

Efficient Linux at the Command
Line

Boost Your Command-Line Skills

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

Daniel J. Barrett

Efficient Linux at the Command Line
by Daniel J. Barrett

Copyright © 2022 Daniel Barrett. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: John Devins

Development Editor: Virginia Wilson

Production Editor: Gregory Hyman

Copyeditor: Kim Wimpsett

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

February 2022: First Edition

Revision History for the Early Release

2021-09-20: First Release

2021-12-17: Second Release

http://oreilly.com/

See http://oreilly.com/catalog/errata.csp?isbn=9781098113407 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Efficient Linux at the Command Line, the cover image, and related trade
dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not
represent the publisher’s views. While the publisher and the author have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-098-11340-7

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098113407

Preface

This book will take your Linux command-line skills to the next level, so
you can work faster, smarter, and more efficiently.

If you’re like most Linux users, you learned your early command-line skills
on the job, or by reading an intro book, or by installing Linux at home and
just trying things out. I’ve written this book to help you take the next step 
— to build intermediate to advanced skills at the Linux command line. It’s
filled with techniques and concepts that I hope will transform how you
interact with Linux and boost your productivity. Think of it as a second
book on Linux use that takes you beyond the basics.

A command line is the simplest of interfaces, yet also the most challenging.
It’s simple because you’re presented with nothing but a prompt, which
waits for you to run any command you may know:

$

It’s challenging because everything beyond the prompt is your
responsibility. There are no friendly icons, buttons, or menus to guide you.
Instead, every command you type is creative act. This is true for basic
commands, like listing your files:

$ ls

and more elaborate commands like this one:

$ paste <(echo {1..10}.jpg | sed 's/ /\n/g') \
 <(echo {0..9}.jpg | sed 's/ /\n/g') \
 | sed 's/^/mv /' \
 | bash

If you’re staring at the preceding command and thinking, “What the heck is
that?” or “I would never need such a complex command,” then this book is

1

for you.

What You’ll Learn
This book will make you faster and more effective at three essential skills:

1. Choosing or inventing commands to solve a business problem at
hand

2. Running those commands efficiently

3. Navigating the Linux filesystem with ease

By the end, you’ll understand what happens behind the scenes when you
run a command, so you can better predict the results (and not develop
superstitions). You’ll see a dozen different methods for launching
commands and learn when to use each one for best advantage. You’ll also
learn practical tips and tricks to make you more productive, such as:

Building complex commands out of simpler ones, step by step, to
solve real-world problems, like managing passwords or generating
10,000 test files

Saving time by organizing your home directory intelligently so you
don’t have to hunt for files

Transforming text files and querying them like databases to
achieve business goals

Controlling point-and-click features of Linux from the command
line, such as copying and pasting with the clipboard, and retrieving
and processing web data, without lifting your hands from the
keyboard

Most of all, you’ll learn general best practices so no matter which
commands you run, you can become more successful in everyday Linux use
and more competitive on the job market. This is the book I wish I had when
I learned Linux.

2

What This Book is Not
This book won’t optimize your Linux computer to make it run more
efficiently. It makes you more efficient at interacting with Linux.

This book is also not a comprehensive reference for the command line — 
there are hundreds of commands and features that I don’t mention. This
book is about expertise. It teaches a carefully-selected set of command-line
knowledge in a practical order to build your skills. For a reference-style
guide, try my previous book, Linux Pocket Guide.

Audience and Prerequisites
This book assumes you have Linux experience; it’s not an introduction. It’s
for users who want to improve their command-line skills, such as students,
system administrators, software developers, site reliability engineers, test
engineers, and general Linux enthusiasts. Advanced Linux users may find
some useful material as well, especially if they learned to run commands by
trial and error and want to strengthen their conceptual understanding.

To benefit most from this book, you should already be comfortable with the
following topics. If not, see Appendix A for a quick refresher.

Creating and editing text files with a text editor such as vim (vi),
emacs, nano, or pico

Basic file-handling commands like cp (copy), mv (move or
rename), rm (remove or delete), and chmod (change file
permissions)

Basic file-viewing commands like cat (view an entire file) and
less (view one page at a time)

Basic directory commands like cd (change directory), ls (list files
in a directory), mkdir (create directory), rmdir (remove
directory), and pwd (display your current directory name)

The basics of shell scripts: storing Linux commands in a file,
making the file executable (with chmod 755 or chmod +x), and
running the file

Viewing Linux’s built-in documentation, known as manpages, with
the man command (example: man cat displays documentation
on the cat command)

Becoming the superuser with the sudo command for full access to
your Linux system (example: sudo nano /etc/hosts edits
the system file /etc/hosts which is protected from ordinary users)

If you also know common command-line features like pattern-matching for
filenames (with the * and ? symbols), input/output redirection (< and >),
and pipes (|), you are off to a good start.

Your Shell
I assume your Linux shell is bash, which is the default shell for most
Linux distributions. Whenever I write “the shell,” I mean bash. Most of
the ideas I present apply to other shells too, such as zsh or dash; see
Appendix B to help translate this book’s examples for other shells. Much of
the material will work unchanged on the Apple Mac Terminal as well,
which runs zsh by default but can also run bash.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

Constant width highlighted

Used in complex program listings to call attention to specific text.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://efficientlinux.com/examples.

https://efficientlinux.com/examples

If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example: “Book
Title by Some Author (O’Reilly). Copyright 2012 Some Copyright Holder,
978-0-596-xxxx-x.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit http://oreilly.com.

mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com/
http://oreilly.com/

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
http://www.oreilly.com/catalog/9781098113391.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

For news and information about our books and courses, visit
http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book was a joy to write. Thanks to the amazing folks at O’Reilly,
including editors Virginia Wilson and John Devins, production editors
Caitlin Ghegan and Gregory Hyman, content manager Kristen Brown, and

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_fy_f4y8o/8umx9i45_pdf_out/OEBPS/preface01.xhtml
mailto:bookquestions@oreilly.com
http://oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

the ever-helpful tools team. I’m also very grateful to the book’s technical
reviewers, Paul Bayer, John Bonesio, Dan Ritter, and Carla Schroder, for
many insightful comments and criticisms. Thanks also to the Boston Linux
Users Group for title suggestions. Special thanks to Maggie Johnson at
Google for her kind permission to write the book.

I’d like to offer my deepest thanks to Chip Andrews, Matthew Diaz, and
Robert Strandh, who were fellow students at The Johns Hopkins University
35 years ago. They noticed my new and growing interest in Unix and, to my
utter surprise, recommended that the Computer Science Department hire me
as their next system administrator. Their small act of faith changed the
trajectory of my life. (Robert also gets credit for the tip on touch-typing in
Chapter 3.) Thanks also to the creators and maintainers of Linux, GNU
Emacs, Git, AsciiDoc, and many other open-source tools — without these
smart and generous people, my career would have been very different
indeed.

As always, thank you to my wonderful family, Lisa and Sophia, for their
love and patience.

1 This book displays the Linux prompt as a dollar sign. Your prompt may be different.

2 You’ll learn this mystery command’s purpose in Chapter 8.

Part I. Core Concepts

The first four chapters aim to increase your efficiency quickly, covering
concepts and techniques that should be immediately useful. You’ll learn to
combine commands with pipes, understand the responsibilities of the Linux
shell, rapidly recall and edit commands from the past, and navigate the
Linux filesystem with great speed.

Chapter 1. Combining
Commands

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the first chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at vwilson@oreilly.com.

When you work in Windows, MacOS, and most other operating systems,
you probably spend your time running applications like web browsers, word
processors, spreadsheets, and games. A typical application is packed with
features: everything that the designers thought their users would need. So,
most applications are self-sufficient. They don’t rely on other apps. You
might copy and paste between applications from time to time, but for the
most part, they’re separate.

The Linux command line is different. Instead of big applications with tons
of features, Linux supplies thousands of small commands with very few
features. The command cat, for example, prints files on the screen and
that’s about it. ls lists the files in a directory, mv renames files, and so on.
Each command has a simple, fairly well-defined purpose.

What if you need to do something more complicated? Don’t worry. Linux
makes it easy to combine commands so their individual features work
together to accomplish your goal. This way of working yields a very

mailto:vwilson@oreilly.com

different mindset about computing. Instead of asking “Which app should I
launch?” to achieve some result, the question becomes “Which commands
should I combine?”

In this chapter, you’ll learn how to arrange and run commands in different
combinations to do what you need. To keep things simple, I’ll introduce just
six Linux commands and their most basic uses, so you can focus on the
more complex and interesting part — combining them — without a huge
learning curve. It’s a bit like learning to cook with six ingredients, or
learning carpentry with just a hammer and a saw. (I’ll add more commands
to your Linux toolbox in Chapter 5.)

You’ll combine commands using pipes, a Linux feature that connects the
output of one command to the input of another. As I introduce each
command (wc, head, cut, grep, sort, and uniq), I’ll immediately
demonstrate its use with pipes. Some examples will be practical for daily
Linux use, while others are just toy examples to demonstrate an important
feature.

Input, Output, and Pipes
Most Linux commands read input from the keyboard, write output to the
screen, or both. Linux has fancy names for this reading and writing:

stdin (pronounced “standard input” or “standard in”)

The stream of input that Linux reads from your keyboard. When you
type any command at a prompt, you’re supplying data on stdin.

stdout (pronounced “standard output” or “standard out”)

The stream of output that Linux writes to your display. When you run
the ls command to print filenames, the results appear on stdout.

Now comes the cool part. You can connect the stdout of one command to
the stdin of another, so the first command feeds the second. Let’s begin with

the familiar ls -l command to list a large directory, such as /bin, in long
format:

$ ls -l /bin
total 12104
-rwxr-xr-x 1 root root 1113504 Jun 6 2019 bash
-rwxr-xr-x 1 root root 170456 Sep 21 2019 bsd-csh
-rwxr-xr-x 1 root root 34888 Jul 4 2019 bunzip2
-rwxr-xr-x 1 root root 2062296 Sep 18 2020 busybox
-rwxr-xr-x 1 root root 34888 Jul 4 2019 bzcat
⋮
-rwxr-xr-x 1 root root 5047 Apr 27 2017 znew

This directory contains far more files than your display has lines, so the
output quickly scrolls off-screen. It’s a shame that ls can’t print the
information one screenful at a time, pausing until you press a key to
continue. But wait: another Linux command has that feature. The less
command displays a file one screenful at a time.

$ less myfile

You can connect these two commands because ls writes to stdout and
less can read from stdin. Use a pipe to send the output of ls to the input
of less:

$ ls -l /bin | less

This combined command displays the directory’s contents one screenful at
a time. The vertical bar (|) between the commands is the Linux pipe
symbol. It connects the first command’s stdout to the next command’s
stdin. Any command line containing pipes is called a pipeline.

Commands generally are not aware that they’re part of a pipeline. ls
believes it’s writing to the display, when in fact its output has been
redirected to less. And less believes it’s reading from the keyboard
when it’s actually reading the output of ls.

1

WHAT’S A COMMAND?
The word command has three different meanings in Linux, shown in
Figure 1-1.

A program

An executable program named and executed by a single word, such
as ls, or a similar feature built into the shell, such as cd (called a
shell builtin).

A simple command

A program name (or shell builtin) optionally followed by
arguments, such as ls -l /bin.

A combined command

Several simple commands treated as a unit, such as the pipeline ls
-l /bin | less.

Figure 1-1. Programs, simple commands, and combined commands are all referred to as
“commands”

2

In this book, I’ll use the word “command” in all these ways. Usually the
surrounding context will make clear which one I mean, but if not, I’ll
use one of the more specific terms.

Six Commands To Get You Started
Pipes are an essential part of Linux expertise. Let’s dive into building your
piping skills with a small set of commands, so no matter which Linux
commands you encounter later, you’re ready to combine them.

The six commands — wc, head, cut, grep, sort, and uniq — have
numerous options and modes of operation that I’ll largely skip for now to
focus on pipes. To learn more about any command, run the man command
to display full documentation. For example:

$ man wc

To demonstrate our six commands in action, I’ll use a file named
animals.txt that lists some O’Reilly book information, shown in Example 1-
1.

Example 1-1. Inside the File animals.txt
python Programming Python 2010 Lutz, Mark
snail SSH, The Secure Shell 2005 Barrett, Daniel
alpaca Intermediate Perl 2012 Schwartz, Randal
robin MySQL High Availability 2014 Bell, Charles
horse Linux in a Nutshell 2009 Siever, Ellen
donkey Cisco IOS in a Nutshell 2005 Boney, James
oryx Writing Word Macros 1999 Roman, Steven

Each line contains four facts about an O’Reilly book, separated by a single
tab character: the animal on the front cover, the book title, the year of
publication, and the name of the first author.

Command #1: wc
The wc command prints the number of lines, words, and characters in a file.

$ wc animals.txt
 7 51 325 animals.txt

wc reports that the file animals.txt has 7 lines, 51 words, and 325
characters. If you count the characters by eye, including spaces and tabs,
you’ll find only 318 characters, but wc also includes the invisible newline
character that ends each line.

The options -l, -w, and -c instruct wc to print only the number of lines,
words, and characters, respectively:

$ wc -l animals.txt
7 animals.txt
$ wc -w animals.txt
51 animals.txt
$ wc -c animals.txt
325 animals.txt

Counting is such a useful, general-purpose task that the authors of wc
designed the command to work with pipes. It reads from stdin if you omit
the filename, and it writes to stdout. Let’s use ls to list the contents of the
current directory and pipe them to wc to count lines. This pipeline answers
the question, “How many files are in my current directory?”

$ ls -1
animals.txt
myfile
myfile2
test.py
$ ls -1 | wc -l
4

The option -1, which tells ls to print its results in a single column, is not
strictly necessary here. To learn why I used it, see the sidebar “ls Changes
Its Behavior When Redirected”.

wc is the first command you’ve seen in this chapter, so you’re a bit limited
in what you can do with pipes. Just for fun, pipe the output of wc to itself,
demonstrating that the same command can appear more than once in a

pipeline. This combined command reports that the number of words in the
output of wc is four: three integers and a filename:

$ wc animals.txt
 7 51 325 animals.txt
$ wc animals.txt | wc -w
4

Why stop there? Add a third wc to the pipeline and count lines, words, and
characters in the output “4”:

$ wc animals.txt | wc -w | wc
 1 1 2

The output indicates one line (containing the number 4), one word (the
number 4 itself), and two characters. Why two? Because the line “4” ends
with an invisible newline character.

That’s enough silly pipelines with wc. As you gain more commands, the
pipelines will become more practical.

LS CHANGES ITS BEHAVIOR WHEN REDIRECTED

Unlike virtually every other Linux command, ls is aware of whether
stdout is the screen or whether it’s been redirected (to a pipe or
otherwise). The reason is user-friendliness. When stdout is the screen,
ls arranges its output in multiple columns for convenient reading:

$ ls /bin
bash dir kmod networkctl red tar
bsd-csh dmesg less nisdomainname rm
tempfile
⋮

When stdout is redirected, however, ls produces a single column. I’ll
demonstrate this by piping the output of ls to a command that simply
reproduces its input, such as cat:

$ ls /bin | cat
bash
bsd-csh
bunzip2
busybox
⋮

This behavior can lead to strange-looking results, as in the following
example:

$ ls
animals.txt myfile myfile2 test.py
$ ls | wc -l
4

The first ls command prints all filenames on one line, but the second
command reports that ls produced four lines. If you aren’t aware of the
quirky behavior of ls, you might find this discrepancy confusing.

ls has options to override its default behavior. Force ls to print a
single column with the -1 option, or force multiple columns with the -

3

C option.

Command #2: head
The head command prints the first lines of a file. Print the first 3 lines of
animals.txt with head using the option -n:

$ head -n3 animals.txt
python Programming Python 2010 Lutz, Mark
snail SSH, The Secure Shell 2005 Barrett, Daniel
alpaca Intermediate Perl 2012 Schwartz, Randal

If you request more lines than the file contains, head prints the whole file
(like cat does). If you omit the -n option, head defaults to 10 lines (-
n10).

By itself, head is handy for peeking at the top of a file when you don’t care
about the rest of the contents. It’s a speedy and efficient command, even for
very large files, because it needn’t read the whole file. In addition, head
writes to stdout, making it useful in pipelines. Count the number of words
in the first three lines of animals.txt:

$ head -n3 animals.txt | wc -w
20

head can also read from stdin for more pipeline fun. A common use is to
reduce the output from another command when you don’t care to see all of
it, like a long directory listing. For example, list the first five filenames in
the /bin directory.

$ ls /bin | head -n5
bash
bsd-csh
bunzip2
busybox
bzcat

Command #3: cut
The cut command prints one or more columns from a file. For example,
print all book titles from animals.txt, which appear in the second column:

$ cut -f2 animals.txt
Programming Python
SSH, The Secure Shell
Intermediate Perl
MySQL High Availability
Linux in a Nutshell
Cisco IOS in a Nutshell
Writing Word Macros

cut provides two ways to define what a “column” is. The first is to cut by
field (-f), which means that the input consists of strings (fields) each
separated by a single tab character. Conveniently, that is exactly the format
of the file animals.txt. The preceding cut command prints the second field
of each line, thanks to the option -f2.

To shorten the output, pipe it to head to print only the first three lines:

$ cut -f2 animals.txt | head -n3
Programming Python
SSH, The Secure Shell
Intermediate Perl

You can also cut multiple fields, either by separating their field numbers
with commas:

$ cut -f1,3 animals.txt | head -n3
python 2010
snail 2005
alpaca 2012

or by numeric range:

$ cut -f2-4 animals.txt | head -n3
Programming Python 2010 Lutz, Mark
SSH, The Secure Shell 2005 Barrett, Daniel
Intermediate Perl 2012 Schwartz, Randal

The second way to define a “column” for cut is by character position,
using the -c option. Print the first three characters from each line of the
file, which you can specify either with commas (1,2,3) or as a range (1-
3):

$ cut -c1-3 animals.txt
pyt
sna
alp
rob
hor
don
ory

Now that you’ve seen the basic functionality, try something more practical
with cut and pipes. Imagine that the animals.txt file is thousands of lines
long, and you need to extract just the authors’ last names. First, isolate the
fourth field, author name:

$ cut -f4 animals.txt
Lutz, Mark
Barrett, Daniel
Schwartz, Randal
⋮

Then pipe the results to cut again, using the option -d (meaning
“delimiter”) to change the separator character to a comma instead of tab, to
isolate the authors’ last names:

$ cut -f4 animals.txt | cut -d, -f1
Lutz
Barrett
Schwartz
⋮

SAVE TIME WITH COMMAND HISTORY AND
EDITING

Are you retyping a lot of commands? Press the up arrow key instead, repeatedly, to
scroll through commands you’ve run before. (This shell feature is called command
history.) When you reach the desired command, press Enter to run it immediately, or
edit it first using the left and right arrow keys to position the cursor and the Backspace
key to delete. (This feature is command-line editing.)

I’ll discuss much more powerful features for command history and editing in Chapter 3.

Command #4: grep
grep is an extremely powerful command, but for now I’ll hide most of its
capabilities and say it prints lines that match a given string. (More detail
will come in Chapter 5.) For example, the following command displays
lines from animals.txt that contain the string “Nutshell”:

$ grep Nutshell animals.txt
horse Linux in a Nutshell 2009 Siever, Ellen
donkey Cisco IOS in a Nutshell 2005 Boney, James

You can also print lines that don’t match a given string, with the -v option.
Notice the lines containing “Nutshell” are absent:

$ grep -v Nutshell animals.txt
python Programming Python 2010 Lutz, Mark
snail SSH, The Secure Shell 2005 Barrett, Daniel
alpaca Intermediate Perl 2012 Schwartz, Randal
robin MySQL High Availability 2014 Bell, Charles
oryx Writing Word Macros 1999 Roman, Steven

In general, grep is useful for finding text in a collection of files. The
following command prints lines that contain the string Perl in files with
names ending in .txt:

$ grep Perl *.txt
animals.txt:alpaca Intermediate Perl 2012 Schwartz,
Randal

essay.txt:really love the Perl programming language, which is
essay.txt:languages such as Perl, Python, PHP, and Ruby

In this case, grep found three matching lines, one in animals.txt and two in
essay.txt.

grep reads stdin and writes stdout, making it great for pipelines. Suppose
you want to know how many subdirectories are in the large directory
/usr/lib. There is no single Linux command to provide that answer, so
construct a pipeline. Begin with the ls -l command:

$ ls -l /usr/lib
drwxrwxr-x 12 root root 4096 Mar 1 2020 4kstogram
drwxr-xr-x 3 root root 4096 Nov 30 2020 GraphicsMagick-1.4
drwxr-xr-x 4 root root 4096 Mar 19 2020 NetworkManager
-rw-r--r-- 1 root root 35568 Dec 1 2017 attica_kde.so
-rwxr-xr-x 1 root root 684 May 5 2018 cnf-update-db
⋮

Notice that ls -l marks directories with a d at the beginning of the line.
Use cut to isolate the first column, which may or may not be a d:

$ ls -l /usr/lib | cut -c1
d
d
d
-
-
⋮

Then use grep to keep only the lines containing d:

$ ls -l /usr/lib | cut -c1 | grep d
d
d
d
⋮

Finally, count lines with wc, and you have your answer, produced by a four-
command pipeline: /usr/lib contains 145 subdirectories.

$ ls -l /usr/lib | cut -c1 | grep d | wc -l
145

Command #5: sort
The sort command reorders the lines of a file into ascending order (the
default):

$ sort animals.txt
alpaca Intermediate Perl 2012 Schwartz, Randal
donkey Cisco IOS in a Nutshell 2005 Boney, James
horse Linux in a Nutshell 2009 Siever, Ellen
oryx Writing Word Macros 1999 Roman, Steven
python Programming Python 2010 Lutz, Mark
robin MySQL High Availability 2014 Bell, Charles
snail SSH, The Secure Shell 2005 Barrett, Daniel

or descending order (with the -r option):

$ sort -r animals.txt
snail SSH, The Secure Shell 2005 Barrett, Daniel
robin MySQL High Availability 2014 Bell, Charles
python Programming Python 2010 Lutz, Mark
oryx Writing Word Macros 1999 Roman, Steven
horse Linux in a Nutshell 2009 Siever, Ellen
donkey Cisco IOS in a Nutshell 2005 Boney, James
alpaca Intermediate Perl 2012 Schwartz, Randal

sort can order the lines alphabetically (the default) or numerically (with
the -n option). I’ll demonstrate this with pipelines that cut the third field in
animals.txt, the year of publication:

$ cut -f3 animals.txt Unsorted
2010
2005
2012
2014
2009
2005
1999
$ cut -f3 animals.txt | sort -n Ascending
1999

2005
2005
2009
2010
2012
2014
$ cut -f3 animals.txt | sort -nr Descending
2014
2012
2010
2009
2005
2005
1999

To learn the year of the most recent book in animals.txt, pipe the output of
sort to the input of head and print just the first line:

$ cut -f3 animals.txt | sort -nr | head -n1
2014

MAXIMUM AND MINIMUM VALUES
sort and head are powerful partners when working with numeric data, one value per
line. You can print the maximum value by piping the data to:

... | sort -nr | head -n1

and print the minimum value with:

... | sort -n | head -n1

As another example, let’s play with the file /etc/passwd, which lists the
users that can run processes on the system. You’ll generate a list of all
users in alphabetical order. Peeking at the first five lines, you see something
like this:

$ head -n5 /etc/passwd
root:x:0:0:root:/root:/bin/bash

4

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
smith:x:1000:1000:Aisha Smith,,,:/home/smith:/bin/bash
jones:x:1001:1001:Bilbo Jones,,,:/home/jones:/bin/bash

Each line consists of strings separated by colons, and the first string is the
username, so you can isolate the usernames with the cut command:

$ head -n5 /etc/passwd | cut -d: -f1
root
daemon
bin
smith
jones

and sort them:

$ head -n5 /etc/passwd | cut -d: -f1 | sort
bin
daemon
jones
root
smith

To produce the sorted list of all usernames, not just the first five, replace
head with cat:

$ cat /etc/passwd | cut -d: -f1 | sort

To detect if a given user has an account on your system, match their
username with grep. Empty output means no account.

