, and there's also a point before the d and after the k — a total of five
points. The container node for the points (indexes 0 through 4) before and after each

 167

http://safari.oreilly.com/main.asp?bookname=xpathpointer&cnode=43

character is the text node; the container node for the two points (indexes 0 and 1) before
and after the text node is the storage element. Figure 9-3 illustrates.

Figure 9-3. Point locations in an element with a text-node child

An important implication of Figure 9-3 is that the node tree as understood by XPath is not
the same as the "location tree" as understood by XPointer (although naturally there are
overlaps). See Figure 9-4.

Figure 9-4. A "location tree" view of Figure 9-3

As you can see, the storage element now has not just one child (the text node), but three
children (the text node plus the points before and after it). Furthermore, while a text node
can have no children from XPath's perspective, it does from XPointer's; the number of
child points always equals the length of the text node, plus 1.

One effect of a point's being defined by its container and its index within that container is
that there are no identical points in a document, at least within a given container.
However, there will be points indistinguishable from one another. For instance, in the
above example, point P0 within the storage element is indistinguishable from the
"separate" point P0 within the text node.

This might seem disconcerting at first. It makes sense, though, when you remember that
XPath, too, often provides several ways of locating a given "thing"; a given node might
be visible along more than one axis, for example.

9.2.1.1 Node points versus character points

 168

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=58
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=58
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=58

A given point can be classified as either a node point or a character point.

• A node point is any point in the document occurring between adjacent nodes;
there's also a node point immediately before and after each child of a given node.
In the above example, there's a node point immediately preceding and following
the text node.

• A character point is any point in the document occurring between adjacent
characters in a text node, before the first character in a text node or following the
text node's last character. The storage element as described above has five
character-point children.

9.2.1.2 Point syntax

To address a point with an XPointer, use the point() node (or location) type in the
XPath expression used by a full XPointer, especially with a predicate. For example,
assume the simple storage element we've been using so far is part of a larger document:

<media>
 <storage>microform</storage>
 <storage>CD-ROM</storage>
 <storage>DVD</storage>
 <storage>disk</storage>
</media>

To locate the character point between the m and i in "microform" — that is, the second
point within the first storage element — you could use the following:

xpointer(//storage[1]/point()[1])

While the numbering of the storage elements starts at 1, the numbering for the points is
zero-based.

9.2.1.3 Points as "nodes"

Like other node types, the XPointer point node-type extension can be followed in an
XPath expression by further location steps that shift the context up, down, or sideways in
the document as a whole. These shifts in context — accomplished here as elsewhere
using axes — behave a little differently for a point-type "node," however; Table 9-1
breaks it down for you.

Table 9-1. Axes and points
Axes Node-set locatable from a point

child, descendant, preceding-sibling,
following-sibling, preceding, following,
attribute, namespace

None (node-set is empty)

self, descendant-or-self The point itself
parent The point's container node

 169

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=58

ancestor
The point's container node, that
container's parent, and so on (up the tree
to the root node)

ancestor-or-self The point itself, its container node, and
the container node's ancestors

Unlike standard XPath node types, points do not have an expanded-name; their string-
values are empty.

9.2.1.4 Points and general entities

Consider the following document:

<!DOCTYPE gadget [
<!ENTITY R "Ronco" >
]>
<gadget>
 <name>Veg-O-Matic</name>
 <company>&R;</company>
</gadget>

How many character points are there within the company element, and where are they?

There are six character points there — four between each pair of characters in the entity's
replacement text "Ronco," and one point before and after the replacement text. There is
no point, for instance, between the & and the R in the &R; entity reference itself. This is
consistent with XPath, with XML, and for that matter with common sense: by the time an
XPointer-aware application gets its hands on a document's content, the document has
already been parsed — entity substitutions made, attribute values defaulted, and so on. In
short, the entity reference itself might just as well not exist.

9.2.2 Ranges

A range, as you might expect, is whatever lies in a given document between any two
given points, not surprisingly referred to as the start and end points. The start and end
points may be equal (in which case the range is called a collapsed range); if they are not
equal, the end point must follow the start point, in document order.

A reminder: I'm using the term "document" loosely in the preceding sentence. In this
sense, it comprises not only well-formed XML documents, but also non-well-formed
external parsed entities. The spec asserts that the start and end point must be within the
same document or external parsed entity; nonetheless, it's safe to assume that a document
containing a reference to an external parsed entity may have ranges that overlap the
"border" between document and entity. Consider the case of the following document:

<!DOCTYPE speechinfo [
<!ENTITY getty SYSTEM "gettysburg.xml">
]>
<speechinfo>

 170

 <speaker>Abraham Lincoln</speaker>
 <text>&getty;</text>
</speechinfo>

where the gettysburg.xml document contains the text (marked up or otherwise) of
Lincoln's famous address.

A start point/end point for a legitimate range might be, respectively, the point just before
the L in Lincoln (in the main document) and following the o in and seven years ago
(in the external parsed entity). As I discussed at the end of the section about points, for all
intents and purposes, an entity reference can be assumed to have been expanded by the
time the XPointer application sees a document. What the spec really means by restricting
the start and end point to the same document or external parsed entity is, for example,
that you can't set the start point to just before the L in Lincoln and the end point in some
other document (or in some unreferenced external parsed entity).

9.2.2.1 What can be in a range

There's one important restriction to the kinds of content a legitimate range may contain, a
restriction based on the container nodes for the start and end points. If the container for
one point is anything other than the root node, an element, or a text node, the two points
must lie within the same node.

At the beginning of this chapter, following Figure 9-2, I showed some hypothetical
source code behind a user's selection of text on a web page. The range in question looked
like this:

XPath?</h1><!-- Intro paragraph --><p>After you've worked

Although it looks a little nonsensical (and certainly not well-formed!), this is a legitimate
range. Both start and end points lie within element nodes (more precisely, within text
nodes within element nodes), and they need not lie within the same node for the range to
be valid. On the other hand, the boldfaced portion of the following fragment does not
constitute a valid range:

XPath?</h1><!-- Intro paragraph --><p>After you've worked

The end point is still within a text node, true. But the start point lies within the comment.
The only legitimate end point for such a start point would be a point within the same
comment (and equal to or following the start point, of course).

9.2.2.2 Range syntax

Like points, ranges have their own node type, range() in this case, which may be
referred to in the expression portion of a full XPointer. Therefore, the following is
presumably a legitimate XPointer:

xpointer(//range()[4])

 171

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=57

I say "presumably" because although syntactically correct — translated, this would mean
something like "locate the fourth range in the document" — it's not practically useful. If a
range is delimited by its start and end points, where does the range in question start and
end? (The start point, obviously, is the one corresponding to index 0; it's the end point
that's not clear.)

More likely, you'll use the range() node type with any of several XPointer functions in
the predicate. You will see examples of this use in a moment.

9.2.2.3 Ranges as "nodes"

Like points, ranges have no expanded names. Unlike points, though, ranges do have
string-values: "the characters that are in text nodes and that are between the start point
and end point of the range."

So says the spec, anyhow. But this is a bit ambiguous, and in the absence of examples,
we're left to conjecture what might be the string-value of a range such as the following:

<front_matter>
 <epigraph id="GIRA001">
 <author born="1882-10-29" died="1944-01-31">Giraudoux,
Jean</author>
 <source year="1942">The Apollo of Bellac</source>
 <text>When you see a woman who can go nowhere without
 a staff of admirers, it is not so much because they think
 she is beautiful, it is because she has told them they
 are handsome.</text>
 </epigraph>
</front_matter>

The start point of this range immediately precedes the epigraph element's start tag; the
end point follows the period at the end of the text element. A literal reading of the spec
might seem to indicate that the string value of this range is:

GIRA0011882-10-291944-01-31Giradoux, Jean1942The Apollo of BellacWhen
you see a woman
who can [...] handsome.

That is, not only the text nodes but also the attribute values might seem to make up the
string-value. After all, the latter are indeed "between the start point and end point," aren't
they? Don't be deceived, though; this literal reading is too literal. The key word in the
excerpt from the spec is "and" — that is, the range's string-value consists of those
portions of all text nodes that lie between the start and end points. Thus, the true string-
value of this range is:

Giradoux, JeanThe Apollo of BellacWhen you see a woman who can [...]
handsome.

 172

That said, there is a problem with the wording of this portion of the
spec, in the phrase "text nodes." But text nodes exist only as children
of elements. Given that a legitimate range in the above example
might be, for instance, the 1882 portion of the born attribute's value,
I think the spec's authors might have tinkered with the wording of
the paragraph a little more.

