Securing Networks with Cisco Routers and Switches

Version 2.0

Lab Guide

Editorial, Production, and Web Services: 02.06.07

ıılıılı cısco

Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 Asia Pacific Headquarters Cisco Systems, Inc. 168 Robinson Road #28-01 Capital Tower Singapore 068912 www.cisco.com Tel: +65 6317 7777 Fax: +65 6317 7779 Europe Headquarters Cisco Systems International BV Haarlerbergpark Haarlerbergweg 13-19 1101 CH Amsterdam The Netherlands www-europe cisco.com Tel: +31 0 800 020 0791 Fax: +31 0 20 357 1100

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

©2006 Cisco Systems, Inc. All rights reserved. CCVP, the Cisco logo, and the Cisco Square Bridge logo are trademarks of Cisco Systems, Inc: Changing the Way We Work, Live, Play, and Learn is a service mark of Cisco Systems, Inc: and Access Registrar, Aironet, BPX, Catalyst, CCDA, CCDP, CCIP, CCIP, CCSP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems, Cisco Systems, Inc; and Access Registrar, Aironet, BPX, Catalyst, CCDA, CCDP, CCIP, CCNA, CCNP, CCSP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems,

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0609R)

DISCLAIMER WARRANTY: THIS CONTENT IS BEING PROVIDED "AS IS." CISCO MAKES AND YOU RECEIVE NO WARRANTIES IN CONNECTION WITH THE CONTENT PROVIDED HEREUNDER, EXPRESS, IMPLIED, STATUTORY OR IN ANY OTHER PROVISION OF THIS CONTENT OR COMMUNICATION BETWEEN CISCO AND YOU. CISCO SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. This learning product may contain early release content, and while Cisco believes it to be accurate, it falls subject to the disclaimer above.

Lab Guide

Overview

This guide presents the instructions and other information concerning the lab activities for this course. You can find the solutions in the lab activity Answer Key.

Outline

This guide includes these activities:

- Lab 1-1: Configure Layer 2 Security
- Lab 1-2: Configure DHCP Snooping
- Lab 2-1: Configure Cisco Secure ACS as a AAA Server
- Lab 2-2: Configure 802.1x Port-Based Authentication
- Lab 3-1: Configure Cisco NFP
- Lab 4-1: Configure a Site-to-Site VPN Using Pre-Shared Keys
- Lab 4-2: Configure a Site-to-Site VPN Using PKI
- Lab 4-3: Configure a GRE Tunnel to a Remote Site
- Lab 4-4: Configure a DMVPN
- Lab 4-5: Configure a Cisco IOS SSL VPN (WebVPN)
- Lab 4-6: Configure Cisco Easy VPN Remote Access
- Lab 5-1: Configure Cisco IOS Classic Firewall
- Lab 5-2: Configure Cisco IOS Application Policy Firewall
- Lab 5-3: Configure a Cisco IOS Zone-Based Policy Firewall
- Lab 5-4: Configure Cisco IOS Firewall Authentication Proxy on a Cisco Router
- Lab 5-5: Configure a Cisco Router with Cisco IOS IPS

Lab 1-1: Configure Layer 2 Security

Complete this lab activity to practice what you learned in the related module.

Activity Objective

In this activity, you will configure Layer 2 security on a Cisco Catalyst switch. After completing this activity, you will be able to meet these objectives:

- Mitigate a CAM table overflow attack using the appropriate Cisco IOS commands
- Mitigate a VLAN hopping attack using the appropriate Cisco IOS commands
- Prevent STP manipulation using the appropriate Cisco IOS commands
- Mitigate a MAC spoofing attack using the appropriate Cisco IOS commands
- Defend a PVLAN attack using the appropriate Cisco IOS commands

Visual Objective

The figure illustrates what you will accomplish in this activity.

Required Resources

These are the resources and equipment that are required to complete this activity:

- Student laptops
- Pod routers
- Pod switches

2 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Command List

The table describes the commands that are used in this activity.

Command	Description
arp timeout seconds	This command is used to configure how long an entry remains in the ARP cache. To restore the default value, use the no form of this command.
<pre>show port-security [address] [interface interface-id]</pre>	This command is used to display the port security settings for an interface or for the switch.
switchport mode access	This command is used to configure a switch port as an access port only.
switchport port-security	This command enables port security on an interface.
<pre>switchport port-security mac-address [sticky mac-addr]</pre>	This command is used to set a secure MAC address on an interface or use the sticky option to allow the switch to learn the first MAC address. Use the no form of this command to remove a MAC address from the list of secure MAC addresses.
switchport port-security maximum max-addr	This command sets the maximum number of secure MAC addresses for the interface. The range is 1 to 128; the default is 128.
<pre>switchport port-security violation {shutdown restrict protect}</pre>	This command sets the security violation mode for the interface.

Layer 2 Security Commands

Job Aids

There are no job aids for this activity.

Task 1: Mitigate a CAM Table Overflow Attack

You can mitigate a CAM table overflow attack using the port-security command.

Activity Procedure

Complete these steps:

Step 1	Enter interface configuration mode.				
	<pre>switch(config)# interface FastEthernet 0/2</pre>				
Step 2	Set the port mode to access.				
	<pre>switch(config-if)# switchport mode access</pre>				
Step 3	Enable port security on the selected interface.				
	<pre>switch(config-if)# switchport port-security</pre>				
Step 4	Configure the maximum number of MAC addresses to one.				
	<pre>switch(config-if)# switchport port-security maximum 1</pre>				

Note	The default is one.
Step 5	Configure the action to take if there is a violation. switch(config-if)# switchport port-security violation shutdown
Note	The default is to shut down.
Step 6	Configure the MAC address for the port. switch(config-if)# switchport port-security mac-address xxxx.xxxx.
Step 7	Or switch(config-if)# switchport port-security mac-address sticky Plug a laptop into Fa0/2 and try to ping the gateway.
	C:>ping 10.0.P.2

Activity Verification

You have completed this task when you attain these results:

The output of the show port-security <int> command when port security is configured using the sticky option will look like this:

switch# show port-security interface FastEthernet 0/2

Port Security	:	Enabled
Port Status	:	Secure-up
Violation Mode	:	Shutdown
Aging Time	:	0 mins
Aging Type	:	Absolute
SecureStatic Address Aging	:	Disabled
Maximum MAC Addresses	:	1
Total MAC Addresses	:	1
Configured MAC Addresses	:	0
Sticky MAC Addresses	:	1
Last Source Address	:	0016.4111.0d49
Security Violation Count	:	0

The output of the show port-security command when port security is configured using the sticky option will look like this:

	switch# show	port-security			
	Secure Port	MaxSecureAddr	CurrentAddr	SecurityViolation	Security Action
(Count)		(Count)	(Count)		
	Fa0/2	1	1	0	Shutdown
	Total Addres	ses in System (excluding one	mac per port)	: 0

4 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

© 2007 Cisco Systems, Inc.

Max Addresses limit in System (excluding one mac per port) : 1024

■ The output of the **show port-security address** command should resemble the following:

```
switch# show port-security address
```

Secure Mac Address Table

Vlan	Mac Address	Туре	Ports	Remaining Age			
				(mins)			
11	0016.4111.0d49	SecureSticky	Fa0/2	-			
Total A	ddresses in System	(excluding one mac	per port)) : 0			
Max Add	Max Addresses limit in System (excluding one mac per port) : 1024						
■ The c	The output of the show run command should show the following under interface Fa0/2:						
!							
interfa	ce FastEthernet0/2						
switch	port access vlan 1	1					
switch	port mode access						
switch	port port-security						
switch	port port-security	mac-address sticky					
switch	port port-security	mac-address sticky	0016.4113	1.0d49			
!							

Task 2: Mitigate a MAC Spoofing attack

You can show that, using the **port-security** command, you may also mitigate a MAC spoofing attack.

Activity Procedure

Complete these steps:

Step 1	Enter interface configuration mode.
	<pre>switch(config)# interface FastEthernet 0/2</pre>
Step 2	Configure the maximum number of MAC addresses.
	<pre>switch(config-if)# switchport port-security maximum 1</pre>
Step 3	Configure the action to take if there is a violation.
	<pre>switch(config-if)# switchport port-security violation shutdown</pre>
Step 4	Set the length of time that an entry will stay in the ARP cache to 60 seconds.
	<pre>switch(config-if)# arp timeout 60</pre>

Activity Verification

You have completed this task when you attain these results:

© 2007 Cisco Systems, Inc.

- You plug another PC into the port without the correct MAC address, and the port is shut down.
- The output from the **show port-security** command should be similar to this:

switch# show	port-security				
Secure Port	MaxSecureAddr	CurrentAdd	r SecurityVi	olation Se	ecurity Action
	(Count)	(Count)	(Cou	int)	
Fa0/2	1		1	0	Shutdown
Total Addres	sses in System (excluding of	ne mac per po	ort) : ()
Max Add	resses limit in	System (exc	cluding one m	ac per port	2) : 1024
■ The c	output from the show	port-security	nterface comma	nd should be si	imilar to this:
switch#	show port-secu	rity interfa	ace fa0/2		
Port Se	curity	: Enabl	ed		
Port St	atus	: Secur	e-shutdown		
Violati	on Mode	: Shuto	lown		
Aging T	ime	: O mir	IS		
Aging T	уре	: Absol	ute		
SecureS	tatic Address A	ging : Disak	oled		
Maximum	MAC Addresses	: 1			
Total M	AC Addresses	: 1			
Configu	red MAC Address	es : 1			
Sticky	MAC Addresses	: 0			
Last So	urce Address	: 0050	daeb.43d4		
Securit	y Violation Cou	nt : 1			

• The output from the **show interface status** command should be similar to this:

switch# show interface status

Port	Name	Status	Vlan	Duplex	Speed	Туре
Fa0/1		notconnect	1	auto	auto	10/100BaseTX
Fa0/2		err-disabled	11	a-full	a-100	10/100BaseTX
Fa0/3		notconnect	1	auto	auto	10/100BaseTX
Fa0/4		notconnect	1	auto	auto	10/100BaseTX
Fa0/5		notconnect	1	auto	auto	10/100BaseTX

6 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Task 3: Mitigate a VLAN Hopping attack

You can mitigate a VLAN hopping attack by using the switchport mode command.

Activity Procedure

Complete these steps:

Step 1	Enter interface configuration mode.				
	<pre>switch(config)# interface FastEthernet 0/2</pre>				
Step 2	Limit the port to access only.				
	<pre>switch(config-if)# switchport mode access</pre>				

Activity Verification

You have completed this task when you attain these results:

• The output from the **show running-config** command shows the following:

```
!
interface FastEthernet0/2
switchport mode access
```

Task 4: Mitigate STP Manipulation

You can mitigate an STP manipulation attack using the **root guard** and **bpdu guard** commands.

Activity Procedure

Complete these steps:

Step 1	Enter global configuration mode.
	switch# configure terminal
Step 2	Enable BPDU guard by default on all PortFast ports on the switch.
	<pre>switch(config)# spanning-tree portfast bpduguard default</pre>
Step 3	Enter interface configuration mode.
	<pre>switch(config)# interface FastEthernet 0/3</pre>
Step 4	Enable the root guard feature on the interface.
	<pre>switch(config-if)# spanning-tree guard root</pre>

Activity Verification

You have completed this task when you attain these results:

• The output of the **show spanning-tree** command should be similar to this:

witch# show spanning-tree summary totals

Switch is in pvst mode

Root bridge for: VLAN0011

^{© 2007} Cisco Systems, Inc.

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

EtherChannel misconfig guard	is	enabled				
Extended system ID	is	enabled				
Portfast Default	is	disabled				
PortFast BPDU Guard Default	is	enabled				
Portfast BPDU Filter Default	is	disabled				
Loopguard Default	is	disabled				
UplinkFast	is	disabled				
BackboneFast	is	disabled				
Pathcost method used	is	short				
Name Block	ing	Listening	Learning	Forwarding	STP	Active

0

0

Task 5: Mitigate a PVLAN Attack

You can use ACLs on a router to mitigate PVLAN attacks.

Note You are using a router or other Layer 3 device to mitigate the PVLAN attack.

0

Activity Procedure

1 vlan

Complete these steps:

Step 1	Enter global configuration mode.	
	router# configure terminal	
Step 2	Enter interface configuration mode.	
	<pre>router(config)# ip access-list extended pvlan-attack</pre>	
Step 3	Configure access control elements and exit.	
	router(config-ext-nacl)# deny ip 172.30.1.0 0.0.0.255 172.30.1.0 0.0.0.255	
	router(config-ext-nacl)# permit ip any any	
	router(config-ext-nacl)# exit	
Step 4	Enter interface configuration mode.	
	<pre>router(config)# interface FastEthernet 0/0</pre>	
Step 5	Apply the ACL to the interface.	
	<pre>router(config-if)# ip access-group pvlan-attack in</pre>	

2

2

Activity Verification

You have completed this task when you attain these results:

- You can connect two computers on an isolated port of the same subnet (172.30.P.0) that you want to protect.
- You try to ping from one to the other.
- Your attempts should be unsuccessful.

^{© 2007} Cisco Systems, Inc.

Lab 1-2: Configure DHCP Snooping

Complete this lab activity to practice what you learned in the related module.

Activity Objective

In this activity, you will configure DHCP snooping on a Cisco Catalyst switch. After completing this activity, you will be able to meet these objectives:

- Enable DHCP snooping globally
- Apply DHCP snooping to a VLAN
- Configure ports as trusted or untrusted
- Verify DHCP snooping configuration

Visual Objective

The figure illustrates what you will accomplish in this activity.

Required Resources

These are the resources and equipment that are required to complete this activity:

- Student laptops
- Pod switches
- Pod routers

10 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Command List

The table describes the commands that are used in this activity.

DHCP Snooping Commands

Command	Description
ip dhcp snooping	Globally enables DHCP snooping
ip dhcp snooping vlan <vlan-id></vlan-id>	Applies DHCP snooping to an active VLAN
ip dhcp snooping trust	Configures a switch port as trusted
show ip dhcp snooping	Displays information on DHCP snooping

Job Aids

There are no job aids for this activity.

Task 1: Globally Enable DHCP Snooping

In this task, you will globally enable DHCP snooping on the switch.

Activity Procedure

Complete these steps:

Step 1	Enter global configuration mode.	
	router# configure terminal	
Step 2	Globally enable DHCP snooping.	
	<pre>switch(config)# ip dhcp snooping</pre>	

Activity Verification

You have completed this task when you attain these results:

• The output of the **show ip dhcp snooping command** should resemble the following:

switch# show ip dhcp snooping			
Switch DHCP snooping is enabled			
DHCP snooping is configured on following VLANs:			
none			
Insertion of option 82 is enabled			
Interface	Trusted	Rate limit	(pps)

© 2007 Cisco Systems, Inc.

Task 2: Apply DHCP Snooping to an Active VLAN

In this task, you will apply DHCP snooping to an active VLAN.

Activity Procedure

Complete this step:

Step 1 Enable DHCP snooping on a VLAN or range of VLANs.
switch(config)# ip dhcp snooping vlan 11

Activity Verification

You have completed this task when you attain these results:

• The output of the **show ip dhcp snooping command** should resemble the following:.

switch# show ip dhcp snooping

Switch DHCP snooping is enabled DHCP snooping is configured on following VLANs: 11 Insertion of option 82 is enabled Interface Trusted Rate limit (pps)

Task 3: Configure Trusted Ports

In this task, you will configure a port as trusted if it has a DHCP server connected.

Activity Procedure

Complete these steps:

Step 1	Enter interface configuration mode on the interface facing the DHCP server.
	<pre>switch(config)# interface FastEthernet 0/2</pre>
Step 2	Configure the port as trusted.
	<pre>switch(config-if)# ip dhcp snooping trust</pre>

Activity Verification

You have completed this task when you attain these results:

• The output of the **show ip dhcp snooping** command should resemble this:

```
switch# show ip dhcp snooping
Switch DHCP snooping is enabled
DHCP snooping is configured on following VLANs:
11
Insertion of option 82 is enabled
Interface Trusted Rate limit (pps)
------
FastEthernet0/4 yes unlimited
```

12 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Task 4: Verify DHCP Snooping

In this task, you will verify the IP DHCP snooping configuration.

Activity Procedure

Complete these steps:

Step 1	Display the DHCP snooping configuration.	
	switch# show ip dhcp snooping	
Step 2	Display only the dynamically configured bindings in the DHCP snooping bindi database.	
	switch# show ip dhcp snooping binding	

Activity Verification

You have completed this task when you attain these results:

• The output of the **show ip dhcp snooping** command should resemble this:

switch# show ip dhcp snooping	3		
Switch DHCP snooping is enabled			
DHCP snooping is configured on following VLANs:			
11			
Insertion of option 82 is enabled			
Interface	Trusted	Rate limit (pps)	
FastEthernet0/4	yes	unlimited	

© 2007 Cisco Systems, Inc.

Lab 2-1: Configure Cisco Secure ACS as a AAA Server

Complete this lab activity to practice what you learned in the related module.

Activity Objective

In this activity, you will configure a Cisco Secure ACS for Windows to provide AAA services. After completing this activity, you will be able to meet these objectives:

- Install Cisco Secure ACS for Windows
- Add a Cisco IOS NAD as a AAA client
- Configure administrator interface settings
- Install a Cisco Secure ACS certificate
- Configure logging and reports
- Configure shared profile components
- Create a NAP for 802.1x authentication
- Define an authentication policy for a NAP
- Define an authorization policy for a NAP

Visual Objective

The figure illustrates what you will accomplish in this activity.

Required Resources

These are the resources and equipment that are required to complete this activity:

- Intel-based server (laptop or desktop)
- Microsoft Windows 2000 Server with SP4
- Cisco Secure ACS 4.0
- Student laptops
- Pod devices

Command List

The table describes the commands that are used in this activity.

Cisco Secure ACS Commands

Command	Description
N/A	_

Job Aids

These job aids are available to help you complete the lab activity.

• The job aids shown in some of the tasks are available to help you complete the lab activity.

Task 1: Install Cisco Secure ACS for Windows

In this task, you will install Cisco Secure ACS 4.0 on a Microsoft Windows server machine.

Activity Procedure

Complete these steps:

Step 1Open the Cisco Secure ACS folder.	
---	--

- Step 2 Double-click Setup.exe. The Cisco Secure ACS 4.0 Setup dialog box opens.
- **Step 3** Click **Accept** to acknowledge the terms of the Cisco Secure ACS license agreement. The Welcome window appears.
- Step 4 Click Next in the Welcome window. The Before You Begin dialog box opens.
- **Step 5** Check all items listed in the Before You Begin window and click **Next**. The Choose Destination Location dialog box opens.
 - End-user clients can successfully connect to AAA clients.
 - This Microsoft Windows server can ping the AAA clients.
 - Any Cisco IOS AAA clients are running Cisco IOS Release 11.1 or later.
 - Microsoft Internet Explorer 6 SP1 or Netscape 8.0 is installed.
- **Step 6** Click **Next** to accept the default settings in the Choose Destination Location window. The Authentication Database Configuration dialog box opens.

Step 7	Choose Check the Cisco Secure ACS database Only and click Next. The files are installed on the server. The Advanced Options dialog box opens.
Step 8	Leave all of the Advanced Options selections unchecked at this time and click Next . The Active Service Monitoring dialog box opens.
Step 9	Accept the Active Service Monitoring defaults by clicking Next. The Cisco Secure ACS Service Initiation dialog box opens.
Step 10	Enter cisco123 as the Cisco database encryption password. Click Next.
Step 11	Accept the default settings within the Cisco Secure ACS Service Initiation window by clicking Next . Setup then starts the Cisco Secure ACS service. The Setup Complete dialog box opens.
Step 12	Click Finish.

Activity Verification

You have completed this task when you attain these results:

On the Microsoft Windows server, choose Start > Administrative Tools > Services. Check that all seven Cisco Secure ACS services are "Started."

Task 2: Add a Cisco IOS NAD as a AAA Client

In this task, you will configure the Cisco IOS NAD as a AAA client in the Cisco Secure ACS database.

Activity Procedure

Complete these steps:

- **Step 1** Click the **Network Configuration** button in the navigation bar.
- Step 2 In the AAA Clients box, click Add Entry. The Add AAA Client window opens.
- **Step 3** Enter the hostname of your switch as **SwP** (where P = your pod number) in the AAA Client Hostname field.
- **Step 4** Enter an IP address of **10.0.P.3** (where P = your pod number) in the AAA Client IP Address field. This is the IP address of the switch (NAD) interface that will forward RADIUS packets to the Cisco Secure ACS.
- **Step 5** Enter a shared RADIUS key of **radiuskey** in the Key field.
- **Step 6** Choose **RADIUS (IETF)** from the Authenticate Using list.
- Step 7 Click Submit + Apply.

Activity Verification

You have completed this task when you attain these results:

• You can view the new AAA client in the AAA Clients box.

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Task 3: Configure Administrator Interface Settings

In this task, you will configure the Cisco Secure ACS administrator interface.

Activity Procedure

Complete these steps:

- **Step 1** Click the **Interface Configuration** button in the navigation bar. The Interface Configuration window opens.
- Step 2 Choose Advanced Options. The Advanced Options window opens.
- **Step 3** Enable these advanced options by checking the check boxes in the Advanced Options list (uncheck any other items that are checked, for this lab only):
 - Group-Level Shared Network Access Restrictions
 - Group-Level Network Access Restrictions
 - Group-Level Downloadable ACLs
 - Network Access Filtering
- Step 4 Click Submit.
- Step 5 Choose RADIUS (IETF). The RADIUS (IETF) options window opens.
- **Step 6** Check these items (uncheck any other items that are checked, for this lab only):
 - [027] Session-Timeout
 - **[029]** Termination-Action
 - [064] Tunnel-Type
 - [065] Tunnel-Medium-Type
 - [081] Tunnel-Private-Group-ID

Step 7 Click Submit.

Activity Verification

You have completed this task when you attain these results:

Review your settings by choosing Interface Configuration > Advanced Options.

Task 4: Add an Administrator

In this task, you will configure the Cisco Secure ACS administrator account.

Activity Procedure

Complete these steps:

- **Step 1** Click the **Administration Control** button in the navigation bar. The Administration Control window opens.
- Step 2 Click the Add Administrator button. The Add Administrator window opens.
- **Step 3** Enter the administrator name **admin** in the Administrator Name field.

^{© 2007} Cisco Systems, Inc.

- **Step 4** Enter the password **cisco123** in the Password field.
- **Step 5** Re-enter the password **cisco123** in the Confirm Password field.
- **Step 6** Scroll down to the Administrator Privileges box and click **Grant All**.
- Step 7 Click Submit.

Activity Verification

You have completed this task when you attain these results:

• Review your settings under Administration Control.

Task 5: Install a Cisco Secure ACS Certificate

In this task, you will install the required Cisco Secure ACS certificate.

Activity Procedure

Complete these steps:

Step 1	Click the System Configuration button in the navigation bar. The System Configuration window opens.
Step 2	Click ACS Certificate Setup . The Cisco Secure ACS Certificate Setup window opens.
Step 3	Choose Install Cisco Secure ACS Certificate. The Install Cisco Secure ACS Certificate window opens.
Step 4	Choose Read Certificate from File.
Step 5	Enter the full path to the certificate file as c:\certs\server.cer in the Certificate File field.
Step 6	Enter the full path to the private key file as c:\certs\server.pvk in the Private Key File field.
Step 7	Enter the private key password 1111 in the Private Key Password field.
Step 8	Click Submit . The Installed Certificate Information window opens, displaying "OK" on the Validity line. Do not restart the Cisco Secure ACS system as prompted.
Step 9	Click the System Configuration button in the navigation bar. The System Configuration window opens.
Step 10	Click Cisco Secure ACS Certificate Setup . The Cisco Secure ACS Certificate Setup window opens.
Step 11	Choose Cisco Secure ACS Certification Authority Setup . The Cisco Secure ACS Certification Authority Setup window opens.
Step 12	Enter the full path to the CA certificate file as c:\certs\ca.cer in the CA Certificate File field. A configuration change message is displayed. Do not restart Cisco Secure ACS as prompted.
Step 13	Click Submit.

18 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

- **Step 14** Click the **System Configuration** button in the navigation bar. The System Configuration window opens.
- Step 15 Click Cisco Secure ACS Certificate Setup. The Cisco Secure ACS Certificate Setup window opens.
- Step 16 Click Edit Certificate Trust List. The Edit Certificate Trust List window opens.
- **Step 17** Scroll down until you locate the Stress CA.
- Step 18 Check the Stress check box.
- Step 19 Click Submit.
- **Step 20** Choose **System Configuration > Service Control.**
- **Step 21** Click **Restart**. A progress bar in the lower-right corner of the window indicates the status of the restart. When the browser refreshes (blinks), this task is complete.

Activity Verification

You have completed this task when you attain these results:

By choosing System Configuration > Cisco Secure ACS Certificate Setup > Install Cisco Secure ACS Certificate, you can view your certificate information.

Task 6: Configure Logging and Reports

In this task, you will configure Cisco Secure ACS service logging.

Job Aid

Use the values shown in this table to complete this task.

CSV Failed Attempts	CSV Passed Authentications
Log to CSV Failed Attempts Report	Log to CSV Passed Authentication Report
Logged Attribute	Logged Attribute
 Message-Type User-Name Group Name Caller-ID Authen-Failure-Code Author-Failure-Code Author-Data NAS-Port NAS-Port NAS-IP-Address AAA Server Filter Information Access Device Network Access Profile Name Shared RAC Downloadable ACL Reason 	 Message-Type User-Name Group Name Caller-ID NAS-Port NAS-IP-Address AAA Server Filter Information Access Device Network Access Profile Name Shared RAC Downloadable ACL Reason

Activity Procedure

Complete these steps:

- **Step 1** Click the **System Configuration** button in the navigation bar. The System Configuration window opens.
- Step 2 Click Service Control.
- **Step 3** Scroll down to the Services Log File Configuration section and make these changes:
 - Set the Level of Detail option to **Full**.
 - Set the Generate New File option to When Size Is Greater Than 2048KB.
- **Step 4** Leave all other parameters at their default settings and click **Restart**. A progress bar in the lower-right corner of the window indicates the status of the restart. When the browser refreshes (blinks), this task is complete.
- **Step 5** Click the **System Configuration** button in the navigation bar. The System Configuration window opens.
- **Step 6** Click Logging. The Logging Configuration window opens.
- **Step 7** Click **CSV Passed Authentications**. The CSV Passed Authentications File Configuration window opens.
- Step 8Locate the Enable Logging area and check the Log to CSV Passed
Authentications Report check box.
- **Step 9** Locate the **Select Columns to Log** area and click the **Right Arrow** button to move the NAC-specific attributes listed in the job aid for this task to the Logged Attributes column.
- Step 10 Click Submit.
- Step 11 Click CSV Failed Attempts.
- **Step 12** Repeat Step 9 for CSV Failed Attempts.
- Step 13 Click Submit. The system returns you to the Logging Configuration window. The CSV Passed Authentications and CSV Failed Attempts logging configuration should now show a check (enabled) in the Use column.

Activity Verification

You have completed this task when you attain these results:

■ Review your settings by choosing **System Configuration > Logging**.

Task 7: Configure Global Authentication

In this task, you will enable EAP for 802.1x authentication and set the various EAP session timeout values.

Note You usually enable all protocols globally so that you can choose a specific protocol from the protocols later on during the NAP configuration process. You can choose to enable one or all protocols here. Whatever you select here, will be available for selection when configuring a NAP.

20 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Use the values shown in this table to complete this task.

EAP Configuration
PEAP
☑ Allow EAP-MSCHAPv2
Allow EAP-GTC
\square Allow Posture Validation
Cisco client initial message: <empty></empty>
PEAP session timeout (minutes): 120
Enable Fast Reconnect:
EAP-FAST
EAP-FAST Configuration (see below)
EAP-TLS
Allow EAP-TLS
Choose one or more of the following options:
Certificate SAN comparison
Certificate CN comparison
Certificate Binary comparison
EAP-TLS Session Timeout (minutes): 120
LEAP
Allow LEAP (For Aironet only)
EAP-MD5
Allow EAP-MD5
AP EAP request timeout (seconds): 20

MS-CHAP Configuration

Allow MS-CHAP Version 1 Authentication
 Allow MS-CHAP Version 2 Authentication

EAP-FAST Settings

EAP-FAST

✓ Allow EAP-FAST	
Active master key TTL:	1 month
Retired master key TTL:	3 month
Tunnel PAC TTL:	1 week
Client Initial Message:	<empty></empty>
Authority ID Info:	cisco
Allow anonymous in-ba	nd PAC provisioning
Allow authenticated in-l	band PAC provisioning
Accept client on auth	enticated provisioning
Require client certific	cate for provisioning
Allow Machine Authent	ication
Machine PAC TTL	1 week
Allow Stateless Session	Resume
Authorization PAC TTI	1 hour

^{© 2007} Cisco Systems, Inc.

Allow inner methods
EAP-GTC
EAP-MSCHAPv2
EAP-TLS
Choose one or more of the following EAP-TLS comparison methods:
Certificate SAN comparison
Certificate CN comparison
Certificate binary comparison
EAP-TLS session timeout (minutes):
Actual EAP-FAST server status: Master
lote You will not be authenticating to an external Active Directory server, so machine

It is recommended that you enable all protocols globally. You will be able to configure specific protocols for specific NAPs later.

Activity Procedure

Complete these steps:

Step 1	Click the System Configuration button in the navigation bar. The System Configuration window opens.
Step 2	Choose Global Authentication Setup . The Global Authentication Setup window opens.
Step 3	Locate the EAP configuration sections.
Step 4	Configure the settings in accordance with the job aid for this task.
Step 5	Set the EAP session timeout values in accordance with the job aid.
Step 6	Click Submit + Restart.

Activity Verification

You have completed this task when you attain these results:

authentication is not enabled.

■ Review your settings by choosing **System Configuration > Global Authentication Setup**.

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Task 8: Create Groups and Users

In this task, you will configure Cisco Secure ACS groups and users to support 802.1x authentication.

Job Aid

Use the values shown in this table to complete this task.

Group	Name	Description	
1	Corporate	Corporate users	
2	Engineering	Engineering users	
3	Guests	Guest users	

Create Groups

This procedure describes how to create the groups for use with 802.1x.

Activity Procedure

Complete these steps:

- **Step 1** Click the **Group Setup** button in the navigation bar.
- **Step 2** Choose group number **1** from the Group list.
- **Step 3** Click **Rename Group**. Enter the group name **Corporate** in the Group field to replace the existing name.
- Step 4 Click Submit.
- **Step 5** Repeat Step 2 through Step 4 to create the Engineering and Guest groups.

Create Users

This procedure describes how to create the usernames for use with 802.1x.

Job Aid

Use the values shown in this table to complete this task.

Username	Group
user1	Corporate
eng1	Engineering
guest1	Guest

Activity Procedure

Complete these steps:

- Step 1 Click the User Setup button in the navigation bar. The User Setup window opens.
- Step 2 Enter the new username user1 in the User field.
- Step 3 Click Add/Edit. The User: User1 (New User) window opens.

© 2007 Cisco Systems, Inc.

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

- **Step 4** Use the scroll bar to locate the User Setup section.
- **Step 5** Enter the password **cisco123** in the Password field.
- **Step 6** Re-enter the password **cisco123** in the Confirm Password field.
- **Step 7** Use the scroll bar to locate the Group to Which the User Is Assigned section.
- **Step 8** Choose the **Corporate** group from the list.
- Step 9 Click Submit.
- **Step 10** Repeat Step 1 through Step 9 for the rest of the table.

Activity Verification

You have completed this task when you attain these results:

• Review your users and groups under User Setup and Group Setup.

Task 9: (Optional) Create a NAF

Sometimes, it is useful to filter devices by location or some other criteria. In this task, you will create a NAP to group your devices into a location.

Activity Procedure

Complete these steps:

- **Step 1** Click the **Shared Profile Components** button in the navigation bar. The Shared Profile Components window opens.
- Step 2 Choose Network Access Filtering. The Network Access Filtering window opens.
- Step 3 Click Add. The Network Access Filtering edit window opens.
- **Step 4** Enter the name **HQ** in the Name field.
- Step 5 If you enabled NDGs, (Not Assigned) should appear in the Network Device Groups section. Click (Not Assigned). Your AAA client should appear in the Network Devices section.
- **Step 6** Locate the Network Devices section and click the **Right Arrow** button to move your SwP (where P = your pod number) to the Selected Items column.
- Step 7 Click Submit + Restart. The new NAC NAF is listed in the Network Access Filtering Name list.

Activity Verification

You have completed this task when you attain these results:

■ The new HQ NAF is listed in the Network Access Filtering Name list.

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Task 10: Define RADIUS Authorization Components

In this task, you will configure RADIUS attributes that will be downloaded and applied to the switch upon successful network authorizations.

Job Aid

RAC Name	Vendor	Assigned Attributes	Value
Corporate_802.1x_RAC	IETF	Session-Timeout (27)	3600
	IETF	Termination-Action (29)	RADIUS-Request (1)
	IETF	Tunnel-Type (64)	[T1] VLAN (13)
	IETF	Tunnel-Medium-Type (65)	[T1] 802 (6)
	IETF	Tunnel-Private-Group-ID (81)	[T1] corporate
Engineering_802.1x_RAC	IETF	Session-Timeout (27)	3600
	IETF	Termination-Action (29)	RADIUS-Request (1)
	IETF	Tunnel-Type (64)	[T1] VLAN (13)
	IETF	Tunnel-Medium-Type (65)	[T1] 802 (6)
	IETF	Tunnel-Private-Group-ID (81)	[T1] engineering
Guest_802.1x_RAC	IETF	Session-Timeout (27)	3600
	IETF	Termination-Action (29)	RADIUS-Request (1)
	IETF	Tunnel-Type (64)	[T1] VLAN (13)
	IETF	Tunnel-Medium-Type (65)	[T1] 802 (6)
	IETF	Tunnel-Private-Group-ID (81)	[T1] guest

Use the values shown in this table to complete this task.