$ cut -d: -f1 /etc/passwd | grep -w jones
jones
$ cut -d: -f1 /etc/passwd | grep -w rutabaga (produces no
output)

The -w option instructs grep to match full words only, not partial words,
in case your system also has a username that contains “jones” such as
sallyjones2.

Command #6: uniq
The uniq command detects repeated, adjacent lines in a file. By default, it
removes the repeats. I’ll demonstrate this with a simple file containing
capital letters:

$ cat letters
A
A
A
B
B
A
C
C
C
C
$ uniq letters
A
B
A
C

Notice that uniq reduced the first three A lines to a single A, but it left the
last A in place because it wasn’t adjacent to the first three.

You can also count occurrences with the -c option:

$ uniq -c letters
 3 A
 2 B
 1 A
 4 C

I’ll admit, when I first encountered the uniq command, I didn’t see much
use in it, but it quickly became one of my favorites. Suppose you have a
tab-separated file of students’ final grades for a university course, ranging
from A (best) to F (worst).

$ cat grades
C Geraldine
B Carmine

A Kayla
A Sophia
B Haresh
C Liam
B Elijah
B Emma
A Olivia
D Noah
F Ava

You’d like to print the grade with the most occurrences. (If there’s a tie,
print just one of the winners.) Begin by isolating the grades with cut and
sorting them:

$ cut -f1 grades | sort
A
A
A
B
B
B
B
C
C
D
F

Next, use uniq to count adjacent lines:

$ cut -f1 grades | sort | uniq -c
 3 A
 4 B
 2 C
 1 D
 1 F

Then sort the lines in reverse order, numerically, to move the most
frequently-occurring grade to the top line:

$ cut -f1 grades | sort | uniq -c | sort -nr
 4 B
 3 A
 2 C

 1 F
 1 D

and keep just the first line with head:

$ cut -f1 grades | sort | uniq -c | sort -nr | head -n1
 4 B

Finally, since you want just the letter grade, not the count, isolate the grade
with cut:

$ cut -f1 grades | sort | uniq -c | sort -nr | head -n1 | cut -c9
B

and there’s your answer, thanks to a six-command pipeline — our longest
yet. This sort of step-by-step pipeline construction is not just an educational
exercise. It’s how Linux experts actually work. Chapter 8 is devoted to this
technique.

Detecting Duplicate Files
Let’s combine what you’ve learned with a larger example. Suppose you’re
in a directory full of JPEG files and you want to know if any are duplicates.

$ ls
image001.jpg image005.jpg image009.jpg image013.jpg
image017.jpg
image002.jpg image006.jpg image010.jpg image014.jpg
image018.jpg
⋮

You can answer this question with a pipeline. You’ll need another
command, md5sum, which examines a file’s contents and computes a 32-
character string called a checksum:

$ md5sum image001.jpg
146b163929b6533f02e91bdf21cb9563 image001.jpg

A given file’s checksum, for mathematical reasons, is very, very likely to be
unique. If two files have the same checksum, therefore, they are almost
certainly duplicates. Here, md5sum indicates the first and third files are
duplicates:

$ md5sum image001.jpg image002.jpg image003.jpg
146b163929b6533f02e91bdf21cb9563 image001.jpg
63da88b3ddde0843c94269638dfa6958 image002.jpg
146b163929b6533f02e91bdf21cb9563 image003.jpg

Duplicate checksums are easy to detect by eye when there are only three
files, but what if you have three thousand? It’s pipes to the rescue. Compute
all the checksums, use cut to isolate the first 32 characters of each line,
and sort the lines to make any duplicates adjacent:

$ md5sum *.jpg | cut -c1-32 | sort
1258012d57050ef6005739d0e6f6a257
146b163929b6533f02e91bdf21cb9563
146b163929b6533f02e91bdf21cb9563
17f339ed03733f402f74cf386209aeb3
⋮

Now add uniq to count repeated lines:

$ md5sum *.jpg | cut -c1-32 | sort | uniq -c
 1 1258012d57050ef6005739d0e6f6a257
 2 146b163929b6533f02e91bdf21cb9563
 1 17f339ed03733f402f74cf386209aeb3
 ⋮

If there are no duplicates, all of the counts produced by uniq will be 1.
Sort the results numerically from high to low, and any counts greater than 1
will appear at the top of the output:

$ md5sum *.jpg | cut -c1-32 | sort | uniq -c | sort -nr
 3 f6464ed766daca87ba407aede21c8fcc
 2 c7978522c58425f6af3f095ef1de1cd5
 2 146b163929b6533f02e91bdf21cb9563
 1 d8ad913044a51408ec1ed8a204ea9502
 ⋮

Now let’s remove the non-duplicates. Their checksums are preceded by six
spaces, the number one, and a single space. We’ll use grep -v to remove
these lines:

$ md5sum *.jpg | cut -c1-32 | sort | uniq -c | sort -nr | grep -v
" 1 "
 3 f6464ed766daca87ba407aede21c8fcc
 2 c7978522c58425f6af3f095ef1de1cd5
 2 146b163929b6533f02e91bdf21cb9563

Finally, you have your list of duplicate checksums, sorted by the number of
occurrences, produced by a beautiful six-command pipeline. If it produces
no output, there are no duplicate files.

This command would be even more useful if it displayed the filenames of
the duplicates, but that operation requires features we haven’t discussed yet.
(You’ll learn them in “Improving the Duplicate File Detector”.) For now,
identify the files having a given checksum by searching with grep:

$ md5sum *.jpg | grep 146b163929b6533f02e91bdf21cb9563
146b163929b6533f02e91bdf21cb9563 image001.jpg
146b163929b6533f02e91bdf21cb9563 image003.jpg

and cleaning up the output with cut:

$ md5sum *.jpg | grep 146b163929b6533f02e91bdf21cb9563 | cut -
c35-
image001.jpg
image003.jpg

Summary
You’ve now seen the power of stdin, stdout, and pipes. They turn a small
handful of commands into a collection of composable tools, proving that
the whole is greater than the sum of the parts. Any command that reads stdin
or writes stdout can participate in pipelines. As you learn more commands,
you can apply the general concepts from this chapter to forge your own
powerful combinations.

5

6

1 On US keyboards, the pipe symbol is on the same key as the backslash (\), usually located
between the Enter and Backspace keys, or between the left Shift key and Z.

2 The POSIX standard calls this form of command a utility.

3 Depending on your setup, ls may also use other formatting features, such as color, when
printing to the screen but not when redirected.

4 Some Linux systems store the user information elsewhere.

5 Technically, you don’t need the final sort -nr in this pipeline to isolate duplicates because
grep removes all the non-duplicates.

6 Some commands do not use stdin/stdout and therefore cannot read from pipes or write to
pipes. Examples are mv and rm. Pipelines may incorporate these commands in other ways,
however; you’ll see examples in Chapter 8.

Chapter 2. Introducing the Shell

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the second chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at vwilson@oreilly.com.

So, you can run commands at a prompt. But what is that prompt? Where
does it come from, how are your commands run, and why does it matter?

That little prompt is produced by a program called a shell. It’s a user
interface that sits between you and the Linux operating system. Linux
supplies several shells, and the most common (and the standard for this
book) is called bash. (See Appendix B for notes about other shells.)

Bash and other shells do much more than simply run commands. For
example, when a command includes a wildcard (*) to refer to multiple files
at once:

$ ls *.py
data.py main.py user_interface.py

the wildcard is handled entirely by the shell, not by the program ls. The
shell evaluates the expression *.py and invisibly replaces it with a list of
matching filenames before ls runs. In other words, ls never sees the
wildcard. From the perspective of ls, you typed the following command:

mailto:vwilson@oreilly.com

$ ls data.py main.py user_interface.py

The shell also handles the pipes you saw in Chapter 1. It redirects stdin and
stdout transparently so the programs involved have no idea they are
communicating with each other.

Every time a command runs, some steps are the responsibility of the
invoked program, such as ls, and some are the responsibility of the shell.
Expert users understand which is which. That’s one reason they can create
long, complex commands off the top of their head and run them
successfully. They already know what the command will do before they
press Enter, in part because they understand the separation between the
shell and the programs it invokes.

In this chapter, we’ll launch your understanding of the Linux shell. I’ll take
the same minimalist approach I used for commands and pipes in Chapter 1.
Rather than cover dozens of shell features, I’ll hand you just enough
information to carry you to the next step of your learning journey:

Pattern matching for filenames

Variables to store values

Redirection of input and output

Quoting and escaping to disable certain shell features

The search path for locating programs to run

Saving changes to your shell environment

Shell Vocabulary
The word “shell” has two meanings. Sometimes it means the concept of the
Linux shell in general, as in “The shell is a powerful tool” or "bash is a
shell.” Other times it means a specific instance of a shell running on a given
Linux computer, awaiting your next command.

In this book, the meaning of “shell” should be clear from the context most
of the time. When necessary, I’ll refer to the second meaning as a shell
instance, a running shell, or your current shell.

Some shell instances, but not all, present a prompt so you can interact with
them. I’ll use the term interactive shell to refer to these instances. Other
shell instances are noninteractivenoninteractive shell — they run a sequence
of commands and exit.

Pattern Matching for Filenames
In Chapter 1, you worked with several commands that accept filenames as
arguments, such as cut, sort, and grep. These commands (and many
others) accept multiple filenames as arguments. For example, you can
search for the word “Linux” in 100 files at once, named chapter1 through
chapter100:

$ grep Linux chapter1 chapter2 chapter3 chapter4 chapter5 ...and
so on...

Listing multiple files by name is a tedious time-waster, so the shell provides
special characters as a shorthand to refer to files or directories with similar
names. Many folks call these characters wildcards, but the more general
concept is called pattern matching or globbing. Pattern matching is one of
the two most common techniques for speed that Linux users learn. (The
other is pressing the up arrow key to recall the shell’s previous command,
which I describe in Chapter 3.)

Most Linux users are familiar with the star or asterisk character (*) which
matches any sequence of zero or more characters (except for a leading dot)
in file or directory paths:

$ grep Linux chapter*

Behind the scenes, the shell (not grep!) expands the pattern chapter*
into a list of 100 matching filenames. Then the shell runs grep.

1

Many users have also seen the question mark (?) special character, which
matches any single character (except a leading dot). For example, you could
search for the word “Linux” in chapters 1 through 9 only, by providing a
single question mark to make the shell match single digits:

$ grep Linux chapter?

or in chapters 10 through 99, with two question marks to match two digits:

$ grep Linux chapter??

Fewer users are familiar with square brackets ([]), which request the shell
to match a single character from a set. For example, you could search only
the first five chapters:

$ grep Linux chapter[12345]

Equivalently, you could supply a range of characters with a dash:

$ grep Linux chapter[1-5]

You could also search even-numbered chapters, combining the asterisk and
the square brackets to make the shell match filenames ending in an even
digit:

$ grep Linux chapter*[02468]

Any characters, not just digits, may appear within the square brackets for
matching. For example, filenames that begin with a capital letter, contain an
underscore, and end with an @ symbol would be matched by the shell in this
command:

$ ls [A-Z]*_*@

TERMINOLOGY: EVALUATING EXPRESSIONS AND
EXPANDING PATTERNS

Strings that you enter on the command line, such as chapter* or Efficient
Linux, are called expressions. An entire command like ls -l chapter* is an
expression too.

When the shell interprets and handles special characters in an expression, such as
asterisks and pipe symbols, we say that the shell evaluates the expression.

Pattern matching is one kind of evaluation. When the shell evaluates an expression that
contains pattern-matching symbols, such as chapter*, and replaces it with filenames
that match the pattern, we say that the shell expands the pattern.

Patterns are valid almost anywhere that you’d supply file or directory paths
on the command line. For example, you can list all files in the directory /etc
with names ending in .conf using a pattern:

$ ls -1 /etc/*.conf
/etc/adduser.conf
/etc/appstream.conf
⋮
/etc/wodim.conf

Be careful using a pattern with a command that accepts just one file or
directory argument, such as cd. You might not get the behavior you expect:

$ ls
Pictures Poems Politics
$ cd P* Three directories will
match
bash: cd: too many arguments

If a pattern doesn’t match any files, the shell leaves it unchanged to be
passed literally as a command argument. In the following command, the
pattern *.doc matches nothing in the current directory, so ls looks for a
filename literally named *.doc and fails.

$ ls *.doc
/bin/ls: cannot access '*.doc': No such file or directory

When working with file patterns, two points are vitally important to
remember. The first, as I’ve already emphasized, is that the shell, not the
invoked program, performs the pattern-matching. I know I keep repeating
this, but I’m frequently surprised by how many Linux users don’t know it
and develop superstitions about why certain commands succeed or fail.

The second important point is that shell pattern-matching applies only to
file and directory paths. It doesn’t work for usernames, hostnames, and
other types of arguments that certain commands accept. You also cannot
type (say) s?rt at the beginning of the command line and expect the shell
to run the sort program. (Some Linux commands such as grep, sed, and
awk perform their own brands of pattern-matching, which we’ll explore in
Chapter 5.)

FILENAME PATTERN-MATCHING AND YOUR OWN
PROGRAMS

All programs that accept filenames as arguments automatically “work” with pattern-
matching, because the shell evaluates the patterns before the program runs. This is true
even for programs and scripts you write yourself. For example, if you wrote a program
english2swedish that translated files from English to Swedish and accepted
multiple filenames on the command line, you could instantly run it with pattern-
matching:

$ english2swedish *.txt

Evaluating Variables
A running shell can define variables and store values in them. A shell
variable is a lot like a variable in algebra — it has a name and a value. An
example is the shell variable HOME. Its value is the path to your Linux home
directory, such as /home/smith. Another example is USER, whose value is
your Linux username, which I’ll assume is smith throughout this book.

The command printenv prints a variable’s value on stdout:

$ printenv HOME
/home/smith
$ printenv USER
smith

When the shell evaluates a variable, it replaces the variable name with its
value. Simply place a dollar sign in front of the name to evaluate the
variable. For example, $HOME evaluates to the string /home/smith.

The easiest way to watch the shell evaluate a command line is to run the
echo command, which simply prints its arguments (after the shell is
finished evaluating them):

$ echo My name is $USER and my files are in $HOME Evaluating
variables
My name is smith and my files are in /home/smith
$ echo ch*ter9 Evaluating a
pattern
chapter9

Where Variables Come From
Variables like USER and HOME are predefined by the shell. Their values are
set automatically when you log in. (More on this process later.)
Traditionally, such predefined variables have uppercase names.

You also may define or modify a variable anytime by assigning it a value
using this syntax:

name=value

For example, if you work frequently in the directory /home/smith/Projects,
you could assign its name to a variable:

$ work=$HOME/Projects

and use it as a handy shortcut with cd:

$ cd $work
$ pwd
/home/smith/Projects

You may supply $work to any command that expects a directory:

$ cp myfile $work
$ ls $work
myfile

When defining a variable, no spaces are permitted around the equals sign. If
you forget, the shell will assume (wrongly) that the first word on the
command line is a program to run, and the equals sign and value are its
arguments, and you’ll see an error message:

$ work = $HOME/Projects The shell assumes "work" is
a command
work: command not found

A user-defined variable like work is just as legitimate and usable as a
system-defined variable like HOME. The only practical difference is that
some Linux programs change their behavior internally based on the values
of HOME, USER, and other system-defined variables. For example, a Linux
program with a graphical interface might retrieve your username from the
shell and display it. Such programs don’t pay attention to an invented
variable like work because they weren’t programmed to do so.

Variables and Superstition
When you print the value of a variable with echo:

$ echo $HOME
/home/smith

you might think that the echo command examines the HOME variable and
prints its value. That is not the case. echo knows nothing about variables.
It just prints whatever arguments you hand it. What’s really happening is

that the shell evaluates $HOME before running echo. From echo’s
perspective, you typed:

$ echo /home/smith

This behavior is extremely important to understand, especially as we delve
into more complicated commands. The shell evaluates the variables in a
command — as well as patterns and other shell constructs — before
executing the command.

Patterns vs. Variables
Let’s test your understanding of pattern and variable evaluation. Suppose
you’re in a directory with two subdirectories, mammals and reptiles, and
oddly, the mammals subdirectory contains files named lizard.txt and
snake.txt.

$ ls
mammals reptiles
$ ls mammals
lizard.txt snake.txt

In the real world, lizards and snakes are not mammals, so the two files
should be moved to the reptiles subdirectory. Here are two proposed ways
to do it. One works and one does not.

mv mammals/*.txt reptiles Method 1

FILES="lizard.txt snake.txt"
mv mammals/$FILES reptiles Method 2

Method 1 works because patterns match an entire file path. See how the
directory name mammals is part of both matches for mammals/*.txt:

$ echo mammals/*.txt
mammals/lizard.txt mammals/snake.txt

So, method 1 operates as if you’d typed the following correct command:

$ mv mammals/lizard.txt mammals/snake.txt reptiles

Method 2 uses variables, which evaluate to their literal value only. They
have no special handling for file paths.

$ echo mammals/$FILES
mammals/lizard.txt snake.txt

So, method 2 operates as if you’d typed the following problematic
command:

$ mv mammals/lizard.txt snake.txt reptiles

This command looks for the file snake.txt in the current directory, not in the
mammals subdirectory, and fails:

$ mv mammals/$FILES reptiles
/bin/mv: cannot stat 'snake.txt': No such file or directory

To make a variable work in this situation, use a for loop that prepends the
directory name mammals to each filename:

FILES="lizard.txt snake.txt"
for f in $FILES; do
 mv mammals/$f reptiles
done

Shortening Commands with Aliases
A variable is a name that stands in for a value. The shell also has names that
stand in for commands. They’re called aliases. Define an alias by inventing
a name and following it with a equals sign and a command:

$ alias g=grep A command with no arguments
$ alias ll="ls -l" A command with arguments -- quotes

are required

Run an alias by typing its name as a command. When aliases are shorter
than the commands they invoke, you save typing time.

$ ll Runs "ls -l"
-rw-r--r-- 1 smith smith 325 Jul 3 17:44 animals.txt
$ g Nutshell animals.txt Runs "grep
Nutshell animals.txt"
horse Linux in a Nutshell 2009 Siever, Ellen
donkey Cisco IOS in a Nutshell 2005 Boney, James

TIP
Always define an alias on its own line, not as part of a combined command. (See man
bash for the technical details.)

You can define an alias that has the same name as an existing command,
effectively replacing that command in your shell. This practice is called
shadowing the command. Suppose you like the less command for reading
files, but you want it to clear the screen before displaying each page. This
feature is enabled with the -c option, so define an alias called “less” that
runs less -c:

$ alias less="less -c"

Aliases take precedence over commands of the same name, so you have
now shadowed the less command in the current shell. I’ll explain what
precedence means in “Search Path and Aliases”.

To list a shell’s aliases and their values, run alias with no arguments:

$ alias
alias g='grep'
alias ll='ls -l'

To see the value of a single alias, run alias followed by its name:

2

$ alias g
alias g='grep'

To delete an alias from a shell, run unalias:

$ unalias g

Redirecting Input and Output
The shell controls the input and output of the commands it runs. You’ve
already seen one example: pipes, which direct the stdout of one command
to the stdin of another. The pipe syntax, |, is a feature of the shell.

Another shell feature is redirecting stdout to a file. For example, if you use
grep to print matching lines from the animals.txt file from Example 1-1,
the command writes to stdout by default:

$ grep Perl animals.txt
alpaca Intermediate Perl 2012 Schwartz, Randal

You can send that output to a file instead, using a shell feature called output
redirection. Simply add the symbol > followed by the name of a file to
receive the output:

$ grep Perl animals.txt > outfile (produces
no output)
$ cat outfile
alpaca Intermediate Perl 2012 Schwartz, Randal

You have just redirected stdout to the file outfile instead of the display. If
the file outfile doesn’t exist, it’s created. If it does exist, redirection
overwrites its contents. If you’d rather append to the output file rather than
overwrite it, use the symbol >> instead:

$ grep Perl animals.txt > outfile Create or
overwrite outfile
$ echo There was just one match >> outfile Append to outfile
$ cat outfile

alpaca Intermediate Perl 2012 Schwartz, Randal
There was just one match

Output redirection has a partner, input redirection, that redirects stdin to
come from a file instead of the keyboard. Use the symbol < followed by a
filename to redirect stdin.

Many Linux commands that accept filenames as arguments, and read from
those files, also read from stdin when run with no arguments. An example is
wc for counting lines, words, and characters in a file:

$ wc animals.txt Reading from a named
file
 7 51 325 animals.txt
$ wc < animals.txt Reading from
redirected stdin
 7 51 325

It’s very important to understand how these two commands differ in
behavior.

In the first command, wc receives the filename animals.txt as an
argument, so wc is aware that the file exists. wc deliberately opens
the file on disk and reads its contents.

In the second command, wc is invoked with no arguments, so it
reads from stdin, which is usually the keyboard. The shell,
however, sneakily redirects stdin to come from animals.txt instead.
wc has no idea that the file animals.txt exists.

The shell can redirect input and output in the same command:

$ wc < animals.txt > count
$ cat count
 7 51 325

and can even use pipes at the same time. Here, grep reads from redirected
stdin and pipes the results to wc, which writes to redirected stdout,
producing the file count.

$ grep Perl < animals.txt | wc > count
$ cat count
 1 6 47

You’ll dive deeper into such combined commands in Chapter 8 and see
many other examples of redirection throughout the book.

STANDARD ERROR (STDERR) AND REDIRECTION
In your day-to-day Linux use, you may notice that some output cannot
be redirected by >, such as certain error messages. For example, ask cp
to copy a file that doesn’t exist and it produces this error message:

$ cp nonexistent.txt file.txt
cp: cannot stat 'nonexistent.txt': No such file or directory

If you redirect the output (stdout) of this cp command to a file, errors,
the message still appears on screen:

$ cp nonexistent.txt file.txt > errors
cp: cannot stat 'nonexistent.txt': No such file or directory

and the file errors is empty:

$ cat errors (produces no
output)

Why does this happen? Linux commands can produce more than one
stream of output. In addition to stdout, there is also stderr (pronounced
“standard error” or “standard err”), a second stream of output that is
traditionally reserved for error messages. The streams stderr and stdout
look identical on the display but internally they are separate. You can
redirect stderr with the symbol 2> followed by a filename:

$ cp nonexistent.txt file.txt 2> errors
$ cat errors
cp: cannot stat 'nonexistent.txt': No such file or directory

and append stderr to a file with 2>> followed by a filename:

$ cp nonexistent.txt file.txt 2> errors
$ cp another.txt file.txt 2>> errors
$ cat errors
cp: cannot stat 'nonexistent.txt': No such file or directory
cp: cannot stat 'another.txt': No such file or directory

To redirect both stdout and stderr to the same file, use &> followed by a
filename:

$ echo This file exists > goodfile.txt Create a
file
$ cat goodfile.txt nonexistent.txt &> all.output
$ cat all.output
This file exists
cat: nonexistent.txt: No such file or directory

Disabling Evaluation with Quotes and
Escapes
Normally the shell uses whitespace as a separator between words. The
following command has four words — a program name followed by three
arguments:

$ ls file1 file2 file3

Sometimes, however, you need the shell to treat whitespace as significant,
not as a separator. A common example is whitespace in a filename such as
Efficient Linux Tips.txt.