The other XPath-related question we might ask about ranges is how they behave when
included in a location step followed by others that use axes. This is easy: navigating
through a document from a range-type "context node" is identical to navigating through it
from the range's start point. Refer back to Table 9-1 for this information, remembering
that only the start point "counts" when orienting yourself along an axis from a range.

9.2.2.4 Covering ranges

An important concept in understanding ranges as described in the XPointer spec is that of
covering ranges. As the name implies, a covering range is the range that spans the
entirety of some location. (And remember that locations in XPointer are basically the
same as nodes in XPath, extended to include points and ranges.) Covering ranges are
defined in terms of the location type in question; this may involve implicit start and end
points, with their respective container nodes and indexes. Table 9-2 summarizes.

Table 9-2. Covering ranges

Location type
Container of
start and end

points

Covering range's
start point index

Covering range's end
point index Notes

Range — — — Identical to the range
itself

Point — — —
Start and end points of
covering range are
identical: the point itself

Attribute and
namespace

Attribute or
namespace
location itself

0
Length of attribute or
namespace location's
string-value

Root Root location
itself 0 Number of children of

root location

All others
Parent of the
location in
question

Number of
preceding siblings
of the location

Index of the start point,
plus 1

Determining the covering range of a point or range location, obviously, is pretty trivial.
(Note, by the way, that the covering range of a point is a collapsed range, as defined
earlier in the chapter.) The covering ranges of other location types might be more easy to
understand by way of an example. Here's a simple but complete document including at
least one of all other location types:

 173

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=58
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=58

<?xml-stylesheet type="text/xsl" href="maginfo.xsl"?>
<mag:magazine id="NY"
 xmlns:mag="http://www.example.com/magml">
 <mag:name>The New Yorker</mag:name>
 <!-- Update: Brown hasn't been the editor for years. -->
 <mag:editor>Brown, Tina</mag:editor>
</mag:magazine>

Table 9-3 breaks down the covering ranges for various locations in this document.

Table 9-3. Covering range examples

Location Container of
startand end points Index of start point Index of end point

id attribute The id attribute
itself 0 2 (length of string-value "NY")

mag: namespace
location

The namespace
location itself 0 28 (length of string-value

"http://www.example.com/magml")

Root The root location
itself 0 2 (number of children of root location —

don't forget the PI!)
xml-
stylesheet PI

Root (parent of the
PI)

0 (the PI has no
preceding siblings) 1 (index of the start point, plus 1)

Comment
The
mag:magazine
element

1 (there's one preceding
sibling of the comment,
the mag:name element)

2 (index of the start point, plus 1)

Text node, "The
New Yorker"

The mag:name
element 0 (no preceding siblings) 1 (index of the start point, plus 1)

mag:editor
element

The
mag:magazine
element

2 (mag:name element
and the comment are
preceding siblings)

3 (index of the start point, plus 1)

If you refer back to the document's source code, you should see that all this follows not
only the spec's definition of a covering range, but also a common-sense version of that
definition. For example, within its container — the root — the xml:stylesheet PI is
"covered" by a range that starts at point 0 (that is, the start point's index) through point 1
(the end point's index, immediately following the PI).

Remember that we're talking here about covering ranges. The PI's
covering range isn't the only range possible for it; any number of
ranges could be set within its string-value, from the whole thing
(type="text/xsl" href="maginfo.xsl") down to individual
characters — indeed, individual points — within that string-value.

9.3 XPointer Extensions to Document Order

The XPointer specification extends XPath's concept of document order to accommodate
the point and range location types. The need to do so might not be obvious; after all,
"document order" seems to be one of those terms describing a physical, unambiguous

 174

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=58

reality. What could be more unambiguous than that a bit of document content appears
before or after another bit?

But XPointer points and ranges toss a big handful of mud into these formerly transparent
waters, even in the simplest documents. Consider an example:

<employee emp_id="73519">
 <start_date type="probationary">1979-03-12</start_date>
 <start_date type="full_perm">1979-09-12</start_date>
</employee>

The possible locations in this document number in the dozens, from individual character
and node points through all the various ranges, attribute and text locations, on up to the
full root location. The problem in determining the "order" of these locations is that some
XPointer locations can be found within others. It's like you're looking at a wooden crate,
filled with freshly picked corn: does a kernel on this ear of corn come before or after the
husk on the same ear? does a slat of wood on one side of the crate precede or follow the
crate as a whole? In the case of the above document, does the character point location
between the b and a in probationary precede or follow the type attribute location for
which probationary is the value? Does the range of characters from 03-12 through
1979-09 precede or follow the second start_date element location?

The questions seem absurd, yet they go to the heart of what is meant by document order
in the first place. The XPointer xpointer() Scheme spec tries to put them to rest by
carefully mapping out the various combinations of location types and how to determine
which of a given pair of locations precedes or follows the other. To do so, it first defines
a new term, immediately preceding node, which applies to any point location (either node
or character type) in a document or external parsed entity. The immediately preceding
node depends on the type of point location and its index value:

• If the point is a character point, the immediately preceding node is the point's
container.

• If the point is a node point:
o When the index, n, is greater than 0, the immediately preceding node is the

nth child of the node point's container.
o When the index equals 0, the immediately preceding node is the container

itself — unless the container also has one or more attribute or namespace
nodes. In the latter case, the immediately preceding node is the last such
attribute or namespace node.

Note that determining the immediately preceding node for the first node point (index 0)
in a container rather overturns a central principle of XML itself, which is that the order of
attributes and namespaces cannot be relied on. For example, take a look at the following
code fragment:

<place longitude="84.259337W"
 latitude="30.428563N">
 <name>Tallahassee</name>

 175

</place>

What is the immediately preceding node of the node point between the place and name
element's start tags (that is, the node point identified by the expression
place/point()[0])? Common sense might indicate that it's the latitude attribute —
that is, the last attribute of the node point's container (the place element). This isn't
necessarily true, though, because an XML parser is free to order an element's attributes in
any way it wishes. A parser can be expected to impose some kind of order (e.g.,
alphabetical) on attributes, which might simplify constructing a lookup index for the
document. If the parser does use alphabetical rather than document ordering of attributes,
the immediately preceding node for this node point will be the longitude attribute.

The XPointer spec gets around this point by noting, parenthetically, "the order of attribute
and namespace nodes is implementation dependent." The lesson here: if you need to
determine the immediately preceding node of a 0-indexed node point, you'd better be sure
you understand the behavior of any parser accessing the document to which you're
pointing. It's unlikely that you'd know for sure about the parser's ordering of attribute and
namespace nodes. The spec's authors needed to codify the immediately preceding node
concept somehow; and the XML Recommendation painted them into something of a
corner. In this case, though — for 0-indexed node points — it's a shame that the
codification seems to imply a practical impossibility. (On the other hand, unless you're
trying to work out for some reason the order of nodes within a document, you don't need
to worry about the immediately preceding node at all.)

Table 9-4 summarizes how to determine if a location of a given type — node, point, or
range — is "before" or "after" another according to XPointer's definition of document
order.

Table 9-4. Document order and location types
When

comparing
locations of

type...

Their document
order is equal if...

Location 1 is before location 2
if... Location 1 follows location 2 if...

Node and node (Per XPath) (Per XPath) (Per XPath)

Node and
point (N/A: never equal)

The node is before or equal to the
point's immediately preceding
node

The node follows the point's
immediately preceding node

Node and
range (N/A: never equal) The node is before the range's

start point
The node follows the range's start
point

Point and
point

Their immediately
preceding nodes are
equal and their
indexes are equal

The first point's immediately
preceding node is before the
second's, or if they share the
same immediately preceding
node and the first point's index is
less than the second's

The first point's immediately
preceding node follows the
second's, or if they share the same
immediately preceding node and
the first point's index is equal to or
greater than the second's

Point and
range

The point, and the
range's start and end
points, are equal

The point is before or equal to the
range's start point

The point is after the range's start
point

 176

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=59

Range and
range

The two ranges'
start points are
equal and their end
points are equal

The first range's start point is
before the second's, or if they
have the same start point but the
first range's end point precedes
the second's

The first range's start point follows
the second's, or if they have the
same start point but the first range's
end point follows the second's

9.3.1 XPointer Document Order Extensions: Examples

Let's look at how these extensions to XPath's definition of document order work in
practice. I won't reconsider the node-versus-node case (corresponding to the first row in
Table 9-4); if you need a refresher, refer back to Chapter 2.

Here is a brief sample document from which I'll pick arbitrary locations and show how to
apply Table 9-4 to a real-world example.