Activity Procedure

Complete these steps:

- **Step 1** Click the **Shared Profile Components** button in the navigation bar. The Shared Profile Components window opens..
- Step 2 Choose RADIUS Authorization Components. The RAC window opens.
- **Step 3** Click the **Add** button for each new RAC. Each RAC may contain one or more vendor RADIUS attributes, including Cisco IOS/PIX 6.0, IETF, and Ascend.
- **Step 4** Click the **Add** button next to whichever attribute you want to add in the Add New Attribute section. You may add specific attributes for Cisco IOS/PIX 6.0, IETF, and Ascend if you configured the Interface settings correctly as per Task 3.
- **Step 5** Use the table in the job aid for this step to create the appropriate RACs.
- Step 6 Click Submit.
- **Step 7** Restart services by choosing **System Configuration** > **Service Control** > **Restart**.

^{© 2007} Cisco Systems, Inc.

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Activity Verification

You have completed this task when you attain these results:

• The RACs that you created should appear in the RADIUS Authorization Components table.

Task 11: Create a NAP for Layer 2-802.1x Authentication (IBNS)

In this task, you will configure a NAP. There are actually three components to a NAP, two of which are used in this lab. Those two are authentication and authorization. The third, posture validation, is used when implementing Cisco NAC.

Activity Procedure

Complete these steps:

- **Step 1** Click the Network Access Profiles button in the navigation bar. The Network Access Profiles configuration window opens.
- **Step 2** Click Add Template Profile. The Create Profile from Template window appears.
- **Step 3** Enter the name L2-802.1x for this NAP.
- **Step 4** Choose **Microsoft IEEE 802.1x** from the Template drop-down menu.
- **Step 5** Check the **Active** check box.
- Step 6 Click Submit. The prompt reads "The current configuration has been changed. Restart Cisco Secure ACS in 'System Configuration: Service Control' to adopt the new settings."
- Step 7 Check the Deny Access When No Profile Matches check box.
- Step 8 Click Apply and Restart.
- **Step 9** Click your L2-802.1x profile in the Network Access Profiles window. Choose HQ from the Network Access Filter section. You can also leave it as (Any).
- Step 10 Click Submit.
- Step 11 Click Apply and Restart.

Activity Verification

You have completed this task when you attain these results:

 Click the Network Access Profiles button in the navigation bar. The L2-802.1x profile should be listed.

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Task 12: Define an Authentication Policy for a NAP

In this task, you will define an authentication policy for the 802.1x NAP.

Activity Procedure

Complete these steps:

- Step 1 Click the Network Access Profiles button in the navigation bar. The Network Access Profiles configuration window opens.
 Step 2 Click Authentication in your L2-802.1x profile.
 Step 3 Choose Allow MD-5.
- **Step 4** Under Credential Validation Databases, choose **ACS Internal Database** and click the **Right Arrow** button to move it to the Selected Databases column.
- Step 5 Click Apply + Restart.

Activity Verification

You have completed this task when you attain these results:

Review your configuration by choosing Network Access Profiles > L2-802.1x Authentication.

Task 13: Define an Authorization Policy for a NAP

In this task, you will define an authorization policy for the 802.1x NAP.

Job Aid

User Groups	Assessment Result	Shared RAC	Downloadable ACL
Corporate	Any	Corporate_802.1x_RAC	
Engineering	Any	Engineering_802.1x_RAC	
Guest Any		Guest_802.1x_RAC	
If a condition is not defined or there is no matched condition		Guest_802.1x_RAC	

Use the values shown in this table to complete this task.

Activity Procedure

Complete these steps:

- **Step 1** Click the Network Access Profiles button in the navigation bar. The Network Access Profiles configuration window opens.
- **Step 2** Click **Authorization** in your L2-802.1x profile.
- Step 3 Click Add Rule and use the table to configure your authorization rules.
- Step 4Uncheck the Include RADIUS Attributes from Group Records and Include
RADIUS Attributes from User Records check boxes.

Step 5 Click Submit.

Step 6 Click Apply and Restart.

Activity Verification

You have completed this task when you attain these results:

■ Review your settings by choosing **Network Access Profiles > L2-802.1x Authorization**.

Task 14: Configure the Unknown User Policy

In this task, you will create an unknown user policy.

Activity Procedure

Complete these steps:

- **Step 1** Click the **External User Databases** button in the navigation bar. The External User Databases window opens.
- Step 2 Choose Unknown User Policy. The Configure Unknown User Policy window opens.
- Step 3 Select the Fail the Attempt radio button.
- Step 4 Click Submit.
- **Step 5** Click the **System Configuration** button in the navigation bar.
- Step 6 Choose Service Control.
- Step 7 Click Restart.

Activity Verification

You have completed this task when you attain these results:

■ Review your settings by choosing **External User Databases > Unknown User Policy**.

Lab 2-2: Configure 802.1x Port-Based Authentication

Complete this lab activity to practice what you learned in the related module.

Activity Objective

In this activity, you will configure 802.1x port-based authentication on a Cisco Catalyst 2950 Series Switch. After completing this activity, you will be able to meet these objectives:

- Configure clients for dynamic addressing
- Create VLANs for segmentation according to a security policy
- Create DHCP pools for clients
- Configure the AAA service on a Cisco Catalyst switch
- Configure a port for 802.1x authentication with VLAN assignment
- Enable periodic reauthentication
- Configure 802.1x on a port with a guest VLAN
- Configure 802.1x on a port with a restricted VLAN
- Manually reauthenticate a client connected to a port
- Display 802.1x statistics and status

Visual Objective

The figure illustrates what you will accomplish in this activity.

Required Resources

These are the resources and equipment that are required to complete this activity:

- Student laptops for Cisco Secure ACS
- Cisco Secure ACS 4.0.1
- Client laptops with 802.1x supplicant
- Pod switch

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Command List

The table describes the commands that are used in this activity.

Switch IBNS Commands

Command	Description	
aaa authentication dot1x default group radius	Creates an IEEE 802.1x authentication method list	
aaa authorization network default group radius	Configures the switch for user RADIUS authorization for all network-related service requests, such as VLAN assignment	
aaa accounting dot1x default start-stop group radius	Enables AAA accounting and creates method lists defining specific accounting methods on a per-line or per-interface basis for IEEE 802.1x sessions; sends a start accounting notice at the beginning of a process and a stop accounting notice at the end of a process	
radius-server host ip-address	Specifies the IP address of a RADIUS server host	
radius-server key key	Specifies the authentication and encryption key for all RADIUS communications between the router and the RADIUS daemon	
ip radius source-interface <i>interface</i>	Forces RADIUS to use the IP address of a specified interface for all outgoing RADIUS packets	
ip dhcp pool name	Configures a DHCP address pool on a DHCP server and enters DHCP pool configuration mode	
network address netmask	Configures the subnet number and subnet mask for a DHCP address pool on a Cisco IOS DHCP server	
default-router <i>ip_address</i>	Defines a default router for DHCP clients	
<pre>ip dhcp excluded-address low- address [high-address]</pre>	Specifies the IP addresses that a Cisco IOS DHCP server should not assign to DHCP clients	
dot1x system-auth-control	Enables IEEE 802.1x authentication globally on the switch	
dotlx guest-vlan supplicant	Allows clients to be put into a guest VLAN if they have an 802.1x supplicant but still fail authentication	
dot1x port-control auto	Enables manual control of the authorization state of the port and causes the port to change to the authorized or unauthorized state based on the IEEE 802.1x authentication exchange between the switch and the client	
dot1x timeout reauth-period server	Sets the number of seconds between reauthentication attempts	
	The server keyword sets the number of seconds as the value of the session-timeout RADIUS attribute (attribute 27).	
dot1x reauthentication	Enables periodic reauthentication of the client	
dot1x guest-vlan vlan-id	Specifies an active VLAN as an IEEE 802.1x guest VLAN	
dot1x host-mode multi-host	Allow multiple hosts (clients) on an IEEE 802.1x-authorized port	
dot1x auth-fail vlan vlan-id	Specifies an active VLAN as an IEEE 802.1x restricted VLAN	
<pre>show dot1x [all interface]</pre>	Shows details for an identity profile	
show interface status	Displays information about the status of an interface	

© 2007 Cisco Systems, Inc.

Job Aids

These job aids are available to help you complete the lab activity.

■ Job aids may be included in the tasks.

Task 1: Configure Client Addressing

In this task, you will configure a client for dynamic addressing. Make sure that the client is plugged into interface Fa0/1 on the pod switch.

Activity Procedure

Complete these steps on the client:

- **Step 1** On the PC, under the Authentication tab of Local Area Network Connection Properties, check the following:
 - Ensure that the Enable Network Access Control Using IEEE 802.1x check box is checked.
 - Ensure that the EAP type is MD5-Challenge.
- Step 2 Right-click My Network Places.
- Step 3 Click Properties. The Network Connections window opens.
- Step 4 Right-click Local Area Connection.
- Step 5 Click Properties. The Local Area Connection Properties window opens.
- **Step 6** In the This Connection Uses the Following Items window, choose **Internet Protocol (TCP/IP)**.
- Step 7 Click Properties.
- Step 8 Click the Obtain an IP Address Automatically radio button and click OK.
- Step 9 Click OK.

Activity Verification

You have completed this task when you attain these results:

• **Obtain an IP Address Automatically** is checked when you review your TCP/IP properties.

Task 2: Create VLANs on the Switch

In this task, you will create VLANs to assign to different clients according to their identity.

Job Aid

Use the values shown in this table to complete this task.

VLAN	Name	
20	guest	
30	corporate	
40	engineering	
50	restricted	
90	unauthenticated	

Activity Procedure

Complete these steps:

Step 1	Create the VLAN named "guest" using the vlan command
	<pre>switch(config)# vlan 20</pre>
	<pre>switch(config-VLAN)# name guest</pre>
	<pre>switch(config-VLAN) # exit</pre>
Step 2	Repeat Step 1 and Step 2 for the rest of the VLANs.

Activity Verification

You have completed this task when you attain these results:

■ The output of the **show vlan** command should resemble this:

switch# show vlan

VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4 Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Gi0/1 Gi0/2
20	guest	active	
30	corporate	active	
40	engineering	active	
50	restricted	active	
90	unauthenticated	active	

© 2007 Cisco Systems, Inc.

101	network_devices	active	Fa0/24
1002	fddi-default	act/unsup	
1003	token-ring-default	act/unsup	
1004	fddinet-default	act/unsup	
1005	trnet-default	act/unsup	

Task 3: (Optional) Create DHCP Pools on the Switch or Router

In this task, you will create and configure DHCP pools for addressing clients after they are authenticated or put into the "guest" or "restricted" VLANs.

Job Aid

Use the values shown in this table to complete this task.

Name	Network	Default Router	Excluded Address
guest	10.0.20.0/24	10.0.20.2	10.0.20.1 to 10.0.20.5
corporate	10.0.30.0/24	10.030.2	10.0.30.2 to 10.030.5
engineering	10.0.40.0/24	10.0.40.2	10.0.40.2 to 10.0.40.5
restricted	10.0.50.0/24	10.0.50.2	10.0.50.2 to 10.0.50.5
unauthenticated	10.0.90.0/24	10.0.90.2	10.0.90.2 to 10.0.90.5

Activity Procedure

Complete these steps:

Step 1	Enter global configuration mode.	
	switch# configure terminal	
Step 2	Create a DHCP pool for "guest" clients.	
	<pre>switch(config) # ip dhcp pool guest</pre>	
Step 3	Define the subnet for this pool.	
	switch(dhcp-config)# network 10.0.20.0 255.255.255.0	
Step 4	Define the default gateway for DHCP clients on this subnet.	
	<pre>switch(dhcp-config)# default-router 10.0.20.2</pre>	
Step 5	Return to global configuration mode.	
	<pre>switch(dhcp-config)# exit</pre>	
Step 6	Exclude the router interface address from the DHCP pools.	
	<pre>switch(config)# ip dhcp excluded-address 10.0.20.1 10.0.20.5</pre>	
Step 7	Repeat Step 2 through Step 6 for the rest of the DHCP pools.	

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.
Activity Verification

You have completed this task when you attain these results:

```
The output of the show running-config command should resemble the following:
switch# show running-config
T
ip dhcp excluded-address 10.0.20.2
ip dhcp excluded-address 10.0.30.2
ip dhcp excluded-address 10.0.40.2
ip dhcp excluded-address 10.0.90.2
L
ip dhcp pool guest
   network 10.0.20.0 255.255.255.0
   default-router 10.0.20.2
ļ
ip dhcp pool corporate
   network 10.0.30.0 255.255.255.0
   default-router 10.0..30.2
!
ip dhcp pool engineering
   network 10.0.40.0 255.255.255.0
   default-router 10.0.40.2
L
ip dhcp pool restricted
   network 10.0.50.0 255.255.255.0
   default-router 10.0.50.2
!
ip dhcp pool unauthenticated
   network 10.0.90.0 255.255.255.0
   default-router 10.0.90.2
!
```

© 2007 Cisco Systems, Inc.

Task 4: Configure the AAA Service

In this task, you will configure the switch for 802.1x authentication and configure the switch-to-RADIUS-server communications.

Activity Procedure

Complete these steps:

Step 1	Enter global configuration mode.
	switch# configure terminal
Step 2	Create a local username and password.
	<pre>switch(config)# username cisco password 0 cisco</pre>
Step 3	Enable AAA.
	<pre>switch(config)# aaa new-model</pre>
Step 4	Create an IEEE 802.1x authentication method list.
	<pre>switch(config)# aaa authentication dot1x default group radius</pre>

To create a default list that is used when a named list is *not* specified in the **authentication** command, use the **default** keyword followed by the method that is to be used in default situations. The default method list is automatically applied to all ports.

You will enter the **group radius** keyword to use the list of all RADIUS servers for authentication.

Note	Though other keywords are visible in the command-line help string, only the default and group radius keywords are supported.
Step 5	Enable IEEE 802.1x authentication globally on the switch.
	<pre>switch(config)# dot1x system-auth-control</pre>
Step 6	Configure the switch for user RADIUS authorization for all network-related service requests.
	<pre>switch(config)# aaa authorization network default group radius</pre>
Note	To allow VLAN assignment, you must enable AAA authorization to configure the switch for all network-related service requests.
Step 7	Specify the IP address of the RADIUS server.
	<pre>switch(config)# radius-server host 10.0.P.12</pre>
Step 8	Specify the authentication and encryption key.
	<pre>switch(config)# radius-server key radiuskey</pre>

36 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Note Using the previous example, you are specifying RADIUS servers separately that use the same key (**radiuskey**). You can also list RADIUS servers separately with their own specific keys by using the **radius-server host** {*hostname* | *ip-address*} **auth-port** *port-number* **key** *string* command.

Step 9 Assign the device VLAN interface as the RADIUS source interface. switch(config) # ip radius source-interface vlan 30P

Activity Verification

You have completed this task when you attain these results:

• Review your configuration using the **show running-config** command.

```
switch# show running-config
!
aaa new-model
aaa authentication dot1x default group radius
aaa authorization network default group radius
!
dot1x system-auth-control
!
ip radius source-interface Vlan101
radius-server host 10.0.1.12 auth-port 1812 acct-port 1813
radius-server retransmit 3
radius-server key radiuskey
!
```

Task 5: Configure Port for 802.1x Authentication with VLAN Assignment and Reauthentication

In this task, you will configure a port for 802.1x authentication with VLAN assignment.

Activity Procedure

Complete these steps:

Step 1	Enter global configuration mode.
	switch# configure terminal
Step 2	Enter interface configuration mode.
	<pre>switch(config)# interface FastEthernet 0/1</pre>
Step 3	Set the port to access mode only.
	<pre>switch(config-if)# switchport mode access</pre>
Step 4	Set the port to the initial (unauthenticated) VLAN.
	<pre>switch(config-if)# switchport access vlan 90</pre>
Step 5	Enable IEEE 802.1x authentication on the interface.
	<pre>switch(config-if)# dot1x port-control auto</pre>
Step 6	Enable periodic reauthentication of the client.
	<pre>switch(config-if)# dot1x reauthentication</pre>
Step 7	Set the number of seconds based on the value of the Session-Timeout RADIUS attribute (attribute 27) and Termination-Action RADIUS attribute (attribute 29).
	<pre>switch(config-if)# dot1x timeout reauth-period server</pre>
Step 8	Specify an active VLAN as an IEEE 802.1x guest VLAN.
	<pre>switch(config-if)# dot1x guest-vlan 20</pre>
Step 9	Specify an active VLAN as an IEEE 802.1x restricted VLAN.
	<pre>switch(config-if)# dot1x auth-fail vlan 50</pre>
Step 10	(Optional) Specify a number of authentication attempts to allow before a port moves to the restricted VLAN.
	<pre>switch(config-if)# dot1x auth-fail max-attempts 2</pre>
Note	The range is 1 to 3, and the default is 3.

Step 11 Return to privileged EXEC mode.
switch(config-if)# end

38 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Activity Verification

You have completed this task when you attain these results:

• Connect a client into the switch that has an 802.1x supplicant.

Local Area Connection	? ×
User name:	
Password:	
Logon domain:	
OK Cano	el

You should get a prompt for your user credentials as follows:

Input a valid username and password. Authentication will then take place and you will be put into the proper VLAN.

Note	If you are using a Microsoft Windows XP client and you do not see this dialog box, check your registry settings under HKEY_LOCAL_MACHINE > Software > Microsoft > EAPOL > Parameters > General > Global > AuthMode=0. Sometimes, the AuthMode default setting is set to 2. AuthMode = 2 will not ever do user authentication. It will only attempt machine authentication. This will produce an "unknown cs user" error in the failed attempts report in
	authentication. This will produce an "unknown cs_user" error in the failed attempts report in Cisco Secure ACS.

The output of the **show dot1x** command should resemble the following:

switch# show dot1x a	11				
Dot1x Info for inter	face FastEthernet0/1				
Supplicant MAC 0050.0	daeb.43d4				
AuthSM State	= AUTHENTICATED				
BendSM State	= IDLE				
Posture	= N/A				
ReAuthPeriod	= 3600 Seconds (From Authentication Server)				
ReAuthAction	= Reauthenticate				
TimeToNextReauth	= 3112 Seconds				
PortStatus	= AUTHORIZED				

© 2007 Cisco Systems, Inc.

MaxReq	=	2
MaxAuthReq	=	2
HostMode	=	Single
Port Control	=	Auto
ControlDirection	=	Both
QuietPeriod	=	60 Seconds
Re-authentication	=	Enabled
ReAuthPeriod	=	From Authentication Server
ServerTimeout	=	30 Seconds
ServerTimeout SuppTimeout	=	30 Seconds 30 Seconds
ServerTimeout SuppTimeout TxPeriod	= =	30 Seconds30 Seconds30 Seconds
ServerTimeout SuppTimeout TxPeriod Guest-Vlan	= = =	 30 Seconds 30 Seconds 30 Seconds 0
ServerTimeout SuppTimeout TxPeriod Guest-Vlan AuthFail-Vlan	= = =	 30 Seconds 30 Seconds 30 Seconds 0

switch# show vlan

VLAN	Name		Status	Ports
1	default		active	Fa0/3, Fa0/5, Fa0/6, Fa0/7
				Fa0/9, Fa0/10, Fa0/11, Fa0/12
/				Fa0/13, Fa0/14, Fa0/15,
Fa0/1	17			
F=0/1	21			Fa0/18, Fa0/19, Fa0/20,
140/2	2 ±			Fa0/22 Gi0/1 Gi0/2
10	cerver		active	Fa0/22, G10/1, G10/2
20	quest		active	140/25
30	corporate		active	Fa0/1
40	engineering		active	14071
50	restricted		active	
90	unauthenticated		active	$F_{a0}/2$, $F_{a0}/8$
101	network devices		active	Fa0/4, $Fa0/16$
1002	fddi-default		act /unsup	
1003	token-ring-default		act /unsup	
1005	faling default			
1004	Iddinet-delault		act/unsup	
swite	ch# show interfaces statu	5		
Port	Name	Status	Vlan	Duplex Speed Type

40 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

© 2007 Cisco Systems, Inc.

Fa0/1 10/100Base	Client eTX	connected	30	a-full	a-100
Fa0/2 10/100Base	Client eTX	notconnect	90	auto	auto

Connect a client into the switch that *does not have* the 802.1x supplicant. You will not get a prompt for credentials. The output of the **show dot1x** command should resemble the following:

switch# show dot1x	
Sysauthcontrol	= Enabled
Supplicant Allowed In	Guest Vlan = Disabled
Dot1x Protocol Version	n = 1
switch# show dot1x all	
Dot1x Info for interfa	ace $FastEthernet0/1$
Supplicant MAC <not ap<="" td=""><td>oplicable></td></not>	oplicable>
AuthSM State	= AUTHENTICATED (GUEST_VLAN)
BendSM State	= IDLE
Posture	= N/A
ReAuthPeriod =	None (From Authentication Server)
ReAuthAction =	= N/A
TimeToNextReauth =	= N/A
PortStatus	= AUTHORIZED (GUEST-VLAN)
MaxReq	= 2
MaxAuthReq	= 2
HostMode	= Single
Port Control	= Auto
ControlDirection	= Both
QuietPeriod	= 60 Seconds
Re-authentication	= Enabled
ReAuthPeriod	= From Authentication Server
ServerTimeout	= 30 Seconds
SuppTimeout	= 30 Seconds
TxPeriod	= 30 Seconds
Guest-Vlan	= 20
AuthFail-Vlan	= 50
AuthFail-Max-Attempts	= 3

router# show ip dhcp binding

Bindings from all pools not associated with VRF:

^{© 2007} Cisco Systems, Inc.

IP address	Client-ID/	Lease expiration	Туре					
	Hardware address/							
	User name							
10.0.20.6	0100.1125.8709.75	Jun 20 2006 02:09 PM	Automatic					
 Connect a c output of the 	 Connect a client that has an 802.1x supplicant but enter a bad username or password. The output of the show dot1x command should resemble the following: 							
switch# show	dot1x all							
Dot1x Info f	Dot1x Info for interface FastEthernet0/1							
Supplicant M	IAC 0011.2587.0975							
AuthSM State	e = AUTHENTIC	CATED (AUTH-FAIL-VLAN)						
BendSM State	e = IDLE							
Posture	= N/A	= N/A						
ReAuthPer	riod = None (From	Authentication Server)						
ReAuthAct	= N/A							
TimeToNex	tReauth = N/A							
PortStatus	= AUTHORIZE	ED (AUTH-FAIL-VLAN)						
MaxReq	= 2							
MaxAuthReq	= 2							
HostMode	= Single							
Port Control	= Auto							
ControlDirec	tion = Both							
QuietPeriod	= 60 Second	ls						
Re-authentic	ation = Enabled							
ReAuthPeriod	l = From Auth	nentication Server						
ServerTimeou	t = 30 Second	ls						
SuppTimeout	= 30 Second	ls						
TxPeriod	= 30 Second	ls						
Guest-Vlan	= 20							
AuthFail-Vla	in = 50							
AuthFail-Max	-Attempts = 3							
router# show ip dho	p binding							
Bindings from all p	ools not associated w	vith VRF:						
IP address	Client-ID/	Lease expiration	Туре					
	Hardware address/							
	User name							
10.0.50.6	0100.1125.8709.75	Jun 20 2006 02:09 PM	Automatic					

42 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Task 8: Display 802.1x Statistics and Status

In this task, you will use some commands to view 802.1x status and statistics.

Activity Procedure

Complete these steps:

Step 1	Display IEEE 802.1x statistics for a specific interface.		
	<pre>switch# show dot1x statistics interface FastEthernet 0/1</pre>		
Step 2	Display the IEEE 802.1x administrative and operational status for the switch.		
	switch# show dot1x all		
Step 3	Display the IEEE 802.1x administrative and operational status for a specific interface.		

switch# show dot1x interface FastEthernet 0/1

Activity Verification

You have completed this task when you attain these results:

```
Use various options of the show dot1x command to view various settings.
switch# show dot1x statistics interface fa0/1
PortStatistics Parameters for Dot1x
_____
TxRegId = 3
              TxReq = 3
                             TxTotal = 5
RxStart = 0
              RxLogoff = 0
                            RxRespId = 0
                                           RxResp = 0
RxInvalid = 0
             RxLenErr = 0
                             RxTotal= 0
RxVersion = 0 LastRxSrcMac 0000.0000.0000
switch# show dot1x all
Dot1x Info for interface FastEthernet0/1
_____
Supplicant MAC 0050.daeb.43d4
AuthSM State
                   = AUTHENTICATED
BendSM State
                   = IDLE
Posture
                   = N/A
  ReAuthPeriod
                  = 3600 Seconds (From Authentication Server)
  ReAuthAction
                   = Reauthenticate
  TimeToNextReauth = 3593 Seconds
PortStatus
                   = AUTHORIZED
MaxReq
                   = 2
MaxAuthReq
                   = 2
HostMode
                    = Single
```

© 2007 Cisco Systems, Inc.

Port Control

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

= Auto

ControlDirection	=	Bot	th
QuietPeriod	=	60	Seconds
Re-authentication	=	Ena	abled
ReAuthPeriod	=	Fro	om Authentication Server
ServerTimeout	=	30	Seconds
SuppTimeout	=	30	Seconds
TxPeriod	=	30	Seconds
Guest-Vlan	=	20	
AuthFail-Vlan	=	50	
AuthFail-Max-Attempts	=	3	
switch# show dot1x in	tei	rfad	ce FastEthernet 0/1
switch# show dotlx in Supplicant MAC 0011.2	te 587	rfac 7.09	ce FastEthernet 0/1 975
switch# show dotlx in Supplicant MAC 0011.2 AuthSM State	te 581	rfa 7.09 AU	ce FastEthernet 0/1 975 THENTICATED
switch# show dotlx in Supplicant MAC 0011.2 AuthSM State BendSM State	te 587 = =	rfac 7.09 AU IDI	ce FastEthernet 0/1 975 IHENTICATED LE
switch# show dotlx in Supplicant MAC 0011.2 AuthSM State BendSM State Posture	te 587 = =	rfac 7.09 AU IDI N/2	ce FastEthernet 0/1 975 IHENTICATED LE A
switch# show dotlx in Supplicant MAC 0011.2 AuthSM State BendSM State Posture ReAuthPeriod	te 587 = = =	rfac 7.09 AU IDI N/2 3600	ce FastEthernet 0/1 975 THENTICATED LE A 0
switch # show dotlx in Supplicant MAC 0011.2 AuthSM State BendSM State Posture ReAuthPeriod ReAuthAction	te: 58 = = = = 3	rfac 7.09 AU IDI N/2 3600	ce FastEthernet 0/1 975 THENTICATED LE A 0
<pre>switch# show dotlx in Supplicant MAC 0011.2 AuthSM State BendSM State Posture ReAuthPeriod ReAuthAction TimeToNextReauth</pre>	te: 58 = = = = 1 = 1	rfac 7.09 AU IDI N/2 3600 N/A 2439	ce FastEthernet 0/1 975 THENTICATED LE A 0 9
<pre>switch# show dotlx in Supplicant MAC 0011.2 AuthSM State BendSM State Posture ReAuthPeriod ReAuthAction TimeToNextReauth PortStatus</pre>	te: 58: = = = = 1 = 1 = 2	rfac AU IDI N/2 3600 N/A 2439 AU	ce FastEthernet 0/1 975 THENTICATED LE A 0 9 THORIZED
<pre>switch# show dotlx in Supplicant MAC 0011.2 AuthSM State BendSM State Posture ReAuthPeriod ReAuthAction TimeToNextReauth PortStatus MaxReq</pre>	te: 58 = = = 1 = 1 = 2 = =	rfac AU IDI N/ <i>I</i> 3600 N/A 2439 AU 2	ce FastEthernet 0/1 975 THENTICATED LE A 0 9 THORIZED

HostMode	=	Single
Port Control	=	Auto
ControlDirection	=	Both
QuietPeriod	=	60 Seconds
Re-authentication	=	Enabled
ReAuthPeriod	=	From Authentication Server
ServerTimeout	=	30 Seconds
SuppTimeout	=	30 Seconds
TxPeriod	=	30 Seconds
Guest-Vlan	=	20
AuthFail-Vlan	=	50

44 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

AuthFail-Max-Attempts = 3

Lab 3-1: Configure Cisco NFP

Complete this lab activity to practice what you learned in the related module.

Activity Objective

In this activity, you will configure control, management, and data plane protection from the command line on a Cisco router. After completing this activity, you will be able to meet these objectives:

- Define packet classification criteria for CoPP
- Define a CoPP service policy
- Enter control plane configuration mode
- Apply a CoPP service policy
- Configure a port-filter policy
- Configure a queue-threshold policy
- Use **show** commands to verify CPPr
- Enter MPP configuration mode
- Designate one or more interfaces as a management interface and configure the management protocols that will be allowed on the management interfaces
- Load a PHDF
- Create a traffic class for FPM
- Create a traffic policy for FPM
- Apply an FPM filter policy to an interface

^{© 2007} Cisco Systems, Inc.

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Visual Objective

The figure illustrates what you will accomplish in this activity.

Required Resources

These are the resources and equipment that are required to complete this activity:

- Pod routers
- Student laptops

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Command List

The table describes the commands that are used in this activity.

Network Foundation Protection Commands

Command	Description
class-map [match-any match-all] <i>class-map-name</i>	Matches packets to a specified class
<pre>match {access-group name access- group-name}</pre>	Specifies the match criteria for the class map
<pre>ip access list extended access- group-name</pre>	Creates an extended ACL
<pre>policy-map policy-map-name</pre>	Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy
class class-name	Specifies the name of the class whose policy you want to create or change
<pre>police rate [burst-normal] [burst- max] [pps] conform-action action exceed-action action [violate-action action]</pre>	Configures traffic policing
control-plane [host transit cef- exception]	Enters control plane configuration mode and applies a CoPP, port-filter policy, or queue- threshold policy to police traffic destined for the control plane
<pre>service-policy {input output} policy-map-name</pre>	Attaches a QoS service policy to the control plane
	Note This command is used in aggregate control plane configuration mode.
<pre>class-map type port-filter [match- all match-any] class-name</pre>	Creates a class map used to match packets to a specified class and enables the port-filter class- map configuration mode
<pre>match {closed-ports not port} {TCP UDP} 0-65535</pre>	Specifies the TCP/UDP match criteria for the class map
<pre>policy-map type port-filter policy- map-name</pre>	Creates a port-filter service policy and enters the policy-map configuration mode
drop	Applies the port-filter service policy drop action on the class
<pre>service-policy type port-filter {input} port-filter-policy-map-name</pre>	Attaches a port-filter service policy to the control plane host subinterface
class-map type queue-threshold [match-all match-any] class-name	Enables queue thresholding that limits the total number of packets for a specified protocol that is allowed in the control plane IP input queue
match protocol [bgp dns ftp http igmp snmp ssh syslog telnet tftp host-protocols]	Specifies the ULP match criteria for the class map
<pre>policy-map type queue- threshold policy-name</pre>	Enables the queue-threshold service policy configuration mode

© 2007 Cisco Systems, Inc.

queue-limit number	Applies the queue-threshold service policy action on the class
<pre>service-policy type queue-threshold {input} queue-threshold-policy-map- name</pre>	Attaches a queue-threshold service policy to the control plane
<pre>management-interface interface allow protocols</pre>	Configures an interface to be a management interface
load protocol location:filename	Loads a PHDF onto a router
class-map type stack [match-all match-any] class-name	Enables FPM to determine the correct protocol stack in which to examine
<pre>match field protocol protocol-field {eq [mask] neq [mask] gt lt range range regex string} value [next next-protocol]</pre>	Configures the match criteria for a class map on the basis of the fields defined in the protocol header
class-map type access-control [match-all match-any] class-map- name	Determines the exact pattern to look for in the protocol stack of interest
<pre>match start {12-start 13-start} offset number size number {eq neq gt lt range range regex string} {value [value2] [string]}</pre>	Configures the match criteria for a class map on the basis of the datagram header (Layer 2) or the network header (Layer 3)
<pre>policy-map type access-control policy-map-name</pre>	Creates or modifies a policy map that can determine the exact pattern to look for in the protocol stack of interest
<pre>service-policy type access-control {input output} policy-map-name</pre>	Attaches a policy map to an input interface
show class-map	Displays all class maps and their matching criteria
show policy-map	Displays the configuration of all classes for a specified service policy map or all classes for all existing policy maps
show policy-map interface	Displays the packet statistics of all classes that are configured for all service policies either on the specified interface or subinterface
show policy-map control-plane	Displays the configuration either of a class or of all classes for the policy map of a control plane
<pre>show management-interface [interface protocol protocol-name]</pre>	Displays all management interface configurations and activity on a device and filters the output by interface or protocol
show class-map type stack	Displays class maps that are configured to determine the correct protocol stack in which to examine via FPM
show class-map type access-control	Displays class maps that are configured to determine the exact pattern to look for in the protocol stack of interest

Job Aids

There are no job aids for this activity.

Configuring CPPr

Task 1: Define Packet Classification Criteria for CoPP

In this task, you will create a class map and define criteria for the class map.