$ ls -l
-rw-r--r-- 1 smith smith 36 Aug 9 22:12 Efficient Linux Tips.txt

If you refer to such a filename on the command line, your command may
fail because the shell treats the space characters as separators:

$ cat Efficient Linux Tips.txt
cat: Efficient: No such file or directory
cat: Linux: No such file or directory
cat: Tips.txt: No such file or directory

To force the shell to treat spaces as part of a filename, you have three
options: single quotes, double quotes, and backslashes.

$ cat 'Efficient Linux Tips.txt'
$ cat "Efficient Linux Tips.txt"
$ cat Efficient\ Linux\ Tips.txt

Single quotes tell the shell to treat every character in a string literally, even
if the character ordinarily has special meaning to the shell, such as spaces
and dollar signs:

$ echo '$HOME'
$HOME

Double quotes tell the shell to treat all characters literally except for certain
dollar signs and a few others you’ll learn later.

$ echo "Notice that $HOME is evaluated" Double
quotes
Notice that /home/smith is evaluated
$ echo 'Notice that $HOME is not' Single
quotes
Notice that $HOME is not

A backslash, also called the escape character, tells the shell to treat the next
character literally. The following command includes an escaped dollar sign:

$ echo \$HOME
$HOME

Backslashes act as escape characters even within double quotes:

$ echo "The value of \$HOME is $HOME"
The value of $HOME is /home/smith

but not within single quotes:

$ echo 'The value of \$HOME is $HOME'
The value of \$HOME is $HOME

Use the backslash to escape a double quote character within double quotes:

$ echo "This message is \"sort of\" interesting"
This message is "sort of" interesting

A backslash at the end of a line disables the special nature of the invisible
newline character, allowing shell commands to span multiple lines:

$ echo "This is a very long message that needs to extend \
onto multiple lines"
This is a very long message that needs to extend onto multiple
lines

Final backslashes are great for making pipelines more readable, like this
one from “Command #6: uniq”:

$ cut -f1 grades \
 | sort \
 | uniq -c \
 | sort -nr \
 | head -n1 \
 | cut -c9

When used this way, the backslash is sometimes called a line continuation
character.

A leading backslash before an alias escapes the alias, causing the shell to
look for a command of the same name, ignoring any shadowing.

$ alias less="less -c" Define an alias
$ less myfile Run the alias, which invokes less -
c
$ \less myfile Run the standard less command, not
the alias

Locating Programs to Be Run
When the shell first encounters a simple command, such as ls *.py, it’s
just a string of meaningless characters. Quick as a flash, the shell splits the

string into two words, “ls” and “*.py”. In this case, the first word is the
name of a program on disk, and the shell must locate the program to run it:

The program ls, it turns out, is an executable file in the directory /bin. You
can verify its location with this command:

$ ls -l /bin/ls
-rwxr-xr-x 1 root root 133792 Jan 18 2018 /bin/ls

or you can change directories with cd /bin and run this lovely, cryptic-
looking command:

$ ls ls
ls

which uses the command ls to list the executable file ls.

How does the shell locate ls in the /bin directory? Behind the scenes, the
shell consults a prearranged list of directories that it holds in memory,
called a search path. The list is stored as the value of the shell variable
PATH:

$ echo $PATH
/home/smith/bin:/usr/local/bin:/usr/bin:/bin:/usr/games:/usr/lib/
java/bin

Directories in a search path are separated by colons (:). For a clearer view,
convert the colons to newline characters by piping the output to the tr
command, which translates one character into another (more details in
Chapter 5):

$ echo $PATH | tr : "\n"
/home/smith/bin
/usr/local/bin
/usr/bin
/bin
/usr/games
/usr/lib/java/bin

The shell consults directories in your search path from first to last when
locating a program like ls. “Does /home/smith/bin/ls exist? No. Does
/usr/local/bin/ls exist? Nope. How about /usr/bin/ls? No again! Maybe
/bin/ls? Yes, there it is! I’ll run /bin/ls.” This search happens too quickly to
notice.

To locate a program in your search path, use the which command:

$ which cp
/bin/cp
$ which which
/usr/bin/which

or the more powerful (and verbose) type command, a shell builtin that
also locates aliases, functions, and shell builtins:

$ type cp
cp is hashed (/bin/cp)
$ type ll
ll is aliased to ‘/bin/ls -l’
$ type type
type is a shell builtin

Your search path may contain the same-named command in different
directories, such as /usr/bin/less and /bin/less. The shell runs whichever
command appears in the earlier directory in the path. By leveraging this
behavior, you can override a Linux command by placing a same-named
command in an earlier directory in your search path, such as your personal
~/bin directory.

SEARCH PATH AND ALIASES
When the shell searches for a command by name, it checks if that name is an alias
before checking the search path. That’s why an alias can shadow (take precedence over)
a command of the same name.

3

4

The search path is a great example of taking something mysterious about
Linux and showing it has an ordinary explanation. The shell doesn’t pull
commands out of thin air or locate them by magic. It methodically
examines directories in a list until it finds the requested executable file.

Environments and Initialization Files, the
Short Version
A running shell holds a bunch of important information in variables: the
search path, the current directory, your preferred text editor, your
customized shell prompt, and more. The variables of a running shell are
collectively called the shell’s environment. When the shell exits, its
environment is destroyed.

It would be extremely tedious to define every shell’s environment by hand.
The solution is to define the environment once, in shell scripts called
startup files and initialization files, and have every shell execute these
scripts on startup. The effect is that certain information appears to be
“global” or “known” to all of your running shells.

I’ll dive into the gory details in “Configuring Your Environment”. For now,
I’ll teach you about one initialization file so you can get through the next
few chapters. It’s located in your home directory and named .bashrc
(pronounced “dot bash R C”). Because its name begins with a dot, ls
doesn’t list it by default.

$ ls $HOME
apple banana carrot
$ ls -a $HOME
.bashrc apple banana carrot

If ~/.bashrc doesn’t exist, create it with a text editor. Commands you place
in this initialization file will execute automatically when a shell starts up,
so it’s a great place to define variables for the shell’s environment, and
other things important to the shell such as aliases. Here is a sample
~/.bashrc file. Lines beginning with # are comments.

5

Set the search path
PATH=$HOME/bin:/usr/local/bin:/usr/bin:/bin
Set the shell prompt
PS1='$ '
Set your preferred text editor
EDITOR=emacs
Start in my work directory
cd $HOME/Work/Projects
Define an alias
alias g=grep
Offer a hearty greeting
echo "Welcome to Linux, friend!"

Any changes you make to ~/.bashrc do not affect any running shells, only
future shells. You can force a running shell to reread and execute ~/.bashrc
with either of the following commands:

$ source ~/.bashrc Uses the builtin "source"
command
$. ~/.bashrc Uses a dot

This process is known as sourcing the initialization file. If someone tells
you to “source your dot-bash-R-C file,” they mean run one of the preceding
commands.

WARNING
In real life, do not put all of your shell configuration in ~/.bashrc. Once you’ve read the
details in “Configuring Your Environment”, examine your ~/.bashrc and move
commands to their proper files as needed.

Summary
I’ve covered only a tiny number of bash features and their most basic uses.
You’ll see many more in the chapters that follow, particularly in Chapter 6.
For right now, your most important job is to understand:

The shell exists and has important responsibilities

The shell evaluates the command line before running any
commands

Commands can redirect stdin, stdout, and stderr

Quoting and escaping prevent special shell characters from being
evaluated

The shell locates programs using a search path of directories

You can change a shell’s default behavior by adding commands to
the file ~/.bashrc

The better you understand the division between the shell and the programs
it invokes, the more that the command line will make sense, and the better
you can predict what will happen before you press Enter to run a command.

1 That’s why the command ls * doesn’t list filenames beginning with a dot, a.k.a., dot files.

2 bash prevents infinite recursion by not expanding the second less as an alias.

3 Some shells memorize (cache) the paths to programs as they’re located, cutting down on
future searches.

4 Notice that the command type which produces output, but the command which type
does not.

5 This statement is oversimplified; more details are in Table 6-1.

Chapter 3. Rerunning
Commands

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the third chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at vwilson@oreilly.com.

Suppose you’ve just executed a lengthy command with a detailed pipeline,
like this one from “Detecting Duplicate Files”:

$ md5sum *.jpg | cut -c1-32 | sort | uniq -c | sort -nr

and you want to run it a second time. Don’t retype it! Instead, ask the shell
to reach back into history and rerun the command. Behind the scenes, the
shell keeps a record of the commands you invoke so you can easily recall
and rerun them with a few keystrokes. This shell feature is called command
history. Expert Linux users make heavy use of command history to speed
up their work and avoid wasting time.

Similarly, suppose you make a mistake typing the preceding command
before you run it, such as misspelling “jpg” as “jg”:

$ md5sum *.jg | cut -c1-32 | sort | uniq -c | sort -nr

mailto:vwilson@oreilly.com

To fix the mistake, don’t press the Backspace key dozens of times and
retype everything. Instead, change the command in place. The shell
supports command-line editing for fixing typos and performing all sorts of
modifications like a text editor can.

This chapter will show you how to save lots of time and typing by
leveraging command history and command-line editing. As usual, I won’t
attempt to be comprehensive — I’ll focus on the most practical and useful
parts of these shell features. (If you use a shell other than bash, see
Appendix B for additional notes.)

LEARN TO TOUCH TYPE
All the advice in this book will serve you better if you can type quickly. No matter how
knowledgeable you are, if you type 40 words per minute and your equally-
knowledgeable friend types 120, they’re set up to work three times as fast as you.
Search the web for “typing speed test” to measure your speed, then search for “typing
tutor” and build a lifelong skill. Try to reach 100 words per minute. It’s worth the effort.

Viewing the Command History
A command history is simply a list of previous commands that you’ve
executed in an interactive shell. To see a shell’s history, run the history
command, which is a shell builtin. The commands appear in chronological
order with ID numbers for easy reference. The output looks something like
this:

$ history
 1000 cd ~/Music
 1001 ls
 1002 mv jazz.mp3 jazzy-song.mp3
 1003 play jazzy-song.mp3
 ⋮ Omitting 479 lines
 1481 cd
 1482 firefox https://google.com
 1483 history Includes the command you
just ran

The output of history can be hundreds of lines long (or more). Limit it to
the most recent commands by adding an integer argument, which specifies
the number of lines to print:

$ history 3 Print the 3 most recent
commands
 1482 firefox https://google.com
 1483 history
 1484 history 3

Since history writes to stdout, you also can process the output with
pipes. For example, view your history a screenful at a time:

$ history | less Earliest to latest entry
$ history | sort -nr | less Latest to earliest entry

or print only the historical commands containing the word cd:

$ history | grep -w cd
 1000 cd ~/Music
 1092 cd ..
 1123 cd Finances
 1375 cd Checking
 1481 cd
 1485 history | grep -w cd

To clear (delete) the history for the current shell, use the -c option:

$ history -c

FREQUENTLY-ASKED QUESTIONS ABOUT COMMAND
HISTORY

How many commands are stored in a shell’s history?

The maximum is five hundred or whatever number is stored in the
shell variable HISTSIZE, which you can change:

$ echo $HISTSIZE

500

$ HISTSIZE=10000

Computer memory is so cheap and plentiful that it makes sense to
set HISTSIZE to a large number, so you can recall and rerun
commands from the distant past. (A history of 10,000 commands
occupies only about 200K of memory.) Or be daring and store
unlimited commands by setting the value to -1.

What text is appended to the history?

The shell appends exactly what you type, unevaluated. If you run
ls $HOME, the history will contain “ls $HOME” not “ls
/home/smith”. (There’s one exception: see “History Expressions
Don’t Appear in the Command History”.)

Are repeated commands appended to the history?

The answer depends on the value of the variable HISTCONTROL.
By default, if this variable is unset, then every command is
appended. If the value is ignoredups (which I recommend), then
repeated commands are not appended if they are consecutive. See
man bash for other values.

$ HISTCONTROL=ignoredups

Does each shell have a separate history, or do all shells share a single
history?

Each interactive shell has a separate history.

I launched a new interactive shell and it already has a history. Why?

Whenever an interactive shell exits, it writes its history to a file,
~/.bash_history or whatever path is stored in the shell variable
HISTFILE.

$ echo $HISTFILE

/home/smith/.bash_history

New interactive shells load this file on startup, so they immediately
have a history. It’s a quirky system if you’re running many shells
because they all write $HISTFILE on exit, so it’s a bit
unpredictable which history a new shell will load.

The variable HISTFILESIZE controls how many lines of history
are written to the file. If you change HISTSIZE to control the size
of the history in memory, consider updating HISTFILESIZE as
well.

$ echo $HISTFILESIZE

500

$ HISTFILESIZE=10000

Recalling Commands from the History
I’ll show you three time-saving ways to recall commands from a shell’s
history:

1. Cursoring, which is extremely simple to learn but often slow in
practice

2. History expansion, which is harder to learn (frankly, it’s cryptic)
but can be very fast

3. Incremental search, which is both simple and fast

Each method is best in particular situations, so I recommend learning all
three. The more techniques you know, the better you can choose the right
one in any situation.

Cursoring Through History
To recall your previous command in a given shell, press the up arrow key.
It’s that simple. Keep pressing the up arrow to recall earlier commands in
reverse chronological order. Press the down arrow to head in the other
direction (toward more recent commands). When you reach the desired
command, press Enter to run it.

Cursoring through the command history is one of the two most common
speedups that Linux users learn. (The other is pattern-matching filenames
with *, which you saw in Chapter 2.) Cursoring is efficient if your desired
command is nearby in the history — no more than two or three commands
in the past — but it’s tedious to reach commands that are further away.
Whacking the up arrow 137 times gets old quickly.

The best use case for cursoring is recalling and running the immediately
previous command. On many keyboards, the up arrow key is near the Enter
key, so you can press the two keys in sequence with a quick flick of the
fingers. On a full-sized American QWERTY keyboard, I place my right
ring finger on the up arrow and my right index finger on Enter to tap both
keys efficiently. (Try it.)

History Expansion

History expansion is a shell feature that accesses the command history
using special expressions. The expressions begin with an exclamation point,
which traditionally is pronounced “bang.” For example, two exclamation
points in a row (“bang bang”) evaluates to the immediately previous
command:

$ echo Efficient Linux
Efficient Linux
$!! "Bang bang" = previous command
echo Efficient Linux The shell helpfully prints the
command being run
Efficient Linux

To refer to the most recent command that began with a certain string, place
an exclamation point in front of that string. So, to rerun the most recent
grep command, run “bang grep”:

$!grep
grep Perl animals.txt
alpaca Intermediate Perl 2012 Schwartz, Randal

To refer to the most recent command that contained a given string
somewhere, not just at the beginning of the command, surround the string
with question marks as well:

$!?grep?
history | grep -w cd
 1000 cd ~/Music
 1092 cd ..
⋮

You can also retrieve a particular command from a shell’s history by its
absolute position — the ID number to its left in the output of history.
For example, the expression !1203 (“bang 1023”), means “the command
at position 1023 in the history”:

$ history | grep hosts
 1203 cat /etc/hosts
$!1203 The command at position 1023

1

cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 example.oreilly.com
::1 example.oreilly.com

A negative value retrieves a command by its relative position in the history,
rather than absolute position. For example, !-3 (“bang minus three”)
means “the command you executed three commands ago”:

$ history
 4197 cd /tmp/junk
 4198 rm *
 4199 head -n2 /etc/hosts
 4199 cd
 4200 history
$!-3 The command you executed three
commands ago
head -n2 /etc/hosts
127.0.0.1 localhost
127.0.1.1 example.oreilly.com

History expansion is quick and convenient, if a bit cryptic. It can be risky,
however, if you provide a wrong value and execute it blindly. Look
carefully at the preceding example. If you miscounted and typed !-4
instead of !-3, you’d run rm * instead of the intended head command
and delete files in your home directory by mistake! To mitigate this risk,
append the modifier :p to print the command from your history but not
execute it.

$!-3:p
head -n2 /etc/hosts Printed, not executed.

The shell appends the unexecuted command (head) to the history, so if it
looks good, you can run it conveniently with a quick “bang bang”:

$!-3:p
head -n2 /etc/hosts Printed, not executed, and
appended to history
$!! Run the command for real
head -n2 /etc/hosts Printed and then executed

127.0.0.1 localhost
127.0.1.1 example.oreilly.com

HISTORY EXPRESSIONS DON’T APPEAR IN THE
COMMAND HISTORY

The shell appends commands to the history verbatim — unevaluated — as I mentioned
in “Frequently-Asked Questions About Command History”. The one exception to this
rule is history expansion. Its expressions are always evaluated before they’re added to
the command history.

$ ls Run any command
hello.txt
$ cd Music Run some other command
$!-2 Use history expansion
ls
song.mp3
$ history View the history
 1000 ls
 1001 cd Music
 1002 ls "ls" appears in the history, not
"!-2"
 1003 history

This exception makes sense. Imagine trying to understand a command history full of
expressions like !-15 and !-92 that refer to other history entries. You might have to
trace a path through the whole history by eye to understand a single command.

Some people refer to history expansion as “bang commands,” but
expressions like !! and !grep are not commands. They are string
expressions that you can place anywhere in a command. As a
demonstration, use echo to print the value of !! on stdout without
executing it, and count the number of words with wc:

$ ls -l /etc | head -n3 Run any command
total 1584
drwxr-xr-x 2 root root 4096 Jun 16 06:14 ImageMagick-
6/
drwxr-xr-x 7 root root 4096 Mar 19 2020
NetworkManager/

$ echo "!!" | wc -w Count the words in the previous
command

echo "ls -l /etc | head -n3" | wc -w
6

This toy example demonstrates that history expansions have more uses than
executing commands. You’ll see a more practical, powerful technique in the
next section.

I’ve covered only a few features of command history here. For full
information, run man history.

Never Delete the Wrong File Again (Thanks to History
Expansion)
Have you ever meant to delete files using a pattern, such as *.txt, but
accidentally mistyped the pattern and wiped out the wrong files? Here’s an
example with an accidental space character after the asterisk:

$ ls
123 a.txt b.txt c.txt dont-delete-me important-file
passwords
$ rm * .txt DANGER!! Don't run this! Deletes the wrong
files!

The most common solution to this hazard is to alias rm to run rm -i so it
prompts for confirmation before each deletion:

$ alias rm='rm -i' Often found in a shell
configuration file
$ rm *.txt
/bin/rm: remove regular file 'a.txt'? y
/bin/rm: remove regular file 'b.txt'? y
/bin/rm: remove regular file 'c.txt'? y

As a result, an extra space character needn’t be fatal, because the prompts
from rm -i will warn that you’re removing the wrong files:

$ rm * .txt
/bin/rm: remove regular file '123'? Something is wrong --
kill the command

The alias solution is cumbersome, however, because most of the time you
might not want or need rm to prompt you. It also doesn’t work if you’re
logged into another Linux machine without your aliases. I’ll show you a
better way to avoid matching the wrong filenames with a pattern. The
technique has two steps and relies on history expansion.

1. Verify. Before running rm, run ls with the desired pattern to see
which files match.

$ ls *.txt

a.txt b.txt c.txt

2. Delete. If the output of ls looks correct, run rm !$ to delete the
same files that were matched.

$ rm !$

rm *.txt

The history expansion !$ (“bang dollar”) means “the final word that you
typed in the previous command.” Therefore, rm !$ here is a shorthand for
“delete whatever I just listed with ls,” namely *.txt. If you accidentally
add a space after the asterisk, the output of ls will make it obvious — 
safely — that something is wrong:

$ ls * .txt
/bin/ls: cannot access '.txt': No such file or directory
123 a.txt b.txt c.txt dont-delete-me important-file
passwords

It’s a good thing you ran ls first instead of rm! You can now modify the
command to remove the extra space and proceed safely. This two-command
sequence — ls followed by rm !$ — is a great safety feature to
incorporate into your Linux toolbox.

A related technique is peeking at a file’s contents with head before you
delete it, to make sure you’re targeting the right file, and then running rm

2

!$.

$ head myfile.txt
(first 10 lines of the file appear)
$ rm !$
rm myfile.txt

The shell also provides a history expansion !* (“bang star”) which matches
all arguments you typed in the previous command, rather than just the final
argument:

$ ls *.txt *.o *.log
a.txt b.txt c.txt main.o output.log parser.o
$ rm !*
rm *.txt *.o *.log

In practice, I use !* much less often than !$. Its asterisk carries the same
risk of being interpreted as a pattern-matching character for filenames (if
you mistype something), so it’s not much safer than typing a pattern like
*.txt by hand.

Incremental Search of Command History
Wouldn’t it be great if you could type a few characters of a command and
the rest would appear instantly, ready to run? Well, you can. This speedy
feature of the shell, called incremental search, is similar to the interactive
suggestions provided by web search engines. In most cases, incremental
search is the easiest and fastest technique to recall commands from history,
even commands you ran long ago. I highly recommend adding it to your
toolbox.

1. At the shell prompt, press ctrl-R (the “R” stands for reverse
incremental search)

2. Start typing any part of a previous command — beginning, middle,
or end

3. With each character you type, the shell displays the most recent
historical command that matches your typing so far

4. When you see the command you want, press Enter to run it

Suppose you typed the command cd ~/Finances/Bank a while ago
and you want to rerun it. Press ctrl-R at the shell prompt. The prompt
changes to indicate an incremental search:

(reverse-i-search)`':

Start typing the desired command. For example, type c:

(reverse-i-search)`': c

The shell displays its most recent command that contains the string c,
highlighting what you’ve typed:

(reverse-i-search)`': less /etc/hosts

Type the next letter, d:

(reverse-i-search)`': cd

The shell displays its most recent command that contains the string cd,
again highlighting what you’ve typed:

(reverse-i-search)`': cd /usr/local

Continue typing the command, adding a space and a tilde:

(reverse-i-search)`': cd ~

The command line becomes:

(reverse-i-search)`': cd ~/Finances/Bank

This is the command you want. Press Enter to run it, and you’re done in
five quick keystrokes.

I’ve assumed here that cd ~/Finances/Bank was the most recent
matching command in the history. What if it’s not? What if you typed a
whole bunch of commands that contain the same string? If so, the preceding
incremental search would have displayed a different match, such as:

(reverse-i-search)`': cd ~/Music

What now? You could type more characters to hone in on your desired
command, but instead, press ctrl-R a second time. This keystroke causes the
shell to jump the next matching command in the history:

(reverse-i-search)`': cd ~/Linux/Books

Keep pressing ctrl-R until you reach the desired command:

(reverse-i-search)`': cd ~/Finances/Bank

and press Enter to run it.