<dictionary source="Welsh" target="English">
 <word>
 <in>ffwlbart</in>
 <out>polecat</out>
 </word>
 <word>
 <in>rhaglaw</in>
 <out>governor</out>
 <out>lieutenant</out>
 </word>
 <word>
 <in>ymyl</in>
 <out>edge</out>
 <out>border</out>
 </word>
</dictionary>

Here are the locations to be considered:

1. Nodes:
a. The root node
b. The target attribute
c. The first out child of the second word element (corresponding to the

string-value "governor")
2. Points:

a. The node point between the dictionary element's start tag and the first
word element's start tag

b. The node point between the last two out elements (string-values "edge"
and "border")

c. The character point between the r and h in rhaglaw
3. Ranges:

a. Extending from points 2a to 2b, above
b. Extending from points 2c to 2b, above

 177

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=59
http://safari.oreilly.com/main.asp?bookname=xpathpointer&cnode=15
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=59

Table 9-5 illustrates how an XPointer processor would interpret the document order of
various combinations of these locations.

Table 9-5. XPointer document order examples

Location
1

Location
2

Row in
Table

9-4
Interpretation

Node 1a Point 2a
Node
and
point

The node point's index within its container (the dictionary element) is 0.
Therefore, the immediately preceding node — assuming simple document
order is used by the parser — is the target attribute. Because the root node
"precedes" the target attribute, the root node is considered to be before
this point, in document order.

Node 1b Range 3a
Node
and
range

Because the target attribute node is the range's start point, the target
attribute is before the range, in document order.

Node 1c Range 3b
Node
and
range

The range encompasses the out element node in question. The range's start
point occurs before the out element, so the range is assumed to precede the
node.

Point 2a Point 2b
Point
and
point

As above, the immediately preceding node of Point 2a is the target
attribute. The immediately preceding node of Point 2b is the next-to-last out
element ("edge"). Therefore, Point 2a precedes Point 2b.

Point 2c Range 3b
Point
and
range

The point and the range's start point are equal. Therefore, either the point and
range are equal, or the point is before the range. The determining factor in
this case is the range's end point, which follows the point; therefore, the
point precedes the range.

Range 3a Range 3b
Range
and
range

The two ranges overlap, sharing the same end point but with different start
points. In this case, look at their start points. Whichever range has the first
start point — 3a, here — is assumed to precede the other.

Similar logic applies for any combination of nodes, points, and ranges.

9.4 XPointer Functions

Unsurprisingly — given the extensions to XPath elsewhere provided by XPointer — the
XPointer spec defines a handful of additional functions for processing the two new
location types (points and ranges). Any application claiming XPointer xpointer() Scheme
conformance must make these functions available.

The word "must," although it seems to carry the force of law, is a
notoriously slippery concept in practice. For starters, just consider
what it might denote in the context of a W3C document whose final
status can never be greater than "Recommendation."

As in Chapter 4, covering XPath functions, in this section I'll first present these functions
briefly in Table 9-6, then examine each in greater detail. In that earlier chapter, each table
included a column for the type of value the function returns; this column isn't needed in

 178

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=59
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=59
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=59
http://safari.oreilly.com/main.asp?bookname=xpathpointer&cnode=29
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=60

this case, because all eight functions return a location-set. (Most of them are passed a
location-set as well, designated locset in their prototypes.)

Table 9-6. XPointer functions
Function prototype Description

start-point(locset) Returns a location-set consisting of the start points for all
locations in locset

end-point(locset) Returns a location-set consisting of the end points for all
locations in locset

range-to(locset) Returns a range for each location in locset

string-range(locset, string,
number1?, number2?)

Returns a range for each location in locset, based on a
search for the string argument in each location's string-
value

range(locset) Returns a covering range for each location in locset
range-inside(locset) Returns a range for the contents of each location in locset

here() Establishes the document in which the XPointer appears as the
context for further location steps

origin() Used with XPointer-based XLinks to identify the location
from which the link traversal began

9.4.1 start-point(locset)

Exactly how the start-point() function behaves varies according to the type of each
location in locset.

A reminder: the term "location-set" is the same as XPath's "node-
set," extended to cover points and ranges. As with XPath functions, a
passed location-set may include one or more locations, or even be
empty. In the latter case, of course, the XPointer using the function
will fail.

Not very surprisingly, if a given location is a point or range, start-point() returns that
point or the range's start point, respectively. If a given location is the root location, an
element, text, comment, or PI, the point returned is the one whose index is 0 within that
container.

Surprisingly (to me, anyway), if a given location is an attribute or namespace location,
"the pointer part in which the function appears fails." What this probably refers to is just
that you can't identify the start point of an attribute or namespace location; still, it seems
to fly in the face of examples elsewhere in the spec, which assert (for example) that a
substring of an attribute value can constitute a range.

Here's a document fragment as an example:

<transaction type="deposit">
 <account>1234-0987-65</account>

 179

 <amount currency="USD">1009.46</amount>
 <source>cash</source>
</transaction>

We could construct an XPointer into this source such as the following:

xpointer(start-point(//account))

This XPointer locates the point within the account element whose index is 0 — that is,
the node point immediately preceding the text node whose value is "1234-0987-65." We
could also pass to the start-point() function a multimember location-set, as in:

xpointer(start-point(/transaction/*))

The value returned would be a series of points, representing the start points of each child
of the root transaction element. Because there are three such children — the account,
amount, and source elements — we'd get back a location-set, in this case, of three node
points: the points immediately following each child element's start tag. On the other
hand:

xpointer(start-point(/transaction))

locates the node point between the transaction and account element's start tags.

9.4.2 end-point(locset)

As you might expect, the end-point() function is the flip-side of start-point(),
returning — for each location in the passed location-set — an end point determined
according to the location's type.

For point and range locations, the function returns that point or the range's end point,
respectively. For attribute and namespace locations, as with start-point(), the
XPointer part containing the function call fails. How end-point() treats the other
location types, though, is a little less generic.

• For the root and each element location, end-point() returns a point whose
container is the root or that element, respectively, and whose index equals the
number of children of the root or that element.

• For each text, comment, or PI location, end-point() returns a point whose
container is that location, and whose index equals the length of the location's
string-value.

Referring back to the previous XML code example, this XPointer:

xpointer(end-point(/))

 180

locates the node point following the root transaction element's end tag. (The container
is the root node. The 0-index point within that container is the node point preceding
transaction's start tag; there's only one child of the root location, which is the
transaction element, therefore the index of the point returned by end-point() is 1.)

Similarly:

xpointer(end-point(//text()))

returns a location-set consisting of three points: the character point at the very end of
each of the source's three text locations. For example, the first text location's string-value
is 1234-0987-65, 12 characters long; the point within that text location whose index is
12 is the character point following the digit 5.

9.4.3 range-to(locset)

To understand how this function works, you need to understand the start-point() and
end-point() functions as well. (If you're not sure about them, check the descriptions
above.) Its behavior also depends on the context location at the point of the call to
range-to(). The function returns a range whose start point is calculated as if you'd
passed the context location to start-point(), and whose end point is calculated as if
you'd passed the locset argument to end-point(). The effect, therefore, is to locate
everything from the context location through that end point, inclusively.

Returning to the banking-transaction document, consider this XPointer:

xpointer(//account/range-to(account))

At the time of the call to range-to(), the context location is the account element. Its
start point (as if calculated using start-point(//account)) is the node point
immediately following that element's start tag (just before the digit 1). Thus, this
XPointer returns everything between that start point and the end point of the amount
element — that is, the node point just before amount's end tag. The result is a location-set
(containing a single range) whose string-value is the concatenated string-values of the
account and amount elements:

1234-0987-651009.46

Note the similarity in behavior of the range-to() location to a user's
selection of text in a GUI environment (at least insofar as selection
of complete text nodes is concerned). If for no other reason, I suspect
this similarity will make range-to() a very popular XPointer
function.

As the spec points out, the range-to() function puts an additional spin on XPath's
definition of a location step. XPath says that a location step can consist of either the full

 181

or abbreviated form of the axis-node test-predicate combination. In the XPointer
universe, this definition is broadened to include one or more optional calls to range-
to(), each perhaps with a predicate of its own. Thus, with XPointer we may now see
location paths such as the one highlighted here:

xpointer(//lawn[@type = 'zoysia']/sowing[@time = 'earliest']/range-
to(following-
sibling::sowing[@time = 'latest']))

The location steps preceding the call to range-to() locate a node-set restricted to all
sowing elements with a time attribute of "earliest" that are children of lawn elements
with a type of "zoysia"; this node-set thus establishes the context for the call to range-
to() (which establishes a range from the "earliest" sowing through the "latest"). This call
to range-to() thus excludes from the final range any text within the selected lawn
element except the text that appears in that range of its child sowing elements.