Activity Procedure

Complete these steps:

Step 1	Enter global configuration mode.
	router# configure terminal
Step 2	Define an ACL for trusted hosts using specific protocols to access the router.
	<pre>router(config)# ip access list extended IP access list CP-acl</pre>
	<pre>router(config-ext-nacl)# deny tcp host 10.0.P.12 any eq telnet</pre>
	<pre>router(config-ext-nacl)# deny tcp host 10.0.P.12 any eq www</pre>
	<pre>router(config-ext-nacl)# permit tcp any any eq telnet</pre>
	<pre>router(config-ext-nacl)# permit tcp any any eq www</pre>
Step 3	Exit back to global configuration mode.
	router(config-ext-nacl)# exit
Step 4	Enable class map global configuration command mode.
	<pre>router(config)# class-map match-any CP-class</pre>
Step 5	Specify the criteria to match. In this case, you will match to an ACL.
	<pre>router(config-cmap)# match access-group name CP-acl</pre>
Step 6	Exit back to global configuration mode.
	router(config-cmap)# exit

Activity Verification

You have completed this task when you attain these results:

• The output of the **show class-map** and **show ip access-lists** commands should resemble the following:

```
router# show class-map
Class Map match-any class-default (id 0)
Match any
Class Map match-any CP-class (id 2)
Match access-group name CP-acl
router# show ip access-lists
Extended IP access list CP-acl
10 deny tcp host 10.0.1.12 any eq telnet
```

© 2007 Cisco Systems, Inc.

20 deny tcp host 10.0.1.12 any eq www

30 permit tcp any any eq telnet

40 permit tcp any any eq www

Task 2: Define a CoPP Service Policy

In this task, you will define a CoPP service policy using a policy map.

Activity Procedure

Complete these steps:

Step 1	Enter global configuration mode.	
	router# configure terminal	
Step 2	Enter policy map configuration mode to define a policy.	
	<pre>router(config) # policy-map CP-policy</pre>	
Step 3	Enter class map configuration mode within the policy map mode.	
	router(config-pmap)# class CP-class	
Step 4	Configure traffic policing.	
	<pre>router(config-pmap-c)# police rate 50000 pps conform-action transmit exceed-action drop</pre>	
Step 5	Return to privileged EXEC mode.	
	router(config-pmap-c)# end	

Activity Verification

You have completed this task when you attain these results:

■ The output of the **show policy-map** command should resemble the following:

```
router# show policy-map
```

Policy Map CP-policy Class CP-class police rate 50000 pps burst 12207 packets conform-action transmit exceed-action drop

```
router# show policy-map CP-policy
Policy Map CP-policy
Class CP-class
police rate 50000 pps burst 12207 packets
    conform-action transmit
    exceed-action drop
```

Task 3: Apply CoPP Service Policy to the Control Plane Host Subinterface

In this task, you will enter the control plane configuration mode.

Activity Procedure

Complete these steps:

Step 1	Enter global configuration mode.
	router# configure terminal
Step 2	Enter aggregate control plane configuration mode to attach a QoS policy that manages control plane traffic to a specified control plane subinterface.
	<pre>router(config)# control-plane host</pre>
Step 3	Attach your QoS service policy to the control plane.
	<pre>router(config-cp)# service-policy input CP-policy</pre>
Step 4	Exit back to privileged EXEC mode.
	router(config-cp)# end

Activity Verification

You have completed this task when you attain these results:

- Telnet to 10.0.P.2 to generate traffic to the control plane.
- The output of the show policy-map control-plane host command should resemble the following:

```
router# show policy-map control-plane host
 Control Plane Host
  Service-policy input: CP-policy
    Class-map: CP-class (match-any)
      1704 packets, 102240 bytes
      5 minute offered rate 0 bps, drop rate 0 bps
      Match: access-group name CP-acl
        1704 packets, 102240 bytes
        5 minute rate 0 bps
      police:
          rate 50000 pps, burst 12207 packets
        conformed 3400 packets; actions:
          transmit
        exceeded 0 packets; actions:
          drop
        conformed 2 pps, exceed 0 pps
    Class-map: class-default (match-any)
```

```
© 2007 Cisco Systems, Inc.
```

```
2202 packets, 213406 bytes
5 minute offered rate 2000 bps, drop rate 0 bps
Match: any
```

Task 4: Configure a Port-Filter Policy

In this task, you will configure a port-filter policy on the host subinterface of the control plane.

Activity Procedure

Complete these steps:

Step 1	Enter global configuration mode.	
	router# configure terminal	
Step 2	Create a class map of type "port-filter" and specify the criteria to match.	
	<pre>router(config)# class-map type port-filter match-all PF-class</pre>	
Step 3	Specify the TCP/UDP match criteria for the class map. In this lab, you will match all closed ports.	
	<pre>router(config-cmap)# match closed-ports</pre>	
Step 4	Exit to global configuration mode.	
	router(config-cmap)# exit	
Step 5	Create a service policy of type "port-filter" and enter the policy map configuration mode.	
	<pre>router(config)# policy-map type port-filter PF-policy</pre>	
Step 6	Associate a service policy with a class and enter class map configuration mode.	
	router(config-pmap)# class PF-class	
Step 7	Apply the port-filter service policy action on the class.	
	router(config-pmap-c)# drop	
Step 8	Return to policy map configuration mode.	
	router(config-pmap-c)# exit	
Step 9	Return to global configuration mode.	
	<pre>router(config-pmap) # exit</pre>	
Step 10	Enter the control plane host subinterface configuration mode.	
	<pre>router(config)# control-plane host</pre>	
Step 11	Attach a service policy of type "port-filter" to the control plane host subinterface.	
	<pre>router(config-cp-host)# service-policy type port-filter input PF-policy</pre>	
Step 12	Return to privileged EXEC mode.	

router(config-cp-host)# end

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Activity Verification

You have completed this task when you attain these results:

The output of the show class-map type port-filter and show policy-map type port-filter commands should resemble the following:

```
router# show class-map type port-filter
 Class Map type port-filter match-all PF-class (id 3)
  Match closed-ports
router# show policy-map type port-filter
  Policy Map type port-filter PF-policy
    Class PF-class
      drop
router# show policy-map type port-filter control-plane host
      drop
 Control Plane Host
  Service-policy port-filter input: PF-policy
    Class-map: PF-class (match-all)
      0 packets, 0 bytes
      5 minute offered rate 0 bps, drop rate 0 bps
     Match: closed-ports
    Class-map: class-default (match-any)
      0 packets, 0 bytes
      5 minute offered rate 0 bps, drop rate 0 bps
     Match: any
```

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Task 5: Configure a Queue-Threshold Policy

In this task, you will create a queue-threshold policy on the host subinterface of the control plane.

Activity Procedure

Complete these steps:

Step 1	Enter global configuration mode.
	router# configure terminal
Step 2	Create a class map of type "queue-threshold" and specify the criteria to match.
	<pre>router(config)# class-map type queue-threshold match-all QT- class</pre>
Step 3	Specify the ULP match criteria for the class map. In this lab, the ULP will be BGP.
	router(config-cmap)# match protocol bgp
Step 4	Return to global configuration mode.
	router(config-cmap)# exit
Step 5	Create a service policy of type "queue-threshold" and enter the policy map configuration mode.
	<pre>router(config)# policy-map type queue-threshold QT-policy</pre>
Step 6	Enter class map configuration mode.
	router(config-pmap)# class QT-class
Step 7	Apply the queue-threshold service policy action on the class.
	router(config-pmap-c)# queue-limit 100
Step 8	Return to global configuration mode.
	router(config-pmap-c)# exit
Step 9	Enter the control plane host subinterface configuration mode.
	router(config)# control-plane host
Step 10	Attach the service policy to the control plane.
	<pre>router(config-cp-host)# service-policy type queue-threshold input QT-policy</pre>
Step 11	Return to privileged EXEC mode.
	router(config-cp-host)# end

54 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Activity Verification

You have completed this task when you attain these results:

The output of the show class-map type queue-threshold and show policy-map type queue-threshold commands should resemble the following:

```
router# show class-map type queue-threshold
 Class Map type queue-threshold match-all QT-class (id 1)
   Match protocol bgp
router# show policy-map type queue-threshold
  Policy Map type queue-threshold QT-policy
    Class QT-class
      queue-limit 100
router# show policy-map type queue-threshold control-plane host
      queue-limit 100
      queue-count 0
                        packets allowed/dropped 0/0
 Control Plane Host
  Service-policy queue-threshold input: QT-policy
    Class-map: QT-class (match-all)
      0 packets, 0 bytes
      5 minute offered rate 0 bps, drop rate 0 bps
      Match: protocol bgp
    Class-map: class-default (match-any)
      0 packets, 0 bytes
      5 minute offered rate 0 bps, drop rate 0 bps
     Match: any
```

© 2007 Cisco Systems, Inc.

Configuring MPP

Task 6: Enter Control Plane Host Configuration Mode

In this task, you will configure management plane protection.

Activity Procedure

Complete these steps:

Step 1	Enter global configuration mode.	
	router# configure terminal	
Step 2	Enter control plane host configuration mode.	
	<pre>router(config)# control-plane host</pre>	

Activity Verification

You have completed this task when you attain these results:

• You will verify this activity after the next task.

Task 7: Specify Management Interface and Protocols

In this task, you will specify the management interface and allowed protocols.

Activity Procedure

Complete these steps:

Step 1 Configure an interface to be a management interface and specify which management protocols are allowed.

router(config-cp-host)# management-interface Fa0/0 allow ssh SNMP

Step 2 Return to privileged EXEC mode.

router(config-cp-host)# **end**

Activity Verification

You have completed this task when you attain these results:

- 1. Try to telnet to 10.0.P.2. You should fail unless you entered telnet as an "allowed" management protocol.
- 2. Now use SSH to connect to 10.0.P.2. You should be able to connect using SSH.
- The output of the **show management-interface** command should resemble the following:

router# show management-interface

Management interface FastEthernet0/1

Packets process	Protocol
43	ssh
0	snmp

56 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Configuring FPM

Task 8: Load a PHDF

In this task, you will load two PHDFs.

Note Make sure that the PHDFs are stored in flash memory for use in this lab.

Activity Procedure

Complete these steps:

Step 1	Enter global configuration mode.
	router# configure terminal
Step 2	Load the PHDFs on the router.
	<pre>router(config)# load protocol flash:ip.phdf</pre>
	<pre>router(config)# load protocol flash:udp.phdf</pre>

Activity Verification

You have completed this task when you attain these results:

The output of the show protocols phdf command should resemble this: router# show protocols phdf ip Protocol ID: 1 Protocol name: IP Description: IP-Protocol Original file name: flash:ip.phdf Header length: 20 Constraint(s): Protocol ID: 1 Field ID: 0 Match Value: 4 Operator is eq Protocol ID: 1 Field ID: 1 Match Value: 5 Operator is eq Total number of fields: 13

Field id: 0, version, IP-Version

^{© 2007} Cisco Systems, Inc.

Fixed offset. offset 0 Constant length. Length: 4

Field id: 1, ihl, IP-Header-Length Fixed offset. offset 4 Constant length. Length: 4

Field id: 2, tos, IP-Type-Of-Service Fixed offset. offset 8 Constant length. Length: 8

Field id: 3, length, IP-Packet-Length Fixed offset. offset 16 Constant length. Length: 16

Field id: 4, identification, IP-Identification Fixed offset. offset 32 Constant length. Length: 16

Field id: 5, flags, IP-Fragmentation-Flags Fixed offset. offset 48 Constant length. Length: 3

Field id: 6, fragment-offset, IP-Fragmentation-Offset Fixed offset. offset 51 Constant length. Length: 13

Field id: 7, ttl, IP-TTL Fixed offset. offset 64 Constant length. Length: 8

Field id: 8, protocol, IP-Protocol Fixed offset. offset 72 Constant length. Length: 8

Field id: 9, checksum, IP-Header-Checksum Fixed offset. offset 80 Constant length. Length: 16

Field id: 10, source-addr, IP-Source-Address

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Fixed offset. offset 96 Constant length. Length: 32 Field id: 11, dest-addr, IP-Destination-Address Fixed offset. offset 128 Constant length. Length: 32 Field id: 12, payload-start, IP-Payload-Start Fixed offset. offset 160

Constant length. Length: 0

© 2007 Cisco Systems, Inc.

Task 9: Create a Traffic Class

In this task, you will create two types of class maps. One of type "stack" used to define a stack of protocol headers and another of type "access-control" used to classify packets.

Activity Procedure

Complete these steps:

Step 1	Create a class map of type "stack" to define the sequence of headers as IP first, then UDP.
	router(config)# class-map type stack match-all ip-udp
Step 2	Add a description to the class map.
	router(config-cmap)# description match UDP over IP packets
Step 3	Create the match criteria.
	<pre>router(config-cmap)# match field ip protocol eq 0x11 next udp</pre>
Note	UDP is protocol 0x11 in hexadecimal format, which is 17 in decimal format.
Step 4	Return to global configuration mode.
	router(config-cmap)# exit
Step 5	Create a class map of type "access-control" for classifying packets.
	<pre>router(config)# class-map type access-control match-all slammer</pre>
Step 6	Add a description to this class map.
	router(config-cmap)# description match on slammer packets
Step 7	Create match criteria.
	<pre>router(config-cmap)# match field udp dest-port eq 0x59A</pre>
Note	Port 0x59A in hexadecimal format is port 1434 in decimal format—a known slammer port also used in monitoring Microsoft SQL databases.
	routor(config grap) # match field in length or 0-104
	router(config emap) # match field ip length eq 0x194
	0x4011010
Step 8	Return to privileged EXEC mode.
	router(config-cmap)# end

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Activity Verification

You have completed this task when you attain these results:

```
    The output of the show class-map type stack command should resemble this:
router# show class-map type stack
    Class Map type stack match-all ip-udp (id 4)
    Description: match UDP over IP packets
    Match field IP protocol eq 0x11 next UDP
    router# show class-map type access-control
    Class Map type access-control match-all slammer (id 5)
    Description: match on slammer packets
    Match field UDP dest-port eq 0x59A
    Match field IP length eq 0x194
    Match start 13-start offset 224 size 4 eq 0x4011010
```

© 2007 Cisco Systems, Inc.

```
The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.
```

Task 10: Create a Traffic Policy

In this task, you will create a policy map to define the traffic policy for an interface.

Activity Procedure

Complete these steps:

Step 1	Specify the policy map that associates the class defined with an action.
	<pre>router(config) # policy-map type access-control fpm-udp-policy</pre>
Step 2	Give the policy a description.
	<pre>router(config-pmap)# description policy for UDP based attacks</pre>
Step 3	Specify the associated class map.
	router(config-pmap)# class slammer
Step 4	Specify the action to be taken.
	router(config-pmap-c)# drop
Step 5	Exit to policy map configuration mode.
	router(config-pmap-c)# exit
Step 6	Exit to global configuration mode.
	router(config-pmap)# exit
Step 7	Within the final policy definition, you will first specify the "ip-udp" class so that only UDP packets are inspected by the policy defined in Step 1 above. Then, specify the "fpm-udp-policy" policy map to complete the classification and drop action.
	<pre>router(config) # policy-map type access-control fpm-policy</pre>
	<pre>router(config-pmap)# description drop worms and malicious attacks</pre>
	<pre>router(config-pmap)# class ip-udp</pre>
	<pre>router(config-pmap-c)# service-policy fpm-udp-policy</pre>
Step 8	Return to privileged EXEC mode.
	<pre>router(config-pmap-c)# end</pre>

62 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Activity Verification

You have completed this task when you attain these results:

■ The output of the **show policy-map type access-control** command should resemble this:

router# show policy-map type access-control

Policy Map type access-control fpm-udp-policy

Description: policy for UDP based attacks

Class slammer

drop

Policy Map type access-control fpm-policy

Description: drop worms and malicious attacks

Class ip-udp

service-policy fpm-udp-policy

Task 11: Apply Service Policy to an Interface

In this task, you will apply the policy to the perimeter interface of your network.

Activity Procedure

Complete these steps:

Step 1	Enter global configuration mode.
	router# configure terminal
Step 2	Enter interface configuration mode on your external interface.
	<pre>router(config)# interface FastEthernet 0/0</pre>
Step 3	Apply the policy to this interface.
	<pre>router(config-if)# service-policy type access-control input fpm-policy</pre>
Step 4	Return to privileged EXEC mode.
	router(config-if)# end

© 2007 Cisco Systems, Inc.

Activity Verification

You have completed this task when you attain these results:

The output of the show policy-map type access-control interface <int> command should resemble this:

```
router# show policy-map type access-control interface FastEthernet 0/0
FastEthernet0/1
 Service-policy access-control input: fpm-policy
   Class-map: ip-udp (match-all)
      0 packets, 0 bytes
      5 minute offered rate 0 bps
      Match: field IP version eq 4
      Match: field IP ihl eq 5
      Match: field IP protocol eq 0x11 next UDP
      Service-policy access-control : fpm-udp-policy
        Class-map: slammer (match-all)
          0 packets, 0 bytes
          5 minute offered rate 0 bps, drop rate 0 bps
          Match: field UDP dest-port eq 0x59A
          Match: field IP length eq 0x194
          Match: start 13-start offset 224 size 4 eq 0x4011010
        Class-map: class-default (match-any)
          0 packets, 0 bytes
5 minute offered rate 0 bps, drop rate 0 bps
          Match: any
   Class-map: class-default (match-any)
      0 packets, 0 bytes
      5 minute offered rate 0 bps, drop rate 0 bps
      Match: any
```

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Lab 4-1: Configure a Site-to-Site VPN using Pre-Shared Keys

Complete this lab activity to practice what you learned in the related module.

Activity Objective

In this activity, you will configure a perimeter router for site-to-site VPNs using pre-shared keys. After completing this activity, you will be able to meet these objectives:

- Set up lab devices
- Prepare for configuring IPsec
- Create an ISAKMP policy to use pre-shared keys
- Configure transform sets
- Configure a crypto ACL
- Configure a crypto map
- Apply the crypto map to an interface
- Ensure that encryption is working between routers

Visual Objective

The figure illustrates what you will accomplish in this activity.

Required Resources

These are the resources and equipment that are required to complete this activity:

- Student laptops
- Pod routers

66 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Command List

The table describes the commands that are used in this activity.

IPsec Commands

Command	Description
access-list access-list-number	Creates a numbered ACL
authentication {rsa-sig rsa-encr pre-share}	Specifies the authentication method within an IKE policy
clear crypto sa	Deletes IPsec SAs
crypto ipsec transform-set transform- set-name transform1 transform2	Defines an IPsec transform set
crypto isakmp enable	Globally enables IKE
crypto isakmp identity {address hostname}	Defines the identity used by the router when participating in the IKE protocol
<pre>crypto isakmp key key-string address peer-address [mask] [no-xauth]</pre>	Configures a pre-shared authentication key
crypto isakmp policy priority	Defines an IKE policy
encryption {des 3des aes aes 192 aes 256}	Specifies the encryption algorithm within an IKE policy
group {1 2}	Specifies the DH group identifier within an IKE policy
hash {sha md5}	Specifies the hash algorithm within an IKE policy
lifetime seconds	Specifies the lifetime of an IKE SA
crypto map map-name seq-num [ipsec- isakmp]	(Global IPsec) Enters crypto map configuration mode and specifies that IKE will be used to establish the IPsec SAs for protecting the traffic specified by this crypto map entry
crypto map map-name [redundancy standby-group-name[stateful]]	(Interface IPsec) Applies a previously defined crypto map set to an interface
<pre>match address [access-list-id name]</pre>	Specifies a crypto ACL for a crypto map entry
mode [tunnel transport]	Changes the mode for a transform set
<pre>set peer {host-name ip-address}</pre>	Specifies an IPsec peer in a crypto map entry
set transform-set transform-set-name [transform-set-name2transform-set-name6]	Specifies which transform sets can be used with the crypto map entry
ping <i>ip-address</i>	Diagnoses basic network connectivity
<pre>show crypto ipsec transform-set [tag transform-set-name]</pre>	Displays the configured transform sets
show crypto isakmp policy	Displays the parameters for each IKE policy
show crypto isakmp sa	Displays all current IKE SAs
show crypto ipsec sa	Displays all current IPsec SAs
<pre>show crypto map [interface interface tag map-name]</pre>	Displays the crypto map configuration

© 2007 Cisco Systems, Inc.

Job Aids

There are no job aids for this activity.

Task 1: Set Up Lab Devices

In this task, you will complete the lab setup exercise by ensuring connectivity with other routers in the lab.

Activity Procedure

Complete these steps:

Step 1	Ensure that your student laptop is operating with the correct date and time.
Step 2	Configure your student PC for IP address 10.0.P.12 with a default gateway of 10.0.P.2 . (where $P = pod$ number).
Step 3	Restore the original course router configuration. Your instructor will explain how to do this.
Step 4	Verify that you have connectivity with the peer pod router.
	router# ping 172.30.Q.2
	(where Q = peer pod number)

Activity Verification

You have completed this task when you attain these results:

Ping the peer pod outside interface. Your output should resemble the following:

```
router# ping 172.30.6.2
```

Type escape sequence to abort.

```
Sending 5, 100-byte ICMP Echos to 172.30.6.2, timeout is 2 seconds: !!!!!
```

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms

Task 2: Prepare for IPsec

In this task, you will prepare for configuring IPsec by determining the ISAKMP and IPsec policy and by creating an ACL to allow IPsec traffic.

Activity Procedure

Complete these steps:

- **Step 1** Determine the ISAKMP and IPsec policy. In this lab exercise, you will use default values except when you are directed to enter a specific value.
 - The ISAKMP policy is to use pre-shared keys.
 - The IPsec policy is to use ESP mode with 3DES encryption.
 - The IPsec policy is to encrypt all traffic between the specified subnetworks.
- **Step 2** Create an ACL to allow IPsec protocols on the outside interface.

```
router# configure terminal
router(config)# ip access-list extended 102
router(config-ext-nacl)# permit ahp host 172.30.P.2 host
172.30.Q.2
router(config-ext-nacl)# permit esp host 172.30.P.2 host
172.30.Q.2
router(config-ext-nacl)# permit udp host 172.30.P.2 host
172.30.Q.2 eq isakmp
router(config-ext-nacl)# permit udp host 172.30.P.2 host
172.30.Q.2 eq 4500
```

Step 3 Exit to privileged EXEC mode.

router(config-ext-nacl)# end

Activity Verification

You have completed this task when you attain these results:

■ Perform a **show ip access-lists** command. The output should be similar to this:

```
router# show ip access-lists
Extended IP access list 102
10 permit ahp host 172.30.1.2 host 172.30.6.2
20 permit esp host 172.30.1.2 host 172.30.6.2
30 permit udp host 172.30.1.2 host 172.30.6.2 eq isakmp
40 permit udp host 172.30.1.2 host 172.30.6.2 eq non500-isakmp
```

Task 3: Configure an ISAKMP Policy to Use Pre-Shared Keys

In this task, you will enable IKE/ISAKMP on the router and configure authentication using preshared keys.

Activity Procedure

Complete these steps:

Step 1 Verify that ISAKMP is enabled. You should see a default policy.

```
router# show crypto isakmp policy
```

Note	If you see the message "ISAKMP is turned off," complete Step 2, then complete the rest of
	the steps. If ISAKMP is already enabled, skip Step 2.

```
R1# show crypto isakmp policy
Global IKE policy
Default protection suite
         encryption algorithm:
                                  DES - Data Encryption Standard (56 bit
keys).
         hash algorithm:
                                   Secure Hash Standard
         authentication method: Rivest-Shamir-Adleman Signature
         Diffie-Hellman group:
                                   #1 (768 bit)
                        lifetime:
                                                  86400 seconds, no volume limit
      Step 2
               Enable ISAKMP on the router.
               router(config) # crypto isakmp enable
               Set the policy priority and enter ISAKMP policy configuration mode.
      Step 3
               router(config)# crypto isakmp policy 110
               Set authentication to use pre-shared keys.
      Step 4
               router(config-isakmp)# authentication pre-share
               Set IKE encryption.
      Step 5
               router(config-isakmp)# encryption 3des
               Set the DH group.
      Step 6
               router(config-isakmp)# group 2
               Set the hash algorithm.
      Step 7
               router(config-isakmp)# hash md5
      Step 8
               Set the ISAKMP SA lifetime.
               router(config-isakmp)# lifetime 36000
      Step 9
               Exit the ISAKMP policy configuration mode.
               router(config-isakmp)# exit
```

70 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.
Configure the pre-shared key and peer address. Step 10 router(config) # crypto isakmp key 0 cisco1234 address 172.30.Q.2 (where Q = peer pod number) Step 11 Exit configuration mode. router(config)# end Step 12 Examine the crypto policy suite.

Activity Verification

You have completed this task when you attain these results:

Your output is similar to this: .

R1# show crypto isakmp policy	
Global IKE policy	
Protection suite of priority 11	L 0
encryption algorithm:	Three key triple DES
hash algorithm:	Message Digest 5
authentication method:	Pre-Shared Key
Diffie-Hellman group:	#2 (1024 bit)
lifetime:	36000 seconds, no volume limit
Default protection suite	
encryption algorithm: keys).	DES - Data Encryption Standard (56 bit
hash algorithm:	Secure Hash Standard
authentication method:	Rivest-Shamir-Adleman Signature
Diffie-Hellman group:	#1 (768 bit)
lifetime:	86400 seconds, no volume limit

© 2007 Cisco Systems, Inc.

Task 4: Configure an IPsec Transform Set

In this task, you will configure an IPsec transform set.

Activity Procedure

Complete these steps:

Step 1 Define a transform set that includes the following:

- Transform name: SNRS
- ESP protocols: esp-des
- Mode: tunnel

router(config)# crypto ipsec transform-set SNRS esp-des

Step 2 Set the mode to tunnel.

router(cfg-crypto-trans)# mode tunnel

Step 3 Exit the configuration mode.

router(cfg-crypto-trans)# end

Activity Verification

You have completed this task when you attain these results:

Issue a show crypto ipsec transform-set command. Your output should be similar to the following:

```
R1# show crypto ipsec transform-set
```

```
Transform set SNRS: { esp-des }
will negotiate = { Tunnel, },
```

Task 5: Configure an IPsec Crypto ACL

In this task, you will create an ACL that "defines" traffic to protect. The ACL should encrypt traffic between the subnetworks that you specify. Use the following parameters:

- Traffic encrypted: Traffic between 10.0.P.0 and 10.0.Q.0
- ACL number: 101
- Protocol: **IP**

Activity Procedure

Complete these steps:

Step 1 Configure the crypto ACL.
 router(config)# ip access-list extended 101
 router(config-ext-nacl)# permit ip 10.0.P.0 0.0.0.255 10.0.Q.0
 0.0.255
 (where P = pod number, and Q = peer pod number)
Step 2 Exit to privileged EXEC mode.
 router(config-ext-nacl)# end

72 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Activity Verification

You have completed this task when you attain these results:

■ Issue a show access-list command. The output should be similar to this:

```
R1# show ip access-lists
Extended IP access list 101
    10 permit ip 10.0.1.0 0.0.0.255 10.0.6.0 0.0.0.255
Extended IP access list 102
    10 permit ahp host 172.30.1.2 host 172.30.6.2
    20 permit esp host 172.30.1.2 host 172.30.6.2
    30 permit udp host 172.30.1.2 host 172.30.6.2 eq isakmp
    40 permit udp host 172.30.1.2 host 172.30.6.2 eq non500-isakmp
```

Task 6: Configure an IPsec Crypto Map

In this task, you will configure a crypto map. Use the following parameters:

- Name of map: SNRS-MAP
- Number of map: 10
- Key exchange type: isakmp
- Peer: 172.30.Q.2
- Transform set: SNRS
- Match address: 101

Activity Procedure

Complete these steps:

Step 1 Set the name of the map, the map number, and the type of key exchange to be used.

router(config) # crypto map SNRS-MAP 10 ipsec-isakmp

You should see the following:

- % NOTE: This new crypto map will remain disabled until a peer and a valid access list have been configured.
- **Step 2** Specify the extended ACL to use with this map.

router(config-crypto-map)# match address 101

Step 3 Specify the transform set that you defined earlier.

router(config-crypto-map)# set transform-set SNRS

Step 4 Assign the VPN peer using the hostname or IP address of the peer.

router(config-crypto-map)# set peer 172.30.Q.2

(where Q = peer pod number)

Step 5 Exit back to privileged EXEC mode.

router(config-crypto-map)# end

Activity Verification

You have completed this task when you attain these results:

■ Issue the **show crypto map** command. The output should be similar to this:

```
Rl# show crypto map
Crypto Map "SNRS-MAP" 10 ipsec-isakmp
        Peer = 172.30.6.2
        Extended IP access list 101
            access-list 101 permit ip 10.0.1.0 0.0.0.255 10.0.6.0
0.0.0.255
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
               SNRS,
        }
        Interfaces using crypto map SNRS-MAP:
```

Task 7: Apply the Crypto Map to an Interface

In this task, you will apply the crypto map to an interface. Use the following parameters:

- Interface to configure: FastEthernet 0/1
- Crypto map to use: SNRS-MAP

Activity Procedure

Complete these steps:

Step 1	Access interface configuration mode.	
	<pre>router(config)# interface fastEthernet 0/1</pre>	
Step 2 Assign the crypto map to the interface.		
	<pre>router(config-if)# crypto map SNRS-MAP</pre>	
You shou	ld see the following message:	

Jul 26 16:19:05.123: %CRYPTO-6-ISAKMP ON OFF: ISAKMP is ON

Exit interface configuration mode. Step 3

router(config-if)# end

Activity Verification

You have completed this task when you attain these results:

Issue the **show crypto map interface fa0/1** command. The output should be similar to this:

```
R1# show crypto map interface fastEthernet 0/1
Crypto Map "SNRS-MAP" 10 ipsec-isakmp
        Peer = 172.30.6.2
        Extended IP access list 101
            access-list 101 permit ip 10.0.1.0 0.0.0.255 10.0.6.0
0.0.0.255
        Current peer: 172.30.6.2
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
                SNRS,
        }
        Interfaces using crypto map SNRS-MAP:
                FastEthernet0/1
```

Task 8: Ensure That Encryption Is Working Between Routers

In this task, you will generate traffic from your internal subnet to your peer pod internal subnet to ensure that encryption is working between the routers.

Activity Procedure

Complete these steps:

Step 1 Generate interesting traffic using an extended ping. You will ping from the inside interface of your pod router to the inside interface of your peer pod router. You can also ping from your laptop to the laptop of your peer pod.

```
R1# ping
    Protocol [ip]:
    Target IP address: 10.0.6.2
    Repeat count [5]: 100
    Datagram size [100]:
    Timeout in seconds [2]:
    Extended commands [n]: yes
    Source address or interface: 10.0.1.2
    Type of service [0]:
    Set DF bit in IP header? [no]:
    Validate reply data? [no]:
    Data pattern [0xABCD]:
    Loose, Strict, Record, Timestamp, Verbose[none]:
    Sweep range of sizes [n]:
    Type escape sequence to abort.
    Sending 5, 100-byte ICMP Echos to 10.0.6.2, timeout is 2 seconds:
    Packet sent with a source address of 10.0.1.2
    11111
    Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4
    ms
        Display your ISAKMP SAs.
Step 2
```

• • • • • •

Step 3Display your IPsec SAs

Activity Verification

You have completed this task when you attain these results:

```
    Verify that the IKE and IPsec SAs have been established.
```

```
R1# show crypto isakmp sa
IPv4 Crypto ISAKMP SA
dst src state conn-id slot status
172.30.6.2 172.30.1.2 QM_IDLE 1001 0 ACTIVE
```

```
IPv6 Crypto ISAKMP SA
```

R1# show crypto ipsec sa

```
interface: FastEthernet0/1
```

Crypto map tag: SNRS-MAP, local addr 172.30.1.2

```
protected vrf: (none)
```

local ident (addr/mask/prot/port): (10.0.1.0/255.255.255.0/0/0)
remote ident (addr/mask/prot/port): (10.0.6.0/255.255.255.0/0/0)
current peer 172.30.6.2 port 500

PERMIT, flags={origin is acl,}

#pkts encaps: 6657, #pkts encrypt: 6657, #pkts digest: 6657 #pkts decaps: 6656, #pkts decrypt: 6656, #pkts verify: 6656 #pkts compressed: 0, #pkts decompressed: 0 #pkts not compressed: 0, #pkts compr. failed: 0 #pkts not decompressed: 0, #pkts decompress failed: 0 #send errors 1, #recv errors 0

local crypto endpt.: 172.30.1.2, remote crypto endpt.: 172.30.6.2
path mtu 1500, ip mtu 1500
current outbound spi: 0x1B029B45(453155653)

```
inbound esp sas:
spi: 0xD74582A5(3611656869)
transform: esp-des ,
in use settings ={Tunnel, }
conn id: 2001, flow_id: FPGA:1, crypto map: SNRS-MAP
sa timing: remaining key lifetime (k/sec): (4565588/2901)
IV size: 8 bytes
replay detection support: N
Status: ACTIVE
```

```
inbound ah sas:
inbound pcp sas:
outbound esp sas:
spi: 0x1B029B45(453155653)
transform: esp-des ,
    in use settings ={Tunnel, }
    conn id: 2002, flow_id: FPGA:2, crypto map: SNRS-MAP
    sa timing: remaining key lifetime (k/sec): (4565588/2871)
    IV size: 8 bytes
    replay detection support: N
    Status: ACTIVE
outbound ah sas:
```

outbound pcp sas:

Lab 4-2: Configure a Site-to-Site VPN Using Certificates

Complete this lab activity to practice what you learned in the related module.