Here are a few more tricks with incremental search:

To recall the most recent string that you searched for and executed,
begin by pressing ctrl-R twice in a row

To stop an incremental search and continue working on the current
command, press the Escape key, or ctrl-J, or any key for command-
line editing (the next topic in this chapter) such as the left and right
arrow keys

To quit an incremental search and clear the command line, press
ctrl-G or ctrl-C.

Take the time to become expert with incremental search. You’ll soon be
locating commands with incredible speed.3

Command-Line Editing
There are all sorts of reasons to edit a command, either while you type it or
after you’ve run it:

To fix mistakes

To create a command piece by piece, such as typing the end of the
command first, then moving to the start of the line and typing the
beginning

To construct a new command based on a previous one from your
command history (a key skill for building up complex pipelines, as
you’ll see in Chapter 8)

In this section, I’ll show you three ways to edit a command to build your
skill and speed:

1. Cursoring, which is (again) the slowest and least powerful method
but simple to learn

2. Caret notation, a form of history expansion

3. Emacs or Vim-style keystrokes to edit the command line in
powerful ways

As before, I recommend that you learn all three techniques for flexibility.

Cursoring Within a Command
Simply press the left-arrow and right-arrow keys to move back and forth on
the command line, one character at a time. Use the Backspace or Delete
keys to remove text, and then type any corrections you need. Table 3-1
summarizes these and other standard keystrokes for editing the command
line.

Cursoring back and forth is easy but inefficient. It’s best when the changes
are small and simple.

T
a
b
l
e

3
-
1
.
C
u
r
s
o
r

K
e
y
s

f
o
r

S
i
m
p
l
e

C

o
m
m
a
n
d
-
L
i
n
e

E
d
i
t
i
n
g

Keystroke Action

Left arrow Move left by one character

Right arrow Move right by one character

Ctrl + left arrow Move left by one word

Ctrl + right arrow Move right by one word

Home Move to beginning of command line

End Move to end of command line

Backspace Delete one character before the cursor

Delete Delete one character beneath the cursor

History Expansion with Carets
Suppose you’ve mistyped and run the following command by typing jg
instead of jpg:

$ md5sum *.jg | cut -c1-32 | sort | uniq -c | sort -nr
md5sum: '*.jg': No such file or directory

To run the command properly, you could recall it from the command
history, cursor over to the mistake and fix it, but there’s a quicker way to
accomplish your goal. Just type the old (wrong) text, the new (corrected)
text, and a pair of carets (^), like this:

$ ^jg^jpg

Press Enter, and the correct command will appear and run:

$ ^jg^jpg
md5sum *.jpg | cut -c1-32 | sort | uniq -c | sort -nr
⋮

The caret syntax, which is a type of history expansion, means, “In the
previous command, instead of jg, substitute jpg.” Notice that the shell
helpfully prints the new command before executing it, which is standard
behavior for history expansion.

This technique changes only the first occurrence of the source string (jg) in
the command. If your original command contained jg more than once, only
the first instance would change to jpg.

MORE POWERFUL SUBSTITUTION WITH HISTORY
EXPANSION

If you’re familiar with using the commands sed or ed to change a
source string into a target string:

s/source/target/

the shell also supports a similar syntax. Begin with an expression for
history expansion to recall a command, such as !!. Then add a colon,
and end with a sed-style substitution. For example, to recall the
previous command and replace jg by jpg (first occurrence only), just
as caret notation does, run:

$!!:s/jg/jpg/

You may begin with any history expansion you like, such as !md5sum
to recall the most recent command beginning with md5sum, and
perform the same replacement of jg by jpg.

$!md5sum:s/jg/jpg/

This notation may be complicated-looking, but sometimes it’s quicker
for achieving your goal than other command-line editing techniques.
Run man history for full details.

Emacs or Vim-Style Command-Line Editing
The most powerful way to edit a command line is with familiar keystrokes
inspired by the text editors Emacs and Vim. If you’re already skilled with
one of these editors, you can jump into this style of command-line editing
right away. If not, Table 3-2 will get you started with the most common
keystrokes for movement and editing. Note that the Emacs “Meta” key is
usually Escape (pressed and released) or Alt (pressed and held).

The shell default is Emacs-style editing, and I recommend it as easier to
learn and use. If you prefer Vim-style editing, run the following command
(or add it to your ~/.bashrc file and source it):

$ set -o vi

To edit a command using Vim keystrokes, press the Escape key to enter
command-editing mode, and then use keystrokes from the “Vim” column in
Table 3-2. To switch back to Emacs-style editing, run:

$ set -o emacs

Now practice, practice, practice until the keystrokes (either Emacs’s or
Vim’s) are second nature. Trust me, you’ll quickly be paid back in saved
time.

T
a
b
l
e

3
-
2
.
K
e
y
s
t
r
o
k
e
s

f
o
r

E
m
a
c
s

o
r

V
i
m
-
S
t
y
l
e

E
d
i
t
i
n
g

Action Emacs Vim

Move forward by one character Ctrl-f h

Move backward by one character Ctrl-b l

Move forward by one word Meta-f w

Move backward by one word Meta-b b

Move to beginning of line Ctrl-a 0

Move to end of line Ctrl-e $

Transpose (swap) two characters Ctrl-t Ctrl-r

Transpose (swap) two words Meta-t n/a

Capitalize next word Meta-c n/a

Upper-case next word Meta-u n/a

Lower-case next word Meta-l n/a

Change case of the current character n/a ~

Insert the next character verbatim, including control
characters

Ctrl-v Ctrl-v

Delete forward by one character Ctrl-d x

Delete backward by one character Backspace or Ctrl-h X

Cut forward by one word Meta-d n/a

Cut backward by one word Meta-Backspace or
Ctrl-w

Ctrl-w

Cut from cursor to beginning of line Ctrl-u Ctrl-u

Cut from cursor to end of line Ctrl-k D

Delete the entire line Ctrl-e Ctrl-u dd

Paste (yank) the most recently-deleted text Ctrl-y p

Paste (yank) the next deleted text (after a previous
yank)

Meta-y n/a

Undo the previous editing operation Ctrl-_ u

Undo all edits made so far Meta-r U

Switch from insertion mode to command mode n/a Escape

Switch from command mode to insertion mode n/a i

Abort an edit operation in progress Ctrl-g n/a

Clear the display Ctrl-l Ctrl-l

For more details, see these documents:

Emacs-style editing

https://www.gnu.org/software/bash/manual/html_node/Bindable-
Readline-Commands.html

Vim-style editing

https://catonmat.net/ftp/bash-vi-editing-mode-cheat-sheet.pdf

Summary
Practice the techniques in this chapter and you’ll speed up your command-
line use immensely. Three of the techniques in particular transformed the
way I use Linux, and I hope they will for you too:

Deleting files with !$ for safety

Incremental search with ctrl-R

Emacs-style command-line editing

1 You can omit the trailing question mark here — !?grep — but in some cases it’s required,
such as sed-style history expansion (see “More Powerful Substitution with History
Expansion”).

2 I’m assuming that no matching files were added or removed behind your back after the ls
step. Don’t rely on this technique in rapidly changing directories.

3 While writing this book, I frequently reran version-control commands like git add, git
commit, and git push. Incremental search made rerunning these commands a breeze.

https://www.gnu.org/software/bash/manual/html_node/Bindable-Readline-Commands.html
https://catonmat.net/ftp/bash-vi-editing-mode-cheat-sheet.pdf

Chapter 4. Cruising the
Filesystem

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the fourth chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at vwilson@oreilly.com.

In the movie The Adventures of Buckaroo Banzai Across the 8th Dimension,
a classic cult comedy from 1984, the swashbuckling title character offers
the following Zen-like words of wisdom: “Remember, no matter where you
go… there you are.” Buckaroo could very well have been talking about the
Linux filesystem:

$ cd /usr/share/lib/etc/bin No matter where you
go...
$ pwd
/usr/share/lib/etc/bin ...there you are.

It’s also the case that wherever you are in the Linux filesystem — your
current directory — you will eventually go somewhere else (to another
directory). The faster and more efficiently you can perform this navigation,
the more productive you can be.

The techniques in this chapter will help you navigate the filesystem more
quickly with less typing. They look deceptively simple but have enormous

mailto:vwilson@oreilly.com

bang for the buck, with small learning curves and big payoffs. These
techniques fall into two broad categories:

Moving quickly to a specific directory

Returning rapidly to a directory you’ve visited before

For a quick refresher on Linux directories, see Appendix A. If you use a
shell other than bash, see Appendix B for additional notes.

Visiting Specific Directories Efficiently
If you ask 10 Linux experts what is the most tedious aspect of the command
line, seven of them will say, “Typing long directory paths.” After all, if
your work files are in /home/smith/Work/Projects/Apps/Neutron-
Star/src/include, your financial documents are in
/home/smith/Finances/Bank/Checking/Statements, and your videos are in
/data/Arts/Video/Collection, it’s no fun to retype these paths over and over.
In this section, you’ll learn techniques to navigate to a given directory
efficiently.

Jump to Your Home Directory
Let’s begin with the basics. No matter where you go in the filesystem, you
can return to your home directory by running cd with no arguments:

$ pwd
/etc Start somewhere else
$ cd Run cd with no arguments...
$ pwd
/home/smith ...and you're home again

To jump to subdirectories within your home directory from anywhere in the
filesystem, refer to your home directory with a shorthand rather than an
absolute path such as /home/smith. One shorthand is the shell variable
HOME:

1

$ cd $HOME/Work

Another is a tilde:

$ cd ~/Work

Both $HOME and ~ are expressions expanded by the shell, a fact that you
can verify by echoing them to stdout:

$ echo $HOME ~
/home/smith /home/smith

The tilde can also refer to another user’s home directory if you place it
immediately in front of their username:

$ echo ~jones
/home/jones

Move Faster With Tab Completion
When you’re entering cd commands, save typing by pressing the Tab key
to produce directory names automatically. As a demonstration, visit a
directory that contains subdirectories, such as /usr:

$ cd /usr
$ ls
bin games include lib local sbin share src

Suppose you want to visit the subdirectory share. Type sha and press the
Tab key once:

$ cd sha<Tab>

The shell completes the directory name for you:

$ cd share/

This handy shortcut is called tab completion. It works immediately when
the text that you’ve typed matches a single directory name. When the text
matches multiple directory names, your shell needs more information to
complete the desired name. Suppose you had typed only s and pressed Tab:

$ cd s<Tab>

The shell cannot complete the name share (yet) because other directory
names begin with s too: sbin and src. Press Tab a second time and the shell
prints all possible completions to guide you:

$ cd s<Tab><Tab>
sbin/ share/ src/

and waits for your next action. To resolve the ambiguity, type another
character, h, and press Tab once:

$ cd sh<Tab>

The shell completes the name of the directory for you, from sh to share:

$ cd share/

In general, press Tab once to perform as much completion as possible, or
press twice to print all possible completions. The more characters you type,
the less ambiguity and the better the match.

Tab completion is great for speeding up navigation. Instead of typing a
lengthy path like /home/smith/Projects/Web/src/include, type as little as you
want and keep pressing the Tab key. You’ll get the hang of it quickly with
practice.

TAB COMPLETION VARIES BY PROGRAM
Tab completion isn’t just for cd commands. It works for most commands, though its
behavior may differ. When the command is cd, the Tab key completes directory names.
For other commands that operate on files, such as cat, grep, and sort, tab
completion expands filenames too. If the command is ssh (secure shell), it completes
hostnames. If the command is chown (change the owner of a file), it completes
usernames. You can even create your own completion rules for speed, as we’ll see in
Example 4-1. Also see man bash and read its topic “programmable completion.”

Hop to Frequently-Visited Directories Using Aliases or
Variables
If you visit a faraway directory frequently, such as
/home/smith/Work/Projects/Web/src/include, create an alias that performs
the cd operation:

In a shell configuration file:
alias work="cd $HOME/Work/Projects/Web/src/include"

Simply run the alias anytime to reach your destination:

$ work
$ pwd
/home/smith/Work/Projects/Web/src/include

Alternatively, create a variable to hold the directory path:

$ work=$HOME/Work/Projects/Web/src/include
$ cd $work
$ pwd
/home/smith/Work/Projects/Web/src/include
$ ls $work/css Use the variable in
other ways
main.css mobile.css

EDIT FREQUENTLY-EDITED FILES WITH AN ALIAS
Sometimes, the reason for visiting a directory frequently is to edit a particular file. If
that’s the case, consider defining an alias to edit that file by absolute path without
changing directory. The following alias definition lets you edit $HOME/.bashrc, no
matter where you are in the filesystem, by running rcedit. No cd is required.

Place in a shell configuration file and source it:
alias rcedit='$EDITOR $HOME/.bashrc'

If you regularly visit lots of directories with long paths, you can create
aliases or variables for each of them. This approach has some
disadvantages, however:

It’s hard to remember all those aliases/variables

You might accidentally create an alias with the same name as an
existing command, causing a conflict

An alternative is to create a shell function like the one in Example 4-1,
which I’ve named qcd (“quick cd”). This function accepts a string key as
an argument, such as work or recipes, and runs cd to a selected
directory path.

Example 4-1. A function for cd-ing to faraway directories
Define the qcd function
qcd () {
 # Accept 1 argument that's a string key, and perform a different
 # "cd" operation for each key.
 case "$1" in
 work)
 cd $HOME/Work/Projects/Web/src/include
 ;;
 recipes)
 cd $HOME/Family/Cooking/Recipes
 ;;
 video)
 cd /data/Arts/Video/Collection
 ;;
 beatles)

 cd $HOME/Music/mp3/Artists/B/Beatles
 ;;
 *)
 # The supplied argument was not one of the supported keys
 echo "qcd: unknown key '$1'"
 return 1
 ;;
 esac
 # Helpfully print the current directory name to indicate where
you are
 pwd
}
Set up tab completion
complete -W "work recipes video beatles" qcd

Store the function in a shell configuration file such as $HOME/.bashrc (see
“Environments and Initialization Files, the Short Version”), source it, and
it’s ready to run. Type qcd followed by one of the supported keys to
quickly visit the associated directory:

$ qcd beatles
/home/smith/Music/mp3/Artists/B/Beatles

As a bonus, the script’s final line runs the command complete, a shell
builtin that sets up customized tab completion for qcd, so it completes the
four supported keys. Now you don’t have to remember qcd’s arguments!
Just type qcd followed by a space and press the Tab key twice, and the
shell will print all the keys for your reference, and you can complete any of
them in the usual way.

$ qcd <Tab><Tab>
beatles recipes video work
$ qcd v<Tab><Enter> Completes 'v' to
'video'
/data/Arts/Video/Collection

Make a Big Filesystem Feel Smaller with CDPATH
The qcd function handles only the directories that you specify. The shell
provides a more general cd-ing solution without this shortcoming, called a

cd search path. This shell feature transformed how I navigate the Linux
filesystem.

Suppose you have an important subdirectory that you visit often, named
Photos. It’s located at /home/smith/Family/Memories/Photos. As you cruise
around the filesystem, anytime you want to get to the Photos directory, you
may have to type a long path, such as:

$ cd ~/Family/Memories/Photos

Wouldn’t it be great if you could shorten this path to just Photos, no matter
where you are in the filesystem, and reach your subdirectory?

$ cd Photos

Normally, this command would fail:

bash: cd: Photos: No such file or directory

unless you happen to be in the correct parent directory
(~/Family/Memories) or some other directory with a Photos subdirectory by
coincidence. Well, with a little setup, you can instruct cd to search for your
Photos subdirectory in locations other than your current directory. The
search is lightning-fast and looks only in parent directories that you specify.
For example, you could instruct cd to search $HOME/Family/Memories in
addition to the current directory. Then, when you type cd Photos from
elsewhere in the filesystem, cd will succeed:

$ pwd
/etc
$ cd Photos
/home/smith/Family/Memories/Photos

A cd search path works like your command search path, $PATH, but
instead of finding commands, it finds subdirectories. Configure it with the
shell variable CDPATH which has the same format as PATH: a list of

directories separated by colons. If your CDPATH consists of these four
directories, for example:

$HOME:$HOME/Projects:$HOME/Family/Memories:/usr/local

and you type:

$ cd Photos

then cd will check the existence of the following directories in order, until
it finds one or it fails entirely:

1. Photos in the current directory

2. $HOME/Photos

3. $HOME/Projects/Photos

4. $HOME/Family/Memories/Photos

5. /usr/local/Photos

In this case, cd succeeds on its fourth try and changes directory to
$HOME/Family/Memories/Photos. If two directories in $CDPATH have a
subdirectory named Photos, the earlier parent wins.

NOTE
Ordinarily, a successful cd prints no output. When cd locates a directory using your
CDPATH, however, it prints the absolute path on stdout to inform you of your new
current directory.

$ CDPATH=/usr Set a CDPATH
$ cd /tmp No output -- CDPATH wasn't
consulted
$ cd bin cd consults CDPATH...
/usr/bin ...and prints the new working
directory

Fill CDPATH with your most important or frequently used parent
directories, and you can cd into any of their subdirectories from anywhere
in the filesystem, no matter how deep they are, without typing most of the
path. Trust me, this is awesome, and the following case study should prove
it.

Organize Your Home Directory for Fast Navigation
Let’s use CDPATH to simplify the way you navigate your home directory.
With a little configuration, you can make many directories within your
home directory easily accessible with minimal typing, no matter where you
are in the filesystem. This technique works best if your home directory is
well-organized with at least two levels of subdirectories. Figure 4-1 shows
an example, well-organized directory layout.

Figure 4-1. Two levels of subdirectories in the directory /home/smith

The trick is to set up your CDPATH to include, in order:

1. $HOME

2. Your choice of subdirectories of $HOME

3. The relative path for a parent directory, indicated by two dots (..)

By including $HOME, you can jump immediately to any of its subdirectories
(Family, Finances, Linux, Music, and Work) from anywhere else in the
filesystem without typing a leading path:

$ pwd
/etc Begin outside your home
directory
$ cd Work
/home/smith/Work
$ cd Family/School You jumped 1 level below
$HOME
/home/smith/Family/School

By including subdirectories of $HOME in your CDPATH, you can jump into
their subdirectories in one shot:

$ pwd
/etc Anywhere outside your home
directory
$ cd School
/home/smith/Family/School You jumped 2 levels below
$HOME

All the directories in your CDPATH so far are absolute paths in $HOME and
its subdirectories. By including the relative path .. however, you empower
new cd behavior in every directory. No matter where you are in the
filesystem, you can jump to any sibling directory (../sibling) by name
without typing the two dots, because cd will search your current parent. For
example, if you’re in /usr/bin and want to move to /usr/lib, all you need is
cd lib:

$ pwd
/usr/bin Your current directory
$ ls ..
bin include lib src Your siblings
$ cd lib
/usr/lib You jumped to a sibling

Or, if you’re a programmer working on code that has subdirectories src,
include, and docs:

$ pwd
/usr/src/myproject
$ ls
docs include src

you can jump between the subdirectories concisely:

$ cd docs Change your current
directory
$ cd include
/usr/src/myproject/include You jumped to a sibling
$ cd src
/usr/src/myproject/src Again

A CDPATH for the tree in Figure 4-1 might contain six items: your home
directory, four of its subdirectories, and the relative path for a parent
directory:

Place in a shell configuration file and source it:
export
CDPATH=$HOME:$HOME/Work:$HOME/Family:$HOME/Linux:$HOME/Music:..

After sourcing the configuration file, you can cd to a large number of
important directories without typing long directory paths, just short
directory names. Hooray!

This technique works best if all subdirectories beneath the CDPATH
directories have unique names. If you have duplicate names, such as
$HOME/Music and $HOME/Linux/Music, you might not get the behavior
you want. The command cd Music will always check $HOME before
$HOME/Linux and consequently will not locate $HOME/Linux/Music by
search.

To check for duplicate subdirectory names in the first two levels of $HOME,
try this brash one-liner. It lists all subdirectories and sub-subdirectories of
$HOME, isolates the sub-subdirectory names with cut, sorts the list, and
counts occurrences with uniq.

$ cd
$ ls -d */ && (ls -d */*/ | cut -d/ -f2-) | sort | uniq -c | sort
-nr | less

You may recognize this duplicate-checking technique from “Detecting
Duplicate Files”. If the output displays any counts greater than 1, you have
duplicates. I realize this command includes a few features I haven’t covered
yet. You’ll learn double ampersand (&&) in “Technique #1: Conditional
Lists” and the parentheses in “Technique #10: Explicit Subshells”.

Returning to Directories Efficiently
You’ve just seen how to visit a directory efficiently. Now I’ll show you how
to revisit a directory quickly when you need to go back.

Toggle Between Two Directories With “cd -”
Suppose you’re working in a deep directory and you run cd to go
somewhere else:

$ pwd
/home/smith/Finances/Bank/Checking/Statements
$ cd /etc

and then think, “No, wait, I want to go back to the Statements directory
where I just was.” Don’t retype the long directory path. Just run cd with a
dash as an argument.

$ cd -
/home/smith/Finances/Bank/Checking/Statements

This command returns your shell to its previous directory and helpfully
prints its absolute path so you know where you are.

To jump back and forth between a pair of directories, run cd - repeatedly.
This is a timesaver when you’re doing focused work in two directories in a
single shell. There’s a catch, however: the shell remembers just one
previous directory at a time. For example, if you are toggling between
/usr/local/bin and /etc:

$ pwd
/usr/local/bin
$ cd /etc The shell remembers /usr/local/bin
$ cd - The shell remembers /etc
/usr/local/bin
$ cd - The shell remembers /usr/local/bin
/etc

and you run cd without arguments to jump to your home directory:

$ cd The shell remembers /etc

the shell has now forgotten /usr/local/bin as a previous directory:

$ cd - The shell remembers your home directory
/etc
$ cd - The shell remembers /etc
/home/smith

The next technique overcomes this limitation.

Toggle Among Many Directories With pushd and popd
The cd - command toggles between two directories, but what if you have
three or more to keep track of? Suppose you’re creating a local website on
your Linux computer. This task often involves four or more directories:

The location of live, deployed web pages, such as /var/www/html

The webserver configuration directory, often /etc/apache2

The location of SSL certificates, often /etc/ssl/certs

Your work directory, such as ~/Work/Projects/Web/src

Believe me, it’s tedious to keep typing:

$ cd ~/Work/Projects/Web/src
$ cd /var/www/html
$ cd /etc/apache2

$ cd ~/Work/Projects/Web/src
$ cd /etc/ssl/certs

If you have a large, windowing display, you can ease the burden by opening
a separate shell window for each directory. But if you’re working in a single
shell (say, over an SSH connection), take advantage of a shell feature called
a directory stack. It lets you quickly travel among multiple directories with
ease, using the built-in shell commands pushd, popd, and dirs. The
learning curve is maybe 15 minutes, and the huge payoff in speed lasts a
lifetime.

A directory stack is a list of directories that you’ve visited in the current
shell and decided to keep track of. You manipulate the stack by performing
two operations called pushing and popping. “Pushing” a directory adds it to
the beginning of the list, which is traditionally called the “top” of the stack.
“Popping” removes the topmost directory from the stack. Initially, the
stack contains only your current directory, but you can add (push) and
remove (pop) directories and rapidly cd among them.