In the examples above — as in the XPointer spec itself — the
location-set passed to range-to() always consists of a single
location. I've tried to wrap my mind around what happens if the
passed location-set contains more than one location, but confess that
it seems too complex to put into words (assuming that it's even a
possible, let alone reasonable or desirable, thing to do).

9.4.4 string-range(locset, string, number1?, number2?)

This odd-looking beast of a function searches all locations passed as the first argument;
each location's string-value is matched against the second argument, and if a match is
found, a location-set consisting of a number of ranges is returned, one range for each
discrete match for the string argument found within the range's string-values. By
default, a range starts just before the matched string, and ends just after it, so the string-
value of each range returned is the matched string, wherever they occur within the
location-set. However, you can override these defaults using the optional third and fourth
arguments. The number1 argument fixes the start point of the range (offset from the first
character in the match); the number2 argument specifies the length of the returned range,
in characters.

For instance, given a document such as this:

<people>
 <person>
 <name>Simpson,John</name>
 </person>
 <person>
 <name>Kirby,John</name>
 </person>
 <person>
 <name>Simpson,Mike</name>
 </person>

 182

</people>

You could use the string-range() function as in the following XPointer to return just
those name elements whose string-values contained the string "Simpson":

xpointer(string-range(//name[contains(., "Simpson")], "Simpson")

This locates two ranges; both ranges consist of the string "Simpson" because by default
— in the absence of the third and fourth arguments — the range(s) returned match the
sought-for string exactly. You could also include the optional third and fourth arguments
to return (for example) ranges consisting of the four characters following the comma:

xpointer(string-range(//name[contains(., "Simpson")], "Simpson", 8, 4))

This returns two ranges, comprising the strings "John" and "Mike."

9.4.5 range(locset)

Use the range() function when you want not a location-set of ranges per se, but of their
covering ranges. For each location in locset, the function returns its covering range.
Refer back to Section 9.2.2.4 to see how covering ranges are determined for the various
location types.

9.4.6 range-inside(locset)

The range-inside() function works similarly to the range() function, in that it may
return a range for each location in locset. But range-inside() may also return non-
range-type locations. Table 9-7 summarizes.

Table 9-7. range-inside() behavior, by location type
When

location
is...

Location
itself

returned?

Container of
range

returned

Index of start
point of range

returned
Index of end point of range returned

Point Yes (N/A) (N/A) (N/A)
Range Yes (N/A) (N/A) (N/A)

Any other
type No Location itself 0

If the location is a node that can have children
(that is, the root node or an element node), then
the number of children of that node; otherwise,
the length of the location's string-value

As always, this behavior will be easier to understand using a concrete example. So
consider the following:

<neighborhood>
 <street>
 <name>Post Avenue</name>
 <address>101</address>
 <address>103</address>

 183

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=58
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=60

 <address>109</address>
 </street>
 <street>
 <name>Mercy Lane</name>
 <address>1424A</address>
 <address>1424B</address>
 </street>
</neighborhood>

And now consider the following XPointer:

xpointer(range-inside(//address))

Because the location-set passed to the function includes five members — the address
elements — each of which is neither a point nor a range, we should expect this function
to return a set of five range-type locations. The container for each of these locations is an
address element, and the start point of each location within its container is at index 0
(that is, immediately following the element's start tag). The end point is the length of the
corresponding address element's string-value — immediately following the 1, 3, 9, A,
and B characters in the address elements. Thus, the function call returns the five ranges
with the following string-values:

101
103
109
1424A
1424B

Now let's look at a different XPointer that uses range-inside():

xpointer(range-inside(//street[2]))

Only one location is passed to range-inside() here — the second street element —
so we'll get back a single range. The container for the range is that street element itself,
and the start point is set at index 0 (the node point immediately following the second
street element's start tag). The end point of this street element location is a node point
— the one preceding that street element's end tag. Therefore, the index of the returned
range's end point is set to the number of children of the street element, or 3 (one name
element and two address elements) — setting the end point to the node point
immediately preceding the second street element's end tag. Thus, the returned range is:

<name>Mercy Lane</name>
<address>1424A</address>
<address>1424B</address>

9.4.7 here()

 184

The here() function provides a convenient means to refer to the XML document or
external parsed entity in which the XPointer itself appears. The location-set returned by
the function has a single member, determined as follows:

• If the XPointer is in a text node inside an element node, the function returns that
element node.

• Otherwise, the function returns whatever node directly contains the XPointer.

The spec is careful to say that an XPointer using the here() function
must appear in an XML document or external parsed entity,
otherwise, the XPointer fails.

Here's a sample XML document using two XPointers:

<code>
 <navel-gazing>xpointer(here()/..)</navel-gazing>
 <looking-elsewhere xlink:href="xpointer(here()/..)"/>
</code>

The first XPointer, of course, appears in an element node — as the text node contained by
the navel-gazing element. Therefore, the first XPointer locates the code element. The
second XPointer occurs in the xlink:href attribute of the looking-elsewhere element;
thus, this XPointer locates the parent of that attribute, or the looking-elsewhere
element.

9.4.8 origin()

The only application in which you'll make use of the origin() function is when
constructing an XPointer in an XLink context — specifically, when you need to identify
the location at which a particular XLink's traversal begins. Complete coverage of XLink
lies well outside this book's scope. In general, though, XLink provides for so-called "third
party" and inbound links, in addition to the more familiar outbound-only links (such as
XHTML's a elements with href attributes).

The particular problem that the origin() function addresses has to do with a series of
XLinks in which succeeding links need to be relative to preceding ones. Without getting
into the details of how the XLinks themselves are effected (syntactically or conceptually),
an example of such a situation might be depicted something like the following
pseudocode:

XLinkToChapter(xpointer([XPointer to a resource in some other
document]))
XLinkToChapter(xpointer(origin() /following-sibling::*))

Again, I stress that this is not the way these XLinks are actually constructed. The point is
that the second link (the one with the call to the origin() function) need not "know"
what the first one located; by using a relative XPath expression starting with the location

 185

designated by origin(), it automatically gets (in this case) the next sibling of whatever
was located by the first link. (If the target resources of the two XPointers were in the
same document where the XLinks themselves were located, you could replace the call to
origin() with a call to here() to achieve the same effect.)

Note that the origin() function depends for its operation not just on an XPointer-aware
processor, but also on some level of XLink awareness. At the time of this writing, the
XML landscape is not yet exactly littered with XLink-aware applications.

 186

Appendix A. Extension Functions for XPath in
XSLT
While XPath includes a powerful set of basic functions, some applications of XPath need
to support capabilities that go beyond that core. Currently, the most widely used XPath-
based application is, of course, XSLT; aside from proprietary extensions offered through
the various XSLT processors, it acquires these extra capabilities by way of two
commonly used sets of extension functions. (Don't count on their availability in other
XPath-based contexts, although because of their usefulness they may be adopted
elsewhere as well.)

The first set of functions comes from XSLT itself, providing access to path, node, and
string-value handling facilities necessary for XSLT processing. The second set of
functions comes from the independent Extensions to XSLT (EXSLT) project, providing
support for a variety of tasks that weren't addressed in either XPath 1.0 or XSLT 1.0.

A.1 Additional Functions in XSLT 1.0

When XPath and XSLT were separated into two specifications, it was clear that there
were some functions that relied on information available only through an understanding
of the current XSLT processing context. These functions were kept in XSLT rather than
in XPath, and (to repeat) may or may not be available in XPath processing in other
contexts. You will see these functions used frequently in XSLT processing. Table A-1
lists the additional functions provided by XSLT 1.0.

Table A-1. Additional functions provided by XSLT 1.0
Function prototype Description

current() Returns a node-set containing only the current node of the document being
processed.

document(object,
node-set?)

Returns a node-set containing either a document representing the union of
the arguments (if the node-set argument is present) or, more typically, the
document identified by the URI in the argument (if the first and only
argument is a string containing a URI pointing to XML content.)

format-number(number,
string, string?)

Returns a string representing the number as formatted according to rules
provided in the format pattern in the second argument, as well as the rules
in an xsl:decimal-format element named by the optional third
argument. Formatting patterns use the syntax of the Java JDK 1.1
DecimalFormat class.

function-
available(string)

Returns a Boolean true or false, indicating whether the function named in
the argument is available for use in the current XSLT processing
environment. This is especially important in testing for the availability of
EXSLT functions,, as well as extension functions that may be provided
only by a given XSLT processor.

generate-id(node-
set?)