Activity Objective

In this activity, you will configure a perimeter router for site-to-site VPNs using a CA. After completing this activity, you will be able to meet these objectives:

- Set up lab devices
- Set the router date and time
- Define the domain name of the router
- Define the static hostname-to-IP address mapping of the CA server
- Generate RSA keys
- Configure the CA server trustpoint
- Create an IKE policy to use RSA signatures
- Configure transform sets and SA parameters
- Configure crypto ACLs
- Configure crypto maps
- Apply the crypto map to an interface
- Ensure that encryption is working

Visual Objective

Visual Objective for Lab 4-2: Configure a Site-to-Site VPN Using Certificates VPNCA CA Server 172.26.26.51 Pods 1-5 Pods 6-10 172.30.P.2 172.30.Q.2 Router IPsec Encrypted Tunnel Web/FTP Web/FTP Cisco Secure Cisco Secure ACS ACS Student PC Student PC 10.0.P.12 10.0.Q.12

The figure illustrates what you will accomplish in this activity.

Required Resources

These are the resources and equipment that are required to complete this activity:

- Student laptops
- Pod routers
- CA server

Command List

The table describes the commands that are used in this activity.

PKI Commands

Command	Description
<pre>ping [protocol] [tag] {host-name system- address}</pre>	Diagnoses basic network connectivity on AppleTalk, ATM, CLNS, DECnet, IP, Novell IPX, or source-route bridging (SRB) networks
<pre>ip route prefix mask {ip- address interface-type interface-number [ip- address] } [dhcp] [distance] [name] [permanent] [tag tag]</pre>	Establishes a static route
clock timezone zone hours- offset [minutes-offset]	Sets the time zone for display purposes
<pre>hostname <name></name></pre>	Configures a hostname for the router (for RSA key pairs and certificates)
<pre>ip domain-name <name></name></pre>	Configures a domain for the router (for RSA key pairs and certificates)
<pre>ip host {name tmodem- telephone-number} [tcp- port-number] {address1 [address2address8]}</pre>	Defines a static hostname-to-address mapping in the host cache
crypto key generate rsa	Generates RSA key pairs
crypto pki trustpoint	Declares the CA that your router should use
<pre>enrollment [mode] [retry period minutes] [retry count number] url url [pem]</pre>	Specifies the enrollment parameters of a CA
<pre>crypto pki authenticate <name></name></pre>	Authenticates the CA (by acquiring the certificate of the CA)
crypto pki enroll <name></name>	Obtains the certificate or certificates for your router from the CA
crypto isakmp enable	Globally enables IKE on a Cisco router
crypto isakmp policy priority	Defines an ISAKMP policy
authentication {rsa-sig rsa-encr pre-share}	Specifies the authentication method within an ISAKMP policy
encryption {des 3des aes aes 192 aes 256}	Specifies the encryption algorithm within an ISAKMP policy
group {1 2}	Specifies the DH group identifier within an IKE policy
hash {sha $md5$ }	Specifies the hash algorithm within an IKE policy
<pre>crypto ipsec transform-set <name> esp-des</name></pre>	Creates a transform set and specifies an ESP protocol
mode tunnel	Specifies tunnel mode
<pre>ip access-list extended <name></name></pre>	Creates an extended ACL used to protect traffic

© 2007 Cisco Systems, Inc.

<pre>permit ip host ip-address host ip-address</pre>	Defines the traffic to be protected
<pre>crypto map <name> priority ipsec-isakmp</name></pre>	Creates crypto map, assigns a priority, and specifies that IKE will be used to establish the IPsec SAs
<pre>match address <crypto-acl></crypto-acl></pre>	Specifies an extended ACL for a crypto map entry
	Note: The ACL defines the traffic to encrypt.
<pre>set transform-set <name></name></pre>	Specifies which transform sets can be used with the crypto map entry
set peer <i>ip-address</i>	Specifies an IPsec peer in a crypto map entry
crypto map <map-name></map-name>	Specifies interface configuration mode; assigns crypto map to the interface
show crypto isakmp policy	Displays the parameters for each IKE policy
show crypto ipsec transform-set	Displays the configured transform sets
show crypto key mypubkey rsa	Displays the RSA public keys of a router
show crypto pki certificates	Displays information about your certificate, the CA certificate, and any RA certificates
<pre>show crypto map [interface interface tag map-name]</pre>	Displays the crypto map configuration
show crypto isakmp sa	Displays the current IKE SAs
show crypto ipsec sa	Displays the settings used by the current SAs
show ip access-lists	Displays IP ACL entries
debug crypto ipsec	Displays IP IPsec events
debug crypto isakmp	Displays messages about IKE events

Job Aids

There are no job aids for this activity.

82 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Task 1: Set Up Lab Devices

In this task, you will complete the lab exercise setup by resetting router defaults, ensuring connectivity with other routers in the lab, and establishing connectivity to the CA server.

Activity Procedure

Complete these steps:

Step 1	Ensure that your student laptop is operating with the correct date and time.
--------	--

- **Step 2** Configure your student PC for IP address **10.0.P.12** with a default gateway of **10.0.P.2**. (where P = pod number).
- **Step 3** Restore the original course router configuration.
- **Step 4** Verify that you have connectivity with the peer pod router.

router# ping 172.30.Q.2

(where Q = peer pod number)

Step 5 Build a static route to the 172.26.26.0/24 network where the CA server is located.

router(config)# ip route 172.26.26.0 255.255.255.0 172.30.P.1
(where P = pod number)

Step 6 Ensure that you can connect to the CA server from your router.

router# **ping 172.26.26.51**

Step 7 Ensure that you can establish an HTTP session to the CA server. Test this capability from your Microsoft Windows 2000 Server by opening a web browser and entering the location: http://172.26.26.51/.

Activity Verification

You have completed this task when you attain these results:

■ You can successfully ping the 172.26.26.51 address (CA server) and your peer pod router.

© 2007 Cisco Systems, Inc.

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Task 2: Prepare for IPsec

In this task, you will prepare for configuring IPsec by determining the ISAKMP and IPsec policy, creating an ACL to allow IPsec traffic and verifying the time zone, date, and time on the router.

Activity Procedure

Complete these steps:

- **Step 1** Determine the ISAKMP and IPsec policy. In this lab exercise, you will use default values except when you are directed to enter a specific value.
 - The ISAKMP policy is to use RSA signature keys.
 - The IPsec policy is to use ESP mode with DES.
 - The IPsec policy is to encrypt all traffic between specified subnetworks.

Step 2 Create an ACL to allow IPsec protocols on the outside interface.

router# configure terminal router(config)# ip access-list extended 102 router(config-ext-nacl)# permit ahp host 172.30.P.2 host 172.30.Q.2 router(config-ext-nacl)# permit esp host 172.30.P.2 host 172.30.Q.2 router(config-ext-nacl)# permit udp host 172.30.P.2 host 172.30.Q.2 eq isakmp router(config-ext-nacl)# permit udp host 172.30.P.2 host 172.30.Q.2 eq 4500Step 3 Set the router time zone. router(config)# clock timezone CST -6 Step 4 Set the router date and time.

router# clock set hh:mm:ss day month year

Activity Verification

You have completed this task when you attain these results:

Issue a show clock and a show ip access-lists command. The output should be similar to this:

```
R1# show clock
23:21:24.007 CST Fri Sept 8 2006
R1# show ip access-lists
Extended IP access list 102
    10 permit ahp host 172.30.1.2 host 172.30.6.2
    20 permit esp host 172.30.1.2 host 172.30.6.2
    30 permit udp host 172.30.1.2 host 172.30.6.2 eq isakmp
    40 permit udp host 172.30.1.2 host 172.30.6.2 eq non500-isakmp
```

Task 3: Define the Router Host and Domain Name

In this task, you will give the router a hostname and define the router domain name. These will be used when generating your RSA key pairs and certificates.

Activity Procedure

Complete these steps:

Step 1	Give the router a hostname.	
	router(config)# hostname RP	
	(where P = pod number)	
Step 2	Define the router domain name.	
	<pre>router(config)# ip domain-name cisco.com</pre>	

Activity Verification

You have completed this task when you attain these results:

■ Issue a **show run** command. The output should contain the following:

```
!
hostname R<P>
ip domain name cisco.com
!
```

Task 4: Define Hostname-to-IP Address Mapping

In this task, you will define the CA server static hostname-to-IP address mapping.

Activity Procedure

Complete these steps:

Step 1 Define the CA server static hostname-to-IP address mapping.

router(config)# ip host vpnca 172.26.26.51

Activity Verification

You have completed this task when you attain these results:

■ Issue a **show run** command. The output should contain the following:

```
!
hostname R1
ip domain name cisco.com
ip host VPNCA 172.26.26.51
!
```

Task 5: Generate RSA Key Pairs

In this task, you will generate RSA keys.

Activity Procedure

Complete this step:

Step 1	Generate RSA keys.		
	<pre>router(config)# crypto key generate rsa</pre>		
Note	Follow the router prompts to complete the task. Use 512 for the number of bits for the modulus.		

Activity Verification

You have completed this task when you attain these results:

■ Issue a show crypto key mypubkey rsa command. The output should be similar to this:

```
R2# show crypto key mypubkey rsa
% Key pair was generated at: 08:27:16 CST Mar 8 2005
Key name: R2.cisco.com
Usage: Signature Key
Key is not exportable.
Key Data:
 305C300D 06092A86 4886F70D 01010105 00034B00 30480241 00D589C9 E077B874
 4E659CA9 8AFB7BCB 1AFB5534 6AFF4207 0B575271 543AC147 C34383AC F68FA0B0
  65153A9F 56725C8E D0BD5AA4 BB38A91D 3F10EC8D 8209FCB3 71020301 0001
% Key pair was generated at: 08:27:18 CST Mar 8 2005
Key name: R2.cisco.com
Usage: Encryption Key
Key is not exportable.
Key Data:
 305C300D 06092A86 4886F70D 01010105 00034B00 30480241 00B732F0 6AE5F0A5
  0DAA23D7 86595EE0 A2ECDCB9 EEF0079E 8878DEC7 6F12F304 0F1D0FA8 E3313317
 ECD5521C F82962F5 41903C39 BC26A362 C03D8221 CEE2A7A6 A1020301 0001
% Key pair was generated at: 08:27:27 CST Mar 8 2005
Key name: R2.cisco.com.server
Usage: Encryption Key
Key is not exportable.
 Key Data:
 307C300D 06092A86 4886F70D 01010105 00036B00 30680261 00AFBE5F 651AE624
 F220E6BD 473A6643 9D24644E 5034F6EF D9B1DB4F E96DCB48 727997ED 46DFC45E
  2FAE67C0 78A82788 D4A27D12 A96E472B D178A7A9 9A23E3E8 60275C72 56603867
      0DF75F9E A682F959 14AA0E1E EB4D49BA 41A2D002 33CA2A1C AD020301 0001
```

86 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Task 6: Configure the CA Server Trustpoint

In this task, you will configure the CA server trustpoint.

Activity Procedure

Complete these steps:

Step 1	Create a name for the CA and enter CA trustpoint mode.
	router(config)# crypto pki trustpoint vpnca
Step 2	Specify the URL of the CA.
	router(ca-trustpoint)# enrollment url http://vpnca
Step 3	Exit CA configuration mode.
	router(ca-trustpoint)# exit
Step 4	Authenticate the CA server.
	router(config)# crypto pki authenticate vpnca
You shou	ald see the following:
Certific	cate has the following attributes:
Fingerpı	cint: 527D8DCA 4D52A047 C8DA1DAD D5368629
% Do you	accept this certificate? [yes/no]: y
Step 5	Request your own certificate.
	router(config)# crypto pki enroll vpnca
You shoul	d see the following:
00	
% Start	certificate enrollment
% Create I	e a challenge password. You will need to verbally provide this password to the CA Administrator in order to revoke your
configur	For security reasons your password will not be saved in the ration.
Password	l: <mvpassword></mvpassword>
Re-enter	c password: < mypassword >
% The su	ubject name in the certificate will include: router1.cisco.com
% Includ	de the router serial number in the subject name? [yes/no]: no
% Includ	de an IP address in the subject name? [no]: no
Request	certificate from CA? [yes/no]: yes

% Certificate request sent to Certificate Authority

 $\$ The 'show crypto ca certificate vpnca verbose' command will show the fingerprint.

*Jul 24 17:07:15.403: CRYPTO_PKI: Certificate Request Fingerprint MD5: D35C6688

E6EBADEF 504EE6F2 BEC8FA13

^{© 2007} Cisco Systems, Inc.

```
*Jul 24 17:07:15.407: CRYPTO_PKI: Certificate Request Fingerprint
SHA1: 1A45EA0
A 6725B055 E84018FB 9DE5DD88 4E1C2CF5
*Jul 24 17:07:19.915: %PKI-6-CERTRET: Certificate received from
Certificate Authority
```

Step 6 Save the keys and certificates to NVRAM.

router# copy system:running-config nvram:startup-config

Activity Verification

You have completed this task when you attain these results:

```
Issue a show crypto pki certificates command. The output should be similar to this:
router1# show crypto pki certificates
Certificate
 Status: Available
 Certificate Serial Number: 02
 Certificate Usage: General Purpose
 Issuer:
    cn=vpnca
 Subject:
    Name: router1.cisco.com
    hostname=router1.cisco.com
 Validity Date:
    start date: 10:06:21 CST Jul 24 2006
          date: 10:06:21 CST Jul 24 2007
    end
 Associated Trustpoints: vpnca
 Storage: nvram:vpnca#6102.cer
  Certificate
    Status: Available
    Certificate Serial Number: 01
    Certificate Usage: Signature
    Issuer:
      cn=vpnca
    Subject:
      cn=vpnca
    Validity Date:
      start date: 09:33:21 CST Jul 24 2006
            date: 09:33:21 CST Jul 23 2009
      end
    Associated Trustpoints: vpnca
    Storage: nvram:vpnca#6101CA.cer
```

Task 7: Configure an ISAKMP Policy to Use RSA Signatures

In this task, you will configure an ISAKMP policy to use RSA signatures.

Activity Procedure

Complete these steps:

router# show crypto isakmp policy

Note If you see the message "ISAKMP is turned off," complete Step 2, then complete the rest of the steps. If ISAKMP is already enabled, skip Step 2.

R1# show cry	pto isakmp policy	
Global IKE po	olicy	
Default prot	ection suite	
encrykeys).	yption algorithm:	DES - Data Encryption Standard (56 bit
hash	algorithm:	Secure Hash Standard
auth	entication method:	Rivest-Shamir-Adleman Signature
Diff	ie-Hellman group:	#1 (768 bit)
	lifetime:	86400 seconds, no volume limit
Step 2	Enable IKE/ISAKMP or	n your router.
	router(config)# cr	ypto isakmp enable
Step 3	Create the policy and spe	ecify the policy priority.
	router(config)# cr	ypto isakmp policy 110
Step 4	Specify authentication to	o use RSA signatures.
	router(config-isak	mp)# authentication rsa-sig
Step 5	Specify the IKE encrypti	ion.
	router(config-isak	mp)# encryption 3des
Step 6	Specify the DH group.	
	router(config-isak	mp)# group 2
Step 7	Specify the hash algorith	ım.
	router(config-isak	mp)# hash md5
Step 8	Set the ISAKMP SA life	time.
	router(config-isak	mp)# lifetime 36000
Step 9	Exit ISAKMP policy con	nfiguration mode.
	router(config-isak	mp)# exit
Step 10	Configure the pre-shared	l key and peer address.

© 2007 Cisco Systems, Inc.

```
router(config)# crypto isakmp key 0 ciscol234 address
172.30.Q.2
(where Q = peer pod number)
```

Step 11 Exit configuration mode.

router(config)# end

Activity Verification

You have completed this task when you attain these results:

■ Issue a show crypto isakmp policy command. The output should be similar to this:

```
R1# show crypto isakmp policy
Global IKE policy
Protection suite of priority 110
        encryption algorithm:
                                Three key triple DES
        hash algorithm:
                                Message Digest 5
        authentication method: Rivest-Shamir-Adleman Signature
       Diffie-Hellman group:
                                #2 (1024 bit)
        lifetime:
                                36000 seconds, no volume limit
Default protection suite
        encryption algorithm:
                                DES - Data Encryption Standard (56 bit
keys).
        hash algorithm:
                                Secure Hash Standard
        authentication method:
                                Rivest-Shamir-Adleman Signature
        Diffie-Hellman group:
                                #1 (768 bit)
        lifetime:
                                86400 seconds, no volume limit
```

90 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Task 8: Configure an IPsec Transform Set

In this task, you will configure a transform set.

Activity Procedure

Complete these steps:

Step 1 Define a transform set. Use the following parameters:

- Transform name = **SNRS**
- ESP protocols = **esp-des**
- Mode = tunnel

```
router(config) # crypto ipsec transform-set SNRS esp-des
```

Step 2 Set the mode to tunnel.

router(cfg-crypto-trans)# mode tunnel

Step 3 Exit crypto transform configuration mode.

router(cfg-crypto-trans)# end

Activity Verification

You have completed this task when you attain these results:

• Issue a **show crypto ipsec transform-set** command. The output should be similar to this:

```
router# show crypto ipsec transform-set
```

```
Transform set SNRS: { esp-des }
```

```
will negotiate = { Tunnel, },
```

Task 9: Configure an IPsec Crypto ACL

In this task, you will create an ACL that "defines" traffic to protect. The ACL should encrypt traffic between the subnetworks that you specify. Use the following parameters:

- Traffic encrypted: Traffic between 10.0.P.0 and 10.0.Q.0
- ACL number: 101
- Protocol: **IP**

Activity Procedure

Complete these steps:

Step 1	Configure the crypto ACL.
	<pre>router(config)# ip access-list extended 101</pre>
	<pre>router(config-ext-nacl)# permit ip 10.0.P.0 0.0.0.255 10.0.Q.0 0.0.0.255</pre>
	(where $P = pod$ number, and $Q = peer pod number)$
Step 2	Exit ACL configuration mode.
	router(config-ext-nacl)# end

Activity Verification

You have completed this task when you attain these results:

■ Issue a show access-list command. The output should be similar to this:

```
R1# show ip access-lists
Extended IP access list 101
    10 permit ip 10.0.1.0 0.0.0.255 10.0.6.0 0.0.0.255
Extended IP access list 102
    10 permit ahp host 172.30.1.2 host 172.30.6.2
    20 permit esp host 172.30.1.2 host 172.30.6.2
    30 permit udp host 172.30.1.2 host 172.30.6.2 eq isakmp
    40 permit udp host 172.30.1.2 host 172.30.6.2 eq non500-isakmp
```

Task 10: Configure an IPsec Crypto Map

In this task, you will configure a crypto map. Use the following parameters:

- Name of map: **SNRS-MAP**
- Priority of map: 10
- Key exchange type: isakmp
- Peer: 172.30.Q.2
- Transform set: SNRS
- Match address: 101

92 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Activity Procedure

Complete these steps:

Step 1	Set the name of the map, the map priority, and the type of key exchange to be used.
	<pre>router(config) # crypto map SNRS-MAP 10 ipsec-isakmp</pre>
Step 2	Specify the extended ACL to use with this map.
	router1(config-crypto-map)# match address 101
Step 3	Specify the transform set that you defined earlier.
	router1(config-crypto-map)# set transform-set SNRS
Step 4	Specify the VPN peer using the hostname or IP address of the peer.
	<pre>router(config-crypto-map)# set peer 172.30.Q.2</pre>
	(where Q = peer pod number)
Step 5	Exit crypto map configuration mode.
	router(config-crypto-map)# end

Activity Verification

You have completed this task when you attain these results:

■ Issue a show crypto map command. The output should be similar to this:

R1# show crypto map

```
Crypto Map "SNRS-MAP" 10 ipsec-isakmp

Peer = 172.30.6.2

Extended IP access list 101

access-list 101 permit ip 10.0.1.0 0.0.0.255 10.0.6.0

0.0.0.255

Security association lifetime: 4608000 kilobytes/3600 seconds

PFS (Y/N): N

Transform sets={

SNRS,

}

Interfaces using crypto map SNRS-MAP:
```

Task 11: Apply the Crypto Map to an Interface

In this task, you will apply the crypto map to an interface. Use the following parameters:

- Interface to configure: FastEthernet 0/1
- Crypto map to use: **SNRS-MAP**

Activity Procedure

Complete these steps:

Step 1	Access interface configuration mode.	
	<pre>router(config)# interface FastEthernet 0/1</pre>	
Step 2	Assign a crypto map to the interface.	
	<pre>router(config-if)# crypto map SNRS-MAP</pre>	
X 7 1		

You should see the following message:

Jul 26 16:19:05.123: %CRYPTO-6-ISAKMP_ON_OFF: ISAKMP is ON

Step 3 Exit interface configuration mode.

router(config-if)# end

Activity Verification

You have completed this task when you attain these results:

Issue a show crypto map or show crypto map interface command. The output should be similar to this:

```
Rl# show crypto map interface fastEthernet 0/1
Crypto Map "SNRS-MAP" 10 ipsec-isakmp
    Peer = 172.30.6.2
    Extended IP access list 101
        access-list 101 permit ip 10.0.1.0 0.0.0.255 10.0.6.0
0.0.0.255
    Current peer: 172.30.6.2
    Security association lifetime: 4608000 kilobytes/3600 seconds
    PFS (Y/N): N
    Transform sets={
            SNRS,
        }
    Interfaces using crypto map SNRS-MAP:
            FastEthernet0/1
```

Task 12: Ensure That Encryption Is Working Between Routers

In this task, you will generate traffic from your internal subnet to your peer pod internal subnet to ensure that encryption is working between the routers.

Activity Procedure

Complete these steps:

Step 1 Generate interesting traffic using an extended ping. You will ping from the inside interface of your pod router to the inside interface of your peer pod router. You can also ping from your laptop to the laptop of your peer pod.

R1# ping

Protocol [ip]: Target IP address: 10.0.6.2 Repeat count [5]: 100 Datagram size [100]: Timeout in seconds [2]: Extended commands [n]: yes Source address or interface: 10.0.1.2 Type of service [0]: Set DF bit in IP header? [no]: Validate reply data? [no]: Data pattern [0xABCD]: Loose, Strict, Record, Timestamp, Verbose[none]: Sweep range of sizes [n]: Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 10.0.6.2, timeout is 2 seconds: Packet sent with a source address of 10.0.1.2 11111 Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms Display your ISAKMP SAs. Step 2 Step 3 Display your IPsec SAs

Activity Verification

You have completed this task when you attain these results:

• Verify that the IKE and IPsec SAs have been established.

R1# show	crypto isakmp	sa		
IPv4 Cryp	to ISAKMP SA			
dst	src	state	conn-id	slot status
172.30.6.	2 172.30	.1.2 QM_IDLE	1001	0 ACTIVE

^{© 2007} Cisco Systems, Inc.

```
IPv6 Crypto ISAKMP SA
R1# show crypto ipsec sa
interface: FastEthernet0/1
    Crypto map tag: SNRS-MAP, local addr 172.30.1.2
   protected vrf: (none)
   local ident (addr/mask/prot/port): (10.0.1.0/255.255.255.0/0/0)
   remote ident (addr/mask/prot/port): (10.0.6.0/255.255.255.0/0/0)
   current peer 172.30.6.2 port 500
     PERMIT, flags={origin is acl,}
    #pkts encaps: 6657, #pkts encrypt: 6657, #pkts digest: 6657
    #pkts decaps: 6656, #pkts decrypt: 6656, #pkts verify: 6656
    #pkts compressed: 0, #pkts decompressed: 0
    #pkts not compressed: 0, #pkts compr. failed: 0
    #pkts not decompressed: 0, #pkts decompress failed: 0
    #send errors 1, #recv errors 0
     local crypto endpt.: 172.30.1.2, remote crypto endpt.: 172.30.6.2
     path mtu 1500, ip mtu 1500
     current outbound spi: 0x1B029B45(453155653)
     inbound esp sas:
      spi: 0xD74582A5(3611656869)
        transform: esp-des ,
        in use settings ={Tunnel, }
        conn id: 2001, flow id: FPGA:1, crypto map: SNRS-MAP
        sa timing: remaining key lifetime (k/sec): (4565588/2901)
        IV size: 8 bytes
        replay detection support: N
        Status: ACTIVE
     inbound ah sas:
     inbound pcp sas:
     outbound esp sas:
      spi: 0x1B029B45(453155653)
        transform: esp-des ,
        in use settings ={Tunnel, }
        conn id: 2002, flow id: FPGA:2, crypto map: SNRS-MAP
```

sa timing: remaining key lifetime (k/sec): (4565588/2871)
IV size: 8 bytes
replay detection support: N
Status: ACTIVE

outbound ah sas:

outbound pcp sas:

© 2007 Cisco Systems, Inc.

Lab 4-3: Configure a GRE Tunnel to a Remote Site

Complete this lab activity to practice what you learned in the related module.

Activity Objective

In this activity, you will configure s Cisco perimeter router to use GRE tunnels. After completing this activity, you will be able to meet these objectives:

- Create a GRE tunnel and configure the source and destination addresses
- Configure GRE as the tunnel mode and bring up the interface
- Configure static routes
- Verify connectivity to a remote site

Visual Objective

The figure illustrates what you will accomplish in this activity.

Required Resources

These are the resources and equipment that are required to complete this activity:

- Student laptops
- Pod routers

98 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Command List

The table describes the commands that are used in this activity.

GRE Commands

Command	Description	
interface tunnel 0	Creates a tunnel and enters interface configuration mode	
ip address ip-address netmask	Assigns an IP address to an interface	
tunnel source source-ip source-net-mask	Specifies the tunnel interface source address and subnet mask	
tunnel destination <i>dest-ip dest-net-mask</i>	Specifies the tunnel interface destination address	
no shutdown	Brings up the tunnel interface	
ip route remote-network remote-mask tunnel number	Configures a static route to a remote subnet through the tunnel	
show ip interface brief	Views IP interface summary	
show ip route	Displays routing information for a host or network	
show interfaces tunnel <i>number</i>	Displays tunnel configuration	
ping ip-address	Checks network connectivity	

Job Aids

There are no job aids for this activity.

Task 1: Set Up Lab Devices

In this task, you will complete the lab exercise setup by resetting the router defaults and ensuring connectivity with the other routers in the lab.

Activity Procedure

Complete these steps:

- Ensure that your student laptop is operating with the correct date and time. Step 1
- Step 2 Configure your student PC for IP address **10.0.P.12** with a default gateway of **10.0.P.2**. (where P = pod number).
- Remove the crypto map from the interface. Step 3
- Verify that you have connectivity with the peer pod router. Step 4

router# ping 172.30.Q.2

(where Q = peer pod number)

Activity Verification

You have completed this task when you attain these results:

^{© 2007} Cisco Systems, Inc.

• Your output should resemble the following:

router# ping 172.30.6.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.30.6.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms

Task 2: Configure the Tunnel Interface, Source, and Destination

In this task, you will create the tunnel and configure the GRE tunnel source and destination addresses.

Activity Procedure

Other Pod

Complete these steps:

Step 1	Specify a tunnel interface number and enter interface configuration mode.	
	<pre>router(config)# interface tunnel 0</pre>	
Step 2	Configure an IP address and subnet mask on the tunnel interface.	
Note	Both tunnel interfaces must be on the same subnet.	
	router(config-if)# ip address 172.PQ.1.P 255.255.255.0	
	(where $P = your pod, Q = remote pod)$	
	<pre>router(config-if)# ip address 172.QP.1.Q 255.255.255.0</pre>	
	(Where P = your pod, Q = remote pod)	
Step 3	Specify the tunnel interface source address and subnet mask.	
	<pre>router(config-if)# tunnel source 172.30.P.2</pre>	
Note	This is your local outside interface.	
Step 4	Specify the tunnel interface destination address.	

router(config-if)# tunnel destination 172.30.Q.2 255.255.255.0

Activity Verification

You have completed this task when you attain these results:

• You will verify this activity after the next task.

100 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Task 3: Bring Up the Tunnel Interface

In this task, you will bring up the tunnel interface.

Activity Procedure

Complete these steps:

Step 1	Bring up the tunnel interface.	
	router(config-if)# no shutdown	
Step 2	Exit back to global configuration mode.	
	router(config-if)# exit	

Activity Verification

You have completed this task when you attain these results:

• The output of the **show** commands should be similar to this:

router# show ip interface	brief			
Interface Protocol	IP-Address	OK?	Method	Status
FastEthernet0/0 up	10.0.1.2	YES	NVRAM	up
FastEthernet0/1 up	172.30.1.2	YES	NVRAM	up
Tunnel0 up	172.16.1.1	YES	manual	up
router# show interf	aces tunnel 0			
Tunnel0 is up, line	protocol is up			
Hardware is Tunnel				
Internet address is 172.16.1.1/24				
MTU 1514 bytes, BW 9 Kbit, DLY 500000 usec,				
reliability 255/255, txload 1/255, rxload 1/255			1/255	
Encapsulation TUNNEL, loopback not set				
Keepalive not set				
Tunnel source 172.30.1.2, destination 172.30.2.2				
Tunnel protocol/transport GRE/IP				
Key disabled, sequencing disabled				
Checksumming of	packets disable	d		
Tunnel TTL 255				
Fast tunneling en	abled			
Tunnel transmit b	andwidth 8000 (k	bps)		
Tunnel receive ba	ndwidth 8000 (kb	ps)		

^{© 2007} Cisco Systems, Inc.

```
Last input never, output never, output hang never
Last clearing of "show interface" counters never
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops:
Queueing strategy: fifo
Output queue: 0/0 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
0 packets output, 0 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 output buffer failures, 0 output buffers swapped out
```

Task 4: Configure a Route to a Remote Network Through a Tunnel

In this task, you will configure static routes to the remote site.

Activity Procedure

Complete these steps:

Step 1	Configure a static route to the remote site subnets.	
	<pre>router(config) # ip route 10.0.Q.0 255.255.255.0 Tunnel 0</pre>	
Step 2	Exit to EXEC mode.	
	router(config)# exit	

Activity Verification

You have completed this task when you attain these results:

• The output of the **show ip route** command should be similar to this.

```
router2# show ip route 10.0.6.0
Routing entry for 10.0.6.0/24
Known via "static", distance 1, metric 0 (connected)
Redistributing via eigrp 1
Advertised by eigrp 1
Routing Descriptor Blocks:
 * directly connected, via Tunnel0
Route metric is 0, traffic share count is 1
```

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Task 5: Verify the Tunnel

In this task, you will verify connectivity to the remote site.

Activity Procedure

Complete these steps:

Step 1 Ping the other side of the tunnel.

R1# ping 172.16.1.6

Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.16.1.6, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

Step 2 Ping the remote subnet.

```
R1# ping 10.0.6.2
```

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.1.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4
ms.

Activity Verification

You have completed this task when you attain these results:

 Verify traffic on the tunnel by using the show interfaces tunnel command and checking if the counters increase.

```
Rl# show interfaces tunnel 0
Tunnel0 is up, line protocol is up
Hardware is Tunnel
Internet address is 172.16.1.1/24
MTU 1514 bytes, BW 9 Kbit, DLY 500000 usec,
    reliability 255/255, txload 1/255, rxload 1/255
Encapsulation TUNNEL, loopback not set
Keepalive not set
Tunnel source 172.30.1.2, destination 172.30.6.2
Tunnel protocol/transport GRE/IP
    Key disabled, sequencing disabled
    Checksumming of packets disabled
Tunnel TTL 255
Fast tunneling enabled
Tunnel transmit bandwidth 8000 (kbps)
```

^{© 2007} Cisco Systems, Inc.

```
Tunnel receive bandwidth 8000 (kbps)
Last input 00:03:34, output 00:03:34, output hang never
Last clearing of "show interface" counters never
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops:
Queueing strategy: fifo
Output queue: 0/0 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
145 packets input, 11500 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
50 packets output, 6200 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 output buffer failures, 0 output buffers swapped out
```

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Lab 4-4: Configure a DMVPN

Complete this lab activity to practice what you learned in the related module.

Activity Objective

In this activity, you will set up a DMVPN. After completing this activity, you will be able to meet these objectives:

- Set up lab devices
- Configure ISAKMP and IPsec policies to support a DMVPN
- Configure an IPsec profile
- Configure the hub router for mGRE and IPsec integration
- Configure the spoke routers for mGRE and IPsec integration
- Verify DMVPN operation

Visual Objective

The figure illustrates what you will accomplish in this activity.

Required Resources

These are the resources and equipment that are required to complete this activity:

- Student laptops
- Pod routers

© 2007 Cisco Systems, Inc.

Command List

The table describes the commands that are used in this activity.

DMVPN Commands

Command	Description		
crypto ipsec profile name	Specifies the name of the IPsec profile and enters IPsec profile configuration mode		
set transform-set transform-set-name	Specifies which transform sets can be used with the IPsec profile		
interface tunnel number	Configures a tunnel interface and enters interface configuration mode		
ip address <i>ip-address</i> mask	Sets a primary or secondary IP address for an interface		
ip mtu bytes	Sets the MTU size, in bytes, of IP packets sent on an interface		
<pre>ip nhrp authentication string</pre>	Configures the authentication string for an interface using NHRP		
ip nhrp map multicast dynamic	Allows NHRP to automatically add spoke routers to the multicast NHRP mappings		
ip nhrp network-id number	Enables NHRP on an interface		
<pre>tunnel source {ip-address type number}</pre>	Sets the source address for a tunnel interface		
tunnel key key-number	Enables an ID key for a tunnel interface		
tunnel mode gre multipoint	Sets the encapsulation mode to mGRE for the tunnel interface		
tunnel protection ipsec profile name	Associates a tunnel interface with an IPsec profile		
ip nhrp map hub-tunnel-ip- address hub-physical-ip- address	Statically configures the IP-to-NBMA address mapping of IP destinations connected to an NBMA network		
ip nhrp map multicast hub- physical-ip-address	Enables the use of a dynamic routing protocol between the spoke and hub, and sends multicast packets to the hub router		
ip nhrp nhs hub-tunnel-ip- address	Configures the hub router as the NHRP next-hop server		
show ip nhrp	Displays the NHRP cache		
show crypto isakmp sa	Displays all current IKE SAs		
show crypto ipsec sa	Displays the settings used by current SAs		
show crypto map	Displays the crypto map configuration		

Job Aids

There are no job aids for this activity.