NOTE
Every running shell maintains its own directory stack.

I’ll begin with the basic operations (pushing, popping, viewing) and then
get to the good stuff.

Push a Directory Onto the Stack
The command pushd (short for “push directory”) does all of the following:

1. Adds a given directory to the top of the stack

2. Performs a cd to that directory

3. Prints the stack from top to bottom for your reference

2

3

I’ll build a directory stack of four directories, pushing them onto the stack
one at a time:

$ pwd
/home/smith/Work/Projects/Web/src
$ pushd /var/www/html
/var/www/html ~/Work/Projects/Web/src
$ pushd /etc/apache2
/etc/apache2 /var/www/html ~/Work/Projects/Web/src
$ pushd /etc/ssl/certs
/etc/ssl/certs /etc/apache2 /var/www/html ~/Work/Projects/Web/src
$ pwd
/etc/ssl/certs

The shell prints the stack after each pushd operation. The current directory
is the leftmost (top) directory.

View a Directory Stack
Print a shell’s directory stack with the dirs command. It does not modify
the stack.

$ dirs
/etc/ssl/certs /etc/apache2 /var/www/html ~/Work/Projects/Web/src

If you prefer to print the stack from top to bottom, use the -p option:

$ dirs -p
/etc/ssl/certs
/etc/apache2
/var/www/html
~/Work/Projects/Web/src

and even pipe the output to the command nl to number the lines from zero
onward:

$ dirs -p | nl -v0
 0 /etc/ssl/certs
 1 /etc/apache2
 2 /var/www/html
 3 ~/Work/Projects/Web/src

Even simpler, run dirs -v to print the stack with numbered lines:

$ dirs -v
 0 /etc/ssl/certs
 1 /etc/apache2
 2 /var/www/html
 3 ~/Work/Projects/Web/src

If you prefer this top-down format, consider making an alias:

Place in a shell configuration file and source it:
alias dirs='dirs -v'

Pop a Directory From the Stack
The popd command (“pop directory”) is the reverse of pushd. It does all
of the following:

1. Removes one directory from the top of the stack

2. Performs a cd to the new top directory

3. Prints the stack from top to bottom for your reference

For example, if your stack has four directories:

$ dirs
/etc/ssl/certs /etc/apache2 /var/www/html ~/Work/Projects/Web/src

then repeatedly running popd will traverse these directories from top to
bottom:

$ popd
/etc/apache2 /var/www/html ~/Work/Projects/Web/src
$ popd
/var/www/html ~/Work/Projects/Web/src
$ popd
~/Work/Projects/Web/src
$ popd
bash: popd: directory stack empty
$ pwd
~/Work/Projects/Web/src

TIP
The pushd and popd commands are such timesavers that I recommend creating two-
character aliases that are as quick to type as cd:

Place in a shell configuration file and source it:
alias gd=pushd
alias pd=popd

Swap Directories on the Stack
Now that you can build and empty the directory stack, let’s focus on
practical use cases. pushd with no arguments swaps the top two directories
in the stack and navigates to the new top directory. Let’s jump between
/etc/apache2 and your work directory several times by simply running
pushd. See how the third directory /var/www/html remains in the stack as
the first two directories swap positions.

$ dirs
/etc/apache2 ~/Work/Projects/Web/src /var/www/html
$ pushd
~/Work/Projects/Web/src /etc/apache2 /var/www/html
$ pushd
/etc/apache2 ~/Work/Projects/Web/src /var/www/html
$ pushd
~/Work/Projects/Web/src /etc/apache2 /var/www/html

Notice that pushd behaves similarly to the cd - command, toggling
between two directories, but it does not have the limitation of remembering
just one directory.

Turn a Mistaken cd Into a pushd
Suppose you are jumping among several directories with pushd and you
accidentally run cd instead and lose a directory:

$ dirs
~/Work/Projects/Web/src /var/www/html /etc/apache2

$ cd /etc/ssl/certs
$ dirs
/etc/ssl/certs /var/www/html /etc/apache2

Oops, the accidental cd command replaced ~/Work/Projects/Web/src in the
stack with /etc/ssl/certs. But don’t worry. You can add the missing directory
back to the stack without typing its long path. Just run pushd twice, once
with a dash argument and once without:

$ pushd -
~/Work/Projects/Web/src /etc/ssl/certs /var/www/html /etc/apache2
$ pushd
/etc/ssl/certs ~/Work/Projects/Web/src /var/www/html /etc/apache2

Let’s dissect why this works:

The first pushd returns to your shell’s previous directory,
~/Work/Projects/Web/src, and pushes it onto the stack. pushd, like
cd, accepts a dash as an argument to mean “go back to my
previous directory.”

The second pushd command swaps the top two directories,
bringing you back to /etc/ssl/certs. The end result is that you’ve
restored ~/Work/Projects/Web/src to the second position in the
stack, exactly where it would have been if you hadn’t made your
mistake.

This “oops, I forgot a pushd” command is useful enough that it’s worth an
alias. I call it slurp because in my mind, it “slurps back” a directory that I
lost by mistake.

Place in a shell configuration file and source it:
alias slurp='pushd - && pushd'

Go Deeper Into the Stack
What if you want to cd between directories in the stack other than the top
two? pushd and popd accept a positive or negative integer argument to

operate further into the stack. The command:

$ pushd +N

shifts N directories from the top of the stack to the bottom, and then
performs a cd to the new top directory. A negative argument (-N) shifts
directories in the opposite direction, from the bottom to the top, before
performing the cd.

$ dirs
/etc/ssl/certs ~/Work/Projects/Web/src /var/www/html /etc/apache2
$ pushd +1
~/Work/Projects/Web/src /var/www/html /etc/apache2 /etc/ssl/certs
$ pushd +2
/etc/apache2 /etc/ssl/certs ~/Work/Projects/Web/src /var/www/html

In this manner, you can jump to any other directory in the stack with a
simple command. If your stack is long, however, it may be difficult to judge
a directory’s numeric position by eye. So, print the numeric position of each
directory with dirs -v, as you did in “View a Directory Stack”:

$ dirs -v
 0 /etc/apache2
 1 /etc/ssl/certs
 2 ~/Work/Projects/Web/src
 3 /var/www/html

To shift /var/www/html to the top of the stack (and make it your current
directory), run pushd +3.

To jump to the directory at the bottom of the stack, run pushd -0 (dash
zero):

$ dirs
/etc/apache2 /etc/ssl/certs ~/Work/Projects/Web/src /var/www/html
$ pushd -0
/var/www/html /etc/apache2 /etc/ssl/certs ~/Work/Projects/Web/src

4

You also can remove directories from the stack beyond the top directory,
using popd with a numeric argument. The command:

$ popd +N

removes the directory in position N from the stack, counting down from the
top. A negative argument (-N) counts up from the bottom of the stack
instead. Counting begins at zero, so popd +1 removes the second
directory from the top.

$ dirs
/var/www/html /etc/apache2 /etc/ssl/certs ~/Work/Projects/Web/src
$ popd +1
/var/www/html /etc/ssl/certs ~/Work/Projects/Web/src
$ popd +2
/var/www/html /etc/ssl/certs

Summary
All of the techniques in this chapter are easy to grasp with a bit of practice
and will save you lots of time and typing. The techniques I’ve found
particularly life-changing are:

CDPATH for rapid navigation

pushd and popd for rapid returns

The occasional cd - command

1 I made this up, but it’s surely true.

2 An alternative is to opens multiple, virtual displays using command-line programs like
screen and tmux, which are called terminal multiplexers. They’re more effort to learn than
directory stacks but worth a look.

3 If you know stacks from computer science, a directory stack is precisely a stack of directory
names.

4 Programmers may recognize these operations as rotating the stack.

Part II. Next-Level Skills

Now that you understand the basics of commands, pipes, the shell, and
navigation, it’s time to take the next step. In the following five chapters, I’ll
present an abundance of new Linux programs and some important shell
concepts. You’ll apply them to construct complex commands and tackle
realistic situations on a Linux computer.

Chapter 5. Expanding Your
Toolbox

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the fifth chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at vwilson@oreilly.com.

Linux systems come with thousands of command-line programs.
Experienced users typically rely on a smaller subset — a toolbox of sorts — 
that they return to again and again. Chapter 1 added six highly useful
commands to your toolbox, and now I’ll hand you about a dozen more. I’ll
describe each command briefly and show you some example uses. (To see
all available options, view a command’s manpage.) I’ll also introduce two
powerful commands that are harder to learn but well worth the effort, called
awk and sed. Overall, the commands in this chapter serve four common,
practical needs for pipelines and other complex commands:

Producing text

Printing dates, times, sequences of numbers and letters, file paths,
repeated strings, and other text to jumpstart your pipelines.

Isolating text

mailto:vwilson@oreilly.com

Extracting any part of a text file with a combination of grep, cut,
head, tail, and one handy feature of awk.

Combining text

Combining files top-to-bottom with cat and tac, or side-by-side with
echo and paste. You can also interleave files with paste and diff.

Transforming text

Converting text into other text using simple commands like tr and
rev, or more powerful commands like awk and sed.

This chapter is a quick overview. Later chapters show the commands in
action.

Producing Text
Every pipeline begins with a simple command that prints to stdout.
Sometimes it’s a command like grep that or cut that pulls selected data
from a file:

$ cut -d: -f1 /etc/passwd | sort Print all usernames and
sort them

or even cat, which is convenient for piping the full contents of multiple
files to other commands:

$ cat *.txt | wc -l Total the number of lines

Other times, the initial text in a pipeline comes from other sources. You
already know one such command, ls, which prints file and directory names
and associated information. Let’s take a look at some other text-producing
commands:

date, which prints dates and times in various formats

seq, which prints a sequence of numbers

Brace expansion, a shell feature that prints a sequence of numbers
or characters

find, which prints file paths

yes, which prints the same line repeatedly

The date Command
The date command prints the current date and/or time in various formats:

$ date Default formatting
Mon Jun 28 16:57:33 EDT 2021
$ date +%Y-%m-%d Year-Month-Day format
2021-06-28
$ date +%H:%M:%S Hour:Minute:Seconds format
16:57:33

To control the output format, provide an argument that begins with a plus
sign (+) followed by any text. The text may contain special expressions that
begin with a percent sign (%), such as %Y for the current four-digit year and
%H for the current hour on a 24-hour clock. A full list of expressions is on
the manpage for date.

$ date +"I cannot believe it's already %A!" Day of week
I cannot believe it's already Tuesday!

The seq Command
The seq command prints a sequence of numbers in a range. Provide two
arguments, the low and high values of the range, and seq prints the whole
range:

$ seq 1 5 Print all integers from 1 to 5,
inclusive
1
2

3
4
5

If you provide three arguments, the first and third define the range, and the
middle number is the increment:

$ seq 1 2 10 Increment by 2 instead of 1
1
3
5
7
9

Use a negative increment such as -1 to produce a descending sequence:

$ seq 3 -1 0
3
2
1
0

or a decimal increment to produce floating point numbers:

$ seq 1.1 0.1 2 Increment by 0.1
1.1
1.2
1.3
⋮
2.0

By default, values are separated by a newline character, but you can change
the separator with the -s option followed by any string:

$ seq -s/ 1 5 Separate values with forward
slashes
1/2/3/4/5

The option -w makes all values the same width (in characters) by adding
leading zeroes as needed:

$ seq -w 8 10
08
09
10

seq can produce numbers in many other formats (see the manpage), but
my examples represent the most common uses.

Brace Expansion (A Shell Feature)
The shell provides its own way to print a sequence of numbers, known as
brace expansion. Start with a left curly brace, add two integers separated by
two dots, and end with a right curly brace:

$ echo {1..10} Forwards from 1
1 2 3 4 5 6 7 8 9 10
$ echo {10..1} Backwards from 10
10 9 8 7 6 5 4 3 2 1
$ echo {01..10} With leading zeroes (equal
width)
01 02 03 04 05 06 07 08 09 10

More generally, the shell expression {x..y..z} generates the values x
through y, incrementing by z.

$ echo {1..1000..100} Count by
hundreds from 1
1 101 201 301 401 501 601 701 801 901
$ echo {1000..1..100} Backwards
from 1000
1000 900 800 700 600 500 400 300 200 100
$ echo {01..1000..100} With leading
zeroes
0001 0101 0201 0301 0401 0501 0601 0701 0801 0901

CURLY BRACES VS. SQUARE BRACKETS
Square brackets are a pattern-matching operator for filenames (Chapter 2). Curly brace
expansion, on the other hand, does not depend on filenames in any way. It just evaluates
to a list of strings. You can use brace expansion to print filenames, but no pattern-
matching occurs.

$ ls
file1 file2 file4
$ ls file[2-4] Matches existing filenames
file2 file4
$ ls file{2..4} Evaluates to: file2 file3
file4
ls: cannot access 'file3': No such file or directory
file2 file4

Brace expansion also can produce sequences of letters, which seq cannot.

$ echo {A..Z}
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Brace expansion always produces output on a single line separated by space
characters. Change this by piping the output to other commands, such as tr
(see “The tr Command”):

$ echo {A..Z} | tr -d ' ' Delete spaces
ABCDEFGHIJKLMNOPQRSTUVWXYZ
$ echo {A..Z} | tr ' ' '\n' Change spaces into newlines
A
B
C
⋮
Z

Create an alias that prints the nth letter of the English alphabet:

$ alias nth="echo {A..Z} | tr -d ' ' | cut -c"
$ nth 10
J

The find Command
The find command lists files in a directory recursively, descending into
subdirectories and printing full paths. Results are not alphabetical; pipe the
output to sort if needed.

$ find /etc -print List all of /etc recursively
/etc
/etc/issue.net
/etc/nanorc
/etc/apache2
/etc/apache2/sites-available
/etc/apache2/sites-available/default.conf
⋮

find has numerous options that you can combine. Here are a few highly
useful ones. Limit the output only to files or directories with the option -
type:

$ find . -type f -print Files only
$ find . -type d -print Directories only

Limit the output to names that match a file pattern with the option -name.
Quote or escape the pattern so the shell doesn’t evaluate it first:

$ find /etc -type f -name "*.conf" -print Files ending
with .conf
/etc/logrotate.conf
/etc/systemd/logind.conf
/etc/systemd/timesyncd.conf
⋮

Make the name-matching case-insensitive with the option -iname:

$ find . -iname "*.txt" -print

find can also execute a Linux command for each file path in the output,
using -exec. The syntax is a bit wonky:

1

1. Construct a find command and omit -print.

2. Append -exec followed by the command to execute. Use the
expression {} to indicate where the file path should appear in the
command.

3. End with a quoted or escaped semicolon, such as \; or ";".

Here’s a toy example to print an @ symbol on either side of the file path:

$ find /etc -exec echo @ {} @ ";"
@ /etc @
@ /etc/issue.net @
@ /etc/nanorc @
⋮

A more practical example performs a long listing (ls -l) for all .conf files
in /etc and its subdirectories:

$ find /etc -name "*.conf" -exec ls -l {} ";"
-rw-r--r-- 1 root root 703 Aug 21 2017 /etc/logrotate.conf
-rw-r--r-- 1 root root 1022 Apr 20 2018 /etc/systemd/logind.conf
-rw-r--r-- 1 root root 604 Apr 20 2018
/etc/systemd/timesyncd.conf
⋮

find -exec works well for mass deletions of files throughout a directory
hierarchy (but be careful!). Let’s delete files with names ending in a tilde
(~) within the directory $HOME/tmp and its subdirectories. For safety, first
run the command echo rm to see which files would be deleted, then
remove echo to delete for real:

$ find $HOME/tmp -type f -name "*~" -exec echo rm {} ";"
echo for safety
rm /home/smith/tmp/file1~
rm /home/smith/tmp/junk/file2~
rm /home/smith/tmp/vm/vm-8.2.0b/lisp/vm-cus-load.el~
$ find $HOME/tmp -type f -name "*~" -exec rm {} ";"
Remove echo

The yes Command
The yes command prints the same string over and over until terminated:

$ yes Repeats "y" by default
y
y
y ^C Kill the command
$ yes woof! Repeat any other string
woof!
woof!
woof! ^C

What’s the use of this curious behavior? yes can supply input to interactive
programs so they can run unattended. For example, the program fsck,
which checks a Linux filesystem for errors, may prompt the user to
continue and wait for a response of y or n. The output of the yes
command, when piped to fsck, responds to every prompt on your behalf,
so you can walk away and let fsck run to completion.

The main use of yes for our purposes is printing a string a specific number
of times by piping yes to head. You’ll see a practical example in
“Generating Test Files”.

$ yes "Efficient Linux" | head -n3 Print a string 3
times
Efficient Linux
Efficient Linux
Efficient Linux

Isolating Text
When you need just part of a file, the simplest commands to combine and
run are grep, cut, head, and tail. You’ve already seen the first three in
Chapter 1: grep prints lines that match a string, cut prints columns from a
file, and head prints the first lines of a file. A new command, tail, is the
opposite of head and prints the last lines of a file. Figure 5-1 depicts these
four commands working together.

2

Figure 5-1. head, grep, and tail extract lines, and cut extracts columns. In this example, grep
matches lines containing the string “blandit.”

In this section, I dive more deeply into grep, which does a lot more than
match plain strings, and explain tail more formally. I also preview one
feature of the command awk for extracting columns in a way that cut
cannot. These five commands in combination can isolate pretty much any
text using a single pipeline.

grep: A Deeper Look

You’ve already seen grep print lines from a file that match a given string:

$ cat frost
Whose woods these are I think I know.
His house is in the village though;
He will not see me stopping here
To watch his woods fill up with snow.
This is not the end of the poem.
$ grep his frost Print lines
containing "his"
To watch his woods fill up with snow.
This is not the end of the poem. "This" matches
"his"

grep also has some highly useful options. Use the -w option to match
whole words only:

$ grep -w his frost Match the word "his"
exactly
To watch his woods fill up with snow.

Use the -i option to ignore the case of letters:

$ grep -i his frost
His house is in the village though; Matches "His"
To watch his woods fill up with snow. Matches "his"
This is not the end of the poem. "This" matches
"his"

Use the -l option to print only the names of the files that contain matching
lines, but not the matching lines themselves:

$ grep -l his * Which files contain the string "his"?
frost

The real power of grep, however, appears when you move beyond
matching simple strings to matching patterns, called regular expressions.
The syntax is different from filename patterns; a partial description is in
Table 5-1.

3

T
a
b
l
e
5
-
1
.
S
o
m
e
r
e
g
u
l
a
r
e
x
p
r
e
s
s
i
o
n
s
y
n
t

a
x
s
h
a
r
e
d
b
y
g

r

e

p

,
a

w

k

,
a
n
d
s

e

d

.
(
T
h
e
t
h
r
e
e

c
o
m
m
a
n
d
s
a
l
s
o
d
i
f
f
e
r
i
n
t
h
e
i
r
t
r
e
a
t
m
e
n
t
o
f

r
e
g
u
l
a
r
e
x
p
r
e
s
s
i
o
n
s
;
t
h
i
s
i
s
a
p
a
r
t
i
a
l
l
i
s

t
.
)

To match this: Use this syntax: Example

Beginning of a line ^ ^a = Line beginning with a

End of a line $!$ = Line ending with an exclamation
point

Any single character (except
newline)

. … = Any three consecutive characters

A literal caret, dollar sign, or any
other special character c

\c \$ = A literal dollar sign

Zero or more occurrences of
expression E

E* _* = Zero or more underscores

Any single character in a set [characters] [aeiouAEIOU] = Any vowel

Any single character not in a set [^characters] [^aeiouAEIOU] = Any non-vowel

Any character in a given range
between c and c

[c -c] [0-9] = Any digit

Any character not in a given range
between c and c

[^c -c] [^0-9] = Any non-digit

Either of two expressions E or E E \|E for grep
and sed

one\|two = Either one or two

E |E for awk one|two = Either one or two

Grouping expression E for
precedence

\(E\) for grep
and sed

\(one\|two\)* = Zero or more
occurrences of one or two

(E) for awk (one|two)* = Zero or more
occurrences of one or two

1 2
1 2

1 2
1 2

1 2 1 2

1 2

a

a For sed, this syntax does more than grouping: see “Matching Subexpressions With sed”.

Here are some example grep commands with regular expressions. Match
all lines that begin with a capital letter:

$ grep '^[A-Z]' myfile

Match all nonblank lines (i.e., match blank lines and use -v to omit them):

$ grep -v '^$' myfile

Match all lines that contain either cookie or cake:

$ grep 'cookie\|cake' myfile

Match all lines at least 5 characters long:

$ grep '.....' myfile

Match all lines in which a less-than symbol appears somewhere before a
greater-then symbol, such as an HTML file:

$ grep '<.*>' page.html

Regular expressions are great, but sometimes they get in the way. Suppose
you want to search for the two lines in the frost file that contain a w
followed by a period. The following command produces the wrong results,
because a period is a regular expression meaning “any character.”

$ grep w. frost
Whose woods these are I think I know.
He will not see me stopping here
To watch his woods fill up with snow.

To work around this problem, you can escape the special character:

$ grep 'w\.' frost
Whose woods these are I think I know.
To watch his woods fill up with snow.

but this solution becomes cumbersome if you have many special characters
to escape. Fortunately, you can force grep to forget about regular
expressions and search for every character literally in the input, using the -
F (“fixed”) option, or equivalently, by running fgrep instead of grep.

$ grep -F w. frost
Whose woods these are I think I know.
To watch his woods fill up with snow.
$ fgrep w. frost
Whose woods these are I think I know.
To watch his woods fill up with snow.

grep has many other options; I’ll present just one more that solves a
common problem. Use the -f option (lower-case; don’t confuse it with -F)
to match against a set of strings rather than a single string. As a practical
example, let’s list all shells found in the file /etc/passwd, which I introduced
in “Command #5: sort”. As you may recall, each line in /etc/passwd
contains information about a user, organized as colon-separated fields. The
final field on each line is the program launched when the user logs in. This
program is often but not always a shell:

$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash 7th field
is a shell
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin 7th field
is not a shell
⋮

How can you tell if a program is a shell or not? Well, the file /etc/shells lists
all valid login shells on a Linux system:

$ cat /etc/shells
/bin/sh
/bin/bash
/bin/csh

So, you can list all valid shells in /etc/passwd by extracting the seventh field
with cut, eliminating duplicates with sort -u, and checking the results
against /etc/shells with grep -f. I also add the -F option to be cautious,
so all lines in /etc/shells are taken literally, even if they contain special
characters.

$ cut -d: -f7 /etc/passwd | sort -u | grep -f /etc/shells -F
/bin/bash
/bin/sh

The tail Command
The tail command prints the last lines of a file — 10 lines by default. It’s
a partner to the head command. Suppose you have a file named alphabet
containing 26 lines, one per letter:

$ cat alphabet
A is for aardvark
B is for bunny
C is for chipmunk
⋮
X is for xenorhabdus
Y is for yak
Z is for zebu

Print the last three lines with tail. The option -n sets the number of lines
to be printed, just as it does for head:

$ tail -n3 alphabet
X is for xenorhabdus
Y is for yak
Z is for zebu

If you precede the number with a plus sign (+), printing begins at that line
number and proceeds to the end of the file. The following command begins
at the twenty-fifth line of the file:

$ tail -n+25 alphabet
Y is for yak

Z is for zebu

Combine tail and head to print any range of lines from a file. To print
the fourth line alone, for example, extract the first four lines and isolate the
last one:

$ head -n4 alphabet | tail -n1
D is for dingo

In general, to print lines M through N, extract the first M lines with head,
then isolate the last N-M+1 lines with tail. Print lines six through eight of
the alphabet file:

$ head -n8 alphabet | tail -n3
F is for falcon
G is for gorilla
H is for hawk

TIP
head and tail both support a simpler syntax to specify a number of lines without -n.
This syntax is ancient, undocumented, and deprecated but will probably remain
supported forever.