Returns a string that can be used as a unique identifier for the first node in
the node-set. Returns the empty string if the node-set is empty.

key(string, object) Returns a node-set representing the content of a key created in the
stylesheet using the xsl:key element.

 187

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=63

system-
property(string)

The string argument for this function must be a QName. Returns an object
that represents the value of the system property identified by that name. All
XSLT implementations must support xsl:version, xsl:vendor, and
xsl:vendor-url.

unparsed-entity-uri
(string)

Returns a string containing the URI of an unparsed entity declared using
the string provided as the argument. If there is no entity declared using that
name, it returns the empty string.

Again, these functions should be used only in the context of XSLT stylesheets. While
some non-XSLT implementations of XPath may provide more general support for them,
the functions' behavior in those other contexts might only more or less correspond to their
behavior according to the XSLT specification.

The XSLT additional functions (and the XSLT features that provide
the extra support they need) are all documented in the XSLT
specification at http://www.w3.org/TR/xslt#add-func.

A.2 EXSLT Extensions

EXSLT is a community project that provides extra functionality for XSLT and XPath.
While not a product of the W3C, the EXSLT foundation is implemented across a variety
of XSLT and XPath processors. Some EXSLT extensions require support for elements in
XSLT stylesheets and are thus tightly bound to XSLT; others are relatively free standing
and may be usable in other XPath contexts. The EXSLT extensions can be supported
either through direct implementation in XSLT processors or through the use of XSLT
modules, which themselves provide support for EXSLT functions using scripting or
XSLT. EXSLT extensions may be implemented either as XSLT templates or as
functions. In XPath terms, only the functions approach is easily available.

EXSLT is divided into eight modules, each containing its own group of functions (and
possibly elements) and using its own namespace to identify the module. Within those
modules reside "Core" functionality, which all EXSLT implementations must support, as
well as "Other" functionality, which EXSLT implementations may support. The
following sections explain each module and its contents.

For additional information on EXSLT, including pointers to
implementations and information on how to participate in creating or
implementing EXSLT, see http://www.exslt.org.

A.2.1 EXSLT Functions Module

Despite its name, the EXSLT Functions module doesn't contain any functions. Instead, it
contains three elements that may be used to define extension functions. All these
elements are in the http://exslt.org/functions namespace, typically mapped to the func
prefix. Table A-2 lists these elements and their uses.

 188

http://www.w3.org/TR/xslt
http://www.exslt.org/
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=64

Table A-2. EXSLT Functions module elements
Element name Description Status

func:function

Defines a named function visible throughout the XSLT stylesheet. Must appear
in the top level of the XSLT stylesheet (that is, as a child of the root
xsl:stylesheet element). Arguments are specified using xsl:param,
while the return value is specified using func:result.

Core

func:result Used inside of func:function to specify the value returned by the function.
Its select attribute identifies the value to return. Core

func:script

Used to define functions with scripting languages (such as ECMAScript). Not
all processors support all scripting languages, so this is useful primarily when
the particular implementation that will be used for processing is known in
advance.

Other

Using these elements, you can create new functions for a wide variety of processing
tasks, if the rest of the EXSLT library proves insufficient.

A.2.2 EXSLT Dates-and-Times Module

The EXSLT Dates-and-times module provides a wide variety of tools for processing
dates and times. All these elements and functions are in the http://exslt.org/dates-and-
times namespace, typically mapped to the date prefix. Most of the module is simply
functions, but there is also a date:date-format element for defining alternative formats
to the ISO 8601 dates used by W3C XML Schema. Table A-3 lists this element and its
use.

Table A-3. Table A-3: EXSLT Dates-and-times module element
Element name Description Status

date:date-
format

Permits the use of date formats other than ISO 8601's Gregorian format. The
name attribute identifies a QName for the format, the calendar attribute
identifies the calendar type (gregorian is the default), lang identifies the
language used, and first-day-of-week provides a named value (i.e.,
sunday) to be used for the first day of the week.

Other

The date:date-format element hasn't yet been implemented as of June 2002. Most of
the rest of the Dates-and-times module is widely implemented, so working with ISO 8601
dates using EXSLT is not very difficult. ISO 8601 dates use the general format:

CCYY-MM-DDThh:mm:ss(Z|((+|-)hh:mm))

XML Schema Part 2: Datatypes provides more information on date and time formats at
http://www.w3.org/TR/xmlschema-2/.

The EXSLT Dates-and-times module offers the wide variety of functions listed in Table
A-4.

Table A-4. EXSLT Dates-and-times module functions
Function prototype Description Status

 189

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=64
http://www.w3.org/TR/xmlschema-2/
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=64
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=64

date:date-time() Returns a string containing the current date and time in ISO
8601 format. Core

date:date(string?)
If the string argument is present, it returns a string containing
the date portion of that ISO 8601 string. If the argument is not
present, it returns the current date.

Core

date:time(string?)
If the string argument is present, it returns a string containing
the time portion of that ISO 8601 string. If the argument is not
present, it returns the current time.

Core

date:year(string?)
If the string argument is present, it returns a number
containing the year portion of that ISO 8601 string. If the
argument is not present, it returns the current year.

Core

date:leap-year(string?)

If the string argument is present, it returns a Boolean
identifying whether the date in that ISO 8601 string occurs in
a leap year. If the argument is not present, it returns whether
the current year is a leap year.

Core

date:month-in-
year(string?)

If the string argument is present, it returns a number
containing the month portion of that ISO 8601 string. If the
argument is not present, it returns the current month.

Core

date:month-name(string?)
If the string argument is present, it returns a string containing
the name of the month identified by that ISO 8601 string. If
the argument is not present, it returns the current month name.

Core

date:month-
abbreviation(string?)

If the string argument is present, it returns a string containing
an abbreviation for the name of the month identified by that
ISO 8601 string. If the argument is not present, it returns the
current month abbreviation.

Core

date:week-in-
year(string?)

If the string argument is present, it returns a number
identifying the week of the year of the date in that ISO 8601
string. If the argument is not present, it returns the current
week of the year.

Core

date:day-in-
year(string?)

If the string argument is present, it returns a number
identifying the day of the year of the date in that ISO 8601
string. If the argument is not present, it returns the current day
of the year.

Core

date:day-in-
month(string?)

If the string argument is present, it returns a number
containing the day portion of that ISO 8601 string. If the
argument is not present, it returns the current day.

Core

date:day-of-week-in-
month(string?)

If the string argument is present, it returns a number
identifying which iteration of the current day of the week
within the month for the date in that ISO 8601 string. If a date
represents the second Friday in a month, the value is 2. If the
argument is not present, it returns the value for the current
date.

Core

date:day-in-
week(string?)

If the string argument is present, it returns a number
identifying which iteration of the current day of the week
within the month for the date in that ISO 8601 string. If a date
represents the second Friday in a month, the value is 2. If the
argument is not present, it returns the value for the current
date.

Core

date:day-name(string?)

If the string argument is present, it returns a string containing
the name of the weekday identified by that ISO 8601 string. If
the argument is not present, it returns the current weekday
name.

Core

 190

date:day-
abbreviation(string?)

If the string argument is present, it returns a string containing
an abbreviation for the name of the weekday identified by that
ISO 8601 string. If the argument is not present, it returns the
current weekday abbreviation.

Core

date:hour-in-
day(string?)

If the string argument is present, it returns a number
containing the hour portion of that ISO 8601 string. If the
argument is not present, it returns the current hour.

Core

date:minute-in-
hour(string?)

If the string argument is present, it returns a number
containing the minute portion of that ISO 8601 string. If the
argument is not present, it returns the current minute.

Core

date:second-in-
minute(string?)

If the string argument is present, it returns a number
containing the second portion of that ISO 8601 string. If the
argument is not present, it returns the current second.

Core

date:format-date(string,
string)

Formats a date (given as the first string argument) according
to the pattern identified by the second string argument and
returns it as a string. Permitted patterns are xs:dateTime,
xs:date, xs:time, xs:gYearMonth, xs:gYear,
xs:gMonthDay, xs:gMonth, and xs:gDay.

Other

date:parse-date(string,
string)

The inverse of date:format-date, this function takes a
string containing the date information and a pattern from the
list above and returns a date in ISO 8601 format.

Other

date:week-in-
month(string?)

If the string argument is present, it returns a number
identifying the week of the month into which the date
specified by the ISO 8601 string falls. If the argument is not
present, it returns the week for the current date.