106 Securing Networks with Cisco Routers and Switches (SNRS) v2.0
Task 1: Set Up Lab Devices

In this task, you will complete the lab exercise setup by resetting the router defaults and ensuring connectivity with the other routers in the lab.

Activity Procedure

Complete these steps:

- **Step 1** Ensure that your student laptop is operating with the correct date and time.
- **Step 2** Configure your student PC for IP address **10.0.P.12** with a default gateway of **10.0.P.2**. (where P = pod number).
- **Step 3** Remove the crypto map from the interface.
- **Step 4** Verify that you have connectivity with the peer pod routers.

router# ping 172.30.Q.2

router# ping 172.30.Q+1.2

(where Q = peer pod number)

Activity Verification

You have completed this task when you attain these results:

■ You can successfully ping the spoke routers.

Task 2: Configure ISAKMP and IPsec Policies on Routers

In this task, you will create ISAKMP and IPsec policies on all routers. You will configure your ISAKMP and IPsec policies just as you did with an IPsec site-to-site VPN using pre-shared keys.

Activity Procedure

Complete these steps:

Step 1	Set the policy priority and enter ISAKMP policy configuration mode.
	router(config)# crypto isakmp policy 20
Step 2	Set authentication to use pre-shared keys.
	router(config-isakmp)# authentication pre-share
Step 3	Set the hash algorithm.
	router(config-isakmp)# hash md5
Step 4	Exit the ISAKMP policy configuration mode.
	router(config-isakmp)# exit
Step 5	Exit configuration mode
Step 6	Create a transform set to use with the IPsec profile.
	<pre>router(config)# crypto ipsec transform-set DMVPN-Transform esp-des</pre>

Activity Verification

You have completed this task when you attain these results:

Issue a show crypto isakmp policy command and a show crypto ipsec transform command. Your output should be similar to this:

```
R1# show crypto isakmp policy
Global IKE policy
Protection suite of priority 20
        encryption algorithm:
                                DES - Data Encryption Standard (56
bit keys)
        hash algorithm:
                                Message Digest 5
        authentication method:
                                Pre-Shared Key
       Diffie-Hellman group:
                                #1 (768 bit)
                                86400 seconds, no volume limit
        lifetime:
Default protection suite
        encryption algorithm:
                                DES - Data Encryption Standard (56
bit keys)
        hash algorithm:
                                Secure Hash Standard
        authentication method: Rivest-Shamir-Adleman Signature
        Diffie-Hellman group:
                                #1 (768 bit)
        lifetime:
                                86400 seconds, no volume limit
```

```
router# show crypto ipsec transform-set
```

```
Transform set DMVPN-Transform: { esp-des }
will negotiate = { Tunnel, },
```

Task 3: Configure an IPsec Profile

In this task, you will create an IPsec profile.

Activity Procedure

Complete these steps:

Step 1 Create a profile and enter IPsec profile configuration mode.

router(config)# crypto ipsec profile DMVPN

Step 2 Specify which transform sets can be used with the IPSec profile.

router(ipsec-profile)# set transform-set DMVPN-Transform

Activity Verification

You have completed this task when you attain these results:

```
■ Issue a show crypto ipsec profile command. Your output should be similar to this:
```

```
router# show crypto ipsec profile
```

```
IPSEC profile DMVPN
```

```
Security association lifetime: 4608000 kilobytes/3600 seconds
PFS (Y/N): N
Transform sets={
            MINE,
}
```

© 2007 Cisco Systems, Inc.

Task 4: Configure the Hub for DMVPN

In this task, you will configure the hub router for mGRE and IPsec integration.

Activity Procedure

Complete these steps:

Step 1	Configure the ISAKMP pre-shared key to accept multiple addresses.
	<pre>router_hub(config)# crypto isakmp key 0 ciscol23 address 0.0.0.0 0.0.0.0</pre>
Step 2	Configure a tunnel interface and enter interface configuration mode.
	router_hub(config)# interface Tunnel 1
	You should see the following:
	*Jul 27 20:34:17.203: %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel1, changed state to down
Step 3	Set a primary or secondary IP address for the tunnel interface.
	router_hub(config-if)# ip address 172.16.H.H 255.255.255.0
	(where H = hub pod number)
Step 4	(Optional) Set the MTU size, in bytes, of IP packets.
	router_hub(config-if)# ip mtu 1416
Step 5	Change the EIGRP maximum hold time. It should not to exceed 7 times the EIGRP hello timer (35 seconds).
	<pre>router_hub(config-if)# ip hold-time eigrp 1 35</pre>
Step 6	Disable eigrp next-hop-self.
	router_hub(config-if)# no ip next-hop-self eigrp 1
Step 7	Turn off split horizon on the mGRE tunnel interface.
	<pre>router_hub(config-if)# no ip split-horizon eigrp 1</pre>
Note	Otherwise, EIGRP will not advertise routes that are learned via the mGRE interface back out that interface.
Step 8	Configure the authentication string for an interface using NHRP.
	router_hub(config-if)# ip nhrp authentication ciscol23
Step 9	Allow NHRP to automatically add spoke routers to the multicast NHRP mappings.
	router_hub(config-if)# ip nhrp map multicast dynamic
Step 10	Enable NHRP on the tunnel interface.
	router_hub(config-if)# ip nhrp network-id 99
Step 11	Set a source address for the tunnel interface.
	<pre>router_hub(config-if)# tunnel source FastEthernet 0/1</pre>

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Step 12 Enable an ID key for the tunnel interface.

router hub(config-if)# tunnel key 999

Step 13 Set the encapsulation mode to mGRE for the tunnel interface.

router_hub(config-if)# tunnel mode gre multipoint

You should see the following:

*Jul 27 20:45:27.199: %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel0, changed state to up

Step 14 Associate the tunnel interface with an IPsec profile.

router_hub(config-if)# tunnel protection ipsec profile DMVPN

You should see the following:

*Jul 27 20:46:20.079: %CRYPTO-6-ISAKMP_ON_OFF: ISAKMP is ON

Step 15 Return to global configuration mode.

router_hub(config-if)# exit

Step 16 Enter EIGRP configuration mode.

router_hub(config)# router eigrp 1

Step 17 Specify networks to advertise.

router_hub(config-router)# network 10.0.P.0
router_hub(config-router)# network 172.16.0.0
router hub(config-router)# no network 172.30.0.0

Step 18 Disable auto summarization.

router_hub(config-router)# no auto-summary

Step 19 Return to privileged EXEC mode.

router hub(config-router)# exit

Step 20 Remove any static routes to spoke internal networks.

router_hub(config) # no ip route 10.0.Q.0 FastEthernet 0/1
router hub(config) # no ip route 10.0.Q+1.0 FastEthernet 0/1

Step 21 Add static routes to spokes.
router_hub(config) # ip route 172.30.6.0 255.255.255.0
172.30.P.1
router_hub(config) # ip route 172.30.7.0 255.255.255.0
172.30.P.1

© 2007 Cisco Systems, Inc.

Activity Verification

You have completed this task when you attain these results:

```
■ Issue a show crypto map command. Your output should look like this:
router hub# show crypto map
Crypto Map "MYMAP" 10 ipsec-isakmp
        Peer = 172.30.6.2
        Extended IP access list vpn
            access-list vpn permit ip host 172.30.1.2 host 172.30.6.2
        Current peer: 172.30.6.2
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
                 MINE,
        Interfaces using crypto map MYMAP:
Crypto Map "Tunnel0-head-0" 65536 ipsec-isakmp
        Profile name: DMVPN
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
                 DMVPN,
        3
        Interfaces using crypto map Tunnel0-head-0:
                Tunnel0
```

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Task 5: Configure the Spokes for DMVPN

In this task, you will configure spoke routers for mGRE and IPsec integration.

Activity Procedure

Complete these steps:

Step 1	Configure the ISAKMP pre-shared key.
	<pre>router_spoke(config)# crypto isakmp key 0 ciscol23 address 0.0.0.0 0.0.0.0</pre>
	(where H = hub pod number)
Step 2	Configure a tunnel interface and enter interface configuration mode.
	<pre>router_spoke(config)# interface Tunnel 0</pre>
Step 3	Set a primary or secondary IP address for the tunnel interface.
	<pre>router_spoke(config-if)# ip address 172.16.H.2 255.255.255.0</pre>
	(where H = hub pod number)
Step 4	(Optional) Set the MTU size, in bytes, of IP packets.
	router_spoke(config-if)# ip mtu 1416
Step 5	Change the EIGRP maximum hold time.
	<pre>router_spoke(config-if)# ip hold-time eigrp 1 35</pre>
Step 6	Disable eigrp next-hop-self.
	router_spoke(config-if)# no ip next-hop-self eigrp 1
Step 7	Disable split horizon.
	router_spoke(config-if)# no ip split-horizon eigrp 1
Step 8	Configure the authentication string for an interface using NHRP.
	<pre>router_spoke(config-if)# ip nhrp authentication ciscol23</pre>
Step 9	Statically configure the IP-to-NBMA address mapping of an IP destination connected to an NBMA network.
	router_spoke(config-if)# ip nhrp map 172.16.H.H 172.30.H.2
	(where H = hub pod number)
Step 10	Enable the use of a dynamic routing protocol between the spoke and hub, and send multicast packets to the hub router.
	<pre>router_spoke(config-if)# ip nhrp map multicast 172.30.H.2</pre>
	(where H = hub pod number)
Step 11	Configure the hub router as the NHRP next-hop server.
	router_spoke(config-if)# ip nhrp nhs 172.16.H.H
	(where H = hub pod number)
Step 12	Enable NHRP on the interface.
	<pre>router_spoke(config-if)# ip nhrp network-id 99</pre>

© 2007 Cisco Systems, Inc.

Step 13	Set the source address for the tunnel interface.
	<pre>router_spoke(config-if)# tunnel source FastEthernet 0/1</pre>
Step 14	Enable an ID key for the tunnel interface.
	<pre>router_spoke(config-if)# tunnel key 999</pre>
Step 15	Set the encapsulation mode to mGRE for the tunnel interface.
	router_spoke(config-if)# tunnel mode gre multipoint
Step 16	Associates a tunnel interface with an IPsec profile.
	<pre>router_spoke(config-if) # tunnel protection ipsec profile DMVPN</pre>
Step 17	Return to global configuration mode.
	router_spoke(config-if)# exit
Step 18	Enter EIGRP configuration mode.
	router_hub(config)# router eigrp 1
Step 19	Specify networks to advertise.
	router_spoke(config-router)# network 10.0.Q.0
	<pre>router_spoke(config-router)# network 172.16.0.0</pre>
	<pre>router_spoke(config-router)# no network 172.30.0.0</pre>
Step 20	Disable auto summarization.
	router_spoke(config-router)# no auto-summary
Step 21	Configure the router as a stub and to advertise connected networks.
	router_spoke(config-router)# eigrp stub connected
Step 22	Return to privileged EXEC mode.
	router_spoke(config-router)# exit
Step 23	Remove any static routes to other spokes or hubs.
	<pre>router_spoke(config)# no ip route 10.0.Q.0</pre>
	<pre>router_spoke(config)# no ip route 10.0.P+1.0</pre>
Step 24	Configure static routes to other pods.
	router_spoke(config)# ip route 172.30.Q.0 255.255.255.0 172.30.P.1
	router_spoke(config)# ip route 172.30.P+1.0 255.255.255.0 172.30.P.1

Activity Verification

You have completed this task when you attain these results:

```
Issue a show crypto map command. Your output should look like this:
router spoke# show crypto map
Crypto Map "MYMAP" 10 ipsec-isakmp
        Peer = 172.30.1.2
        Extended IP access list vpn
            access-list vpn permit ip host 172.30.1.2 host 172.30.6.2
        Current peer: 172.30.6.2
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
                DMVPN,
        }
        Interfaces using crypto map MYMAP:
Crypto Map "Tunnel0-head-0" 65536 ipsec-isakmp
        Profile name: DMVPN
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
                MINE,
        }
Crypto Map "Tunnel0-head-0" 65537 ipsec-isakmp
        Map is a PROFILE INSTANCE.
        Peer = 172.30.6.2
        Extended IP access list
            access-list permit gre host 172.30.1.2 host 172.30.6.2
        Current peer: 172.30.1.2
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
                DMVPN,
        }
        Interfaces using crypto map Tunnel0-head-0:
                Tunnel0
```

Task 5: Test and Verify

In this task, you will verify that the DMVPN feature is working.

Activity Procedure

Complete these steps:

Step 1 Perform an extended ping from the internal interface of one spoke router to the internal interface of the other spoke router.

```
R6#ping
Protocol [ip]:
Target IP address: 10.0.7.2
Repeat count [5]:
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]: y
Source address or interface: 10.0.6.2
Type of service [0]:
Set DF bit in IP header? [no]:
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.0.7.2, timeout is 2 seconds:
Packet sent with a source address of 10.0.1.2
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms
Step 2
        Display the crypto map configuration.
        router# show crypto map
        Display the current IKE SAs.
Step 3
Step 4
        router# show crypto isakmp sa
Step 5
        Display the settings used by the current SAs.
        router# show crypto ipsec sa
Step 6
        Display the NHRP cache.
        router# show ip nhrp
```

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Activity Verification

You have completed this task when you attain these results:

 Issue the commands listed in the Activity Procedure section. Your results should be similar to what follows.

On the Hub Router

Before pinging the spoke routers, your output should look like this:

```
hub# show crypto map
Crypto Map "Tunnel0-head-0" 65536 ipsec-isakmp
        Profile name: DMVPN
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
                MINE,
        }
Crypto Map "Tunnel0-head-0" 65539 ipsec-isakmp
        Map is a PROFILE INSTANCE.
        Peer = 172.30.1.5
        Extended IP access list
            access-list permit gre host 172.30.1.2 host 172.30.6.2
        Current peer: 172.30.1.5
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
                MINE,
        }
Crypto Map "Tunnel0-head-0" 65540 ipsec-isakmp
        Map is a PROFILE INSTANCE.
        Peer = 172.30.6.2
        Extended IP access list
            access-list permit gre host 172.30.1.2 host 172.30.6.2
        Current peer: 172.30.6.2
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
                MINE,
        }
        Interfaces using crypto map Tunnel0-head-0:
                Tunnel0
```

© 2007 Cisco Systems, Inc.

hub# show ip nhrp

```
172.16.16.6/32 via 172.16.16.6, Tunnel0 created 01:12:15, expire
01:27:44
Type: dynamic, Flags: unique nat registered
NBMA address: 172.30.1.5
172.16.16.7/32 via 172.16.16.7, Tunnel0 created 00:55:34, expire
01:44:25
Type: dynamic, Flags: unique registered
NBMA address: 172.30.1.6
```

hub# show crypto isakmp sa

IPv4 Crypto ISAKMP SA

dst	src	state	conn-id	slot	status
172.30.1.2	172.30.6.2	QM_IDLE	1003	0	ACTIVE
172.30.1.2	172.30.7.2	QM_IDLE	1004	0	ACTIVE

IPv6 Crypto ISAKMP SA

hub# show crypto ipsec sa

```
interface: Tunnel0
```

Crypto map tag: Tunnel0-head-0, local addr 172.30.1.2

```
protected vrf: (none)
local ident (addr/mask/prot/port):
(172.30.1.2/255.255.255.255/47/0)
remote ident (addr/mask/prot/port):
(172.30.1.6/255.255.255.255/47/0)
current_peer 172.30.1.6 port 500
PERMIT, flags={origin_is_acl,}
#pkts encaps: 3, #pkts encrypt: 3, #pkts digest: 3
#pkts decaps: 3, #pkts decrypt: 3, #pkts verify: 3
#pkts compressed: 0, #pkts decompressed: 0
#pkts not compressed: 0, #pkts compr. failed: 0
#pkts not decompressed: 0, #pkts decompress failed: 0
#send errors 0, #recv errors 0
local crypto endpt.: 172.30.1.2, remote crypto endpt.: 172.30.1.6
```

path mtu 1500, ip mtu 1500 current outbound spi: 0x6B4D9B3F(1800248127)

inbound esp sas:

118 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

```
spi: 0xBDBA0F87(3183087495)
```

transform: esp-des ,

On the Spoke1 Router

```
spoke1# show crypto map
Crypto Map "Tunnel0-head-0" 65536 ipsec-isakmp
        Profile name: DMVPN
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
                MINE,
        }
Crypto Map "Tunnel0-head-0" 65537 ipsec-isakmp
        Map is a PROFILE INSTANCE.
        Peer = 172.30.1.2
        Extended IP access list
            access-list permit gre host 172.30.1.5 host 172.30.1.2
        Current peer: 172.30.1.2
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
                MINE,
        }
        Interfaces using crypto map Tunnel0-head-0:
                Tunnel0
spoke1# show ip nhrp
172.16.16.1/32 via 172.16.16.1, Tunnel0 created 01:18:26, never expire
  Type: static, Flags: nat used
 NBMA address: 172.30.1.2
spoke1# show crypto isakmp sa
IPv4 Crypto ISAKMP SA
                                                conn-id slot status
dst
                src
                                state
172.30.1.2
                172.30.1.5
                                QM IDLE
                                                   1003
                                                           0 ACTIVE
IPv6 Crypto ISAKMP SA
```

spoke1# show crypto ipsec sa

© 2007 Cisco Systems, Inc.

```
Interface: Tunnel0
   Crypto map tag: Tunnel0-head-0, local addr 172.30.1.5
  protected vrf: (none)
  local ident (addr/mask/prot/port):
(172.30.1.5/255.255.255.255/47/0)
  remote ident (addr/mask/prot/port):
(172.30.1.2/255.255.255.255/47/0)
  current peer 172.30.1.2 port 500
    PERMIT, flags={origin is acl,}
   #pkts encaps: 23, #pkts encrypt: 23, #pkts digest: 23
   #pkts decaps: 21, #pkts decrypt: 21, #pkts verify: 21
   #pkts compressed: 0, #pkts decompressed: 0
   #pkts not compressed: 0, #pkts compr. failed: 0
   #pkts not decompressed: 0, #pkts decompress failed: 0
   #send errors 0, #recv errors 0
    local crypto endpt.: 172.30.1.5, remote crypto endpt.: 172.30.1.2
    path mtu 1500, ip mtu 1500
    current outbound spi: 0x26E1DFA(40771066)
    inbound esp sas:
      spi: 0x13F1E21C(334619164)
        transform: esp-des ,
        in use settings ={Tunnel, }
        conn id: 2011, flow id: FPGA:11, crypto map: Tunnel0-head-0
        sa timing: remaining key lifetime (k/sec): (4554551/2336)
        IV size: 8 bytes
        replay detection support: N
        Status: ACTIVE
     inbound ah sas:
    inbound pcp sas:
    outbound esp sas:
      spi: 0x26E1DFA(40771066)
        transform: esp-des ,
        in use settings ={Tunnel, }
        conn id: 2012, flow_id: FPGA:12, crypto map: Tunnel0-head-0
        sa timing: remaining key lifetime (k/sec): (4554551/2311)
```

IV size: 8 bytes replay detection support: N Status: ACTIVE

outbound ah sas:

outbound pcp sas:

After Ping from Spoke2

```
spoke1# show crypto map
Crypto Map "Tunnel0-head-0" 65536 ipsec-isakmp
        Profile name: DMVPN
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
                MINE,
        }
Crypto Map "Tunnel0-head-0" 65537 ipsec-isakmp
        Map is a PROFILE INSTANCE.
        Peer = 172.30.1.2
        Extended IP access list
            access-list permit gre host 172.30.1.5 host 172.30.1.2
        Current peer: 172.30.1.2
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
                MINE,
        }
Crypto Map "Tunnel0-head-0" 65538 ipsec-isakmp
        Map is a PROFILE INSTANCE.
        Peer = 172.30.1.6
        Extended IP access list
            access-list permit gre host 172.30.1.5 host 172.30.1.6
        Current peer: 172.30.1.6
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
                MINE,
        }
```

© 2007 Cisco Systems, Inc.

```
Interfaces using crypto map Tunnel0-head-0:
Tunnel0
```

spoke1# show ip nhrp

172.16.16.1/32 via 172.16.16.1, Tunnel0 created 01:32:20, never expire
Type: static, Flags: nat used
NBMA address: 172.30.1.2
172.16.16.6/32 via 172.16.16.6, Tunnel0 created 00:06:52, expire

01:53:07

Type: dynamic, Flags: router unique nat local

NBMA address: 172.30.1.5

(no-socket)

172.16.16.7/32 via 172.16.16.7, Tunnel0 created 00:06:53, expire 01:53:07

Type: dynamic, Flags: router implicit

NBMA address: 172.30.1.6

spoke1# show crypto isakmp sa

IPv4 Crypto ISAKMP SA

dst	src	state	conn-id	slot	status
172.30.1.6	172.30.1.5	QM_IDLE	1005	0	ACTIVE
172.30.1.2	172.30.1.5	QM_IDLE	1003	0	ACTIVE

IPv6 Crypto ISAKMP SA

spoke1# show crypto ipsec sa

```
interface: Tunnel0
```

Crypto map tag: Tunnel0-head-0, local addr 172.30.1.5

```
protected vrf: (none)
local ident (addr/mask/prot/port):
(172.30.1.5/255.255.255.255/47/0)
remote ident (addr/mask/prot/port):
(172.30.1.6/255.255.255.255/47/0)
current_peer 172.30.1.6 port 500
PERMIT, flags={origin_is_acl,}
#pkts encaps: 1, #pkts encrypt: 1, #pkts digest: 1
#pkts decaps: 0, #pkts decrypt: 0, #pkts verify: 0
#pkts compressed: 0, #pkts decompressed: 0
#pkts not compressed: 0, #pkts compr. failed: 0
#pkts not decompressed: 0, #pkts decompress failed: 0
#send errors 0, #recv errors 0
```

122 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

```
local crypto endpt.: 172.30.1.5, remote crypto endpt.: 172.30.1.6
    path mtu 1500, ip mtu 1500
    current outbound spi: 0xE937D794(3912750996)
    inbound esp sas:
     spi: 0x42C40F9B(1120145307)
       transform: esp-des ,
       in use settings ={Tunnel, }
       conn id: 2013, flow id: FPGA:13, crypto map: Tunnel0-head-0
       sa timing: remaining key lifetime (k/sec): (4579214/3120)
       IV size: 8 bytes
       replay detection support: N
       Status: ACTIVE
    inbound ah sas:
    inbound pcp sas:
    outbound esp sas:
     spi: 0xE937D794(3912750996)
       transform: esp-des ,
       in use settings ={Tunnel, }
       conn id: 2014, flow id: FPGA:14, crypto map: Tunnel0-head-0
       sa timing: remaining key lifetime (k/sec): (4579213/3109)
       IV size: 8 bytes
       replay detection support: N
       Status: ACTIVE
    outbound ah sas:
    outbound pcp sas:
  protected vrf: (none)
  local ident (addr/mask/prot/port):
(172.30.1.5/255.255.255.255/47/0)
  remote ident (addr/mask/prot/port):
(172.30.1.2/255.255.255.255/47/0)
  current peer 172.30.1.2 port 500
    PERMIT, flags={origin is acl,}
   #pkts encaps: 29, #pkts encrypt: 29, #pkts digest: 29
   #pkts decaps: 28, #pkts decrypt: 28, #pkts verify: 28
```

© 2007 Cisco Systems, Inc.

```
#pkts compressed: 0, #pkts decompressed: 0
    #pkts not compressed: 0, #pkts compr. failed: 0
    #pkts not decompressed: 0, #pkts decompress failed: 0
    #send errors 0, #recv errors 0
     local crypto endpt.: 172.30.1.5, remote crypto endpt.: 172.30.1.2
     path mtu 1500, ip mtu 1500
     current outbound spi: 0x26E1DFA(40771066)
     inbound esp sas:
      spi: 0x13F1E21C(334619164)
        transform: esp-des ,
        in use settings ={Tunnel, }
                conn id: 2011, flow id: FPGA:11, crypto map: Tunnel0-
head-0
        sa timing: remaining key lifetime (k/sec): (4554549/1467)
        IV size: 8 bytes
        replay detection support: N
        Status: ACTIVE
     inbound ah sas:
     inbound pcp sas:
     outbound esp sas:
      spi: 0x26E1DFA(40771066)
        transform: esp-des ,
        in use settings ={Tunnel, }
        conn id: 2012, flow id: FPGA:12, crypto map: Tunnel0-head-0
        sa timing: remaining key lifetime (k/sec): (4554549/1459)
        IV size: 8 bytes
        replay detection support: N
        Status: ACTIVE
     outbound ah sas:
     outbound pcp sas:
spoke1# show interfaces tunnel 0
Tunnel0 is up, line protocol is up
  Hardware is Tunnel
```

124 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

```
Internet address is 172.16.16.6/24
MTU 1514 bytes, BW 9 Kbit, DLY 500000 usec,
   reliability 255/255, txload 1/255, rxload 1/255
Encapsulation TUNNEL, loopback not set
Keepalive not set
Tunnel source 172.30.1.5 (FastEthernet0/1), destination UNKNOWN
Tunnel protocol/transport multi-GRE/IP
  Key 0x3E7, sequencing disabled
  Checksumming of packets disabled
Fast tunneling enabled
Tunnel transmit bandwidth 8000 (kbps)
Tunnel receive bandwidth 8000 (kbps)
Tunnel protection via IPSec (profile "DMVPN")
Last input 00:09:16, output 00:09:15, output hang never
Last clearing of "show interface" counters 00:14:02
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops:
Queueing strategy: fifo
Output queue: 0/0 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
     6 packets input, 776 bytes, 0 no buffer
     Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     6 packets output, 804 bytes, 0 underruns
     0 output errors, 0 collisions, 0 interface resets
     0 output buffer failures, 0 output buffers swapped out
```

0

On the Spoke2 Router

```
Before pinging other the pods, your output should look like this:
spoke2# show crypto map
spoke2#show crypto map
Crypto Map "Tunnel0-head-0" 65536 ipsec-isakmp
        Profile name: DMVPN
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
                MINE,
        }
Crypto Map "Tunnel0-head-0" 65537 ipsec-isakmp
        Map is a PROFILE INSTANCE.
        Peer = 172.30.1.2
        Extended IP access list
            access-list permit gre host 172.30.1.6 host 172.30.1.2
        Current peer: 172.30.1.2
        Security association lifetime: 4608000 kilobytes/3600 seconds
        PFS (Y/N): N
        Transform sets={
                MINE,
        }
        Interfaces using crypto map Tunnel0-head-0:
                Tunnel0
spoke2# show ip nhrp
172.16.16.1/32 via 172.16.16.1, Tunnel0 created 00:03:26, never expire
  Type: static, Flags: authoritative used
  NBMA address: 172.30.1.2
spoke2# show crypto isakmp sa
spoke2#show crypto isakmp sa
dst
                                                conn-id slot status
                src
                                 state
172.30.1.2
                172.30.1.6
                                 QM IDLE
                                                       3
                                                            0 ACTIVE
spoke2# show crypto ipsec sa
interface: Tunnel0
    Crypto map tag: Tunnel0-head-0, local addr 172.30.1.6
```

126 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

```
protected vrf: (none)
  local ident (addr/mask/prot/port):
(172.30.1.6/255.255.255.255/47/0)
  remote ident (addr/mask/prot/port):
(172.30.1.2/255.255.255.255/47/0)
  current peer 172.30.1.2 port 500
    PERMIT, flags={origin is acl,}
   #pkts encaps: 3, #pkts encrypt: 3, #pkts digest: 3
   #pkts decaps: 3, #pkts decrypt: 3, #pkts verify: 3
   #pkts compressed: 0, #pkts decompressed: 0
   #pkts not compressed: 0, #pkts compr. failed: 0
   #pkts not decompressed: 0, #pkts decompress failed: 0
   #send errors 0, #recv errors 0
    local crypto endpt.: 172.30.1.6, remote crypto endpt.: 172.30.1.2
    path mtu 1500, ip mtu 1500
    current outbound spi: 0xBDBA0F87(3183087495)
    inbound esp sas:
     spi: 0x6B4D9B3F(1800248127)
       transform: esp-des ,
       in use settings ={Tunnel, }
       conn id: 3002, flow id: FPGA:2, crypto map: Tunnel0-head-0
       sa timing: remaining key lifetime (k/sec): (4585714/964)
       IV size: 8 bytes
       replay detection support: N
       Status: ACTIVE
    inbound ah sas:
    inbound pcp sas:
    outbound esp sas:
     spi: 0xBDBA0F87(3183087495)
       transform: esp-des ,
       in use settings ={Tunnel, }
       conn id: 3003, flow id: FPGA:3, crypto map: Tunnel0-head-0
       sa timing: remaining key lifetime (k/sec): (4585714/946)
       IV size: 8 bytes
       replay detection support: N
```

© 2007 Cisco Systems, Inc.

```
Status: ACTIVE
```

outbound ah sas:

outbound pcp sas:

```
spoke2# show interfaces tunnel 0
Tunnel0 is up, line protocol is up
 Hardware is Tunnel
  Internet address is 172.16.16.7/24
 MTU 1514 bytes, BW 9 Kbit, DLY 500000 usec,
     reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation TUNNEL, loopback not set
 Keepalive not set
 Tunnel source 172.30.1.6 (FastEthernet0/1), destination UNKNOWN
  Tunnel protocol/transport multi-GRE/IP, key 0x3E7, sequencing
disabled
 Checksumming of packets disabled, fast tunneling enabled
 Tunnel transmit bandwidth 8000 (kbps)
 Tunnel receive bandwidth 8000 (kbps)
 Tunnel protection via IPSec (profile "DMVPN")
 Last input 00:06:09, output 00:06:09, output hang never
 Last clearing of "show interface" counters 00:00:10
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops:
\cap
 Queueing strategy: fifo
 Output queue: 0/0 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     0 packets input, 0 bytes, 0 no buffer
    Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     0 packets output, 0 bytes, 0 underruns
     0 output errors, 0 collisions, 0 interface resets
     0 output buffer failures, 0 output buffers swapped out
```

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

After Pings to Spoke1

spoke2# ping 172.16.16.6

```
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.16.6, timeout is 2 seconds:
!!!!!
```

spoke2# show ip nhrp

172.16.16.1/32 via 172.16.16.1, Tunnel0 created 01:08:52, never expire
Type: static, Flags: authoritative used
NBMA address: 172.30.1.2
172.16.16.6/32 via 172.16.16.6, Tunnel0 created 00:00:06, expire
01:59:54
Type: dynamic, Flags: router
NBMA address: 172.30.1.5

spoke2# show crypto isakmp sa

dst	src	state	conn-id	slot	status
172.30.1.2	172.30.1.6	QM_IDLE	3	0	ACTIVE
172.30.1.6	172.30.1.5	QM_IDLE	4	0	ACTIVE

spoke2# show crypto ipsec sa

interface: Tunnel0

Crypto map tag: Tunnel0-head-0, local addr 172.30.1.6

```
protected vrf: (none)
local ident (addr/mask/prot/port):
(172.30.1.6/255.255.255.255.47/0)
remote ident (addr/mask/prot/port):
(172.30.1.2/255.255.255.255.47/0)
current_peer 172.30.1.2 port 500
PERMIT, flags={origin_is_acl,}
#pkts encaps: 9, #pkts encrypt: 9, #pkts digest: 9
#pkts decaps: 8, #pkts decrypt: 8, #pkts verify: 8
#pkts compressed: 0, #pkts decompressed: 0
#pkts not compressed: 0, #pkts compr. failed: 0
#pkts not decompressed: 0, #pkts decompress failed: 0
#send errors 0, #recv errors 0
local crypto endpt.: 172.30.1.6, remote crypto endpt.: 172.30.1.2
path mtu 1500, ip mtu 1500
```

© 2007 Cisco Systems, Inc.