$ head -4 alphabet Equivalent to head -n4
alphabet
$ tail -3 alphabet Equivalent to tail -n3
alphabet
$ tail +25 alphabet Equivalent to tail -n+25
alphabet

The awk {print} Command
The command awk is a general-purpose text processor with hundreds of
uses. Let’s preview one small feature, print, that extracts columns from a
file in ways that cut cannot. Consider the system file /etc/hosts which

includes IP addresses and hostnames separated by any amount of
whitespace.

$ less /etc/hosts
127.0.0.1 localhost
127.0.1.1 myhost myhost.example.com
192.168.1.2 frodo
192.168.1.3 gollum
192.168.1.28 gandalf

Suppose you want to isolate hostnames by printing the second word on each
line. The challenge is that each hostname is preceded by an arbitrary
amount of whitespace. cut needs its columns either lined up neatly by
column number (-c) or separated by a single consistent character (-f). You
need a command to print the second word on each line, which awk provides
with ease:

$ awk '{print $2}' /etc/hosts
localhost
myhost
frodo
gollum
gandalf

awk refers to any column by a dollar sign followed by the column number:
for example, $7 for the seventh column. If the column number has more
than one digit, surround the number with parentheses: for example, $(25).
To refer to the final field, use $NF (“number of fields”). To refer to the
entire line, use $0.

awk does not print whitespace between values by default. If you want
whitespace, separate the values with commas.

$ echo a b c | awk '{print $1 $3}' No whitespace
ac
$ echo a b c | awk '{print $1, $3}' Whitespace
a c

awk’s print statement is great for processing the output of commands
that strays outside tidy columns. An example is df, which prints the
amount of free and used disk space on a Linux system.

$ df / /data
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda1 1888543276 902295944 890244772 51% /
/dev/sda2 7441141620 1599844268 5466214400 23% /data

The column locations may vary depending on the length of the
Filesystem paths, the disk sizes, and the options you pass to df, so you
can’t reliably extract values with cut. With awk, however, you can easily
isolate (say) the fourth value on each line, representing available disk space:

$ df / /data | awk '{print $4}'
Available
890244772
5466214400

and even remove the first line (the header) at the same time with a little
awk magic, printing only line numbers greater than 1:

$ df / /data | awk 'FNR>1 {print $4}'
890244772
5466214400

If you encounter input separated by something other than space characters,
awk can change its field separator to any regular expression with the -F
option:

$ echo efficient:::::linux | awk -F':*' '{print $2}' Any
number of colons
linux

You’ll learn more details about awk in “awk Essentials”.

Combining Text

You already know several commands that combine text from different files.
The first is cat, which prints the contents of multiple files to stdout. It’s a
joiner of files top-to-bottom. That’s where its name comes from: it
concatenates files.

$ cat poem1
It is an ancient Mariner,
And he stoppeth one of three.
$ cat poem2
'By thy long grey beard and glittering eye,
$ cat poem3
Now wherefore stopp'st thou me?
$ cat poem1 poem2 poem3
It is an ancient Mariner,
And he stoppeth one of three.
'By thy long grey beard and glittering eye,
Now wherefore stopp'st thou me?

The second command you’ve seen for combining text is echo, the shell
builtin that prints whatever arguments you give it, separated by a single
space character. It combines strings side-by-side.

$ echo efficient linux in $HOME
efficient linux in /home/smith

Let’s examine some more commands that combine text:

tac, a bottom-to-top combiner of text files

paste, a side-by-side combiner of text files

diff, which interleaves text from two files by printing their
differences

The tac Command
The tac command reverses a file line by line. Its name is “cat” spelled
backwards.

$ cat poem1 poem2 poem3 | tac
Now wherefore stopp'st thou me?
'By thy long grey beard and glittering eye,
And he stoppeth one of three.
It is an ancient Mariner,

Notice I concatenated three files before reversing the text. If I instead
provide multiple files to tac as arguments, it reverses the lines of each file
in turn, producing different output:

$ tac poem1 poem2 poem3
And he stoppeth one of three. First file
reversed
It is an ancient Mariner,
'By thy long grey beard and glittering eye, Second file
Now wherefore stopp'st thou me? Third file

tac is great for processing data that is already in chronological order but
not reversible with the sort -r command. A typical case is reversing a
webserver log file to process its lines from newest to oldest:

192.168.1.34 - - [30/Nov/2021:23:37:39 -0500] "GET / HTTP/1.1"
...
192.168.1.10 - - [01/Dec/2021:00:02:11 -0500] "GET /notes.html
HTTP/1.1" ...
192.168.1.8 - - [01/Dec/2021:00:04:30 -0500] "GET /stuff.html
HTTP/1.1" ...
⋮

The lines are in chronological order with timestamps, but they aren’t in
alphabetical or numeric order, so the sort -r command isn’t helpful. The
tac command can reverse these lines without needing to consider the
timestamps.

The paste Command
The paste command combines files side by side in columns separated by
a single tab character. It’s a partner to the cut command, which extracts
columns from a tab-separated file.

$ cat title-words1
EFFICIENT
AT
COMMAND
$ cat title-words2
linux
the
line
$ paste title-words1 title-words2
EFFICIENT linux
AT the
COMMAND line
$ paste title-words1 title-words2 | cut -f2 cut & paste
are complementary
linux
the
line

Change the separator to another character, such as a comma, with the option
-d (meaning “delimiter“):

$ paste -d, title-words1 title-words2
EFFICIENT,linux
AT,the
COMMAND,line

Transpose the output, producing pasted rows instead of pasted columns,
with the -s option:

$ paste -d, -s title-words1 title-words2
EFFICIENT,AT,COMMAND
linux,the,line

paste also interleaves data from two or more files if you change the
separator to a newline character (\n):

$ paste -d "\n" title-words1 title-words2
EFFICIENT
linux
AT
the
COMMAND
line

The diff Command
diff compares two files line by line and prints a terse report about their
differences.

$ cat file1
Linux is all about efficiency.
I hope you will enjoy this book.
$ cat file2
MacOS is all about efficiency.
I hope you will enjoy this book.
Have a nice day.
$ diff file1 file2
1c1
< Linux is all about efficiency.

> MacOS is all about efficiency.
2a3
> Have a nice day.

The notation 1c1 represents a change or difference between the files. It
means that line 1 in the first file differs from line 1 in the second file. This
notation is followed by the relevant line from file1, a three-dash separator
(---), and the relevant line from file2. The leading symbol < always
indicates a line from the first file, and > indicates a line from the second
file.

The notation 2a3 represents an addition. It means that file2 has a third line
not present after the second line of file1. This notation is followed by the
extra line from file2, “Have a nice day.”

diff output may contain other notation and can take other forms. This
short explanation is enough for our main purpose, however, which is to use
diff as a text processor that interleaves lines from two files. Many users
don’t think of diff this way, but it’s great for forming pipelines to solve
certain kinds of problems. For example, you can isolate the differing lines
with grep and cut:

$ diff file1 file2 | grep '^[<>]'
< Linux is all about efficiency.

> MacOS is all about efficiency.
> Have a nice day.
$ diff file1 file2 | grep '^[<>]' | cut -c3-
Linux is all about efficiency.
MacOS is all about efficiency.
Have a nice day.

You’ll see practical examples in “Technique #4: Process Substitution” and
“Checking Matched Pairs of Files”.

Transforming Text
Chapter 1 introduced several commmands that read text from stdin and
transform it into something else on stdout. wc prints a count of lines, words,
and characters; sort arranges lines into alphabetical or numeric order; and
uniq consolidates duplicate lines. Let’s discuss several more commands
that transform their input:

tr, which translates characters into other characters

rev, which reverses characters on a line

awk and sed, which are general-purpose transformers

The tr Command
tr translates one set of characters into another. I showed you one example
in Chapter 2 of translating colons into newline characters to print the shell’s
PATH:

$ echo $PATH | tr : "\n" Translate colons into
newlines
/home/smith/bin
/usr/local/bin
/usr/bin
/bin
/usr/games
/usr/lib/java/bin

tr takes two sets of characters as arguments, and it translates members of
the first set into the corresponding members of the second. Common uses
are converting text to upper or lower case:

$ echo efficient | tr a-z A-Z Translate a into A, b into
B, etc.
EFFICIENT
$ echo Efficient | tr A-Z a-z
efficient

converting spaces into newlines:

$ echo Efficient Linux | tr " " "\n"
Efficient
Linux

and deleting whitespace with the -d (delete) option:

$ echo efficient linux | tr -d ' \t' Remove spaces and tabs
efficientlinux

The rev Command
The rev command reverses the characters of each line of input.

$ echo Efficient Linux! | rev
!xuniL tneiciffE

Beyond the obvious entertainment value, rev is handy for extracting tricky
information from files. Suppose you have a file of celebrity names:

$ cat celebrities
Jamie Lee Curtis
Zooey Deschanel
Zendaya Maree Stoermer Coleman
Rihanna

and you want to extract the final word on each line (Curtis, Deschanel,
Coleman, Rihanna). This would be easy with cut -f if each line had the

4

same number of fields, but the number varies. With rev, you can reverse
all the lines, cut the first field, and reverse again to achieve your goal:

$ rev celebrities
sitruC eeL eimaJ
lenahcseD yeooZ
nameloC remreotS eeraM ayadneZ
annahiR
$ rev celebrities | cut -d' ' -f1
sitruC
lenahcseD
nameloC
annahiR
$ rev celebrities | cut -d' ' -f1 | rev
Curtis
Deschanel
Coleman
Rihanna

The awk and sed Commands
awk and sed are general-purpose “supercommands” for processing text.
They can do most everything that the other commands in this chapter do,
but with more cryptic-looking syntax. As a simple example, they can print
the first 10 lines of a file like head does:

$ sed 10q myfile Print 10 lines and quit (q)
$ awk 'FNR<=10' myfile Print while line number is ≤ 10

They can also do things that our other commands cannot, like replace or
swap strings:

$ echo image.jpg | sed 's/\.jpg/.png/' Replace
.jpg by .png
image.png
$ echo "linux efficient" | awk '{print $2, $1}' Swap two
words
efficient linux

awk and sed are harder to learn than the other commands I’ve covered,
because each of them has a miniature programming language built in. They

5

have so many capabilities that whole books have been written on them. I
highly recommend spending quality time learning both commands (or at
least one of them). To begin your journey, I cover basic principles of each
command and demonstrate some common uses. I also recommend several
online tutorials to learn more about these powerful, crucial commands.

Don’t worry about memorizing every feature of awk or sed. Success with
these commands really means:

Understanding the kinds of transformations they make possible, so
you can think, “Ah! This is a job for awk (or sed)!” and apply
them in your time of need

Learning to read their manpages and to find complete solutions on
Stack Exchange and other online resources

awk Essentials
awk transforms lines of text from files (or stdin) into any other text, using a
sequence of instructions called an awk program. The more skilled you
become in writing awk programs, the more flexibly you can manipulate
text. You can supply the awk program on the command line:

$ awk program input-files

You can also store one or more awk programs in files and refer to them with
the -f option, and the programs run in sequence:

$ awk -f program-file1 -f program-file2 -f program-file3 input-
files

An awk program includes one or more actions, such as calculating values or
printing text, that run when an input line matches a pattern. Each
instruction in the program has the form:

pattern {action}

6

7

https://unix.stackexchange.com/

Typical patterns include:

The word BEGIN. Its action runs just once, before awk processes
any input.

The word END. Its action runs just once, after awk has processed
all the input.

A regular expression (see Table 5-1) surrounded by forward
slashes. An example is /^[A-Z]/ to match lines that begin with a
capital letter.

Other expressions specific to awk. For example, to check whether
the third field on an input line ($3) begins with a capital letter, a
pattern would be $3~/^[A-Z]/. Another example is FNR>5,
which tells awk to skip the first five lines of input.

An action with no pattern runs for every line of input. (Several awk
programs in “The awk {print} Command” were of this type.) As an
example, awk elegantly solves the “print the celebrity’s last name” problem
from “The rev Command” by directly printing the final word from each
line.

$ awk '{print $NF}' celebrities
Curtis
Deschanel
Coleman
Rihanna

TIP
When supplying an awk program on the command line, enclose it in quotes to prevent
the shell from evaluating awk’s special characters. Use single or double quotes as
needed.

A pattern with no action runs the default action {print}, which just prints
any matching input lines unchanged.

$ echo efficient linux | awk '/efficient/'
efficient linux

For a fuller demonstration, process the tab-separated file animals.txt from
Example 1-1 to produce a tidy bibliography, converting lines from this
format:

python Programming Python 2010 Lutz, Mark

to this format:

Lutz, Mark (2010). "Programming Python"

This feat requires rearranging three fields and adding some characters like
parentheses and double quotes. The following awk program does the trick,
employing the option -F to change the input separator from spaces to tabs
(\t).

$ awk -F'\t' '{print $4, "(" $3 ").", "\"" $2 "\""}' animals.txt
Lutz, Mark (2010). "Programming Python"
Barrett, Daniel (2005). "SSH, The Secure Shell"
Schwartz, Randal (2012). "Intermediate Perl"
Bell, Charles (2014). "MySQL High Availability"
Siever, Ellen (2009). "Linux in a Nutshell"
Boney, James (2005). "Cisco IOS in a Nutshell"
Roman, Steven (1999). "Writing Word Macros"

Add a regular expression to process only the “horse” book:

$ awk -F'\t' '/^horse/{print $4, "(" $3 ").", "\"" $2 "\""}'
animals.txt
Siever, Ellen (2009). "Linux in a Nutshell"

Or process only books from 2010 or later, by testing whether field $3
matches ^201:

$ awk -F'\t' '$3~/^201/{print $4, "(" $3 ").", "\"" $2 "\""}'
animals.txt
Lutz, Mark (2010). "Programming Python"

Schwartz, Randal (2012). "Intermediate Perl"
Bell, Charles (2014). "MySQL High Availability"

Finally, add a BEGIN instruction to print a friendly heading, some dashes
for indenting, and an END instruction to direct the reader to further
information.

$ awk -F'\t' \
 'BEGIN {print "Recent books:"} \
 $3~/^201/{print "-", $4, "(" $3 ").", "\"" $2 "\""} \
 END {print "For more books, search the web"}' \
 animals.txt
Recent books:
- Lutz, Mark (2010). "Programming Python"
- Schwartz, Randal (2012). "Intermediate Perl"
- Bell, Charles (2014). "MySQL High Availability"
For more books, search the web

awk does much more than print — it can also perform calculations, like
summing the numbers 1 to 100:

$ seq 1 100 | awk '{s+=$1} END {print s}'
5050

To learn awk beyond what can be covered in a few book pages, take an
awk tutorial at tutorialspoint.com/awk or riptutorial.com/awk or search the
web for “awk tutorial.” You’ll be glad you did.

Improving the Duplicate File Detector
In “Detecting Duplicate Files”, you constructed a pipeline that detects and
counts duplicate JPEG files by checksum, but it was not powerful enough to
print the filenames:

$ md5sum *.jpg | cut -c1-32 | sort | uniq -c | sort -nr | grep -v
" 1 "
 3 f6464ed766daca87ba407aede21c8fcc
 2 c7978522c58425f6af3f095ef1de1cd5
 2 146b163929b6533f02e91bdf21cb9563

https://www.tutorialspoint.com/awk/
https://riptutorial.com/awk

Now that you know awk, you have the tools to print the filenames as well.
Let’s construct a new command that reads each line of md5sum output:

$ md5sum *.jpg
146b163929b6533f02e91bdf21cb9563 image001.jpg
63da88b3ddde0843c94269638dfa6958 image002.jpg
146b163929b6533f02e91bdf21cb9563 image003.jpg
⋮

and not only counts occurrences of each checksum but also stores the
filenames for printing. You’ll need two additional awk features called
arrays and loops.

An array is a variable that holds a collection of values. If the array is named
A and holds seven values, then the values could be accessed as A[1],
A[2], A[3], up to A[7]. The values 1 through 7 are called the keys of the
array, and A[1] through A[7] are called the array’s elements. You can
create any keys you want, however. If you’d rather access the seven
elements of your array using the names of Disney characters, go ahead and
name them A["Doc"], A["Grumpy"], A["Bashful"], all the way to
A["Dopey"].

To count duplicate images, create an array called counts with one element
for each checksum. Each array key is a checksum, and the associated
element holds the number of times that checksum occurs in the input. For
example, the array element
counts["f6464ed766daca87ba407aede21c8fcc"] could have
value 3. The following awk script examines each line of md5sum output,
isolates the checksum ($1), and uses it as a key for the counts array. The
operator ++ increments an element by 1 each time awk encounters its
associated checksum.

$ md5sum *.jpg | awk '{counts[$1]++}'

So far, the awk script produces no output — it just counts each checksum
and exits. To print the counts, you need a second awk feature called a for

loop. A for loop steps through an array, key by key, and processes each
element in sequence, using this syntax:

for (variable in array) do something with array[variable]

For example, print each array element by its key:

for (key in counts) print array[key]

Place this loop in the END instruction so it runs after all the counts are
calculated.

$ md5sum *.jpg \
 | awk '{counts[$1]++} \
 END {for (key in counts) print counts[key]}'
1
2
2
⋮

Next, add the checksums to the output. Each array key is a checksum, so
just print the key after the count:

$ md5sum *.jpg \
 | awk '{counts[$1]++} \
 END {for (key in counts) print counts[key] " " key}'
1 714eceeb06b43c03fe20eb96474f69b8
2 146b163929b6533f02e91bdf21cb9563
2 c7978522c58425f6af3f095ef1de1cd5
⋮

To collect and print filenames, use a second array, names, also with
checksums as its keys. As awk processes each line of output, append the
filename ($2) to the corresponding element of the names array, along with
a space as a separator. In the END loop, after printing the checksum (key),
print a colon and the collected filenames for that checksum.

$ md5sum *.jpg \
 | awk '{counts[$1]++; names[$1]=names[$1] " " $2} \

 END {for (key in counts) print counts[key] " " key ":"
names[key]}'
1 714eceeb06b43c03fe20eb96474f69b8: image011.jpg
2 146b163929b6533f02e91bdf21cb9563: image001.jpg image003.jpg
2 c7978522c58425f6af3f095ef1de1cd5: image019.jpg image020.jpg
⋮

Lines that begin with 1 represent checksums that occur only once, so they
are not duplicates. Pipe the output to grep -v to remove these lines, then
sort the results numerically, high to low, with sort -nr and you have
your desired output:

$ md5sum *.jpg \
 | awk '{counts[$1]++; names[$1]=names[$1] " " $2} \
 END {for (key in counts) print counts[key] " " key ":"
names[key]}' \
 | grep -v '^1 ' \
 | sort -nr
3 f6464ed766daca87ba407aede21c8fcc: image007.jpg image012.jpg
image014.jpg
2 c7978522c58425f6af3f095ef1de1cd5: image019.jpg image020.jpg
2 146b163929b6533f02e91bdf21cb9563: image001.jpg image003.jpg

sed Essentials
sed, like awk, transforms text from files (or stdin) into any other text,
using a sequence of instructions called a sed script. sed scripts are pretty
cryptic on first glance. An example is s/Windows/Linux/g, which
means to replace every occurrence of the string Windows with Linux.
The word “script” here does not mean a file (like a shell script) but a
string. Invoke sed with a single script on the command line:

$ sed script input-files

or use the -e option to supply multiple scripts that process the input in
sequence:

$ sed -e script1 -e script2 -e script3 input-files

8

9

You can also store sed scripts in files and refer to them with the -f option,
and they run in sequence:

$ sed -f script-file1 -f script-file2 -f script-file3 input-files

As with awk, the utility of sed depends on your skill in creating sed
scripts. The most common type of script is a substitution script that replaces
strings with other strings. The syntax is:

s/regexp/replacement/

where regexp is a regular expression to match against each input line (see
Table 5-1), and replacement is a string to replace the matched text. As a
simple example, change one word into another:

$ echo Efficient Windows | sed "s/Windows/Linux/"
Efficient Linux

TIP
When supplying a sed script on the command line, enclose it in quotes to prevent the
shell from evaluating sed’s special characters. Use single or double quotes as needed.

sed easily solves the “print the celebrity’s last name” problem from “The
rev Command” with a regular expression. Just match all characters (.*) up
to the last space and replace them with nothing:

$ sed 's/.* //' celebrities
Curtis
Deschanel
Coleman
Rihanna

SUBSTITUTION AND SLASHES
The forward slashes in a substitution may be replaced by any other convenient character.
This is helpful when a regular expression itself includes forward slashes (which would
otherwise need escaping). These three sed scripts are equivalent:

s/one/two/ s_one_two_ s@one@two@

You may follow a substitution with several options to affect its behavior.
The option i makes matches case-insensitive:

$ echo Efficient Stuff | sed "s/stuff/linux/" Case-
sensitive; no match
Efficient Stuff
$ echo Efficient Stuff | sed "s/stuff/linux/i" Case-
insensitive match
Efficient linux

The option g (“global”) replaces all occurrences of the regular expression
instead of just the first one:

$ echo efficient stuff | sed "s/f/F/" Replaces just the
first "f"
eFficient stuff
$ echo efficient stuff | sed "s/f/F/g" Replaces all
occurrences of "f"
eFFicient stuFF

Another common type of sed script is a deletion script. It removes lines by
line number:

$ seq 10 14 | sed 4d Remove the 4th line
10
11
12
14

or lines that match a regular expression:

$ seq 101 200 | sed '/[13579]$/d' Delete lines ending in an
odd digit
102
104
106
⋮
200

Matching Subexpressions With sed

Suppose you have some filenames:

$ ls
image.jpg.1 image.jpg.2 image.jpg.3

and want to produce new names, image1.jpg, image2.jpg, and image3.jpg.
sed can split the filenames into parts and rearrange them via a feature
called subexpressions. First, create a regular expression that matches the
filenames:

image\.jpg\.[1-3]

You want to move the final digit earlier in the filename, so isolate that digit
by surrounding it with the symbols \(and \). This defines a
subexpression — a designated part of a regular expression.

image\.jpg\.\([1-3]\)

sed can refer to subexpressions by number and manipulate them. You
created only one subexpression so its name is \1. A second subexpression
would be \2, and so on, up to a maximum of \9. Your new filenames
would have the form image\1.jpg. Therefore, your sed script would be:

$ ls | sed "s/image\.jpg\.\([1-3]\)/image\1.jpg/"
image1.jpg
image2.jpg
image3.jpg

To make things more complicated, suppose the filenames had more
variation, consisting of lowercase words:

$ ls
apple.jpg.1 banana.png.2 carrot.jpg.3

Create three subexpressions to capture the base filename, extension, and
final digit:

\([a-z][a-z]*\) \1 = Base filename of one letter
or more
\([a-z][a-z][a-z]\) \2 = File extension of three
letters
\([0-9]\) \3 = A digit

Connect them with escaped dots (\.) to form this regular expression:

\([a-z][a-z]*\)\.\([a-z][a-z][a-z]\)\.\([0-9]\)

Represent the newly transformed filenames to sed as \1\3.\2, and the
final substitution with sed becomes:

$ ls | sed "s/\([a-z][a-z]*\)\.\([a-z][a-z][a-z]\)\.\([0-
9]\)/\1\3.\2/"
apple1.jpg
banana2.png
carrot3.jpg

This command does not rename files — it just prints the new names. The
section “Inserting a Filename Into a Sequence” shows a similar example
that performs the renaming as well.