Other

date:difference(string,
string)

Returns a string representation of the duration between the
two dates passed as string arguments. Other

date:add(string, string)
Returns a string representation of the date produced by adding
the date in the first string argument to the duration in the
second string argument.

Other

date:add-
duration(string, string)

Returns a string representation of the duration produced by
adding the duration in the first string argument to the duration
in the second string argument.

Other

date:sum(node-set) Returns a string representation of the duration produced by
adding the durations stored in the node-set argument. Other

date:seconds(string?) Returns the number of seconds specified by the duration
passed as a string. Other

date:duration(number?) Returns a duration string corresponding to the number of
seconds passed as an argument. Other

The Dates-and-times module largely provides functionality that may eventually be
provided by XPath 2.0.

(Note that day and month names returned by various of the functions listed in Table A-4,
such as date:day-name() and date:month-abbreviation(), are the English-language
forms, such as "Sunday" and "Jan." Also note that the abbreviation functions return the
three-letter abbreviations for day and month names, e.g., "Thu" and "Sep" for Thursday
and September, respectively.)

A.2.3 EXSLT Dynamic Module

 191

The EXSLT Dynamic module provides support for the dynamic evalution of XPath
expressions created during XSLT or other processing. All these functions are in the
http://exslt.org/dynamic namespace, typically mapped to the dyn prefix. This module
contains only functions.

None of the Dynamic module has been implemented as of June 2002. The functions it
provides are listed in Table A-5, and you should check the documentation of your
implementation to find out if any of this is supported.

Table A-5. EXSLT Dynamic module functions
Function prototype Description Status

dyn:evaluate(string) Evaluates the string argument as an XPath expression and returns
the result as an object. Other

dyn:min(node-set,
string)

Returns a number representing the minimum value produced by
applying the XPath expression passed as the second argument to
the node-set passed as the first argument.

Other

dyn:max(node-set,
string)

Returns a number representing the maximum value produced by
applying the XPath expression passed as the second argument to
the node-set passed as the first argument.

Other

dyn:sum(node-set,
string)

Returns a number representing the sum of the values produced by
applying the XPath expression passed as the second argument to
the node-set passed as the first argument.

Other

dyn:map(node-set,
string)

Returns a node-set containing all the results produced by applying
the XPath expression passed as the second argument to the node-
set passed as the first argument.

Other

dyn:closure(node-set,
string)

Returns a node-set containing all the results produced by applying
the XPath expression passed as the second argument to the node-
set passed as the first argument, after those results are processed
using the XPath expression repetitively until no results are left.

Other

A.2.4 EXSLT Common Module

The EXSLT Common module provides one element for creating multiple output
documents from a given transformation and two functions that address minor structural
limitations of XSLT. The element and functions are in the http://exslt.org/common
namespace, typically mapped to the exsl prefix. Table A-6 lists the one element and its
use.

Table A-6. EXSLT Common module element
Element name Description Status

exsl:document Provides support for the creation of multiple output documents in XSLT
processing. Other

The exsl:document element is widely implemented in EXSLT-compliant processors. It
has no effect on XPath processing.

The EXSLT Common module offers the functions listed in Table A-7.

 192

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=64
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=64
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=64

Table A-7. EXSLT Common module functions
Function prototype Description Status

exsl:node-
set(object)

Creates an XSLT node-set from an XSLT result tree fragment, permitting
further processing of that information. Also converts strings into text
nodes.

Core

exsl:object-
type(object)

Returns the type of the object as string, number, boolean, node-
set, RTF, or external. Core

Some of this functionality will be provided in XSLT 2.0 or XPath 2.0.

A.2.5 EXSLT Math Module

The EXSLT Math module provides a variety of common mathematical functions and is
easily used with XPath. All these functions are in the http://exslt.org/math namespace,
typically mapped to the math prefix. With this module, you can use XPath to perform
mathematical calculations on the contents of your documents, in ways far beyond the
reach of XPath's own numeric functions and operators.

The EXSLT Math module offers the functions listed in Table A-8.

Table A-8. EXSLT Math module functions
Function prototype Description Status

math:min(node-set) Returns a number representing the minimum numeric value
contained in the node-set. Core

math:max(node-set) Returns a number representing the maximum numeric value
contained in the node-set. Core

math:highest(node-set) Returns a node-set containing the nodes whose value is the
maximum numeric value contained in the node-set. Core

math:lowest(node-set) Returns a node-set containing the nodes whose value is the
minimum numeric value contained in the node-set. Core

math:abs(number) Returns a number containing the absolute value of the number
passed as an argument. Other

math:sqrt(number) Returns a number containing the square root of the number
passed as an argument. Other

math:power(number,
number)

Returns a number representing the value of the first number
argument raised to the power of the second number argument. Other

math:constant(string,
number)

Returns a constant specified by the string argument (PI, E,
SQRRT2, LN2, LN10, LOG2E, SQRT1_2) to the precision
specified by the number.

Other

math:log(number) Returns a number containing the natural logarithm (base e) of
the number passed as an argument. Other

math:random() Returns a random value between 0 and 1. Other

math:sin(number) Returns a number containing the sine of the number (in
radians) passed as an argument. Other

math:cos(number) Returns a number containing the cosine of the number (in
radians) passed as an argument. Other

math:tan(number) Returns a number containing the tangent of the number (in
radians) passed as an argument. Other

 193

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=64

math:asin(number) Returns a number containing the arcsine of the number passed
as an argument. Other

math:acos(number) Returns a number containing the arccosine of the number
passed as an argument. Other

math:atan(number) Returns a number containing the arctangent of the number
passed as an argument. Other

math:atan2(number,
number)

Returns the angle (in radians) from the X axis to the point
where X is the first number and Y is the second. Other

math:exp(number) Returns a number containing the exponential of the number
passed as an argument. Other

Various implementations provide different levels of support for the Math module.

A.2.6 EXSLT Regular Expressions Module

The EXSLT Regular Expressions module provides regular expression functionality
through three functions. All these functions are in the http://exslt.org/regular-expressions
namespace, typically mapped to the regexp prefix. With this module, you can use XPath
to break down or lexically analyze the contents of your documents. The EXSLT Regular
Expressions module offers the functions listed in Table A-9.

Table A-9. EXSLT Regular Expressions module functions
Function prototype Description Status

regexp:test(string,
string, string?)

Returns a Boolean indicating whether the first string
matches the regular expression identified by the second
string. The third argument may contain flags for case
sensitivity.

Other

regexp:match(string,
string, string?)

Returns a node-set containing the pieces from the first string
as returned from the match against the second string. The
third argument may contain flags for case sensitivity or
requirements for a global match.

Other

regexp:replace(string,
string, string, string)

Returns a string containing a value produced by matching
pieces of the first string against the regular expression in the
second string and replacing those pieces with the string in
the fourth argument. The third argument may contain flags
for case sensitivity or requirements for a global match.

Other

A variety of implementations for the Regular Expression module is available, though no
processors support it natively.

A.2.7 EXSLT Sets Module

The EXSLT Sets module provides six functions for working with node-sets. All these
functions are in the http://exslt.org/sets namespace, typically mapped to the set prefix.
With this module, you can use XPath to compare node-sets. The EXSLT Sets module
offers the functions listed in Table A-10.

Table A-10. EXSLT Sets module functions

 194

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=64
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=64

Function prototype Description Status
set:difference(node-set,
node-set)

Returns a node-set containing nodes that are in the first
node-set argument but not in the second. Core

set:intersection(node-set,
node-set)

Returns a node-set containing nodes that are in both the
first node-set argument and the second. Core

set:distinct(node-set)
Returns a node-set containing a subset of nodes whose
string values are unique within the node-set passed as an
argument.

Core

set:has-same-node(node-set,
node-set)

Returns a Boolean value indicating whether the two
node-sets have any nodes in common. Core

set:leading(node-set,
node-set)

Returns a node-set containing the nodes in the first node-
set that precede (in document order) those in the second
node-set.

Core

set:trailing(node-set, node-
set)

Returns a node-set containing the nodes in the first node-
set that follow (in document order) those in the second
node-set.

Core

The Sets module is built into every processor that supports EXSLT, and implementations
are available for other processors as well.

A.2.8 EXSLT Strings Module

The EXSLT Strings module provides string-processing functionality through three
functions. All these functions are in the http://exslt.org/strings namespace, typically
mapped to the str prefix. With this module, you can use XPath to process the text
contents of your documents using common string tools not otherwise provided by the
XPath string functions. The EXSLT Strings module offers the functions listed in Table
A-11.