Lab Guide 129

```
current outbound spi: 0x14077AE8(336034536)
    inbound esp sas:
     spi: 0x304A295A(810166618)
       transform: esp-des ,
       in use settings ={Tunnel, }
       conn id: 3004, flow id: FPGA:4, crypto map: Tunnel0-head-0
       sa timing: remaining key lifetime (k/sec): (4397274/2869)
       IV size: 8 bytes
       replay detection support: N
       Status: ACTIVE
     inbound ah sas:
    inbound pcp sas:
    outbound esp sas:
     spi: 0x14077AE8(336034536)
       transform: esp-des ,
       in use settings ={Tunnel, }
       conn id: 3001, flow id: FPGA:1, crypto map: Tunnel0-head-0
       sa timing: remaining key lifetime (k/sec): (4397274/2843)
       IV size: 8 bytes
       replay detection support: N
       Status: ACTIVE
    outbound ah sas:
    outbound pcp sas:
  protected vrf: (none)
  local ident (addr/mask/prot/port):
(172.30.1.6/255.255.255.255/47/0)
  remote ident (addr/mask/prot/port):
(172.30.1.5/255.255.255.255/47/0)
  current peer 172.30.1.5 port 500
    PERMIT, flags={origin is acl,}
   #pkts encaps: 0, #pkts encrypt: 0, #pkts digest: 0
   #pkts decaps: 1, #pkts decrypt: 1, #pkts verify: 1
   #pkts compressed: 0, #pkts decompressed: 0
   #pkts not compressed: 0, #pkts compr. failed: 0
   #pkts not decompressed: 0, #pkts decompress failed: 0
```

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

```
#send errors 0, #recv errors 0
     local crypto endpt.: 172.30.1.6, remote crypto endpt.: 172.30.1.5
     path mtu 1500, ip mtu 1500
     current outbound spi: 0x42C40F9B(1120145307)
     inbound esp sas:
      spi: 0xE937D794(3912750996)
        transform: esp-des ,
        in use settings ={Tunnel, }
        conn id: 3003, flow id: FPGA:3, crypto map: Tunnel0-head-0
        conn id: 3003, flow id: FPGA:3, crypto map: Tunnel0-head-0
        sa timing: remaining key lifetime (k/sec): (4402655/3483)
        IV size: 8 bytes
        replay detection support: N
        Status: ACTIVE
     inbound ah sas:
     inbound pcp sas:
     outbound esp sas:
      spi: 0x42C40F9B(1120145307)
        transform: esp-des ,
        in use settings ={Tunnel, }
        conn id: 3002, flow id: FPGA:2, crypto map: Tunnel0-head-0
        sa timing: remaining key lifetime (k/sec): (4402656/3473)
        IV size: 8 bytes
        replay detection support: N
        Status: ACTIVE
     outbound ah sas:
     outbound pcp sas:
spoke2# show interfaces tunnel 0
Tunnel0 is up, line protocol is up
  Hardware is Tunnel
  Internet address is 172.16.16.7/24
  MTU 1514 bytes, BW 9 Kbit, DLY 500000 usec,
```

^{© 2007} Cisco Systems, Inc.

```
reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation TUNNEL, loopback not set
 Keepalive not set
 Tunnel source 172.30.1.6 (FastEthernet0/1), destination UNKNOWN
  Tunnel protocol/transport multi-GRE/IP, key 0x3E7, sequencing
disabled
 Checksumming of packets disabled, fast tunneling enabled
 Tunnel transmit bandwidth 8000 (kbps)
 Tunnel receive bandwidth 8000 (kbps)
 Tunnel protection via IPSec (profile "DMVPN")
 Last input 00:02:11, output 00:02:11, output hang never
 Last clearing of "show interface" counters 00:36:12
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops:
0
 Queueing strategy: fifo
 Output queue: 0/0 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     7 packets input, 940 bytes, 0 no buffer
    Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
     7 packets output, 864 bytes, 0 underruns
     0 output errors, 0 collisions, 0 interface resets
     0 output buffer failures, 0 output buffers swapped out
```

Lab 4-5: Configure a Cisco IOS SSL VPN (WebVPN)

Complete this lab activity to practice what you learned in the related module.

Activity Objective

In this activity, you will configure a Cisco router for Cisco IOS SSL VPN clientless access. After completing this activity, you will be able to meet these objectives:

- Set up lab devices
- Configure AAA for WebVPN
- Configure DNS for WebVPN
- Configure certificates and trustpoints for WebVPN
- Configure a WebVPN gateway
- Configure a WebVPN context
- Verify WebVPN operation

Visual Objective

The figure illustrates what you will accomplish in this activity.

© 2007 Cisco Systems, Inc.

Required Resources

These are the resources and equipment that are required to complete this activity:

- Student laptops
- Pod routers
- External web server (Super Server)

Command List

The table describes the commands that are used in this activity.

WebVPN Commands

Command	Description
username name password 0 password	Create a user and password in the local database.
aaa new-model	Enable AAA
aaa authentication login default local	Specifies the default authentication method.
ip domain name name	Specifies a domain name to be used with its certificate
ip host host-name ip- address	Defines static hostname-to-address mappings
webvpn gateway gateway- name	Creates the WebVPN gateway and enter SSLVPN gateway configuration mode
hostname name	Specifies the hostname for the WebVPN gateway
http-redirect	Configures HTTP traffic to be carried over secure HTTPS
ip address <i>ip-address</i> port <i>port-number</i>	Configures a proxy address and port number for HTTPS
ssl trustpoint trustpoint- name	Specifies a trust point
inservice	Puts the WebVPN gateway into service
webvpn context context- name	Creates a webvpn context and enters context configuration mode.
gateway gateway-name	Associates a WebVPN gateway with this WebVPN context.
<pre>login-message "string"</pre>	Configures a message for the user login text box displayed on the login page.
title "title"	Configures the HTML title string.
url-list "list-name"	Creates a URL list and enters URL list configuration mode.
heading "string"	Configures the heading that is displayed above URLs listed on the Portal page.
url-text "string" url- value "url"	Adds an entry to the URL list.
port-forward <i>port-list- name</i>	Names a port- forwarding list and enter Cisco IOS SSL VPN port-forward list configuration mode.

134 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

<pre>local-port port-number remote-server FQDN remote- port port-number description "string"</pre>	Remaps (forwards) application port numbers in the port- forwarding list.
policy group group-name	Entesr Group Policy Configuration mode
url-list string	Attaches a URL list to this policy group configuration
port-forward <i>port-list- name</i>	Attaches a port- forwarding list to this policy group configuration
banner "string"	Configures a banner to be displayed after a successful login.
timeout idle seconds	Configures remote user session idle time.
timeout session seconds	Configures the total length of time that a session can remain connected.
default-group-policy policy-name	Associates a group policy with the WebVPN context configuration.
inservice	Puts the WebVPN context into service.
<pre>show webvpn gateway <name></name></pre>	Displays WebVPN gateway information.
<pre>show webvpn context <name></name></pre>	Displays WebVPN context information.
show webvpn session context context-name	Displays WebVPN session information
show webvpn session user username context all	Displays WebVPN user session information.

Job Aids

There are no job aids for this activity.

^{© 2007} Cisco Systems, Inc.

Task 1: Set Up Lab Devices

In this task, you will set up the lab devices.

Activity Procedure

Complete these steps:

Step 1	Ensure that your student laptop is operating with the correct date and time.
Step 2	Configure your student PC for IP address 10.0.P.12 with a default gateway of 10.0.P.2 . (where $P = pod$ number).
Step 3	Check connectivity to router.
	C:>\ping 10.0.P.2
	(Where P = Pod number)
Step 4	Check connectivity to Super Server.
	C:>\ping 172.26.26.50

Activity Verification

You have completed this task when you attain these results:

• You have a successful ping to the router and to the Super Server.

C:\>ping 10.0.1.2

Pinging 10.0.1.2 with 32 bytes of data:

```
      Reply from 10.0.1.2: bytes=32 time<1ms TTL=255</td>

      Reply from 10.0.1.2: bytes=32 time<1ms TTL=255</td>

      Reply from 10.0.1.2: bytes=32 time<1ms TTL=255</td>

      Reply from 10.0.1.2: bytes=32 time<1ms TTL=255</td>
```

```
Ping statistics for 10.0.1.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

Task 2: Configure AAA

In this task, you will configure AAA parameters to work with WebVPN.

Activity Procedure

Complete these steps:

Step 1	Populate the local user database.
	<pre>router(config)# username user1 password 0 user1</pre>
Step 2	Enable AAA.
	router(config)# aaa new-model
Step 3	Specify local AAA authentication.
	<pre>router(config)#aaa authentication login default local</pre>

Activity Verification

You have completed this task when you attain these results:

• Execute a **show running-config** command. The output should include these statements:

Router#show running-config

```
!
aaa new-model
!
aaa authentication login default local
!
username user1 password 0 user1
```

Task 3: Configure DNS

In this task, you will configure DNS parameters to work with WebVPN.

Use the table to populate the router host tab	le.
---	-----

Host	Domain	IP Address	
home	Cisco.com	10.0.P.12	
superserver	Cisco.com	172.26.26.50	

Activity Procedure

Complete these steps:

Step 1	Make sure that the router has a hostname.
Step 2	Define a default domain name.
	router(config)# ip domain name cisco.com
Step 3	Define the static hostname-to-address mappings on the router.
	<pre>router(config)# ip host home.cisco.com 10.0.P.12</pre>
	<pre>router(config)# ip host superserver.cisco.com 172.26.26.50</pre>

Activity Verification

You have completed this task when you attain these results:

• Execute a **show running-config** command. The output should include these statements:

```
router#show running-config
!
ip domain name cisco.com
ip host vpnca 172.30.1.5
ip host home.cisco.com 10.0.1.12
ip host superserver.cisco.com 172.26.26.50
!
```

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Task 4: Verify a Self-Signed Certificate

In this task, you will ensure that the router has a self-signed certificate.

Note A self-signed certificate is automatically generated when a WebVPN gateway is put in service.

Activity Procedure

Complete this step:

Step 1 Check to see if the self-signed certificate is already on the router.

```
router#show running-config
```

If a certificate exists, the output should look like this:

```
!
crypto pki trustpoint TP-self-signed-1898720763
enrollment selfsigned
subject-name cn=IOS-Self-Signed-Certificate-1898720763
revocation-check none
rsakeypair TP-self-signed-1898720763
!
!
crypto pki certificate chain TP-self-signed-1898720763
certificate self-signed 01 nvram:IOS-Self-Sig#3301.cer
```

Activity Verification

You have completed this task when you attain these results:

• You should be able to see the self-signed certificate in Step 1 above.

© 2007 Cisco Systems, Inc.

Task 5: Configure a WebVPN Gateway

In this task, you will configure the WebVPN virtual gateway.

Activity Procedure

Complete these steps:

Step 1	Name the gateway and enter Cisco IOS SSL VPN gateway configuration mode.
	router(config)#webvpn gateway SNRS-GW
Step 2	Specify the hostname for the WebVPN gateway.
	router(config-webvpn-gateway)# hostname GW-1
Step 3	Configure HTTP traffic to be carried over HTTPS.
	router(config-webvpn-gateway)# http-redirect
Step 4	Configure a proxy IP address for the WebVPN gateway.
	<pre>router(config-webvpn-gateway)#ip address 10.0.P.2 port 443</pre>
Step 5	(Optional) Configure the certificate trustpoint for the WebVPN gateway.
	<pre>router(config-webvpn-gateway)# ssl trustpoint TP-self-signed- 1898720763</pre>
Note	The name of the self-signed certificate is automatically inserted into the configuration file when the gateway is put in service.

Step 6 Put the WebVPN virtual gateway into service.

router(config-webvpn-gateway)#inservice

Activity Verification

You have completed this task when you attain these results:

Execute a show webvpn gateway command and a show webvpn gateway <*name*> command. The output should resemble the following:

router#show webvpn gateway

Gateway Name	Admin	Operation
SNRS-GW	up	up

router#show webvpn gateway SNRS-GW
Admin Status: up
Operation Status: up
IP: 10.0.1.2, port: 443
HTTP Redirect port: 80
SSL Trustpoint: TP-self-signed-1898720763
Mangling Hostame: GW-1

140 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Task 6: Configure a WebVPN Context

In this task, you will configure a WebVPN context.

Activity Procedure

Complete these steps:

Step 1	Name the context and enter Cisco IOS SSI	VPN configuration mode

router(config)#webvpn context SSLVPN

Step 2 Associate a WebVPN gateway with this WebVPN context.

router(config-webvpn-context)#gateway SNRS-GW

- Step 3 Configure a message for the User Login text box displayed on the Login page.
 router(config-webvpn-context)#login-message "Please enter your
 credentials"
- Step 4 Configure the HTML title string.
 router(config-webvpn-context)#title "SNRS WebVPN Page"

Configure a URL List

Complete these steps to create a URL list:

Step 1	Enter URL list configuration mode.
Step 2	router(config-webvpn-context)# url-list "MYLINKS" Configure the heading that is displayed above URLs listed on the Portal page.
Step 3	router(config-webvpn-url)#heading "Quicklinks" Add an entry to the URL list.
	<pre>router(config-webvpn-url)#url-text "Pod Homepage" url-value whome.cisco.com"</pre>
	<pre>router(config-webvpn-url)#url-text "Super Server" url-value "superserver.cisco.com"</pre>
Step 4	Exit back to WebVPN context configuration mode.
	router(config-webvpn-url)# exit

Configure Thin-Client Mode

Complete these steps to configure the thin-client mode of operation:

Step 1	Enter Cisco IOS SSL VPN configuration mode.
	router(config)#webvpn context SSLVPN
Step 2	Name a port-forwarding list and enter Cisco IOS SSL VPN port-forward list configuration mode.
	<pre>router(config-webvpn-context)# port-forward Portlist</pre>
Step 3	Remap (forward) application port numbers in the port-forwarding list.

Lab Guide 141

router(config-webvpn-port-fwd)# local-port 30020 remote-server mail.corporate.com remote-port 25 description "SMTP"

router(config-webvpn-port-fwd)# local-port 30021 remote-server mail.corporate.com remote-port 110 description "POP3"

router(config-webvpn-port-fwd)# local-port 30022 remote-server mail.corporate.com remote-port 143 description "IMAP"

Step 4 Exit Cisco IOS SSL VPN port-forward list configuration mode.

```
router(config-webvpn-port-fwd)# exit
```

Configure a Policy Group

Complete these steps to configure a policy group:

Step 1	Enter group policy configuration mode.
Step 2	router(config-webvpn-context) # policy group SSL-Policy Attach a URL list to this policy group configuration.
Step 3	router(config-webvpn-group)# url-list MYLINKS Attach a port-forwarding list to this policy group configuration.
Step 4	router(config-webvpn-group)# port-forward Portlist Configure a banner to be displayed after a successful login.
Step 5	router(config-webvpn-group)#banner "Login Successful" Configure remote user session idle time and the total length of time that a session can remain connected.
	router(config-webvpn-group)# timeout idle 1800
	<pre>router(config-webvpn-group)# timeout session 36000</pre>
Step 6	Exit back to WebVPN context configuration mode.
	router(config-webvpn-group)# exit
Step 7	Associate a group policy with the WebVPN context configuration.
	<pre>router(config-webvpn-context)# default-group-policy SSL-Policy</pre>
Step 8	Put the WebVPN context into service.
	router(config-webvpn-context)# inservice

Activity Verification

You have completed this task when you attain these results:

Execute a show webvpn context command and a show webvpn context <*name*> command. The output should resemble the following:

```
router#show webvpn context
```

```
Codes: AS - Admin Status, OS - Operation Status
VHost - Virtual Host
```

Context Name	Gateway	Domain/VHost	VRF	AS	OS
--------------	---------	--------------	-----	----	----

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.
Default_context	n/a	n/a	n/a	down	down
SSLVPN	SNRS-GW	-	-	up	up

router#show webvpn context SSLVPN Admin Status: up Operation Status: up CSD Status: Disabled Certificate authentication type: All attributes (like CRL) are verified AAA Authentication List not configured AAA Authentication Domain not configured Default Group Policy: SSL-Policy Associated WebVPN Gateway: SNRS-GW Domain Name and Virtual Host not configured Maximum Users Allowed: 10000 (default) NAT Address not configured VRF Name not configured

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Task 7: Verify WebVPN

In this task, you will verify WebVPN configuration and operation.

Activity Procedure

Complete these steps:

Step 1 Point your browser to the address that you assigned the virtual gateway. The HTTP session should be redirected to HTTPS and the certificate dialog box should appear.

<text><section-header><text><complex-block><complex-block>

Step 2 Click **Yes** to proceed. The user login screen should appear.

144 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

SNRS WebVPN Page - Microsoft Internet Explorer provided by Cisco Systems, Inc. Ele Edit Yew Favortes Tools telp		
Stack • ■ ■ ● Stack ● ■	♥ 🛃 60 Links 🎾 📆 ♥	
SNRS WebVPN Page	~	
Login Please enter your credentials Username: [Password: LoginClear		
	SNS WebVPN Page Microsoft Internet Explorer provided by Gisco Systems, Inc. Status Status <t< td=""><td>SHIS WebVPN Page - Microsoft Internet Explorer provided by Cisco Systems, Inc. Ge Edit Syne Parette 20% pbb Agence - San to Act Frowthe Constraint - Provides - San -</td></t<>	SHIS WebVPN Page - Microsoft Internet Explorer provided by Cisco Systems, Inc. Ge Edit Syne Parette 20% pbb Agence - San to Act Frowthe Constraint - Provides - San -

Step 3 Input a valid username and password. The Login Successful dialog box should appear.

SSL Login Banner	
Microsoft Internet Explorer Image: Comparison of the second sec	I] to disconnect.
© 2007 Cisco Systems, Inc. All rights reserved.	SNRS v2.015

^{© 2007} Cisco Systems, Inc.

- **Step 5** Click the **Pod Homepage** or **Super Server** links under the Websites section. The web pages should appear.
- **Step 6** Display session context information on the router.

router#show webvpn session context SSLVPN

Step 7 Display session user information.

router#show webvpn session user user1 context all

Step 8 Click the Close icon of either the main portal page or the floating toolbar. You should see a prompt to make sure that you want to close the session.

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Step 9 Click **OK**. The WebVPN logout page should appear.

Step 10 Click Click Here to Close the Browser Window. The browser window should close.

Activity Verification

You have completed this task when you attain these results:

- You should be able to do the following:
 - Log into the portal
 - Browse to different sites under the Websites section
 - Log out of the portal
- When you execute the show webvpn session commands, the output should be similar to this:

router#show webvpn session context SSLVPN

WebVPN context name: SSLVPN Client_Login_Name Client_IP_Address No_of_Connections Created Last_Used

user1 10.0.1.5 2 00:00:43 00:00:41

router#show webvpn session user user1 context all

WebVPN user name = user1 ; IP address = 10.0.1.5 ; context = SSLVPN No of connections: 1 Created 00:01:27, Last-used 00:01:25 Client Port: 1042 User Policy Parameters Group name = SSL-Policy Group Policy Parameters banner = "Login Successful" url list name = "ACCESS" idle timeout = 2100 sec session timeout = 43200 sec port forward name = functions = citrix disabled dpd client timeout = 300 sec dpd gateway timeout = 300 sec keep sslvpn client installed = disabled rekey interval = 3600 sec rekey method = lease duration = 43200 sec

Lab 4-6: Configure Cisco Easy VPN Remote Access

Complete this lab activity to practice what you learned in the related module.

Activity Objective

In this activity, you will configure a Cisco router for Cisco Easy VPN Remote access. After completing this activity, you will be able to meet these objectives:

- Configure a router as a Cisco Easy VPN Server
- Configure Cisco Easy VPN Client on a laptop
- Configure a router as a Cisco Easy VPN Client
- Verify Cisco Easy VPN operation

Visual Objective

The figure illustrates what you will accomplish in this activity.

Required Resources

These are the resources and equipment that are required to complete this activity:

- Pod routers
- Student laptops

Command List

The table describes the commands that are used in this activity.

Cisco Easy VPN Commands

Command	Description
username cisco password 0 cisco	Creates a username and password in the local database.
aaa new-model	Enables AAA.
<pre>aaa authorization {network exec commands level reverse-access configuration} {default list-name} method1 [method2]</pre>	To set parameters that restrict user access to a network.
authentication {rsa-sig rsa-encr pre-share}	Specifies the authentication method within an IKE policy.
crypto dynamic-map dynamic-map-name dynamic- seq-num	Creates a dynamic crypto map entry and enters the crypto map configuration command mode.
<pre>crypto isakmp client configuration group {group-name default}</pre>	Specifies which group's policy profile will be defined.
crypto isakmp enable	Globally enables IKE.
crypto isakmp keepalive secs [retries]	Allows the gateway to send DPD messages to the peer.
<pre>crypto isakmp key key- string address peer- address [mask] [no-xauth]</pre>	Configures a pre-shared authentication key.
crypto isakmp policy priority	Defines an IKE policy.
domain name	Specify the DNS domain to which a group belongs.
encryption {des $ $ 3des $ $ aes $ $ aes 192 $ $ aes 256}	Specify the encryption algorithm within an IKE policy.
group {1 2}	Specifies the Diffie-Hellman group identifier within an IKE policy.
hash {sha md5}	Specifies the hash algorithm within an IKE policy.
<pre>ip local pool {default poolname} [low-ip-address [high-ip-address]] [group group-name] [cache-size size]</pre>	Configures a local pool of IP addresses to be used when a remote peer connects to a point-to-point interface.
key name	Specifies the IKE pre-shared key for group policy attribute definition.
lifetime seconds	Specifies the lifetime of an IKE SA.
pool name	Defines a local pool address.

150 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

reverse-route [remote-peer [<i>ip-address</i>]]	Creates a source proxy information for a crypto map entry.
set transform-set transform-set-name [transform-set- name2transform-set- name6]	Specifies which transform sets can be used with the crypto map entry.
crypto isakmp xauth timeout sec	Specifies the amount of time, in seconds, that the user has to enter the appropriate username and password to authenticate the VPN session.
ip dhcp pool name	Creates a name for the DHCP server address pool and places you in DHCP pool configuration mode.
network network-number [mask /prefix-length]	Specifies the subnet network number and mask of the DHCP address pool.
default-router <i>address</i> [<i>address2 address8</i>]	Specifies the IP address of the default router for a DHCP client.
ip dhcp excluded-address low-address [high-address]	Specifies the IP addresses that the DHCP server should not assign to DHCP clients.
crypto ipsec client ezvpn name	Creates a Cisco Easy VPN Remote configuration and then enters the Cisco Easy VPN Remote configuration mode.
group group-name key group-key	Specifies the group name and key value for the VPN connection.
peer {ipaddress hostname}	Sets the peer IP address or host name for the VPN connection. A host name can be specified only when the router has a DNS server available for host name resolution.
<pre>mode {client network- extension}</pre>	Specifies the mode of operation of the VPN of the router.
crypto ipsec client ezvpn xauth name	Responds to a pending VPN authorization request.
show crypto ipsec client ezvpn	Display the Cisco Easy VPN Remote configuration.

Job Aids

There are no job aids for this activity.

Lab Guide 151

Task 1: Set Up Lab Devices

In this task, you will complete the lab exercise setup by resetting the router defaults and ensuring connectivity with the other routers in the lab.

In this task, you will assign the student laptop an IP address of 172.26.26.X to act as an XAUTH client for authentication.

Activity Procedure

Complete these steps:

- **Step 1** Ensure that your student laptop is operating with the correct date and time.
- Step 2 Configure your student PC for IP address 172.26.26.12 with a default gateway of 172.26.26.150.
- **Step 3** Verify that you have connectivity with the peer pod routers.

C:\> ping 172.30.Q.2

Activity Verification

You have completed this task when you attain these results:

■ You can successfully ping your 172.26.26.150 gateway.

Task 2: Configure a Router as a Cisco Easy VPN Server

In this task, you will configure a router to act as a Cisco Easy VPN Server.

Activity Procedure

Complete these steps:

Step 1 Create a local IP address pool named Remote-Pool with an IP address range of 10.0.P.32 to 10.0.P.64.

router(config)# ip local pool Remote-Pool 10.0.P.100
10.0.P.150

Step 2 Configure a local username of **cisco**, and a password of **cisco** for an account accessing the perimeter router.

```
router(config)# username cisco password 0 cisco123
```

Note The aaa new-model command (used in Task 3) causes the local username and password on the router to be used in the absence of other AAA statements. It is important to create a known local username and password combination to prevent you from being locked out of the router.

Enable Policy Lookup

Step 3 Enable AAA.

router(config)# aaa new-model

152 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Step 4 Create a group called "vpn-group" to be used for local AAA authorization and policy lookup for remote clients.

router(config)# aaa authorization network vpn-group local

Create an ISAKMP Policy for Remote Client Access

Step 5	Enable ISAKMP.	
	<pre>router(config)# crypto :</pre>	isakmp enable
Step 6	Create ISAKMP policy 10.	
	<pre>router(config)# crypto :</pre>	isakmp policy 10
Step 7	Configure ISAKMP policy 10 to	o use pre-shared keys for authentication.
	(config-isakmp)# authen	tication pre-share
Step 8	Configure ISAKMP policy 10 to	o use 3DES encryption.
	<pre>router(config-isakmp)# </pre>	encryption 3des
Step 9	Configure ISAKMP policy 10 to	o use DH group 2.
	router(config-isakmp)# g	group 2
Step 10	Return to privileged EXEC mod	le.
	router(config-isakmp)# •	end
Step 11	Verify your ISAKMP policy.	
	R1# show crypto isakmp p	policy
R1# show	w crypto isakmp policy	
Global :	IKE policy	
Protect	ion suite of priority 10	
	encryption algorithm:	Three key triple DES
	hash algorithm:	Secure Hash Standard
	authentication method:	Pre-Shared Key
	Diffie-Hellman group:	#2 (1024 bit)
	lifetime:	86400 seconds, no volume limit
Default	protection suite	
kova)	encryption algorithm:	DES - Data Encryption Standard (56 bit
Keys).	hach algorithm.	Coguro Hogh Ctondard
	authentication method:	Rivest-Shamir-Adreman Signature
	Diffie-Hellman group:	#1 (768 blt)
	Lifetime:	86400 seconds, no volume limit

Define Group Policy Information for a Mode Configuration Push

Step 12	Specify which group policy profile will be defined and enter ISAKMP group
	configuration mode. If no specific group matches and if a default group is defined,
	users will automatically be given the policy of the default group. For this lab
	exercise, use a group name of R6.

router(config) # crypto isakmp client configuration group R6

Step 13 Specify the ISAKMP pre-shared key for group policy attribute definition. Note that this command must be enabled if the VPN client identifies itself with a pre-shared key. For this lab exercise, use a key name of VPNKEY.

router(config-isakmp-group)# key VPNKEY

Step 14 Specify the domain name to be pushed to the client. For this lab exercise, use a domain name of **cisco.com**.

router(config-isakmp-group)# domain cisco.com

Step 15 Choose a local IP address pool. Note that this command must refer to a valid local IP address pool or the VPN client connection will fail. For this lab exercise, use the Remote-Pool pool name you created earlier.

router(config-isakmp-group)# pool Remote-Pool

Step 16 Return to global configuration mode.

router(config-isakmp-group)# exit

Create a Transform Set

Step 17 Create a transform set.

router(config)# crypto ipsec transform-set VPNTRANSFORM esp-3des esp-sha-hmac

Step 18 Return to privileged EXEC mode.

router(cfg-crypto-trans)# end

Step 19 Verify your transform set configuration.

router# show crypto ipsec transform-set

R1# show crypto ipsec transform-set

Transform set VPNTRANSFORM: { esp-3des esp-sha-hmac }

```
will negotiate = { Tunnel, },
```

Create a Dynamic Crypto Map

You will create a dynamic crypto map to handle remote-access traffic for the perimeter router.

Step 20 Create dynamic crypto map, Dynamic-Map, and enter the crypto map configuration mode.

router(config) # crypto dynamic-map Dynamic-Map 10

Step 21 Assign a transform set to Dynamic-Map.

router(config-crypto-map)# set transform-set VPNTRANSFORM

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Step 22 Enable RRI.

router(config-crypto-map)# reverse-route

Apply Mode Configuration

You will apply mode configuration to a crypto map. Mode configuration must be applied to a crypto map to be enforced. Use the commands shown to apply mode configuration to a crypto map.

Step 25 Configure the router to initiate or reply to mode configuration requests.

router(config) # crypto map ClientMap client configuration
address respond

Step 26 Enable ISAKMP querying for group policy when requested by the VPN client.

router(config)# crypto map ClientMap isakmp authorization list
vpn-group

Step 27 Apply the dynamic crypto map to this crypto map.

router(config)# crypto map ClientMap 65535 ipsec-isakmp
dynamic Dynamic-Map

Apply Crypto Map to Interface

Step 28 Enter interface configuration mode.

router(config) # interface fastEthernet 0/1

Step 29 Assign the ClientMap crypto map to the interface.

router(config-if)# crypto map ClientMap

Step 30 Return to privileged EXEC mode.

router(config-if)# end

Step 31 Verify your crypto map configuration.

router# show crypto map

R1# show crypto map

Crypto Map "ClientMap" 65535 ipsec-isakmp

© 2007 Cisco Systems, Inc.

Dynamic map template tag: Dynamic-Map Interfaces using crypto map ClientMap: FastEthernet0/1

Enable DPD

Step 32 Enable keepalives for DPD. The *20* value specifies the number of seconds between DPD messages (the range is between 10 and 3600 seconds); the *10* value specifies the number of seconds between retries if DPD messages fail (the range is between 2 and 60 seconds).

router(config)# crypto isakmp keepalive 20 10

Step 33 Exit global configuration mode.

router(config)# **exit**

Step 34 Save the router configuration.

router# copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
[OK]

Activity Verification

You have completed this task when you attain these results:

• Use the various **show** commands from the steps to check your configuration.

Task 3: Configure a Router as a Cisco Easy VPN Client

In this task, you will configure a router as a Cisco Easy VPN remote client.

Activity Procedure

Complete these steps:

Step 1	Create a remote configuration and enter Cisco Easy VPN Remote configuration mode.
	R6(config)# crypto ipsec client ezvpn R6-Client
Step 2	Specify the IPsec group and IPsec key values to be associated with this profile.
	R6(config-crypto-ezvpn)# group R6 key VPNKEY
Step 3	Specify the IP address or hostname for the destination peer.
	R6(config-crypto-ezvpn)# peer 172.30.Q.2
Step 4	Specify the type of VPN connection that should be made.
	R6(config-crypto-ezvpn)# mode client
Step 5	Specify automatic connections.
	R6(config-crypto-ezvpn)# connect auto
Step 6	Return to privileged EXEC mode.
	R6(config-crypto-ezvpn)# end
Step 7	Access interface configuration mode.
	R6(config)# interface FastEthernet 0/1
Step 8	Assign the client profile to the outside interface.
	R6(config-if)# crypto ipsec client ezvpn R6-Client
Step 9	Change to inside interface.
	R6(config-if)# exit R6(config)# interface FastEthernet 0/0
Step 10	Assign an inside interface.
	R6(config-if)# crypto ipsec client ezvpn R6-Client inside
Step 11	Return to privileged EXEC mode.
	R6(config-if)# end
Step 12	Save your configuration.
	R6# copy running-config startup-config
	Destination filename [startup-config]?
	Building configuration
	[OK]

© 2007 Cisco Systems, Inc.

Activity Verification

You have completed this task when you attain these results:

Issue various show commands as with other VPN scenarios. The output should be similar to this:

R6# show crypto ipsec client ezvpn Easy VPN Remote Phase: 6 Tunnel name : R6-Client Inside interface list: FastEthernet0/0 Outside interface: FastEthernet0/1 Current State: IPSEC_ACTIVE Last Event: SOCKET_UP Address: 10.0.1.100 Mask: 255.255.255.255 Default Domain: cisco.com Save Password: Allowed Current EzVPN Peer: 172.30.1.2

R6# show crypto session

Crypto session current status Interface: FastEthernet0/1 Session status: UP-ACTIVE Peer: 172.30.1.2 port 500 IKE SA: local 172.30.6.2/500 remote 172.30.1.2/500 Active IPSEC FLOW: permit ip host 10.0.1.100 0.0.0/0.0.0.0 Active SAs: 2, origin: crypto map

R6# show crypto session detail

```
Crypto session current status
Code: C - IKE Configuration mode, D - Dead Peer Detection
K - Keepalives, N - NAT-traversal, X - IKE Extended Authentication
```

```
Interface: FastEthernet0/1
Session status: UP-ACTIVE
Peer: 172.30.1.2 port 500 fvrf: (none) ivrf: (none)
    Phase1_id: 172.30.1.2
    Desc: (none)
IKE SA: local 172.30.6.2/500 remote 172.30.1.2/500 Active
    Capabilities:C connid:0 lifetime:23:43:26
IPSEC FLOW: permit ip host 10.0.1.100 0.0.0/0.0.0.0
    Active SAs: 2, origin: crypto map
    Inbound: #pkts dec'ed 0 drop 0 life (KB/Sec) 4377612/2647
    Outbound: #pkts enc'ed 0 drop 0 life (KB/Sec) 4377612/2647
```

Task 4: Configure Cisco Easy VPN Client on a Laptop

In this task, you will install the Cisco VPN client on a client laptop.

Activity Procedure

Complete these steps:

- Step 1 Open the CiscoApps desktop folder.
- Step 2 Open the Cisco VPN Client folder.
- **Step 3** Locate and run the Cisco VPN Client **setup.exe** executable. If this is the first time that the Cisco VPN Client is being installed, a window opens and displays the following message: "Do you want the installer to disable the IPsec policy agent?"
- Step 4 Click Yes to disable the IPsec policy agent. The Welcome window opens.
- **Step 5** Read the Welcome window and click **Next**. The License Agreement window opens.
- **Step 6** Read the license agreement and click **Yes**. The Choose Destination Location window opens.
- Step 7 Click Next. The Select Program Folder window opens.
- **Step 8** Accept the defaults by clicking **Next**. The Start Copying Files window opens.
- **Step 9** The files are copied to the hard disk drive of the student PC and the InstallShield Wizard Complete window opens.
- **Step 10** Choose **Yes, I Want to Restart My Computer Now** and click **Finish**. The student PC restarts.

Create a New Connection Entry

- Step 11 Choose Start > Programs > Cisco Systems VPN Client > VPN Client. The Cisco Systems VPN Client window opens.
- Step 12 Click the New icon. The Create New VPN Connection Entry window opens.
- Step 13 Enter VPN Server in the connection entry field.
- Step 14 Enter a perimeter router outside interface IP address of 172.30.P.2 in the host field (where P = pod number).
- **Step 15** Choose **Group Authentication** and complete the following fields (the entries are always case-sensitive):
- **Step 16** Enter a group name: **R6**. This is the group that you created earlier on the perimeter router.
- **Step 17** Enter the group password: **VPNKEY**. This is the key that you created earlier for the "vpn-group" group.
- **Step 18** Confirm the password: **VPNKEY**.
- Step 19 Click Save.

^{© 2007} Cisco Systems, Inc.

Launch the Cisco VPN Client and Test Connectivity

You can now launch the VPN client and test connectivity.

- Step 20 Choose Start > Programs > Cisco Systems VPN Client > VPN Client. The Cisco VPN Client should be launched.
 Step 21 Click Connect. The Connection History window opens and several messages flash by quickly; the window closes and a Cisco VPN Dialer icon appears in the system tray.
 Step 22 Right-click the Cisco VPN Client icon in the student PC system tray and choose the Statistics option.
- **Step 23** Open a command prompt shell and ping the inside interface of the perimeter router.

C:\> ping 10.0.P.2

(where P = pod number)

Step 24 Close the command prompt shell.

Activity Verification

You have completed this task when you attain these results:

• You can successfully connect using the VPN client.

Task 5: (Optional) Configure XAUTH

In this task, you will add XAUTH to the existing Cisco Easy VPN Server configuration.

Activity Procedure

Complete these steps:

Step 1 Enable AAA login authentication for the local vpn-users user group.

router(config)# aaa authentication login vpn-users local

Step 2 Set the timeout value (0 to 60 seconds) for the amount of time that the remote user has to enter a username and password on the client. Use **20** seconds for the timeout value for this lab exercise.

router(config)# crypto isakmp xauth timeout 20

Step 3 Enable IKE XAUTH for the ClientMap dynamic crypto map using the **vpn-users** user group.

router(config)# crypto map ClientMap client authentication
list vpn-users

Step 4 Exit global configuration mode.

router(config)# exit

Step 5 Save the router configuration to the startup configuration file.

router# copy running-config starting-config

Activity Verification

You have completed this task when you attain these results:

■ Issue a **show running-config** command. The output should be similar to this:

router# show run

```
Your configuration should look similar to the following. Bold items
are associated with extended authentication:
!
aaa new-model
!
aaa authentication login vpn-users local
aaa authorization network vpn-group local
!
username cisco password 0 cisco
!
crypto isakmp policy 10
encr 3des
authentication pre-share
group 2
crypto isakmp keepalive 20 10
```

^{© 2007} Cisco Systems, Inc.