To learn sed beyond what can be covered in a few book pages, take a sed
tutorial at tutorialspoint.com/sed or grymoire.com/Unix/Sed.html or search
the web for “sed tutorial.”

Toward an Even Larger Toolbox

https://www.tutorialspoint.com/sed
https://www.grymoire.com/Unix/Sed.html

Most Linux systems come with thousands of command-line programs, and
most of them have numerous options that change their behavior. You’re not
likely to learn and remember them all. So, in a moment of need, how do
you locate a new program — or tailor a program that you already know — 
to accomplish your goals?

Your first (obvious) step is a web search engine. For example, if you need a
command that limits the width of lines in a text file, wrapping any lines that
are too long, search the web for (say) “Linux command wrap lines” and
you’ll be pointed to the fold command:

$ cat title.txt
This book is titled "Efficient Linux at the Command Line"
$ fold -w40 title.txt
This book is titled "Efficient Linux at
the Command Line"

To discover commands that are already installed on your Linux system, run
the command man -k (or equivalently, apropos). Given a word, man -
k searches for that word in the brief descriptions at the tops of manpages.

$ man -k width
DisplayWidth (3) - image format functions and macros
DisplayWidthMM (3) - image format functions and macros
fold (1) - wrap each input line to fit in specified
width
⋮

man -k accepts regular expressions in search strings (see Table 5-1).

$ man -k "wide|width"

A command that’s not installed on your system might still be installable
through your system’s package manager. A package manager is software for
installing Linux programs that are supported for your system. Some popular
package managers include apt, dnf, emerge, pacman, rpm, yum, and
zypper. Use the man command to figure out which package manager is
installed on your system and learn how to search for uninstalled packages.

Often it’s a two-command sequence: one command to copy the latest data
about available packages (“metadata”) from the internet onto your system,
and another to search the metadata. For example, for Ubuntu or Debian
Linux-based systems, the commands are:

$ sudo apt update Download the latest metadata
$ apt-file search string Search for a string

If, after much searching, you cannot locate or construct an appropriate
command to meet your needs, consider asking for help in an online forum.
A great starting point for asking effective questions is
https://stackoverflow.com/help/how-to-ask. In general, present your
questions in a way that is respectful of other people’s time, and experts will
be more inclined to answer. That means making your question short and to-
the-point, including any error messages or other output word-for-word, and
explaining what you have tried so far on your own. Spend quality time to
ask a quality question: you’ll not only increase your chances of a helpful
answer, but also, if the forum is public and searchable, a clear question and
answer may aid others who have a similar problem.

Summary
You’ve now grown beyond the pint-sized toolbox from Chapter 1 and are
ready to tackle more challenging business problems at the command line.
The coming chapters are filled with practical examples of using your new
commands in all kinds of situations.

1 The related command ls -R produces output in a format that’s less convenient for pipelines.

2 Nowadays, some implementations of fsck have options -y and -n to respond yes or no,
respectively, to every prompt, so the yes command is unnecessary here.

3 The name “grep” is short for Get Regular Expression and Print.

4 Quiz: What does the pipeline rev myfile | tac | rev | tac do?

https://stackoverflow.com/help/how-to-ask

5 You’ll see simpler solutions with awk and sed shortly, but this double-rev trick is handy to
know.

6 Including the book sed and awk from O’Reilly.

7 The name “awk” is an acronym for “Aho, Weinberger, (and) Kernighan,” the program’s
creators.

8 The name “sed” is short for “Stream Editor” because it edits a stream of text.

9 If you’re familiar with the editors vi, vim, ex, or ed, sed script syntax may look familiar.

Chapter 6. Parents, Children,
and Environments

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the sixth chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at vwilson@oreilly.com.

The purpose of the shell — to run commands — is so fundamental to Linux
that you might think the shell is built into Linux in some special way. It is
not. A shell is just an ordinary program like ls or cat. It is programmed to
repeat the following steps over and over and over and over…

1. Print a prompt

2. Read a command from stdin

3. Evaluate and run the command

Linux does a great job of hiding the fact that a shell is an ordinary program.
When you log in, Linux automatically runs an instance of the shell for you,
known as your login shell. It launches so seamlessly that it appears to be
Linux, when really it’s just a program launched on your behalf to interact
with Linux.

mailto:vwilson@oreilly.com

WHERE IS YOUR LOGIN SHELL?
If you log in at a non-graphical terminal, say, using an SSH client program, the login
shell is the initial shell you interact with. It prints the first prompt and awaits your
command.

Alternatively, if you’re at the computer’s console with a graphical display, your login
shell runs behind the scenes. It launches a desktop environment such as GNOME, Unity,
Cinnamon, or KDE Plasma. Then you can open terminal windows to run additional
interactive shells.

The more you understand about the shell, the more effectively you can
work with Linux and the fewer superstitions you’ll develop about its inner
workings. This chapter explores the following mysteries of shells more
deeply than Chapter 2 did:

Where shell programs are located

How different shell instances may be related to each other

Why different shell instances may have the same variables, values,
aliases, and other context

How to change a shell’s default behavior by editing configuration
files

By the end, I hope you’ll find that these mysteries aren’t so mysterious after
all.

Shells are Executable Files
The default shell on most Linux systems is bash, and it’s an ordinary
program — an executable file — located in the system directory /bin
alongside cat, ls, grep, and other familiar commands:

$ cd /bin
$ ls -l bash cat ls grep
-rwxr-xr-x 1 root root 1113504 Jun 6 2019 bash
-rwxr-xr-x 1 root root 35064 Jan 18 2018 cat

1

-rwxr-xr-x 1 root root 219456 Sep 18 2019 grep
-rwxr-xr-x 1 root root 133792 Jan 18 2018 ls

bash is also not the only shell on your system, most likely. Valid shells are
usually listed, one per line, in the file /etc/shells:

$ cat /etc/shells
/bin/sh
/bin/bash
/bin/csh
/bin/zsh

To see which shell you’re running, echo the shell variable SHELL:

$ echo $SHELL
/bin/bash

In theory, a Linux system can treat any program as a valid login shell, if a
user account is configured to invoke it on login and it’s listed in /etc/shells
(if required on your system). With superuser privileges, you can even write
and install your own shell, like the script in Example 6-1. It reads any
command and responds, “I’m sorry, I’m afraid I can’t do that.” This custom
shell is intentionally silly, but it demonstrates that other programs can be
just as legitimate a shell as /bin/bash.

Example 6-1. halshell: A shell that refuses to run your commands. Type ^D
to exit.
#!/bin/bash
Print a prompt
echo -n '$ '
Read the user's input in a loop
while read line; do
 # Ignore the input $line and print a message
 echo "I'm sorry, I'm afraid I can't do that"
 # Print the next prompt
 echo -n '$ '
done

Since bash is just a program, you can run it manually like any other
command:

$ bash

If you do so, you’ll just see another prompt, as if your command had no
effect:

$

But really, you have run a brand-new instance of bash. This new instance
prints a prompt and awaits your command. To make the new instance more
visible, change its prompt (say, to %%) by setting the shell variable PS1, and
run some commands:

$ PS1="%% "
%% ls The prompt has changed
animals.txt
%% echo "This is a new shell"
This is a new shell

Now run exit to terminate the new instance of bash. You’ll return to the
original shell, which has a dollar-sign prompt:

%% exit
$

I must emphasize that the change from %% back to $ was not a prompt
change. It was a whole shell change. The new instance of bash has ended,
so the original shell prompts you for the next command.

Running bash by hand is not just for entertainment value. You’ll use
manually-invoked shells to your advantage in Chapter 7.

Parent and Child Processes
When one instance of the shell invokes another, as I just demonstrated, the
original shell is called the parent and the new instance is called the child.
The same is true for any Linux program that invokes any other Linux
program. The invoking program is the parent, and the invoked program is

its child. A running Linux program is known as a process, so you’ll also see
the terms “parent process” and “child process.” A process can invoke any
number of children, but each child has only one parent.

Every process has its own environment. An environment, which you might
recall from “Environments and Initialization Files, the Short Version”,
includes a current directory, search path, shell prompt, and other important
information held in shell variables. When a child is created, its environment
is largely a copy of its parent’s environment. (I’ll explain more in
“Environment Variables”.)

Every time you run a simple command, you create a child process. This is
such an important point for understanding Linux that I’ll say it again: even
when you run a simple command like ls, that command secretly runs
inside a brand new child process with its own (copied) environment. That
means any changes you make to a child, like changing the prompt variable
PS1 in a child shell, affect only the child and are lost when the child exits.
Likewise, any changes to the parent won’t affect its children that are already
running. Changes to the parent can affect its future children, however,
because each child’s environment is copied from its parent’s environment
on startup.

Why does it matter that commands run in child processes? For one thing, it
means that any program you run can cd all over the filesystem, but when it
exits, your current shell (the parent) has not changed its current directory.
Here’s a quick experiment to prove it. Create a shell script called cdtest
in your home directory containing a cd command:

#!/bin/bash
cd /etc
echo "Here is my current directory:"
pwd

Make it executable:

$ chmod +x cdtest

Print your current directory name, then run the script:

$ pwd
/home/smith
$./cdtest
Here is my current directory:
/etc

Now check your current directory:

$ pwd
/home/smith

Your current directory hasn’t changed, even though the cdtest script
traveled to the /etc directory. That’s because cdtest ran inside a child
process with its own environment. Changes to the child’s environment
cannot affect the parent’s environment, so the parent’s current directory did
not change. The same thing happens when you run an executable program
like cat or grep — it runs in a child process that exits after the program
terminates, taking any environment changes with it.

WHY CD MUST BE A SHELL BUILTIN
If Linux programs cannot change your shell’s current directory, then how does the
command cd manage to change it? Well, cd isn’t a program. It’s a built-in feature of
the shell (a.k.a., a shell builtin). If cd were a program external to the shell, directory
changes would be impossible — they would run in a child process and be unable to
affect the parent.

Pipelines launch multiple child processes: one for each command in the
pipeline. This command from the section “Command #6: uniq” launches six
children:

$ cut -f1 grades | sort | uniq -c | sort -nr | head -n1 | cut -c9

Environment Variables
Every instance of the shell has a collection of variables, as you learned in
“Evaluating Variables”. Some variables are local to a single shell. They are
called local variables. Other variables are automatically copied from a
given shell to all of its children. These variables are called environment
variables, and they collectively form the shell’s environment. Some
examples of environment variables and their uses are:

HOME

The path to your home directory. Its value is set automatically by your
login shell when you log in. Text editors like vim and emacs read the
variable HOME so they can locate and read their configuration files
($HOME/.vim and $HOME/.emacs, respectively).

PWD

Your shell’s current directory. Its value is set and maintained
automatically by the shell each time you cd to another directory. The
command pwd reads the variable PWD to print the name of your shell’s
current directory.

EDITOR

The name of (or path to) your preferred text editor. Its value is generally
set by you in a shell configuration file. Other programs read this
variable to launch an appropriate editor on your behalf.

View a shell’s environment variables with the printenv command. The
output is one variable per line, unsorted, and can be quite long, so pipe it
though sort and less for friendlier viewing:

$ printenv | sort -i | less
⋮
DISPLAY=:0
EDITOR=emacs
HOME=/home/smith

2

LANG=en_US.UTF-8
PWD=/home/smith/Music
SHELL=/bin/bash
TERM=xterm-256color
USER=smith
⋮

Local variables do not appear in the output of printenv. Display their
values by preceding the variable name with a dollar sign and printing the
result with echo:

$ title="Efficient Linux"
$ echo $title
Efficient Linux
$ printenv title (produces no
output)

Creating Environment Variables
To turn a local variable into an environment variable, use the export
command:

$ MY_VARIABLE=10 A local variable
$ export MY_VARIABLE Export it to become an
environment variable
$ export ANOTHER_VARIABLE=20 Or, set and export in a single
command

export specifies that the variable and its value will be copied from the
current shell to any future children. Local variables are not copied to future
children.

$ export E="I am an environment variable" Set an environment
variable
$ L="I am just a local variable" Set a local
variable
$ echo $E
I am an environment variable
$ echo $L
I am just a local variable
$ bash Run a child shell
$ echo $E Environment

variable was copied
I am an environment variable
$ echo $L Local variable was
not copied
 Empty string is
printed
$ exit Exit the child
shell

Remember, a child’s variables are copies. Any changes to the copy do not
affect the parent shell:

$ export E="I am the original value" Set an environment
variable
$ bash Run a child shell
$ echo $E
I am the original value Parent's value was
copied
$ E="I was modified in a child" Change the child's
copy
$ echo $E
I was modified in a child
$ exit Exit the child
shell
$ echo $E
I am the original value Parent's value is
unchanged

Launch a new shell anytime and change anything in its environment, and all
the changes disappear when you exit the shell. This means you can
experiment with shell features safely — just run a shell manually, creating a
child, and terminate it when finished.

Superstition Alert: “Global” Variables
Sometimes Linux hides its inner workings too well. A great example is the
behavior of environment variables. Somehow, like magic, variables like
HOME and PATH each have a consistent value in all your shell instances.
They seem to be “global variables” in some sense. (I’ve even seen this
claim in other Linux books, not published by O’Reilly). But an environment
variable is not global. Each shell instance has its own copy. Modifying an

environment variable in one shell cannot change the value in any other
running shells. Modifications affect only that shell’s future children (not yet
invoked).

If that’s the case, how does a variable like HOME or PATH seem to keep its
value in all your shell instances? There are two avenues to make this
happen, which are illustrated in Figure 6-1. In short:

Children copy from their parents

For variables like HOME, the values are usually set and exported by your
login shell. All future shells (until you log out) are children of the login
shell, so they receive a copy of the variable and its value. These sorts of
system-defined environment variables are so rarely modified in the real
world that they seem global, but they are just ordinary variables that
play by the ordinary rules. (You may even change their values, but you
might disrupt the expected behavior of your shell and other programs.)

Different instances read the same configuration files

Local variables, which are not copied to children, can have their values
set in a Linux configuration file such as $HOME/.bashrc (see more
details in “Configuring Your Environment”). Each instance of the shell,
on invocation, reads and executes the appropriate configuration files. As
a result, these local variables appear to be copied from shell to shell.
The same is true for other non-exported shell features such as aliases.

This behavior leads some users to believe that the export command
creates a global variable. It does not. The command export WHATEVER
simply declares that the variable WHATEVER will be copied from the
current shell to any future children.

Figure 6-1. Shells may share variables and values by export or by reading the same configuration
files

Child Shells vs. Subshells
A child is a partial copy of its parent. It includes copies of its parent’s
environment variables, for example, but not its parent’s local (unexported)
variables or aliases:

$ alias List aliases
alias gd='pushd'
alias l='ls -CF'
alias pd='popd'

$ bash --norc Run a child shell and ignore
bashrc files
$ alias List aliases - none are known
$ echo $HOME Environment variables are known
/home/smith
$ exit Exit the child shell

If you’ve ever wondered why your aliases aren’t available in shell scripts,
now you know. Shell scripts run in a child which does not receive copies of
the parent’s aliases.

A subshell, in contrast, is a complete copy of its parent. It includes all the
parent’s variables, aliases, functions, and more. To launch a command in a
subshell, enclose the command in parentheses:

$ (ls -l) Launches ls -l in
a subshell
-rw-r--r-- 1 smith smith 325 Oct 13 22:19 animals.txt
$ (alias) View aliases in a
subshell
alias gd=pushd
alias l=ls -CF
alias pd=popd
⋮
$ (l) Run an alias from
the parent
animals.txt

To check if shell instance is a subshell, print the variable
BASH_SUBSHELL. The value is nonzero in subshells, zero otherwise.

$ echo $BASH_SUBSHELL Check the parent shell
0 Not a subshell
$ bash Run a child shell
$ echo $BASH_SUBSHELL Check the child shell
0 Not a subshell
$ exit Exit the child shell
$ (echo $BASH_SUBSHELL) Run an explicit subshell
1 Yes, it's a subshell

I’ll cover some practical uses of subshells in “Technique #10: Explicit
Subshells”. For now, just be aware that you can create them and they’re

3

aware of the parent’s aliases.

Configuring Your Environment
When bash runs, it configures itself by reading a sequence of files, called
configuration files, and executing their contents. These files define
variables, aliases, functions, and other shell features, and they can include
any Linux command. (They are like shell scripts that configure the shell.)
Some configuration files are defined by the system adminstrator and apply
to all users system-wide. They are found in the directory /etc. Other
configuration files are owned and changed by individual users. They are
located in the user’s home directory. Table 6-1 lists the standard bash
configuration files. They come in several types:

Startup files

Configuration files that execute automatically when you log in — that
is, they apply only to your login shell. An example command in this file
might set and export an environment variable. Defining an alias in this
file would be less helpful, however, because aliases are not copied to
children.

Initialization (“init”) files

Configuration files that execute for every shell instance that is not a
login shell — for example, when you run an interactive shell by hand or
a (noninteractive) shell script. An example initialization file command
might set a variable or define an alias.

Cleanup files

Configuration files that execute immediately before your login shell
exits. An example command in this file might be clear to blank your
screen on logout.

T
a
b
l
e
6
-
1
.
S
t
a
n
d
a
r
d

c
o
n
f
i
g
u
r
a
t
i
o
n

f
i

l
e
s
s
o
u
r
c
e
d

b
y
b

a

s

h
(
b
a
s
h
,
c
o
n
f
i
g
u
r
a
t
i
o

n

f
i
l
e
s
,
t
a
b
l
e
o
f
)
)
)

File Type Run By
System-Wide
Location

Personal File Locations, In
Order Invoked

Startup files Login shells, on
invocation

/etc/profile $HOME/.bash_profile,
$HOME/.bash_login, and
$HOME/.profile

Init files Interactive shells
(non-login), on
invocation

/etc/bash.bashrc $HOME/.bashrc

Shell scripts, on
invocation

Set the variable BASH_ENV to the absolute path to an
initialization file (example: BASH_ENV=/usr/loca
l/etc/bashrc)

Cleanup files Login shells, on
exit

/etc/bash.bash_log
out

$HOME/.bash_logout

Notice that you have three choices for personal startup files in your home
directory (.bash_profile, .bash_login, and .profile). Most users can just pick
one and stick with it. Your Linux distro probably supplies one of them
already, prefilled with (hopefully) useful commands. Things are a bit
different if you happen to run other shells such as Bourne Shell (/bin/sh)
and Korn shell (/bin/ksh). These shells also read .profile and can fail if
handed bash-specific commands to execute. Place bash-specific
commands in .bash_profile or .bash_login instead (again, just pick one).

Users sometimes find the separation of personal startup files and the
personal initialization file confusing. Why would you want your login shell
to behave differently from other shells, say, that you open in multiple
windows? The answer is, in many cases, you don’t need them to behave
differently. Your personal startup file might do little more than source your
personal initialization file, $HOME/.bashrc, so all interactive shells (login
or non-login) would have largely the same configuration.

In other cases, you might prefer to split responsibilities between your
startup and initialization files. For example, your personal startup file might
set and export your environment variables to be copied to future children,
whereas $HOME/.bashrc might define all your aliases (which are not
copied to children).

Another consideration is whether you log into a graphical, windowing
desktop environment (GNOME, Unity, KDE Plasma, etc.) where your login
shell may be hidden. In this case, you might not care how the login shell
behaves because you interact only with its children, so you might put most
or all of your configuration into $HOME/.bashrc. On the other hand, if you
primarily log in from a non-graphical terminal program such as an SSH
client, then you directly interact with your login shell, so its configuation
matters a lot.

In each of these cases, it’s generally worthwhile to have your personal
startup file source your personal initialization file:

Place in $HOME/.bash_profile
if [-f "$HOME/.bashrc"]

4

then
 source "$HOME/.bashrc"
fi

Whatever you do, try not to place identical configuration commands in two
different configuration files. That’s a recipe for confusion and it’s hard to
maintain, because any change you make to one file you must remember to
duplicate in the other (and you’ll forget, trust me). Instead, source one file
from the other as I’ve shown.

Rereading a Configuration File
When you change any startup or initialization file, you can force a running
shell to reread it by sourcing the file, as explained in “Environments and
Initialization Files, the Short Version”.

$ source ~/.bash_profile Uses the builtin "source"
command
$. ~/.bash_profile Uses a dot

WHY THE SOURCE COMMAND EXISTS
Why do you source a configuration file instead of making it executable with chmod and
running it like a shell script? Because a script runs in a child process. Any commands in
the script would not affect your intended (parent) shell. They would affect only the
child, which exits, leaving you with nothing changed.

Traveling With Your Environment
If you use many Linux machines in multiple locations, at some point you
might want to install your carefully-crafted configuration files on more than
one machine. Don’t copy individual files from machine to machine — that
approach leads to confusion eventually. Instead, store and maintain the files
in a free account on GitHub or a similar software-development service with
version control. Then you can download, install, and update your
configuration files conveniently and consistently on any Linux machine. If
you make a mistake editing a configuration file, you can roll back to a

https://github.com/

previous version by issuing a command or two. Version control is beyond
the scope of this book; see “Apply Version Control to Day-To-Day Files” to
learn more about it.

If you aren’t comfortable with version control systems like Git or
Subversion, store the configuration files on a simple file service like
Dropbox, Google Drive, or OneDrive. Updates to your configuration files
will be less convenient, but at least the files will be easily available for
copying to other Linux systems.

Summary
I have met many Linux users who are puzzled by (or unaware of) parent
and child processes, environments, and the purposes of the many shell
configuration files. After reading this chapter, I hope you have a clearer
picture of all these things. They come into play in Chapter 7 as powerful
tools for running commands in flexible ways.

1 If you use a different shell, see also Appendix B.

2 I have trimmed the output selectively to display common environment variables. Your output
is likely much longer and full of obscure variable names.

3 It’s complete except for traps, which “are reset to the values that the shell inherited from its
parent at invocation” (man bash). I don’t discuss traps further in this book.

4 To make matters slightly more confusing, some desktop environments have their own shell
configuration files. For example, GNOME has $HOME/.gnomerc, and the underlying X
window system has $HOME/.xinitrc.

Chapter 7. Eleven More Ways to
Run a Command

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the seventh chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at vwilson@oreilly.com.

Now that you have lots of commands in your toolbox and a thorough
understanding of the shell, it’s time to learn… how to run commands. Wait
a minute, haven’t you been running commands since the beginning of the
book? Well, yes, but only in two ways. The first is ordinary execution of a
simple command:

$ grep Nutshell animals.txt

The second is a pipeline of simple commands, as covered in Chapter 1:

$ cut -f1 grades | sort | uniq -c | sort -nr

In this chapter, I’ll show you 11 more ways to run a command and why you
should care to learn them. Each technique has pros and cons, and the more
techniques you know, the more flexibly and efficiently you can interact with

mailto:vwilson@oreilly.com

Linux. I’ll stick to the basics of each technique for now; you’ll see more
intricate examples in the next two chapters.