Table A-11. EXSLT Strings module functions
Function prototype Description Status

str:tokenize(string,
string?)

Returns a node-set of token elements, containing fragments
from the first string argument as broken down at boundaries
established by the second. If the second argument is empty, the
first argument is tokenized into individual characters.

Other

str:replace(string,
object, object)

Returns a node-set. The first string argument is matched against
the contents of the second argument, and those matches are
replaced with the content of the third.

Other

str:padding(number,
string)

Returns a string containing characters of the string argument
repeated to create the length the number argument specifies. Other

str:align(string,
string, string?)

Returns the first string aligned to match the second string. The
third argument specifies left, right, or center alignment. Other

str:encode-uri(string) Returns a string that reflects the value of the string argument
URI-encoded for use in web documents. Other

str:decode-uri(string) Returns a string that reflects the value of the string argument
URI-deoded for conversion from web documents. Other

str:concat(node-set) Returns a string containing the values of all the nodes in the
node-set argument concatentated as a single string. Other

 195

http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=64
http://safari.oreilly.com/main.asp?bookname=xpathpointer&snode=64

str:split(string,
string?)

Returns a node-set of token elements, containing fragments
from the first string argument as broken down at boundaries
established by the second. If the second argument is empty, the
first argument is tokenized into individual characters.

Other

A variety of implementations for the Strings module is available, though no processors
support it natively.

 196

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The birds on the cover of XPath and XPointer are bee-eaters. Bee-eaters can be found in
tropical parts of Africa and Asia. Bee-eaters are brightly colored birds, often with a black
stripe running from their eyes to the base of their long, sharp bills. They measure 6 to 14
inches in length.

Bee-eaters feed mostly on bees and wasps, hence their name. They catch the flying
insects and bring them back to a perch, where the insects are devenomized. This is
accomplished by pounding and rubbing the insect until all the venom is gone. Only one
type of bee-eater eats vegetable matter. This type of bee-eater will also only feed on
things it's caught in motion: it snatches nutshells dropped by squirrels out of the air and
eats them.

Bee-eaters are gregarious birds. They often travel in flocks of hundreds or thousands, and
they nest together in large colonies on riverbanks or along roads. Some species migrate
between mating seasons.

Linley Dolby was the production editor and copyeditor, and Sarah Sherman was the
proofreader for XPath and XPointer. Matt Hutchinson and Claire Cloutier provided
quality control. Johnna VanHoose Dinse wrote the index. Kimo Carter and Judy Hoer
provided production assistance.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial
Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using Adobe's
ITC Garamond font.

David Futato designed the interior layout. This book was converted to FrameMaker 5.5.6
with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike
Sierra that uses Perl and XML technologies. Joe Wizda provided additional Tools
support. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear
in the book were produced by Robert Romano and Jessamyn Read using Macromedia
FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by
Christopher Bing. This colophon was written by Linley Dolby.

 197

	Table of Content
	Preface
	Who Should Read This Book?
	Who Should Not Read This Book?
	Organization of the Book
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	Chapter 1. Introducing XPath and XPointer
	1.1 Why XPath and XPointer?
	1.2 Antecedents/History
	1.2.1 DSSSL
	1.2.2 XSL
	1.2.3 TEI
	1.2.4 Intermedia

	1.3 XPath, XPointer, and Other XML-Related Specs
	
	Figure 1-1. Interdependencies among XML-related standards

	1.3.1 Specs Dependent on XPath and XPointer

	1.4 XPath and XPointer Versus XQuery

	Chapter 2. XPath Basics
	2.1 The Node Tree: An Introduction
	
	Figure 2-1. Above XML document represented as a tree of nodes

	2.2 XPath Expressions
	2.2.1 Location Steps and Location Paths
	2.2.2 Expression Syntax
	2.2.2.1 Tokens
	2.2.2.2 Delimiters
	2.2.2.3 Combining tokens and delimiters into complete expressions

	2.3 XPath Data Types
	2.3.1 Strings
	2.3.2 Numeric Values
	2.3.3 Boolean Values

	2.4 Nodes and Node-Sets
	2.4.1 Node Properties
	2.4.1.1 Node names
	2.4.1.2 Document order
	2.4.1.3 Family relationships

	2.4.2 Node-Sets
	2.4.3 Node Types
	2.4.3.1 The root node
	2.4.3.2 Element nodes
	Figure 2-2. An XML document with no whitespace
	Figure 2-3. The same XML document with whitespace
	2.4.3.3 Attribute nodes
	2.4.3.4 PI nodes
	2.4.3.5 Comment nodes
	2.4.3.6 Text nodes
	2.4.3.7 Namespace nodes
	2.4.3.8 XPath node types and the XML Infoset

	2.5 Node-Set Context
	2.6 String-Values
	
	Table?2-1. String-values, by node type

	2.6.1 String-Value of a Node-Set

	Chapter 3. Location Steps and Paths
	3.1 XPath Expressions
	3.1.1 The Filesystem Analogy
	3.1.2 Points of Similarity, Points of Difference

	3.2 Location Paths
	3.2.1 The Importance of Context
	Figure 3-1. Filtering content via successive steps in a location path

	3.2.2 Absolute Versus Relative Location Paths
	3.2.3 Compound Location Paths

	3.3 Location Steps
	3.3.1 The Big Picture
	Figure 3-2. Narrowing the field of vision: "seeing" just boats with sails in a particular direction

	3.3.2 The Node Test
	Table?3-1. Location step node tests

	3.3.3 The Axis
	Table?3-2. Location step axes
	3.3.3.1 Defaults and shortcuts
	3.3.3.2 Restrictions by context node type
	Table?3-3. Valid axis/context node combinations
	3.3.3.3 Axes and efficiency

	3.3.4 The Predicate
	Table?3-4. Boolean operators in XPath predicates
	3.3.4.1 Nesting predicates
	3.3.4.2 Compound predicates
	3.3.4.3 Predicates with a single value and no operator
	3.3.4.4 Special case: numeric-valued predicates
	3.3.4.5 "Stacked" predicates

	3.4 Compound Location Paths Revisited

	Chapter 4. XPath Functions and Numeric Operators
	4.1 Introduction to Functions
	4.1.1 What Functions Do
	4.1.2 Functions Within Functions

	4.2 XPath Function Types
	4.2.1 Node-Set Functions
	Table?4-1. Node-set functions
	4.2.1.1 last()
	4.2.1.2 position()
	4.2.1.3 count(nodeset)
	4.2.1.4 id(anytype)
	4.2.1.5 id() and node-set arguments
	4.2.1.6 local-name(nodeset?)
	4.2.1.7 namespace-uri(nodeset?)
	4.2.1.8 name(nodeset?)

	4.2.2 String Functions
	Table?4-2. String functions
	4.2.2.1 string(anytype?)
	4.2.2.2 concat(string1, string2, ...)
	4.2.2.3 starts-with(string1, string2)
	4.2.2.4 contains(string1, string2)
	4.2.2.5 substring(string, number1, number2?)
	4.2.2.6 substring-before(string1, string2) and substring-after(string1, string2)
	4.2.2.7 string-length(string?)
	4.2.2.8 normalize-space(string?)
	4.2.2.9 translate(string1, string2, string3)

	4.2.3 Boolean Functions
	Table?4-3. Boolean functions
	4.2.3.1 boolean(anytype)
	4.2.3.2 not(boolean)
	4.2.3.3 true() and false()
	4.2.3.4 lang(string)

	4.2.4 Numeric Functions
	Table?4-4. Numeric functions
	4.2.4.1 number(anytype?)
	4.2.4.2 sum(nodeset)
	4.2.4.3 floor(number) and ceiling(number)
	4.2.4.4 round(number)

	4.3 XPath Numeric Operators
	
	Table?4-5. XPath numeric operators

	4.3.1 div
	4.3.2 mod

	Chapter 5. XPath in Action
	5.1 XPath Visualiser: Some Background
	
	Figure 5-1. Startup view of XPath Visualiser
	Figure 5-2. A document loaded into XPath Visualiser

	5.2 Sample XML Document
	
	Figure 5-3. Sample astrological document loaded into XPath Visualiser

	5.3 General to Specific, Common to Far-Out
	5.3.1 The Node Test
	Figure 5-4. "Locating" the root node
	Figure 5-5. Locating all elements with the same name
	Figure 5-6. Locating all comments
	Figure 5-7. Locating a PI
	Figure 5-8. Locating text nodes
	Figure 5-9. Locating all elements, comments, PIs, and text nodes
	Figure 5-10. Locating attribute nodes
	Figure 5-11. Locating namespace nodes
	Figure 5-12. Locating all nodes in a document