```
crypto isakmp xauth timeout 60
T
crypto isakmp client configuration group R6
key VPNKEY
domain cisco.com
pool Remote-Pool
!
crypto ipsec transform-set VPNTRANSFORM esp-3des esp-sha-hmac
T
crypto dynamic-map Dynamic-Map 10
set transform-set VPNTRANSFORM
reverse-route
T
crypto map CLIENTMAP client authentication list VPNUSERS
crypto map CLIENTMAP isakmp authorization list vpn-group
crypto map CLIENTMAP client configuration address respond
crypto map CLIENTMAP 65535 ipsec-isakmp dynamic Dynamic-Map
Т
interface Ethernet0/1
 ip address 172.30.P.2 255.255.255.0
half-duplex
crypto map DYNMAP
L
ip local pool Remote-Pool 10.0.P.32 10.0.P.64
ip http server
```

Task 6: (Optional) Test XAUTH

In this task, you will test the XAUTH configuration of the Cisco Easy VPN Server.

Activity Procedure

Complete these steps:

- Step 1Open the Cisco VPN Dialer application by choosing Start > Programs > Cisco
Systems VPN Client > VPN Client.
- **Step 2** Ensure that the Cisco Easy VPN Server connection entry is selected and that the IP address of your Cisco Easy VPN Server appears in the Remote Server field.
- **Step 3** Click **Connect**. If XAUTH is working correctly, the User Authentication for the Easy VPN Server window should appear.
- **Step 4** Enter a username of **cisco**.
- Step 5 Enter a password of cisco123.
- **Step 6** Click **OK**. The Cisco VPN Client icon should appear in the system tray of the student PC.
- **Step 7** Check the status of the VPN connection by right-clicking the **Cisco VPN Client** icon in the student PC system tray and choosing **Status** and the **Statistics** tab.
- **Step 8** With the Status window still open, open a command shell and establish a Telnet session to the Cisco Easy VPN Server. You should see the encrypted and decrypted counters of the packets increment.

Activity Verification

You have completed this task when you attain these results:

■ You can connect successfully using the Cisco VPN Client.

Lab 5-1: Configure Cisco IOS Classic Firewall

Complete this lab activity to practice what you learned in the related module.

Activity Objective

In this activity, you will configure Cisco IOS classic firewall on a Cisco router. After completing this activity, you will be able to meet these objectives:

- Set up lab devices
- Define inspection rules for use with Cisco IOS classic firewall
- Apply inspection rules to an interface
- Configure logging and enable audit trails
- Test and verify Cisco IOS classic firewall operation

Visual Objective

The figure illustrates what you will accomplish in this activity.

Required Resources

These are the resources and equipment that are required to complete this activity:

- Student computers
- Pod routers

Command List

The table describes the commands that are used in this activity.

IOS Firewall Commands

Command	Description
<pre>access-list access-list- number [dynamic dynamic- name [timeout minutes]] {deny permit} protocol source source-wildcard destination destination- wildcard [precedence precedence] [tos tos] [log log-input] [time-range time-range-name] [fragments]</pre>	Defines an extended IP ACL, use the extended version of the access-list command in global configuration mode
<pre>ip access-group {access- list-number access-list- name}{in out}</pre>	Controls access to an interface.
<pre>ip inspect inspection-name {in out}</pre>	Applies a set of inspection rules to an interface.
ip inspect audit trail	Enables Cisco IOS Classic Firewall audit trail messages, which will be displayed on the console after each Cisco IOS Classic Firewall session closes.
<pre>ip inspect name inspection-name protocol [alert {on off}] [audit- trail {on off}] [timeout seconds]</pre>	Defines a set of inspection rules.
<pre>line [aux console tty vty] line-number [ending-line-number]</pre>	Identifies a specific line for configuration and enter line configuration collection mode.
logging console	Send syslog messages to all available tty lines and limit messages based on severity.
logging console [severity- level]	Enable logging of system messages.
ping [protocol] [tag] {host-name system- address}	Diagnose basic network connectivity on AppleTalk, ATM, CLNS, DECnet, IP, Novell IPX, or SRB networks.
<pre>show access-lists [access- list-number access-list- name]</pre>	Display the contents of current ACLs.
<pre>show ip inspect {name inspection-name config interfaces session [detail] all}</pre>	Display Cisco IOS Classic Firewall configuration and session information.

Job Aids

There are no job aids for this activity.

^{© 2007} Cisco Systems, Inc.

Task 1: Set Up Lab Devices

In this task, you will complete the lab exercise setup.

Activity Procedure

Complete these steps:

Step 1	Ensure that your student PC is powered on and that the Microsoft Windows 2000 Server is operational. Your instructor will provide you with the correct username and password to log in to the student PC.
Step 2	Configure your student PC for IP address 10.0.P.12 with a default gateway of 10.0.P.2 (where $P = pod$ number).
Step 3	Make sure that your student PC has an appropriate syslog server application installed (for example, the Kiwi Syslog Daemon).
Step 4	Reload your perimeter router using the default lab configuration.
Step 5	Ensure that you can ping the peer router and network hosts before beginning.
Step 6	Make sure that your router is running the correct date and time.
Step 7	Make sure that your student PC is running the correct date and time.

Activity Verification

You have completed this task when you attain these results:

• You can ping the pod router and have checked that the date and time are correct.

Task 2: Define Inspection Rules and ACLs

In this task, you will define inspection rules and ACLs.

Activity Procedure

Complete these steps:

Step 1 Enter global configuration mode on your perimeter	router.
Step 2 Define a CBAC rule to inspect all TCP and FTP tra	ffic.
<pre>router(config)# ip inspect name FWRULE</pre>	http timeout 300
<pre>router(config)# ip inspect name FWRULE</pre>	ftp timeout 300
<pre>router(config)# ip inspect name FWRULE</pre>	icmp timeout 300
Step 3Define the inside interface ACL to allow outbound traffic (FTP and World Wide Web). Block all other	ICMP traffic and application inside-initiated traffic.
<pre>router(config)# access-list 103 permit</pre>	: icmp any any
<pre>router(config)# access-list 103 permit any eq telnet</pre>	tcp 10.0.P.0 0.0.0.255
router(config)# access-list 103 permit any eq ftp	tcp 10.0.P.0 0.0.0.255
router(config)# access-list 103 permit any eq www	tcp 10.0.P.0 0.0.0.255
<pre>router(config)# access-list 103 deny i</pre>	p any any
(where P = pod number)	
Step 4Define the outside interface ACL to allow inbound Block all other outside-initiated traffic.	ICMP traffic and routing traffic.
<pre>router(config)# access-list 104 permit</pre>	: eigrp any any
<pre>router(config)# access-list 104 deny i</pre>	.p any any
Step 5 Exit configuration mode	

router(config)# exit

Activity Verification

You have completed this task when you attain these results:

■ Issue a show access-list command. The output should be similar to this:

```
router#show ip access-lists
Extended IP access list 103
  10 permit icmp any any
  20 permit tcp 10.0.1.0 0.0.0.255 any eq telnet
   30 permit tcp 10.0.1.0 0.0.0.255 any eq ftp
   40 permit tcp 10.0.1.0 0.0.0.255 any eq www
   50 deny ip any any
Extended IP access list 104
   10 permit eigrp any any
   20 permit icmp any any
   30 deny ip any any
```

© 2007 Cisco Systems, Inc.

Task 3: Apply Inspection Rule and ACL to Interfaces

In this task, you will apply the inspection rule and ACLs to the appropriate interfaces.

Activity Procedure

Complete these steps:

Step 1	Apply the ACL to the inside interface.
	<pre>router(config)# interface fastEthernet 0/0</pre>
	<pre>router(config-if)# ip access-group 103 in</pre>
Step 2	Apply the inspection rule and ACL to the outside interface.
	<pre>router(config-if)# interface fastEthernet 0/1</pre>
	<pre>router(config-if)# ip inspect FWRULE out</pre>
	<pre>router(config-if)# ip access-group 104 in</pre>
Step 3	Return to global configuration mode and save your configuration
	<pre>router(config-if)# end</pre>
	router# copy run start

Activity Verification

You have completed this task when you attain these results:

■ Issue a **show ip inspect interfaces** command. The output should be similar to this:

```
R1# show ip inspect interfaces
Interface Configuration
Interface FastEthernet0/1
Inbound inspection rule is not set
Outgoing inspection rule is FWRULE
tcp alert is on audit-trail is off timeout 300
ftp alert is on audit-trail is off timeout 300
Inbound access list is 104
Outgoing access list is not set
```

Task 4: Configure Logging and Audit Trails

In this task, you will configure logging and audit trails.

Activity Procedure

Complete these steps:

Step 1	Log in to your perimeter router and access global configuration mode
Step 2	Enable logging to the console and the syslog server.
	router(config)# logging on
	<pre>router(config)# logging 10.0.P.12</pre>
	(where P = pod number)
Step 3	Enable audit trails.
	<pre>router(config)# ip inspect audit-trail</pre>
Step 4	Return to global configuration mode.
	router(confiq)# end

Activity Verification

You have completed this task when you attain these results:

Issue the show ip inspect config and show ip inspect interfaces commands. The output should be similar to this:

```
R1# show ip inspect config
Session audit trail is disabled
Session alert is enabled
one-minute (sampling period) thresholds are [400:500] connections
max-incomplete sessions thresholds are [400:500]
max-incomplete tcp connections per host is 50. Block-time 0 minute.
tcp synwait-time is 30 sec -- tcp finwait-time is 5 sec
tcp idle-time is 3600 sec -- udp idle-time is 30 sec
dns-timeout is 5 sec
Inspection Rule Configuration
 Inspection name FWRULE
    http alert is on audit-trail is off timeout 300
    ftp alert is on audit-trail is off timeout 300
    icmp alert is on audit-trail is off timeout 300
R1# show ip inspect interfaces
Interface Configuration
 Interface FastEthernet0/1
  Inbound inspection rule is not set
  Outgoing inspection rule is FWRULE
    http alert is on audit-trail is off timeout 300
    ftp alert is on audit-trail is off timeout 300
    icmp alert is on audit-trail is off timeout 300
  Inbound access list is 104
  Outgoing access list is not set
```

© 2007 Cisco Systems, Inc.

Task 5: Test and Verify

In this task, you will test and verify Cisco IOS classic firewall.

Activity Procedure

Complete these steps:

```
Check your ACLs.
Step 1
         router# show ip access-lists
R1# show ip access-lists
Extended IP access list 103
    10 permit icmp any any
    20 permit tcp 10.0.1.0 0.0.0.255 any eq ftp
    30 permit tcp 10.0.1.0 0.0.0.255 any eq www (21 matches)
    40 deny ip any any
Extended IP access list 104
    10 permit eigrp any any (264 matches)
    20 deny ip any any (117 matches)
         Ping the backbone server from the command prompt of your student PC.
Step 2
         C:\> ping 172.26.26.50
         Pinging 172.26.26.50 with 32 bytes of data:
         Reply from 172.26.26.50: bytes=32 time=34ms TTL=125
         Reply from 172.26.26.50: bytes=32 time=34ms TTL=125
         Reply from 172.26.26.50: bytes=32 time=34ms TTL=125
         Reply from 172.26.26.50: bytes=32 time=36ms TTL=125
Step 3
         Use your web browser to connect to the backbone web server.
         http://172.26.26.50
         From the command prompt on your student PC, connect to the backbone FTP server
Step 4
         using anonymous FTP.
         C:\> ftp 172.26.26.50
         . . .
         User (10.0.P.12: (none)): anonymous
         . . .
         Password: user@
Step 5
         Display a directory listing to verify data channel connectivity.
         ftp> 1s
         Use the following show commands to verify the CBAC operation:
Step 6
         router# show ip inspect sessions
         router# show ip inspect sessions detail
         router# show ip inspect name FWRULE
```

170 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

© 2007 Cisco Systems, Inc.

```
router# show ip inspect config
         router# show ip inspect interfaces
         router# show ip inspect statistics
         router# show ip inspect all
        Ping the inside server of your peer from your PC command prompt.
Step 7
        C:\> ping 10.0.Q.12
         Pinging 10.0.Q.12 with 32 bytes of data:
         Reply from 10.0.Q.12: bytes=32 time=34ms TTL=125
         Reply from 10.0.Q.12: bytes=32 time=34ms TTL=125
         Reply from 10.0.Q.12: bytes=32 time=34ms TTL=125
         Reply from 10.0.Q.12: bytes=32 time=36ms TTL=125
         (where Q = peer pod number)
Step 8
        Use your web browser to connect to your peer inside server.
        http://10.0.Q.12
Step 9
        Connect to the peer FTP server using anonymous FTP.
        C:\> ftp 10.0.Q.12
         . . .
        User (10.0.Q.12: (none)): anonymous
         . . .
         Password: user@
         (where Q = peer pod number)
```

Activity Verification

You have completed this task when you attain these results:

Use the following show commands to verify the CBAC operation:

```
R1# show ip inspect sessions
Established Sessions
Session 641721A8 (10.0.1.12:3575) => (10.0.6.12:80) http SIS_OPEN
Session 64172460 (10.0.1.12:3573) => (10.0.6.12:21) ftp SIS_OPEN
Session 64171C38 (10.0.1.12:3576) => (10.0.6.12:80) http SIS_OPEN
Session 64171EF0 (10.0.1.12:8) => (10.0.6.12:0) icmp SIS_OPEN
```

```
R1# show ip inspect sessions detail
Established Sessions
Session 641721A8 (10.0.1.12:3575)=>(10.0.6.12:80) http SIS_OPEN
Created 00:00:13, Last heard 00:00:12
Bytes sent (initiator:responder) [1291:659]
In SID 10.0.6.12[80:80]=>10.0.1.12[3575:3575] on ACL 104 (5
matches)
```

© 2007 Cisco Systems, Inc.

```
Session 64172460 (10.0.1.12:3573)=>(10.0.6.12:21) ftp SIS OPEN
  Created 00:00:32, Last heard 00:00:18
  Bytes sent (initiator:responder) [28:154]
  In SID 10.0.6.12[21:21]=>10.0.1.12[3573:3573] on ACL 104
                                                            (4
matches)
 Session 64171C38 (10.0.1.12:3576)=>(10.0.6.12:80) http SIS OPEN
  Created 00:00:13, Last heard 00:00:12
  Bytes sent (initiator:responder) [683:281]
  In SID 10.0.6.12[80:80]=>10.0.1.12[3576:3576] on ACL 104 (3
matches)
 Session 64171EF0 (10.0.1.12:8) => (10.0.6.12:0) icmp SIS OPEN
  Created 00:06:58, Last heard 00:00:00
   ECHO request
  Bytes sent (initiator:responder) [13408:13408]
  In SID 10.0.6.12[0:0]=>10.0.1.12[0:0] on ACL 104 (369 matches)
  In SID 0.0.0.0[0:0]=>10.0.1.12[3:3] on ACL 104
  In SID 0.0.0.0[0:0]=>10.0.1.12[11:11] on ACL 104
```

R1# show ip inspect name FWRULE

Inspection name FWRULE

http alert is on audit-trail is on timeout 300 ftp alert is on audit-trail is on timeout 300 icmp alert is on audit-trail is off timeout 300

R1# show ip inspect config

```
Session audit trail is enabled
Session alert is enabled
one-minute (sampling period) thresholds are [400:500] connections
max-incomplete sessions thresholds are [400:500]
max-incomplete tcp connections per host is 50. Block-time 0 minute.
tcp synwait-time is 30 sec -- tcp finwait-time is 5 sec
tcp idle-time is 3600 sec -- udp idle-time is 30 sec
dns-timeout is 5 sec
Inspection Rule Configuration
Inspection name FWRULE
http alert is on audit-trail is on timeout 300
ftp alert is on audit-trail is on timeout 300
icmp alert is on audit-trail is off timeout 300
```

R1# show ip inspect interfaces

Interface Configuration
Interface FastEthernet0/1
Inbound inspection rule is not set
Outgoing inspection rule is FWRULE
http alert is on audit-trail is on timeout 300
ftp alert is on audit-trail is on timeout 300
icmp alert is on audit-trail is off timeout 300
Inbound access list is 104
Outgoing access list is not set

R1# show ip inspect all

Session audit trail is enabled Session alert is enabled one-minute (sampling period) thresholds are [400:500] connections max-incomplete sessions thresholds are [400:500] max-incomplete tcp connections per host is 50. Block-time 0 minute. tcp synwait-time is 30 sec -- tcp finwait-time is 5 sec tcp idle-time is 3600 sec -- udp idle-time is 30 sec dns-timeout is 5 sec Inspection Rule Configuration Inspection name FWRULE http alert is on audit-trail is on timeout 300

ftp alert is on audit-trail is on timeout 300 icmp alert is on audit-trail is off timeout 300

Interface Configuration

Interface FastEthernet0/1
Inbound inspection rule is not set
Outgoing inspection rule is FWRULE
 http alert is on audit-trail is on timeout 300
 ftp alert is on audit-trail is on timeout 300
 icmp alert is on audit-trail is off timeout 300
Inbound access list is 104
Outgoing access list is not set

Established Sessions

Session	64171C38	(10.0.1.12:3598) => (10.0.6.12:21)	ftp SIS_OPEN
Session	641721A8	(10.0.1.12:3597) => (10.0.6.12:80)	http SIS_OPEN
Session	64172460	(10.0.1.12:3596) => (10.0.6.12:80)	http SIS_OPEN

© 2007 Cisco Systems, Inc.

R1# show ip inspect statistics Packet inspection statistics [process switch:fast switch] tcp packets: [3:158] packets: [0:1870] http packets: [0:78] ftp packets: [0:78] Interfaces configured for inspection 1 Session creations since subsystem startup or last reset 13 Current session counts (estab/half-open/terminating) [2:0:0] Maxever session counts (estab/half-open/terminating) [4:1:0] Last session created 00:00:56 Last statistic reset never Last session creation rate 0 Last half-open session total 0

Syslog

Check your syslog server. You should see some traffic from the audit trails

11-13-2006 12:44:28 Local7.Info 10.0.1.2 200: *Nov 13 19:46:41.539: %FW-6-SESS AUDIT TRAIL: Stop tcp session: initiator (10.0.1.12:2631) sent 256 bytes -- responder (10.0.6.12:80) sent 4203 bytes Local7.Info 10.0.1.2 11-13-2006 12:44:28 199: *Nov 13 19:46:41.539: %FW-6-SESS_AUDIT_TRAIL: Stop tcp session: initiator (10.0.1.12:2630) sent 257 bytes -- responder (10.0.6.12:80) sent 4203 bytes 11-13-2006 12:44:28 Local7.Info 10.0.1.2 198: *Nov 13 19:46:41.539: %FW-6-SESS AUDIT TRAIL: Stop tcp session: initiator (10.0.1.12:2629) sent 559 bytes -- responder (10.0.6.12:80) sent 3967 bytes 11-13-2006 Local7.Info 10.0.1.2 12:44:23 197: *Nov 13 19:46:36.607: %FW-6-SESS_AUDIT_TRAIL_START: Start tcp session: initiator (10.0.1.12:2631) -- responder (10.0.6.12:80) 11-13-2006 12:44:23 Local7.Info 10.0.1.2 196: *Nov 13 19:46:36.603: %FW-6-SESS AUDIT TRAIL START: Start tcp session: initiator (10.0.1.12:2630) -- responder (10.0.6.12:80) 11-13-2006 12:44:23 Local7.Info 10.0.1.2 195: *Nov 13 19:46:36.599: %FW-6-SESS AUDIT TRAIL START: Start tcp session: initiator (10.0.1.12:2629) -- responder (10.0.6.12:80)

174 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Lab 5-2: Configure Cisco IOS Application Policy Firewall

Complete this lab activity to practice what you learned in the related module.

Activity Objective

In this activity, you will configure an application firewall for IM or HTTP. After completing this activity, you will be able to meet these objectives:

- Define an application policy and configure protocol-specific rules
- Apply an application policy to an inspection rule
- Display application firewall policy information

Visual Objective

The figure illustrates what you will accomplish in this activity.

Required Resources

These are the resources and equipment that are required to complete this activity:

- Student laptops
- Pod routers

Command List

The table describes the commands that are used in this activity.

|--|

Command	Description
alert {on $ $ off}	Enables alerts.
<pre>appfw policy-name policy- name</pre>	Defines an application firewall policy.
application protocol	Put the router in <i>appfw-policy</i> -protocol configuration mode and begin configuring inspection parameters for a given protocol.
audit-trail {on $ $ off}	Enables logging.
<pre>server {permit deny} {name string</pre>	Allows or denies access to IM servers.
timeout seconds	Specifies the elapsed length of time before an inactive connection is torn down.
<pre>service text-chat} action allow</pre>	Allows the text chat service for IM.
service default action action	Specify a default action to take for all services that are not explicitly configured under the application.
strict-http action allow alarm	Enables strict HTTP compliance.
content-length maximum length action allow alarm	Specifies the range of content length.
content-type-verification match-req-rsp action allow alarm	Enables content-type inspection.
<pre>max-header-length request length response 1 action allow alarm</pre>	Specifies the maximum header length.
port-misuse default action allow alarm	Permits or denies HTTP traffic through the firewall on the basis of specified applications in the HTTP message.
request-method rfc default action allow alarm	Specifies that the supported methods of RFC 2616, <i>Hypertext Transfer Protocol— HTTP/1.1</i> , are to be used for traffic inspection.
request-method extension default action allow alarm	Specifies that the extension methods are to be used for traffic inspection.
transfer-encoding type default action allow alarm	Permit HTTP traffic according to the specified transfer- encoding of the message.
<pre>ip inspect name inspection-name appfw policy-name</pre>	Defines a set of inspection rules for the application policy.
<pre>ip inspect inspection-name in</pre>	Applies the inspection rules to all traffic entering the specified interface.
show appfw configuration	Displays application firewall configuration.
show appfw name policy- name	Displays application firewall configuration of a specific policy.

176 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

© 2007 Cisco Systems, Inc.

Job Aids

There are no job aids for this activity.

Task 1: Set Up Lab Devices

In this task, you will set up the lab devices.

Activity Procedure

Complete these steps:

Step 1	Ensure that your student PC is powered on and that the Microsoft Windows 2000 Server is operational. Your instructor will provide you with the correct username and password to log in to the student PC.
Step 2	Configure your student PC for IP address 10.0.P.12 with a default gateway of 10.0.P.2 (where $P = pod$ number).
Step 3	Make sure that your student PC has an appropriate syslog server application installed (for example, the Kiwi Syslog Daemon).
Step 4	Reload your perimeter router using the default lab configuration.
Step 5	Ensure that you can ping the peer router and network hosts before beginning.

Activity Verification

You have completed this task when you attain these results:

• You can successfully ping your peer pod router.

Task 2: Define an Application Firewall Policy for IM and Configure Protocol-Specific Rules

In this task, you will define an IM application firewall policy and configure specific rules for that protocol.

Activity Procedure

Complete these steps:

Step 1	Define an application firewall policy and enter application firewall policy configuration mode.
	router(config)# appfw policy-name IM-Policy
Step 2	Put the router in "appfw-policy-protocol" configuration mode and begin configuring IM inspection parameters.
	<pre>router(cfg-appfw-policy)# application im aol</pre>
Step 3	Enable message logging for established or torn-down connections.
	router(cfg-appfw-policy-aim)# audit-trail on
Step 4	Specify the access policy to IM servers.
	router(cfg-appfw-policy-aim)# server permit name login.oscar.aol.com
Step 5	(Optional) Specify the elapsed length of time before an inactive connection is torn down.
	<pre>router(cfg-appfw-policy-aim)# timeout 30</pre>
Step 6	Specify an action when a specific service is detected in the IM traffic.
	router(cfg-appfw-policy-aim)# service text-chat action allow
Step 7	Specify a default action to take for all services that are not explicitly configured under the application.
	router(cfg-appfw-policy-aim)# service default action reset
Step 8	(Optional) Enable message logging when events, such as the start of a text chat, begin.
	router(cfg-appfw-policy-aim)# alert on

Activity Verification

You have completed this task when you attain these results:

■ Issue a **show appfw configuration** command. The output should be similar to this:

```
router# show appfw configuration
Application Firewall Rule configuration
Application Policy name IM-Policy
Application: im aol
service default action: reset
service text-chat action: allow
server: permit name login.oscar.aol.com
timeout: 30 audit-trail: on alert: on
```

178 Securing Networks with Cisco Routers and Switches (SNRS) v2.0
Task 3: Define an Application Firewall Policy for HTTP and Configure Protocol Specific Rules

In this task, you will define a HTTP application policy and configure specific rules for that protocol.

Activity Procedure

Complete these steps:

Step 1 Define an application firewall policy for HTTP and enter application firewall policy configuration mode. router(config) # appfw policy-name HTTP-Policy Put the router in "appfw-policy-protocol" configuration mode and begin configuring Step 2 HTTP inspection parameters. router(cfg-appfw-policy)# application http Step 3 Enable message logging for established or torn-down connections. router(cfg-appfw-policy-http)# audit-trail on Enable strict HTTP compliance. Step 4 router(cfg-appfw-policy-http)# strict-http action allow alarm Specify the range of content length. Step 5 router(cfg-appfw-policy-http)# content-length maximum 1000 action allow alarm Enable content-type inspection. Step 6 router(cfg-appfw-policy-http)# content-type-verification match-req-rsp action allow alarm Specify maximum header length. Step 7 router(cfg-appfw-policy-http)# max-header-length request 100 response 1 action allow alarm Permit or deny HTTP traffic through the firewall on the basis of specified Step 8 applications in the HTTP message. router(cfg-appfw-policy-http)# port-misuse default action allow alarm Specify that the supported methods of RFC 2616, *Hypertext Transfer Protocol*— Step 9 HTTP/1.1, are to be used for traffic inspection. router(cfq-appfw-policy-http)# request-method rfc default action allow alarm Step 10 Specify that the extension methods are to be used for traffic inspection. Default is all types router(cfg-appfw-policy-http)# request-method extension default action allow alarm

Lab Guide 179

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Step 11 Permit HTTP traffic according to the specified transfer-encoding of the message. The default is all types.

```
router(cfg-appfw-policy-http)# transfer-encoding type default
action allow alarm
```

Step 12 Exit to global EXEC mode.

router(cfg-appfw-policy-http)# end

Activity Verification

You have completed this task when you attain these results:

■ Issue a **show appfw name** *policy-name* command. The output should be similar to this:

R1#show appfw name HTTP-Policy

Application Policy name HTTP-Policy

Application http

alarm

content-length maximum 1000 action allow alarm

```
content-type-verification match-req-rsp action allow alarm
```

max-header-length request length 1 response length 1 action

allow

max-uri-length 100 action allow alarm
port-misuse default action allow alarm
request-method rfc default action allow alarm
transfer-encoding default action allow alarm
audit-trail is enabled

Task 4: Apply an Application Policy to a Firewall for Inspection

In this task, you will apply the application policy to a firewall.

Activity Procedure

Complete these steps:

Step 1 Define a set of inspection rules for the application policy.

router(config)# ip inspect name FIREWALL appfw IM-Policy

OR

router(config) # ip inspect name FIREWALL appfw HTTP-Policy
Step 2 Enter interface configuration mode.

router(config)# interface FastEthernet0/1

Step 3 Apply the inspection rules (defined in Step 1) to all traffic entering the specified interface.

router#(config-if)# ip inspect FIREWALL out

Activity Verification

You have completed this task when you attain these results:

■ Issue a show appfw configuration command. The output should be similar to this:

```
router# show appfw configuration
Application Firewall Rule configuration
  Application Policy name IM-Policy
    Application: im aol
     service default action: reset
     service text-chat action: allow
     server: permit name login.oscar.aol.com
     timeout: 30
                     audit-trail: on
                                         alert: on
  Application Policy name HTTP-Policy
    Application http
      content-length maximum 1000 action allow alarm
      content-type-verification match-req-rsp action allow alarm
      max-header-length request length 1 response length 1 action
allow
          alarm
      max-uri-length 100 action allow alarm
      port-misuse default action allow alarm
      request-method rfc default action allow alarm
      transfer-encoding default action allow alarm
      audit-trail is enabled
```

© 2007 Cisco Systems, Inc.

Lab 5-3: Configure a Cisco IOS Zone-Based Policy Firewall

Complete this lab activity to practice what you learned in the related module.

Activity Objective

In this activity, you will configure a Cisco IOS zone-based policy firewall on a perimeter router. After completing this activity, you will be able to meet these objectives:

- Create a class map and a policy map
- Configure a security zone
- Create a zone pair
- Assign interfaces to a zone pair
- Attach a policy map to a zone pair
- Configure the basic inspection of traffic

Visual Objective

The figure illustrates what you will accomplish in this activity.

Required Resources

These are the resources and equipment that are required to complete this activity:

- Student laptops
- Pod routers

182 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

© 2007 Cisco Systems, Inc.

Command List

The table describes the commands that are used in this activity.

Command	Description
class-map type inspect match-all map-name	Creates a Layer 3 or Layer 4 inspect type class map and enter class map configuration mode .
<pre>match access-group acl- number</pre>	Specify ACL to match.
match protocol protocol	Specify protocol to inspect.
policy-map type inspect policy-name	Creates an inspection policy map.
class type inspect <i>class- name</i>	Creates an inspection class map.
inspect	Enables inspection with the inspection policy map.
zone security zone-name	Creates a security zone.
zone-member security zone- name	Specifies an interface as a zone member.
zone-pair security zone- pair-name source zone-name destination zone-name	Creates a zone-pair.
show class-map type inspect	Displays inspection class map information.
show policy-map type inspect	Displays inspection policy map information.
show zone security	Displays information about configured security zones.
show zone-pair security	Displays information about configured security zone-pairs.

Cisco IOS Zone-Based Policy Firewall Commands

Job Aids

There are no job aids for this activity.

Task 1: Set Up Lab Devices

In this task, you will set up the lab devices.

Activity Procedure

Complete these steps:

Step 1	Ensure that your student PC is powered on and that the Windows 2000 Server is operational. Your instructor will provide you with the correct username and password to log in to the student PC.
Step 2	Configure your student PC for IP address 10.0.P.12 with a default gateway of 10.0.P.2 (where $P = pod$ number).
Step 3	Make sure that your student PC has an appropriate syslog server application installed (for example, the Kiwi Syslog Daemon).
Step 4	Reload your perimeter router using the default lab configuration.
Step 5	Ensure that you can ping the peer router and network hosts before beginning.
Step 6	Make sure that your router is running the correct date and time.
Step 7	Make sure that your student PC is running the correct date and time.

Activity Verification

You have completed this task when you attain these results:

• You can successfully ping your pod router.

Task 2: Configure a Policy

In this task, you will create a class map and policy map for Layer 3 and Layer 4.

Activity Procedure

Complete these steps:

Create a Class Map

Step 1 Create an ACL to match in the class map.

router(config)# access-list 110 permit ip 10.0.P.0 0.0.0.255
10.0.Q.0 0.0.0.255
router(config)# access-list 110 permit ip 10.0.P.0 0.0.0.255
172.26.26.0 0.0.0.255

Step 2 Create a Layer 3 or Layer 4 inspect type class map and enter class map configuration mode.

router(config) # class-map type inspect match-all HTTP-Class

Step 3 Configure the match criteria for a class map based on an ACL name or number.

router(config-cmap)# match access-group 110

Step 4 Configure the match criteria for a class map on the basis of a specified protocol. In this case, HTTP.

router(config-cmap)# match protocol http

Step 5 Return to global configuration mode.

router(config-cmap)# exit

Create a Policy Map

Step 6 Create a Layer 3 and Layer 4 inspect type policy map and enter policy map configuration mode.

router(config) # policy-map type inspect HTTP-Policy

Step 7 Specify the traffic (class) on which an action is to be performed.

router(config-pmap)# class type inspect HTTP-Class

Step 8 Enable Cisco IOS stateful packet inspection.

router(config-pmap-c)# inspect

Step 9 Return to global configuration mode.

router(config-pmap-c)# exit

Activity Verification

You have completed this task when you attain these results:

■ Issue a show class-map type inspect and show policy-map type inspect command.