	5.3.2 Axes
	Figure 5-13. Locating the parents of any part elements
	Figure 5-14. Using the parent:: axis to locate attributes of a comment's parent element
	Figure 5-15. Selecting all siblings of a PI in the prolog
	Figure 5-16. Locating elements along the following:: axis
	Figure 5-17. Locating an element's ancestors
	Figure 5-18. Adding an element to its ancestor node-set, using the ancestor-or-self:: axis

	5.3.3 Predicates
	Figure 5-19. Trimming a node-set using a predicate
	Figure 5-20. Selecting all elements with an attribute whose value does not meet a condition
	Figure 5-21. Selecting all elements lacking a particular attribute with a particular value
	Figure 5-22. Locating nodes based on their positions
	Figure 5-23. Node position on a reverse-direction axis
	Figure 5-24. Using last() on a reverse-direction axis

	5.3.4 Functions
	Figure 5-25. Locating href pseudoattributes and xlink:href attributes with a single location path
	Figure 5-26. Using boolean() to locate all elements that are parents of other elements
	Figure 5-27. Using XPath string functions

	5.3.5 Sublimely Ridiculous
	Figure 5-28. Locating all "plural body parts"
	Figure 5-29. Locating the sign elements with "plural body parts"
	Figure 5-30. Locating the main name element for each sign with "plural body parts"
	Figure 5-31. Locating the true name of each sign with "plural body parts"
	Figure 5-32. Locating signs with more than one ruling planet
	Figure 5-33. Locating the image file for the symbol of each sign with more than one ruling planet
	Figure 5-34. Locating all Unicode and image-file representations of the symbols for all signs with more than one ruling planet

	Chapter 6. XPath 2.0
	6.1 General Goals
	6.1.1 Simplify Manipulation of XML Schema-Typed Content
	6.1.2 Simplify Manipulation of String Content
	6.1.3 Support Related XML Standards
	6.1.4 Improve Ease of Use
	6.1.5 Improve Interoperability
	6.1.6 Improve i18n Support
	6.1.7 Maintain Backward Compatibility
	6.1.8 Enable Improved Processor Efficiency

	6.2 Specific Requirements
	
	Table?6-1. XPath 2.0 requirements, by general goal

	6.2.1 XPath 2.0 MUSTs
	6.2.1.1 Express its data model in terms of the XML Infoset (1.1)
	6.2.1.2 Provide common core syntax and semantics for XSLT and XML Query (1.2)
	Figure 6-1. XPath 2.0, XSLT 2.0, and XML Query 1.0
	6.2.1.3 Support explicit "for any" and "for all" Boolean operations (1.3)
	6.2.1.4 Extend the existing set of aggregate functions (1.4)
	6.2.1.5 Loosen restrictions on location steps (2.1)
	6.2.1.6 Provide a conditional expression (2.2)
	6.2.1.7 Define consistent implicit semantics for collection-valued subexpressions (2.3)
	6.2.1.8 Support string matching with regular expressions (3)
	6.2.1.9 Define the operator matrix and conversions (4.1)
	6.2.1.10 Allow scientific notation for numbers (4.2)
	6.2.1.11 Define cast and constructor functions (4.3)
	6.2.1.12 Support accessing the simple-type values of elements and attributes (4.5)
	6.2.1.13 Define the behavior of operators for null arguments (4.6)

	6.2.2 XPath 2.0 SHOULDs
	6.2.2.1 Maintain backward compatibility with XPath 1.0 (1.5)
	6.2.2.2 Provide intersection and difference functions (1.6)
	6.2.2.3 Support the unary plus operator (1.7)
	6.2.2.4 Simplify string replacement (2.4.1)
	6.2.2.5 Simplify string padding (2.4.2)
	6.2.2.6 Simplify string case conversions (2.4.3)
	6.2.2.7 Support aggregation functions over collection-valued expressions (2.5)
	6.2.2.8 Add a "list" data type (4.4)
	6.2.2.9 Select elements/attributes based on an explicit XML Schema type (5.1)
	6.2.2.10 Select elements/attributes based on an XML Schema type hierarchy (5.2)
	6.2.2.11 Select elements based on XML Schema substitution groups (5.3)
	6.2.2.12 Support lookups based on XML Schema unique constraints and keys (5.4)

	Chapter 7. XPointer Background
	7.1 XPointer and Media types
	7.2 Some Definitions
	7.2.1 Resource
	7.2.2 Subresource
	7.2.3 Location
	7.2.4 Location-set
	7.2.5 Point
	Figure 7-1. Point-type locations

	7.2.6 Range
	7.2.7 Points and Ranges: Flattening the Logical Hierarchy

	7.3 The Framework
	7.4 Error Types
	7.4.1 Syntax Errors
	7.4.2 Resource Errors
	7.4.3 Subresource Errors

	7.5 Encoding and Escaping Characters in XPointer
	7.5.1 Characters Significant to XPointer Itself
	7.5.2 URI-Significant Characters
	7.5.2.1 URIs versus IURIs

	7.5.3 Characters in XML Documents
	7.5.4 Progressive Escaping
	7.5.4.1 Progressive escaping: a (perverse) example

	Chapter 8. XPointer Syntax
	8.1 Shorthand Pointers
	8.2 Scheme-Based XPointer Syntax
	8.2.1 The Scheme
	8.2.2 The schemedata
	8.2.3 Contents of the xmlns() Scheme
	8.2.4 Contents of the element() Scheme
	8.2.5 Combining Names and Child Sequences
	8.2.6 Contents of the xpointer() Scheme
	8.2.7 Custom Schemes
	8.2.8 Multiple Pointer Parts
	8.2.8.1 "Failure-proofing" XPointers
	8.2.8.2 Declaring and using namespaces
	8.2.8.3 Mixing it up

	8.3 Using XPointers in a URI

	Chapter 9. XPointer Beyond XPath
	9.1 Why Extend XPath?
	
	Figure 9-1. Hypothetical web document (as displayed)
	Figure 9-2. Hypothetical web document (with selection)

	9.2 Points and Ranges
	9.2.1 Points
	Figure 9-3. Point locations in an element with a text-node child
	Figure 9-4. A "location tree" view of Figure 9-3
	9.2.1.1 Node points versus character points
	9.2.1.2 Point syntax
	9.2.1.3 Points as "nodes"
	Table?9-1. Axes and points
	9.2.1.4 Points and general entities

	9.2.2 Ranges
	9.2.2.1 What can be in a range
	9.2.2.2 Range syntax
	9.2.2.3 Ranges as "nodes"
	9.2.2.4 Covering ranges
	Table?9-2. Covering ranges
	Table?9-3. Covering range examples

	9.3 XPointer Extensions to Document Order
	
	Table?9-4. Document order and location types

	9.3.1 XPointer Document Order Extensions: Examples
	Table?9-5. XPointer document order examples

	9.4 XPointer Functions
	
	Table?9-6. XPointer functions

	9.4.1 start-point(locset)
	9.4.2 end-point(locset)
	9.4.3 range-to(locset)
	9.4.4 string-range(locset, string, number1?, number2?)
	9.4.5 range(locset)
	9.4.6 range-inside(locset)
	Table?9-7. range-inside() behavior, by location type

	9.4.7 here()
	9.4.8 origin()

	Appendix A. Extension Functions for XPath in XSLT
	A.1 Additional Functions in XSLT 1.0
	
	Table?A-1. Additional functions provided by XSLT 1.0

	A.2 EXSLT Extensions
	A.2.1 EXSLT Functions Module
	Table?A-2. EXSLT Functions module elements

	A.2.2 EXSLT Dates-and-Times Module
	Table?A-3. Table A-3: EXSLT Dates-and-times module element
	Table?A-4. EXSLT Dates-and-times module functions

	A.2.3 EXSLT Dynamic Module
	Table?A-5. EXSLT Dynamic module functions

	A.2.4 EXSLT Common Module
	Table?A-6. EXSLT Common module element
	Table?A-7. EXSLT Common module functions

	A.2.5 EXSLT Math Module
	Table?A-8. EXSLT Math module functions

	A.2.6 EXSLT Regular Expressions Module
	Table?A-9. EXSLT Regular Expressions module functions

	A.2.7 EXSLT Sets Module
	Table?A-10. EXSLT Sets module functions

	A.2.8 EXSLT Strings Module
	Table?A-11. EXSLT Strings module functions

	Colophon