```
R1# show class-map type inspect
```

```
Class Map type inspect match-all HTTP-Class (id 1)
Match access-group 110
Match protocol http
```

R1# show policy-map type inspect

```
Policy Map type inspect HTTP-Policy

Class HTTP-Class

Inspect ERROR <- (This is a bug in the IOS. The "error" after Inspect)
```

Task 3: Create a Security Zone and Assign Interfaces to a Security Zone

In this task, you will configure two security zones and assign interfaces to the zones.

Activity Procedure

Complete these steps:

Step 1	Create a security zone for the inside interface.	
	<pre>router(config)# zone security Inside</pre>	
Step 2	Describe the zone.	
	<pre>router(config-sec-zone)# description Inside Security Zone</pre>	
Step 3	Create a security zone for the outside interface.	
_	<pre>router(config)# zone security Outside</pre>	
Step 4	Describe the zone.	
o	router(config-sec-zone) # description Outside Security Zone	
Step 5	Return to global configuration mode.	
_	router(config-sec-zone)# exit	
Step 6	Specify the outside interface for configuration and enter interface configuration mode.	
	router(config)# interface fa0/1	
Step 7	Assign the interface to a specified security zone.	
	<pre>router(config-if)# zone-member security Outside</pre>	
Step 8	Return to global configuration mode.	
	router(config-sec-zone)# exit	
Step 9	Specify the outside interface for configuration and enter interface configuration mode.	
	<pre>router(config)# interface fa0/0</pre>	
Step 10	Assign the interface to a specified security zone.	
	<pre>router(config-if)# zone-member security Inside</pre>	
Step 11	Return to privileged exec mode.	
	router(config-sec-zone)# end	

Activity Verification

You have completed this task when you attain these results:

■ Issue a **show zone security** command. The output should look similar to this:

```
R1# show zone security
```

```
zone self
```

```
Description: System defined zone
```

zone Inside

Description: Inside Security Member Interfaces: FastEthernet0/0

zone Outside

Description: Outside Security Member Interfaces: FastEthernet0/1

188 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Task 4: Configure a Zone Pair

In this task, you will configure a zone pair.

Activity Procedure

Complete these steps:

Step 1	Create a zone pair.
	router(config)# zone-pair security SNRS-PAIR source Inside destination Outside
Step 2	Describe the zone pair.
Step 3	router(config-sec-zone)# description SNRS Zone-pair Return to global configuration mode.
	router(config-sec-zone)# exit

Activity Verification

You have completed this task when you attain these results:

■ Issue a **show zone-pair security** command. The output should be similar to this:

```
R1# show zone-pair security
Zone-pair name SNRS-PAIR
Description: SNRS Zone-pair
   Source-Zone Inside Destination-Zone Outside
   service-policy not configured
```

Task 5: Attach a Policy Map to the Zone Pair

In this task, you will attach a policy map to the zone pair that you created.

Activity Procedure

Complete these steps:

Step 1	Enter zone pair configuration mode.		
	router(config)# zone-pair security SNRS-PAIR		
Step 2	Attach a firewall policy map to the zone pair.		
	<pre>router(config-sec-zone-pair)# service-policy type inspect HTTP-Policy</pre>		
Step 3	Return to global privileged EXEC mode.		
	router(config-sec-zone-pair)# end		

Activity Verification

You have completed this task when you attain these results:

Use the following show commands to verify Cisco IOS zone-based policy firewall configuration:

```
R1# show zone-pair security
Zone-pair name SNRS-PAIR
Description: SNRS Zone-pair
    Source-Zone Inside Destination-Zone Outside
    service-policy HTTP-Policy
R1# show policy-map type inspect zone-pair SNRS-PAIR
 Zone-pair: SNRS-PAIR
  Service-policy inspect : HTTP-Policy
    Class-map: HTTP-Class (match-all)
      Match: access-group 110
      Match: protocol http
      Inspect
        Session creations since subsystem startup or last reset 0
        Current session counts (estab/half-open/terminating) [0:0:0]
        Maxever session counts (estab/half-open/terminating) [0:0:0]
        Last session created never
        Last session created never
        Last statistic reset never
        Last session creation rate 0
        Last half-open session total 0
    Class-map: class-default (match-any)
```

190 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Match: any
Drop (default action)
0 packets, 0 bytes

Lab 5-4: Configure Cisco IOS Authentication Proxy on a Cisco Router

Complete this lab activity to practice what you learned in the related module.

Activity Objective

In this activity, you will configure Cisco IOS Firewall authentication proxy on a Cisco router. After completing this activity, you will be able to meet these objectives:

- Set up lab devices
- Configure Cisco Secure ACS to support Cisco IOS Firewall authentication proxy
- Configure AAA
- Configure a Cisco IOS Firewall authentication proxy
- Test and verify auth-proxy configuration

Visual Objective

The figure illustrates what you will accomplish in this activity.

Required Resources

These are the resources and equipment that are required to complete this activity:

- Student computers
- Pod routers

192 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Command List

The table describes the commands that are used in this activity.

Cisco IOS	Authentication	Proxy	Commands
-----------	----------------	-------	----------

Command	Description
<pre>aaa authentication enable default method1 [method2]</pre>	To enable AAA authentication to determine whether a user can access the privileged command level, use the aaa authentication enable default command in global configuration mode. To disable this authorization method, use the no form of this command.
<pre>aaa authentication login {default list-name} method1 [method2]</pre>	To set AAA authentication at login, use the aaa authentication login command in global configuration mode. To disable AAA authentication, use the no form of this command.
<pre>aaa authorization {network exec commands level reverse-access configuration} {default list-name} method1 [method2]</pre>	To set parameters that restrict user access to a network, use the aaa authorization command in global configuration mode. To disable authorization for a function, use the no form of this command.
aaa new-model	To enable the AAA access control model, issue the aaa new-model command in global configuration mode. To disable the AAA access control model, use the no form of this command.
<pre>access-list access-list-number [dynamic dynamic-name [timeout minutes]] {deny permit} protocol source source-wildcard destination destination- wildcard [precedence precedence] [tos tos] [log log-input] [time-range time- range-name] [fragments]</pre>	To define an extended IP ACL, use the extended version of the access-list command in global configuration mode. To remove the ACLs, use the no form of this command.
<pre>ip access-group {access-list- number access-list-name}{in out}</pre>	To control access to an interface, use the ip access-group command in interface configuration mode. To remove the specified access group, use the no form of this command.
<pre>ip auth-proxy {inactivity-timer min absolute-timer min}</pre>	To set the Cisco IOS authentication proxy idle timeout value (the length of time that an authentication cache entry, along with its associated dynamic user ACL, is managed after a period of inactivity), use the ip auth-proxy command in global configuration mode. To set the default value, use the no form of this command.
<pre>ip auth-proxy auth-proxy-name</pre>	To apply a Cisco IOS authentication proxy rule at a firewall interface, use the ip auth-proxy command in interface configuration mode. To remove the Cisco IOS authentication proxy rules, use the no form of this command.
ip http authentication {aaa enable local tacacs}	To specify a particular authentication method for HTTP server users, use the ip http authentication command in global configuration mode. To disable a configured authentication method, use the no form of this command.
ip http server	To enable the HTTP server on your system, including the Cisco web browser user interface, use the ip http server command in global configuration mode. To disable the HTTP server, use the no form of this command.

© 2007 Cisco Systems, Inc.

<pre>ping [protocol] [tag] {host- name system-address}</pre>	To diagnose basic network connectivity on AppleTalk, ATM, CLNS, DECnet, IP, Novell IPX, or SRB networks, use the ping command in EXEC mode.
<pre>show access-lists [access-list- number access-list-name]</pre>	To display the contents of current ACLs, use the show access-lists command in privileged EXEC mode.
<pre>show ip auth-proxy {cache configuration}</pre>	To display the Cisco IOS authentication proxy entries or the running Cisco IOS authentication proxy configuration, use the show ip auth-proxy command in privileged EXEC mode.
<pre>tacacs-server host host-name [port integer] [timeout integer] [key string] [single- connection] [nat]</pre>	To specify a TACACS+ host, use the tacacs-server host command in global configuration mode. To delete the specified name or address, use the no form of this command.
tacacs-server key key	To set the authentication encryption key used for all TACACS+ communications between the access server and the TACACS+ daemon, use the tacacs-server key command in global configuration mode. To disable the key, use the no form of this command.
username name { nopassword password password password encryption-type encrypted- password}	To establish a username-based authentication system, use the username command in global configuration mode.

Job Aids

There are no job aids for this activity.

Task 1: Set Up Lab Devices

In this task, you will set up the lab devices.

Activity Procedure

Complete these steps:

- **Step 1** Ensure that your student PC is powered on and that the Microsoft Windows 2000 Server is operational. Your instructor will provide you with the correct username and password to log in to the student PC.
- **Step 2** Configure your student PC for IP address **10.0.P.12** with a default gateway of **10.0.P.2** (where P = pod number).
- **Step 3** Reload your perimeter router using the default lab configuration.
- **Step 4** Ensure that you can ping the other routers and network hosts before beginning.

Activity Verification

You have completed this task when you attain these results:

• You can successfully ping the other hosts.

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Task 2: Configure Cisco Secure ACS to Support Cisco IOS Authentication Proxy

In this task, you will configure the Cisco Secure ACS to work with Cisco IOS authentication proxy.

Activity Procedure

Complete these steps:

Step 1 On your student PC, open Cisco Secure ACS from the desktop.

Add the Cisco IOS NAD as a AAA Client

Complete these substeps.

Step 2	Click the Network Configuration button in the navigation bar.	

- **Step 3** In the AAA Clients box, click **Add Entry**. The Add AAA Client window opens.
- **Step 4** Enter the hostname of your router as **RP** (where P = your pod number) in the AAA Client Hostname field.
- **Step 5** Enter an IP address of **10.0.P.2** (where P = your pod number) in the AAA Client IP Address field. This is the IP address of the switch (NAD) interface that will forward TACACS+ packets to the Cisco Secure ACS.
- **Step 6** Enter a shared TACACS key of **ciscosecure** in the Key field.
- Step 7 Select TACACS+ (Cisco IOS) from the Authenticate Using list.
- Step 8 Click Submit + Apply.
- **Step 9** Click **Interface Configuration** on the left column of Cisco Secure ACS. The Interface Configuration window opens.
- Step 10 Click TACACS+ (Cisco IOS) to configure this option.
- **Step 11** Scroll down to locate the New Services area.
- Step 12 Choose the first field under New Services and enter auth-proxy in the Service field.
- **Step 13** Check the **Service** field group check box. Make sure that you check the check box directly to the left of the Service field.
- Step 14Scroll to the Advanced Configuration Options area and verify that the AdvancedTACACS+ features option is selected.
- **Step 15** Click the **Submit** button to submit your changes.
- Step 16 Click the Group Setup button. The Group Setup window opens.
- **Step 17** Choose **Group 2** from the Group drop-down menu.
- Step 18 Click Edit Settings to view the Group Settings for this group.
- **Step 19** Scroll down to the TACACS+ Settings area and locate the Auth-Proxy and Custom Attributes check boxes. Check both the **Auth-Proxy** check box and the **Custom Attributes** check box.

^{© 2007} Cisco Systems, Inc.

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Step 20 Enter the following in the Custom Attributes box (note that long lines of text, such as the proxyacl#1 line shown here, can wrap within the Custom Attributes box and may look like two lines):

proxyacl#1=permit tcp any host 172.26.26.50 eq www
proxyacl#2=permit icmp any any
priv-lvl=15

Step 21 Click Submit + Restart.

- **Step 22** Return to the User Setup and add a new username of **aaauser** with a password of **cisco123** to Group 2.
- **Step 23** Click the **Submit + Restart** button to submit your changes and restart the Cisco Secure ACS. Wait for the interface to return to the Group Setup main window.

Activity Verification

You have completed this task when you attain these results:

■ Review the settings that you just configured in Cisco Secure ACS.

Task 3: Configure AAA

In this task, you will configure AAA on the router.

Activity Procedure

Complete these steps:

Step 1	Create a user account in the local database.
0 / 0	router(config)# username cisco password cisco
Step 2	Enable AAA.
	router(config)# aaa new-model
Step 3	Define the TACACS+ server and its key.
	<pre>router(config)# tacacs-server host 10.0.P.12</pre>
	<pre>router(config)# tacacs-server key ciscosecure</pre>
	(where P = pod number)
Step 4	Specify the authentication protocol for logins.
	<pre>router(config)# aaa authentication login default group tacacs+ local</pre>
Step 5	Specify the authorization protocol for Cisco IOS authentication proxy.
	<pre>router(config)# aaa authorization auth-proxy default group tacacs+ local</pre>

Step 6 Define a new ACL to allow TACACS+ traffic to the inside interface from your AAA server. Also allow outbound ICMP traffic and CBAC traffic (FTP and World Wide Web). Block all other inside-initiated traffic.

router(config)# access-list 101 permit tcp host 10.0.P.12 eq tacacs host 10.0.P.2 router(config)# access-list 101 permit icmp any any router(config)# access-list 101 deny ip any any (where P = pod number)

Step 7 Apply the new ACL to the Fa0/0 interface of your perimeter router.

router(config)# interface Fa0/0

router(config-if)# ip access-group 101 in

- router(config-if)# **exit**
- **Step 8** Enable the router HTTP server for AAA

router(config)# ip http server
router(config)# ip http secure-server
router(config)# ip http authentication aaa
router(config)# end

Activity Verification

You have completed this task when you attain these results:

Issue a show access-lists command and a show ip http server status command. The output should be similar to this:

```
router#show ip access-list
Extended IP access list 101
    10 permit tcp host 10.0.1.12 eq tacacs host 10.0.1.2
    20 permit icmp any any
    30 deny ip any any
R1# show ip http server status
HTTP server status: Enabled
HTTP server port: 80
HTTP server authentication method: aaa
HTTP server access class: 0
HTTP server base path:
HTTP server help root:
Maximum number of concurrent server connections allowed: 5
Server idle time-out: 5 seconds
Server life time-out: 86400 seconds
Maximum number of requests allowed on a connection: 10000
HTTP server active session modules: ALL
```

HTTP secure server capability: Present HTTP secure server status: Enabled HTTP secure server port: 443 HTTP secure server ciphersuite: 3des-ede-cbc-sha des-cbc-sha rc4-128md5 rc4-128-sha HTTP secure server client authentication: Disabled HTTP secure server trustpoint: HTTP secure server active session modules: ALL

198 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Task 4: Configure Cisco IOS Authentication Proxy

In this task, you will configure Cisco IOS authentication proxy on the router.

Activity Procedure

Complete these steps:

Step 1	Define a Cisco IOS authentication proxy rule.
	<pre>router(config)# ip auth-proxy name APRULE http inactivity-time 5</pre>
Step 2Apply the Cisco IOS authentication proxy rule to the inside interface.	
	<pre>router(config)# interface fast 0/0</pre>
	router(config-if)# ip auth-proxy APRULE
	router(config-if)# end

Activity Verification

You have completed this task when you attain these results:

■ Issue a show ip auth-proxy configuration command. The output should be similar to this:

R1# show ip auth-proxy configuration Authentication Proxy Banner not configured Authentication global cache time is 60 minutes Authentication global absolute time is 0 minutes Authentication global init state time is 2 minutes Authentication Proxy Session ratelimit is 100 Authentication Proxy Watch-list is disabled Authentication Proxy Auditing is disabled Max Login attempts per user is 5

Authentication Proxy Rule Configuration Auth-proxy name APRULE http list not specified inactivity-timer 5 minutes

© 2007 Cisco Systems, Inc.

Task 5: Verify and Test the Configuration

In this task, you will test and verify Cisco IOS authentication proxy.

Activity Procedure

Complete these steps:

Step 1 Use your web browser to connect to the backbone web server. In the URL field, enter the following:

http://172.26.26.50

Step 2 Enter the following when the web browser prompts you for a username and password:

Username: aaauser

Password: **cisco123**

Step 3 From your workstation command prompt, ping the backbone server.

```
C:\> ping 172.26.26.50
```

Pinging 172.26.26.50 with 32 bytes of data: Reply from 172.26.26.50: bytes=32 time=34ms TTL=125 Reply from 172.26.26.50: bytes=32 time=34ms TTL=125 Reply from 172.26.26.50: bytes=32 time=34ms TTL=125 Reply from 172.26.26.50: bytes=32 time=36ms TTL=125 Use the show ip access-list command to check your ACLs.

router# **show ip access-list**

Step 5 Use the **show ip auth-proxy cache** command to verify the Cisco IOS authentication proxy configuration.

router# show ip auth-proxy cache

Activity Verification

Step 4

You have completed this task when you attain these results:

Issue a show ip access-list and a show ip auth-proxy cache command. The output should be similar to this:

```
R1# show ip access-lists
Extended IP access list 101
    permit ip host 10.0.1.12 any (31 matches)
    10 permit tcp host 10.0.1.12 eq tacacs host 10.0.1.2
    20 permit icmp any any
    30 deny ip any any (143 matches)
R1# show ip auth-proxy cache
```

```
Authentication Proxy Cache
Client Name cisco, Client IP 10.0.1.12, Port 2141, timeout 5, Time
Remaining 3, state ESTAB
```

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

Lab 5-5: Configure a Cisco Router with Cisco IOS IPS

Complete this lab activity to practice what you learned in the related module.

Activity Objective

In this activity, you will configure a Cisco router with Cisco IOS Firewall IPS. After completing this activity, you will be able to meet these objectives:

- Set up lab devices
- Initialize IPS
- Load signatures
- Merge the 128MB.sdf file with the default, built-in signatures
- Verify the configuration
- Generate a test message

Visual Objective

The figure illustrates what you will accomplish in this activity.

Required Resources

These are the resources and equipment that are required to complete this activity:

- Student computers
- Pod routers
- Cisco Secure ACS

^{© 2007} Cisco Systems, Inc.

Command List

The table describes the commands that are used in this activity.

IPS Commands

Command	Description
<pre>ip ips ips-name {in out} [list acl]</pre>	Applies an IPS rule to an interface.
ip ips fail closed	Instructs the router to drop all packets until the signature engine is built and ready to scan traffic.
ip ips name <i>ips-name</i>	Specifies an IPS rule.
ip ips sdf location url	Specifies the location in which the router will load the SDF.
ip virtual-reassembly	Enables virtual reassembly of IP packets.
<pre>copy flash:name.sdf ips- sdf</pre>	Merges SDF in flash with built-in signatures.
copy ips-sdf flash:name.sdf	Saves signatures in a new file.
<pre>show ip ips { [all] [configuration] [interfaces] [name name] [statistics [reset]] [sessions [details]] [signatures [details]] }</pre>	Displays IPS information, such as configured sessions and signatures.

Job Aids

There are no job aids for this activity.

202 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Task 1: Set Up Lab Devices

In this task, you will set up the lab devices.

Activity Procedure

Complete these steps:

- **Step 1** Ensure that your student PC is powered on and that the Microsoft Windows 2000 Server is operational.
- **Step 2** Configure your student PC for IP address **10.0.P.12** with a default gateway of **10.0.P.2** (where P = pod number).
- **Step 3** Make sure that your student PC has an appropriate syslog server application installed (for example, Kiwi Syslog Daemon).
- **Step 4** Reload your perimeter router using the default lab configuration.
- **Step 5** Ensure that you can ping the other routers and network hosts before beginning.

Activity Verification

You have completed this task when you attain these results:

■ You can successfully ping the other hosts.

Task 2: Initialize IPS

In this task, you will initialize IPS on the router. This task allows you to load the default, builtin signatures. If you want to merge the two signature files, you must load the default, built-in signatures as described in this task. Then, you can merge the default signatures with the attackdrop.sdf file.

Activity Procedure

Complete these steps:

Step 1	Create an IPS rule.
Step 2	router(config)# ip ips name SECURIPS Enter interface configuration mode on the outside interface of your router.
Step 3	router(config)# interface Fa0/1 Apply an IPS rule at an interface. This command automatically loads the signatures and builds the signature engines.
Step 4	router(config-if)# ip ips SECURIPS in Enable virtual reassembly.
Step 5	router(config-if)# ip virtual-reassembly Exit to global configuration mode.
	router(config-if)# exit

© 2007 Cisco Systems, Inc.

Step 6 Turn on logging.

Step 7	router(config) #logging Configure the logging host.	on
Step 8	<pre>router(config)#logging (Where P = pod number) Configure the trap level.</pre>	10.0.P.12
Step 9	router(config)#logging Turn on logging.	trap
Step 10	router(config)#logging Exit to privileged mode.	on
	router(config)# end	

Activity Verification

You have completed this task when you attain these results:

■ Issue a **show ips configuration** command. The output should be similar to this:

R1# show ip ips configuration
Configured SDF Locations: none
Built-in signatures are enabled and loaded
Last successful SDF load time: 13:32:37 CST Oct 16 2006
IPS fail closed is disabled
Fastpath ips is enabled
Quick run mode is enabled
Event notification through syslog is enabled
Event notification through SDEE is disabled
Total Active Signatures: 135
Total Inactive Signatures: 0
Signature 50000:0 disable
Signature 50000:1 disable
Signature 50000:2 disable
Signature 1107:0 disable
IPS Rule Configuration
IPS name SECURIPS
Interface Configuration
Interface FastEthernet0/1
Inbound IPS rule is SECURIPS
Outgoing IPS rule is not set

Task 3: Load Signatures

In this task, you will replace the existing signatures in your router with the latest IPS signature file, 128MB.sdf.

Activity Procedure

Complete these steps:

Step 1 Specify the location where the router will load the SDF. If this command is not issued, the router will load the default SDF.

router(config)# ip ips sdf location flash:128MB.sdf

- **Step 2** (Optional) Instruct the router to drop all packets until the signature engine is built and ready to scan traffic. If this command is issued, one of the following scenarios will occur:
 - If IPS fails to load the SDF, all packets will be dropped—unless the user specifies an ACL for packets to send to IPS.
 - If IPS successfully loads the SDF but fails to build a signature engine, all packets that are destined for that engine will be dropped.

router(config)# ip ips fail closed

Note	If this command is not issued, all packets will be passed without scanning if the signature engine fails to build.
Step 3	Enter interface configuration mode for the outside interface.
	<pre>router(config)# interface Fa0/1</pre>
Step 4	Remove the IPS rule at the interface.
	router(config-if)# no ip ips SECURIPS in
Step 5	Apply the IPS rule at the interface. This command automatically loads the new signatures and builds the signature engines.
	router(config-if)# ip ips SECURIPS in
Note	Whenever signatures are replaced or merged, the router prompt is suspended while the signature engines for the newly added or merged signatures are being built. The router prompt will be available again after the engines are built.
Step 6	Exit back to privileged EXEC mode.

router(config-if)# end

Activity Verification

You have completed this task when you attain these results:

■ Issue another **show ip ips configuration** command. The output should be similar to this:

```
R1# show ip ips configuration
```

```
Configured SDF Locations:
```

```
© 2007 Cisco Systems, Inc.
```

flash:128MB.sdf

Builtin signatures are enabled but not loaded Last successful SDF load time: 13:39:29 CST Oct 16 2006 IPS fail closed is enabled Fastpath ips is enabled Quick run mode is enabled Event notification through syslog is enabled Event notification through SDEE is disabled Total Active Signatures: 303 Total Inactive Signatures: 0 Signature 50000:0 disable Signature 50000:1 disable Signature 50000:2 disable IPS Rule Configuration IPS name SECURIPS Interface Configuration Interface FastEthernet0/1 Inbound IPS rule is SECURIPS Outgoing IPS rule is not set

■ Issue a **show ip ips signatures** command. The output should be similar to this: router# show ip ips signatures Builtin signatures are configured Signatures were last loaded from flash:128MB.sdf Cisco SDF release version 128MB.sdf v2 Trend SDF release version V0.0 *=Marked for Deletion Action=(A)larm,(D)rop,(R)eset Trait=AlarmTraits MH=MinHits AI=AlarmInterval CT=ChokeThreshold TI=ThrottleInterval AT=AlarmThrottle FA=FlipAddr WF=WantFrag Signature Micro-Engine: OTHER (4 sigs) SigID:SubID On Action Sev Trait MH AI CT TI AT FA WF Version _ _ 1203:0 Y A HIGH 0 0 0 30 15 FA N N 2.2.1.5 1202:0 Y A HIGH 0 0 0 100 15 FA N N 2.2.1.5

0

0

100

206 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Y

А

3050:0

© 2007 Cisco Systems, Inc.

1.0

15 FA N

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

HIGH

0

1201:0 2.2.1.5	Y	A	HIGH	0	0	0	30	15	FA	Ν	N	
Signature Mic	cro	-Engine	: STRI	ING.ICMF) (1 sig	s)						
SigID:SubID Version	On	Action	Sev	Trait	MH	AI	СТ	TI	AT	FA	WF	
2156:0	Y	A	MED	0	0	0	100	15	FA	Ν		S54
Signature Mic	cro	-Engine	: STRI	ING.UDP	(16 sig	s)						
SigID:SubID Version	On	Action	Sev	Trait	MH	AI	СТ	TI	AT	FA	WF	
11209:0	Y	А	INFO	0	0	0	100	15	FA	Ν		S139
11208:0	Y	A	INFO	0	0	0	100	15	FA	Ν		S139
4608:2	Y	А	HIGH	0	1	0	100	15	FA	Ν		S30
4608:1	Y	А	HIGH	0	1	0	100	15	FA	Ν		S30
4608:0	Y	А	HIGH	0	1	0	100	15	FA	Ν		S30
11000:2	Y	А	LOW	0	0	0	100	15	FA	Ν		S136
11000:1	Y	А	LOW	0	0	0	100	15	FA	Ν		S37
11000:0	Y	А	LOW	0	0	0	100	15	FA	Ν		S37
11207:0	Y	А	INFO	0	0	0	100	15	FA	Ν		S139
4607:4	Y	А	HIGH	0	0	0	100	15	FA	Ν		S30

Lab Guide 207

Task 4: Merge the 128MB.sdf File with the Default, Built-in Signatures

You may want to merge the built-in signatures with the attack-drop.sdf file if you find that the built-in signatures are not providing your network with adequate protection from security threats. Use this task to add the SDF and to change default parameters for a specific signature within the SDF or signature engine.

Activity Procedure

Complete these steps:

Step 1	Reload built-in signatures.
	router(config)# no ip ips sdf location flash:128MB.sdf
	router(config)# int Fa0/1
	router(config-if)# no ip ips SECURIPS in
	router(config-if)# ip ips SECURIPS in
	router(config-if)# end
Step 2	Merge the flash memory-based SDF (128MB.sdf) with the built-in signatures.
	router# copy flash:128MB.sdf ips-sdf
Note	This command loads the SDF in the router. The SDF will merge with the signatures that are already loaded in the router, unless the /erase keyword is issued.
Step 3	Save the newly merged signatures in a new file.
	router# copy ips-sdf flash:snrs-signatures.sdf
Step 4	Configure the router to use the new SDF
	router(config)# ip ips sdf location flash:snrs-signatures.sdf
Step 5	Reinitialize the IPS by removing the IPS rule set and reapplying the rule set.
	router(config-if)# interface fa 0/1
	router(config-if)# no ip ips SECURIPS in
Step 6	Reapply the rule set to the interface.
	router(config-if)# ip ips SECURIPS in
Step 7	Exit back to privileged EXEC mode.
	router(config-if)# end

208 Securing Networks with Cisco Routers and Switches (SNRS) v2.0

Activity Verification

You have completed this task when you attain these results:

Issue a **show ip ips configuration** command. The output should be similar to this: R1# show ip ips configuration Configured SDF Locations: flash:snrs-signatures.sdf Builtin signatures are enabled but not loaded Last successful SDF load time: 13:51:07 CST Oct 16 2006 IPS fail closed is enabled Fastpath ips is enabled Quick run mode is enabled Event notification through syslog is enabled Event notification through SDEE is disabled Total Active Signatures: 370 Total Inactive Signatures: 0 Signature 50000:0 disable Signature 50000:1 disable Signature 50000:2 disable Signature 1107:0 disable IPS Rule Configuration IPS name SECURIPS Interface Configuration Interface FastEthernet0/1 Inbound IPS rule is SECURIPS Outgoing IPS rule is not set

Task 5: Verify the Configuration

In this task, you will verify the IPS router configuration.

Activity Procedure

Complete these steps:

Step 1 Display your IPS interface configuration. The parameters that you just configured along with several default settings are displayed.

router# show ip ips interfaces

Activity Verification

You have completed this task when you attain these results:

■ Issue a **show ip ips interfaces** command. The output should be similar to the following:

R1#show ip ips interfaces Interface Configuration Interface FastEthernet0/1 Inbound IPS rule is SECURIPS Outgoing IPS rule is not set

Task 6: Generate a Test Message

In this task, you will generate a test message to test IPS.

Activity Procedure

Complete these steps:

- Step 1 Start the syslog server on your Microsoft Windows 2000 Server.
- **Step 2** Send multiple fragmented packets to the perimeter router of another pod using the following special technique:

```
router# ping
Protocol [IP] <Enter>
Target IP address: 172.30.Q.2<Enter>
Repeat count [5]: 20
Datagram size [100]: 2000
Timeout in seconds [2]: <Enter>
Extended commands [n]: <Enter>
Sweep range of sizes [n]: <Enter>
Sweep range of sizes [n]: <Enter>
```

Activity Verification

You have completed this task when you attain these results:

• Check the syslog server log file. The output should resemble the following:

```
10-16-2006
                                                      10.0.1.2
                 14:04:48
                                                                  253:
                             Local7.Warning
*Oct 16 20:06:35.962: %IPS-4-SIGNATURE: Sig:2000 Subsig:0 Sev:2 ICMP
Echo Rply [172.30.6.2:0 -> 172.30.1.2:0]
10-16-2006
                 14:04:48
                             Local7.Warning
                                                      10.0.1.2
                                                                  252:
*Oct 16 20:06:35.962: %IPS-4-SIGNATURE: Sig:2150 Subsig:0 Sev:2
Fragmented ICMP [172.30.6.2:0 -> 172.30.1.2:0]
10-16-2006
                 14:04:48
                             Local7.Warning
                                                      10.0.1.2
                                                                  251:
*Oct 16 20:06:35.962: %IPS-4-SIGNATURE: Sig:2151 Subsig:0 Sev:2 Large
ICMP [172.30.6.2:0 -> 172.30.1.2:0]
10-16-2006
                             Local7.Warning
                                                                  250:
                 14:04:48
                                                      10.0.1.2
*Oct 16 20:06:35.942: %IPS-4-SIGNATURE: Sig:2000 Subsig:0 Sev:2 ICMP
Echo Rply [172.30.6.2:0 -> 172.30.1.2:0]
10-16-2006
                 14:04:48
                             Local7.Warning
                                                      10.0.1.2
                                                                  249:
*Oct 16 20:06:35.942: %IPS-4-SIGNATURE: Sig:2150 Subsig:0 Sev:2
Fragmented ICMP [172.30.6.2:0 -> 172.30.1.2:0]
10-16-2006
                 14:04:48
                             Local7.Warning
                                                      10.0.1.2
                                                                  248:
*Oct 16 20:06:35.942: %IPS-4-SIGNATURE: Sig:2151 Subsig:0 Sev:2 Large
ICMP [172.30.6.2:0 -> 172.30.1.2:0]
10-16-2006
                 14:04:48
                             Local7.Warning
                                                      10.0.1.2
                                                                  247:
*Oct 16 20:06:35.938: %IPS-4-SIGNATURE: Sig:2000 Subsig:0 Sev:2 ICMP
Echo Rply [172.30.6.2:0 -> 172.30.1.2:0]
```

^{© 2007} Cisco Systems, Inc.

The PDF files and any printed representation for this material are the property of Cisco Systems, Inc., for the sole use by Cisco employees for personal study. The files or printed representations may not be used in commercial training, and may not be distributed for purposes other than individual self-study.

10-16-2006 14:04:48 Local7.Warning 10.0.1.2 246: *Oct 16 20:06:35.938: %IPS-4-SIGNATURE: Sig:2150 Subsig:0 Sev:2 Fragmented ICMP [172.30.6.2:0 -> 172.30.1.2:0]

10-16-2006 14:04:48 Local7.Warning 10.0.1.2 245: *Oct 16 20:06:35.938: %IPS-4-SIGNATURE: Sig:2151 Subsig:0 Sev:2 Large ICMP [172.30.6.2:0 -> 172.30.1.2:0]

10-16-2006 14:04:48 Local7.Warning 10.0.1.2 244: *Oct 16 20:06:35.934: %IPS-4-SIGNATURE: Sig:2000 Subsig:0 Sev:2 ICMP Echo Rply [172.30.6.2:0 -> 172.30.1.2:0]

212 Securing Networks with Cisco Routers and Switches (SNRS) v2.0