List Techniques
A list is a sequence of commands on a single command line. You’ve already
seen one type of list — a pipeline — but the shell supports others with
different behavior:

Conditional lists, where each command depends on the success or
failure of the previous one

Unconditional lists, where commands simply run one after the
other

Technique #1: Conditional Lists
Suppose you want to create a file new.txt in a directory dir. A typical
sequence of commands might be:

$ cd dir Enter the directory
$ touch new.txt Make the file

Notice how the second command depends on the success of the first. If the
directory dir doesn’t exist, there is no point in running the touch command.
The shell lets you make this dependency explicit. If you place the operator
&& (pronounced “and”) between the two commands on a single line:

$ cd dir && touch new.txt

then the second command (touch) runs only if the first command (cd)
succeeds. The preceding example is a conditional list of two commands.
(See “Exit Codes Indicate Success and Failure” to learn what it means for a
command to “succeed.”)

Very likely, you run commands every day that depend on previous ones. For
example, have you ever made a backup copy of a file for safekeeping,
modified the original, and deleted the backup when done?

$ cp myfile.txt myfile.safe Make a backup copy
$ nano myfile.txt Change the original
$ rm myfile.safe Delete the backup

Each of these commands makes sense only if the preceding command
succeeds. Therefore, this sequence is a candidate for a conditional list:

$ cp myfile.txt myfile.safe && nano myfile.txt && rm myfile.safe

As another example, if you use the version-control system Git to maintain
files, you’re probably familiar with the following sequence of commands
after you change some files: run git add to prepare files for a commit,
then git commit, and finally git push to share your committed
changes. If any of these commands failed, you wouldn’t run the rest (until
you fixed the cause of the failure). Therefore, these three commands work
well as a conditional list:

$ git add . && git commit -m"fixed a bug" && git push

Just as the && operator runs a second command only if the first succeeds,
the related operator || (pronounced “or”) runs a second command only if
the first fails. For example, the following command tries to enter dir, and if
it fails to do so, it creates dir:

$ cd dir || mkdir dir

You’ll commonly see the || operator in scripts, causing the script to exit if
an error occurs:

If a directory can't be entered, exit with an error code of 1
cd dir || exit 1

1

Combine the && and || operators to set up more complicated actions for
success and failure. The following command tries to enter directory dir, and
if it fails, it creates the directory and enters it. If all fails, the command
prints a failure message:

$ cd dir || mkdir dir && cd dir || echo "I failed"

The commands in a conditional list don’t have to be simple commands; they
can also be pipelines and other combined commands.

EXIT CODES INDICATE SUCCESS AND FAILURE
What does it mean for a Linux command to succeed or fail? Every
Linux command produces a result when it terminates, called an exit
code. By convention, an exit code of zero means success and any non-
zero value means failure. View the exit code of a shell’s most recently
completed command by printing the special shell variable whose name
is a question mark (?):

$ ls myfile.txt
myfile.txt
$ echo $? Print the value of the ?
variable
0 ls succeeded
$ cp nonexistent.txt somewhere.txt
cp: cannot stat 'nonexistent.txt': No such file or directory
$ echo $?
1 cp failed

Technique #2: Unconditional Lists
Commands in a list don’t have to depend on one another. If you separate the
commands with semicolons, they simply run in order. Success or failure of
a command does not affect later ones in the list.

2

I like unconditional lists for launching ad-hoc commands after I’ve left
work for the day. Here’s one that sleeps (does nothing) for two hours (7200
seconds) and then backs up my important files:

$ sleep 7200; cp -a ~/important-files /mnt/backup_drive

Here’s a similar command that functions as a primitive reminder system,
sleeping for five minutes and then sending me an email:

$ sleep 300; echo "remember to walk the dog" | mail -s reminder
$USER

Unconditional lists are a convenience feature: they produce the same results
(mostly) as typing the commands individually and pressing Enter after each.
The only significant difference relates to exit codes. In an unconditional list,
the exit codes of the indvidual commands are thrown away except the last
one. Only the exit code of the final command in the list is assigned to the
shell variable ?.

$ mv file1 file2; mv file2 file3; mv file3 file4
$ echo $?
0 The exit code for "mv file3 file4"

Substitution Techniques
Substitution means automatically replacing the text of a command with
other text. I’ll show you two types with powerful possibilities:

Command substitution, where a command is replaced by its output

Process substitution, where a command is replaced by a file (sort
of)

Technique #3: Command Substitution
Suppose you have few thousand text files representing songs. Each file
includes a song title, artist name, album title, and the song lyrics:

3

Title: Carry On Wayward Son
Artist: Kansas
Album: Leftoverture

Carry on my wayward son
There'll be peace when you are done
⋮

You’d like to organize the files into subdirectories by artist. To perform this
task by hand, you could search for all song files by Kansas using grep:

$ grep -l "Artist: Kansas" *.txt
carry_on_wayward_son.txt
dust_in_the_wind.txt
belexes.txt

and then move each file to a directory kansas:

$ mkdir kansas
$ mv carry_on_wayward_son.txt kansas
$ mv dust_in_the_wind.txt kansas
$ mv belexes.txt kansas

Tedious, right? Wouldn’t be great if you could tell the shell, “Move all files
that contain the string Artist: Kansas to the directory kansas.” In Linux
terms, you’d like to take the list of names from the preceding grep -l
command and hand it to mv. Well, you can do this easily with the help of a
shell feature called command substitution:

$ mv $(grep -l "Artist: Kansas" *.txt) kansas

The syntax:

$(any command here)

executes the command inside the parentheses, and replaces the command by
its output. So on the preceding command line, the grep -l command is
replaced by the list of filenames that it prints, as if you had typed the
filenames like this:

$ mv carry_on_wayward_son.txt dust_in_the_wind.txt belexes.txt
kansas

Whenever you find yourself copying the output of one command into a later
command line, you can usually save time with command substitution. You
can even include aliases in command substitution, because its contents are
run in a subshell, which includes copies of its parent’s aliases.

SPECIAL CHARACTERS AND COMMAND
SUBSTITUTION

The preceding example with grep -l works great for most Linux filenames, but not
for filenames that contain spaces or other special characters. The shell evaluates these
characters before the output is handed to mv, potentially producing unexpected results.
For example, if grep -l printed dust in the wind.txt, the shell would treat the spaces
as separators, and mv would attempt to move four nonexistent files named dust, in, the,
and wind.txt.

Here’s another example. Suppose you have several years’ worth of bank
statements downloaded in PDF format. The downloaded files have names
that include the statement’s year, month, and day, such as eStmt_2021-08-
26.pdf for the date August 26, 2021. You’d like to view the most recent
statement in the current directory. You could do it manually: list the
directory, locate the file with the most recent date (which will be the final
file in the listing), and display it with a Linux PDF viewer such as okular.
But why do all that manual work? Let command substitution ease your way.
Create a command that prints the name of the latest PDF file in the
directory:

$ ls eStmt*pdf | tail -n1

and provide it to okular using command substitution:

$ okular $(ls eStmt*pdf | tail -n1)

4

The ls command lists all the statement files, and tail prints only the last
one, such as eStmt_2021-08-26.pdf. Command substitution places that
single filename right onto the command line, as if you’d typed okular
eStmt_2021-08-26.pdf.

NOTE
The original syntax for command substitution was backquotes (backticks). The
following two commands are equivalent:

$ echo Today is $(date +%A).
Today is Saturday.
$ echo Today is `date +%A`.
Today is Saturday.

Backticks are supported by most shells. The $() syntax is simpler to nest, however.

$ echo $(date +%A) | tr a-z A-Z
Single
SATURDAY
echo Today is $(echo $(date +%A) | tr a-z A-Z)!
Nested
Today is SATURDAY!

In scripts, a common use of command substitution is to store the output of a
command in a variable:

VariableName=$(some command here)

For example, to get the filenames containing Kansas songs and store them
in a variable:

$ kansasFiles=$(grep -l "Artist: Kansas" *.txt)

The output might have multiple lines, so to preserve any newline characters,
make sure you quote the value wherever you use it:

$ echo "$kansasFiles"

Technique #4: Process Substitution
Command substitution, which you just saw, replaces a command with its
output in place, as a string. Process substitution also replaces a command
with its output, but it treats the output as if it were stored in a file. This
powerful difference may look confusing at first, so I’ll explain it step by
step.

Suppose you’re in a directory of JPEG image files named 1.jpg through
1000.jpg, but some files are mysteriously missing and you want to identify
them. Set up a directory like this with the following commands:

$ mkdir /tmp/jpegs && cd /tmp/jpegs
$ touch {1..1000}.jpg
$ rm 4.jpg 981.jpg

A poor way to locate the missing files is to list the directory, sorted
numerically, and look for gaps by eye:

$ ls -1 | sort -n | less
1.jpg
2.jpg
3.jpg
5.jpg 4.jpg is missing
⋮

A more robust, automated solution is to compare the existing filenames to a
complete list of names from 1.jpg to 1000.jpg, using the diff command.
One way to achieve this solution is with temporary files. Store the existing
filenames, sorted, in one temporary file, original-list:

$ ls *.jpg | sort -n > /tmp/original-list

Then print a complete list of filenames from 1.jpg to 1000.jpg to another
temporary file, full-list, by generating the integers 1 to 1000 with seq, and
appending “.jpg” to each line with sed:

$ seq 1 1000 | sed 's/$/.jpg/' > /tmp/full-list

Compare the two temporary files with the diff command to discover that
4.jpg and 981.jpg are missing, then delete the temporary files:

$ diff /tmp/original-list /tmp/full-list
3a4
> 4.jpg
979a981
> 981.jpg
$ rm /tmp/original-list /tmp/full-list Clean up afterwards

That’s a lot of steps. Wouldn’t it be grand to compare the two lists of names
directly and not bother with temporary files? The challenge is that diff
can’t compare two lists from stdin; it requires files as arguments. Process
substitution solves the problem. It makes both lists appear to diff as files.
(The sidebar “How Process Substitution Works” provides the technical
details.) The syntax:

<(any command here)

runs the command in a subshell and presents its output as if it were
contained in a file. For example, the following expression represents the
output of ls -1 | sort -n as if it were contained in a file:

<(ls -1 | sort -n)

You can cat the file:

$ cat <(ls -1 | sort -n)
1.jpg
2.jpg
⋮

You can copy the file with cp:

$ cp <(ls -1 | sort -n) /tmp/listing
$ cat /tmp/listing
1.jpg
2.jpg
⋮

5

and as you’ll now see, you can diff the file against another. Begin with
the two commands that generated your two temporary files:

ls *.jpg | sort -n
seq 1 1000 | sed 's/$/.jpg/'

Apply process substitution so diff can treat them as files, and you get the
same output as before, but without using temporary files:

$ diff <(ls *.jpg | sort -n) <(seq 1 1000 | sed 's/$/.jpg/')
3a4
> 4.jpg
979a981
> 981.jpg

Clean up the output by grepping for lines beginning with > and stripping off
the first two characters with cut, and you have your missing files report:

$ diff <(ls *.jpg | sort -n) <(seq 1 1000 | sed 's/$/.jpg/') \
 | grep '>' | cut -c3-
4.jpg
981.jpg

Process substitution transformed how I use the command line. Commands
that read only from disk files suddenly could read from stdin. With practice,
commands that previously seemed impossible became easy.

HOW PROCESS SUBSTITUTION WORKS
When the Linux operating system opens a disk file, it represents that
file with an integer called a file descriptor. Process substitution
mimicks a file by running a command and associating its output with a
file descriptor, so the output appears to be in a disk file from the
perspective of programs that access it. You can view the file descriptor
with echo:

$ echo <(ls)
/dev/fd/63

In this case, the file descriptor for <(ls) is 63, and it’s tracked in the
system directory /dev/fd.

Fun fact: stdin, stdout, and stderr are represented by the file descriptors
0, 1, and 2 respectively. That’s why redirection of stderr has the syntax
2>.

The expression <(…) creates a file descriptor for reading. The related
expression >(…) creates a file descriptor for writing, but in 25 years
I’ve never needed it.

Process substitution is a non-POSIX feature that might be disabled in
your shell. To enable non-POSIX features in your current shell, run
set +o posix.

Command-as-String Techniques
Every command is a string, but some commands are more “stringy” than
others. I’ll show you several techniques that construct a string, piece by
piece, and then run the string as a command:

Passing a command to bash as an argument

Piping commands to bash on stdin

Sending commands to another host with ssh

Running a sequence of commands with xargs

WARNING
The following techniques can be risky because they send unseen text to a shell for
execution. Never do this blindly. Always understand the text (and trust its origin) before
executing it. You don’t want to execute the string “rm -rf $HOME” by mistake and wipe
out all your files.

Technique #5: Passing a Command as an Argument to
bash
bash is a normal command like any other, as explained in “Shells are
Executable Files”, so you can run it by name on the command line. By
default, running bash launches an interactive shell for typing and
executing commands, as you’ve seen. Alternatively, you can pass a
command to bash as a string, via the -c option, and bash will run that
string as a command and exit.

$ bash -c "ls -l"
-rw-r--r-- 1 smith smith 325 Jul 3 17:44 animals.txt

Why is this helpful? Because the new bash process is a child with its own
environment, including a current directory, variables with values, and so on.
Any changes to the child shell won’t affect your currently running shell.
Here’s a bash -c command that changes directory to /tmp just long
enough to delete a file, then exits:

$ pwd
/home/smith
$ touch /tmp/badfile Create a temporary
file
$ bash -c "cd /tmp && rm badfile"
$ pwd
/home/smith Current directory
is unchanged

The most instructive and beautiful use of bash -c, however, arises when
you run certain commands as the superuser. Specifically, the combination of
sudo and input/output redirection produces an interesting (sometimes
maddening) situation in which bash -c is the key to success.

Suppose you want to create a log file in the system directory /var/log,
which is not writable by ordinary users. You run the following sudo
command to gain superuser privileges and create the log file, but it
mysteriously fails:

$ sudo echo "New log file" > /var/log/custom.log
bash: /var/log/custom.log: Permission denied

Wait a minute — sudo should give you permission to create any file
anywhere. How can this command possibly fail? Why didn’t sudo even
prompt you for a password? The answer is: because sudo didn’t run. You
applied sudo to the echo command but not to the output redirection,
which ran first and failed. In detail:

1. You pressed Enter

2. The shell began to evaluate the whole command, including
redirection (>)

3. The shell tried to create the file custom.log in a protected directory,
/var/log

4. You didn’t have permission to write to /var/log, so the shell gave
up and printed the “Permission denied” message

That’s why sudo never ran. To solve this problem, you need to tell the
shell, “Run the entire command, including output redirection, as the
superuser.” This is exactly the kind of situation that bash -c solves so
well. Construct the command you want to run, as a string:

'echo "New log file" > /var/log/custom.log'

and pass it as an argument to sudo bash -c:

$ sudo bash -c 'echo "New log file" > /var/log/custom.log'
[sudo] password for smith: xxxxxxxx
$ cat /var/log/custom.log
New log file

This time, you’ve run bash, not just echo, as the superuser, and bash
executes the entire string as a command. The redirection succeeds.
Remember this technique whenever you pair sudo with redirection.

Technique #6: Piping a Command to bash
The shell reads every command that you type on stdin. That means bash
the program can participate in pipelines. For example, print the string “ls -l”
and pipe it to bash, and bash will treat the string as a command and run
it.

$ echo "ls -l"
ls -l
$ echo "ls -l" | bash
-rw-r--r-- 1 smith smith 325 Jul 3 17:44 animals.txt

WARNING
Remember, never blindly pipe text to bash. Be aware of what you’re executing.

This technique is terrific when you need to run many similar commands in a
row. If you can print the commands as strings, then you can pipe the strings
to bash for execution. Suppose you’re in a directory with many files, and
you want to organize them into subdirectories by their first character. A file
named apple would be moved to subdirectory a, a file named cantaloupe
would move to subdirectory c, and so on. (For simplicity, we’ll assume all
the filenames begin with a lower-case letter and contain no spaces or special
characters.)

6

First, list the files, sorted. We’ll assume all the names are at least two
characters long (matching the pattern ??*) so our commands don’t collide
with the subdirectories a through z.

$ ls -1 ??*
apple
banana
cantaloupe
carrot
⋮

Create the 26 subdirectories you need via brace expansion:

$ mkdir {a..z}

Now generate the mv commands you’ll need, as strings. Start with a regular
expression for sed that captures the first character of the filename as
expression #1 (\1):

^\(.\)

Capture the rest of the filename as expression #2 (\2):

\(.*\)$

Connect the two regular expressions:

^\(.\) \(.*\)$

Now form a mv command with the word “mv” followed by a space, the full
filename (\1\2), another space, and the first character (\1):

mv \1\2 \1

The complete command generator is:

$ ls -1 ??* | sed 's/^\(.\)\(.*\)$/mv \1\2 \1/'
mv apple a
mv banana b
mv cantaloupe c
mv carrot c
⋮

Its output contains exactly the mv commands you need. Read the output to
convince yourself it’s correct, perhaps by piping it to less for page-by-
page viewing:

$ ls -1 ??* | sed 's/^\(.\)\(.*\)$/mv \1\2\t\1/' | less

When you’re satisfied that your generated commands are correct, pipe the
output to bash for execution:

$ ls -1 ??* | sed 's/^\(.\)\(.*\)$/mv \1\2\t\1/' | bash

The steps you just completed are a repeatable pattern:

1. Print a sequence of commands by manipulating strings

2. View the results with less to check correctness

3. Pipe the results to bash

Technique #7: Executing a String Remotely With ssh
Disclaimer: This technique will make sense only if you’re familiar with
SSH, the secure shell, for logging into remote hosts. Setting up SSH
relationships between hosts is beyond the scope of this book; to learn more
about it, seek out an SSH tutorial.

In addition to the usual way of logging into a remote host:

$ ssh myhost.example.com

you also can execute a single command on the remote host — by passing a
string to ssh on the command line. Simply append the string to the rest of

the ssh command line.

$ ssh myhost.example.com ls
remotefile1
remotefile2
remotefile3

This technique is generally quicker than logging in, running a command,
and logging out. If the command includes special characters, such as
redirection symbols, that need to be evaluated on the remote host, then
quote or escape them. Otherwise they’ll be evaluated by your local shell.
Both of the following commands run ls remotely, but the output
redirection occurs on different hosts.

$ ssh myhost.example.com ls > outfile Creates outfile on
local host
$ ssh myhost.example.com "ls > outfile" Creates outfile on
remote host

You can also pipe commands to ssh to run them on the remote host, much
like you pipe them to bash to run locally:

$ echo "ls > outfile" | ssh myhost.example.com

When piping commands to ssh, the remote host might print diagnostic or
other messages. These generally do not affect the remote command, and
you can suppress them:

If you see messages about pseudo-terminals or pseudo-ttys, such as
“Pseudo-terminal will not be allocated because stdin is not a
terminal,” run ssh with the -T option to prevent the remote SSH
server from allocating a terminal:

$ echo "ls > outfile" | ssh -T myhost.example.com

If you see welcome messages that normally appear when you log
in (“Welcome to Linux!”) or other unwanted messages, try telling

ssh explicitly to run bash on the remote host, and the messages
should disappear.

$ echo "ls > outfile" | ssh myhost.example.com bash

Technique #8: Running a List of Commands With xargs
Many Linux users have never heard of the command xargs, but it’s a
powerful tool for constructing and running multiple, similar commands.
Learning xargs was another transformative moment in my Linux
education, and I hope yours as well.

xargs accepts two inputs:

1. On stdin: A list of strings separated by whitespace. An example is
file paths produced by ls or find, but any strings will do. I’ll call
them the input strings.

2. On the command line: An incomplete command that’s missing
some arguments, which I’ll call the command template.

xargs merges the input strings and the command template to produce and
run new, complete commands, which I’ll call the generated commands. I’ll
demonstrate this process with a toy example. Suppose you’re in a directory
with three files:

$ ls -1
apple
banana
cantaloupe

Pipe the directory listing to xargs to serve as its input strings, and provide
“wc -l” to serve as the command template, like so:

$ ls -1 | xargs wc -l
3 apple
4 banana
1 cantaloupe
8 total

As promised, xargs applied the wc -l command template to each of the
input strings, counting lines in each file. To print the same three files with
cat, simply change the command template to “cat”:

$ ls -1 | xargs cat

My toy examples with xargs have two shortcomings, one fatal and one
practical. The fatal shortcoming is that xargs may do the wrong thing if
an input string contains special characters, such as spaces. A robust solution
is in the sidebar “Safety With find and xargs”.

The practical shortcoming is that you don’t need xargs here — you can
accomplish the same tasks more simply with file pattern-matching:

$ wc -l *
3 apple
4 banana
1 cantaloupe
8 total

Why use xargs, then? Its power becomes apparent when the input strings
are more interesting than a simple directory listing. Suppose you want to
count lines in all files in a directory and all its subdirectories (recursively),
but only for Python source files with names ending in .py. It’s easy to
produce such a list of file paths with find:

$ find . -type f -name *.py -print
fruits/raspberry.py
vegetables/leafy/lettuce.py
⋮

xargs can now apply the command template wc -l to each file path,
producing a recursive result that would be difficult to obtain otherwise. For
safety, I’ll replace the option -print with -print0, and xargs with
xargs -0, for reasons explained in the sidebar “Safety With find and
xargs”:

$ find . -type f -name *.py -print0 | xargs -0 wc -l
6 ./fruits/raspberry.py
3 ./vegetables/leafy/lettuce.py
⋮

By combining find and xargs, you can empower any command to run
recursively through the filesystem, affecting only files (and/or directories)
that match your stated criteria. (In some cases, you can produce the same
effect with find alone, using its option -exec, but xargs is often a
cleaner solution.)

SAFETY WITH FIND AND XARGS

When combining find and xargs, use xargs -0 (dash zero) rather
than xargs alone to protect against unexpected special characters in
the input strings. Pair it with the output produced by find -print0
(instead of find -print).

$ find options... -print0 | xargs -0 options...

Normally, xargs expects its input strings to be separated by
whitespace, such as newline characters. This is a problem when the
input strings themselves contain other whitespace, such as filenames
with spaces in them. By default, xargs will treat those spaces as input
separators and operate on incomplete strings, producing incorrect
results. For example, if the input to xargs includes a line prickly
pear.py, xargs will treat it as two input strings and you’re likely to see
an error like this:

prickly: No such file or directory
pear.py: No such file or directory

To avoid this problem, use xargs -0 (that’s a zero) to accept a
different character as the input separator, namely the null character
(ASCII zero). Nulls rarely appear in text, so they are ideal,
unambiguous separators for input strings.

How can you separate your input strings with nulls instead of newlines?
Fortunately, find has an option to do exactly that: -print0, rather
than -print.

The ls command unfortunately does not have an option to separate its
output with nulls, so my earlier toy examples with ls are not safe. You
can convert newlines to nulls with tr:

$ ls | tr '\n' '\0' | xargs -0 ...

Or use this handy alias that lists the current directory with entries
separated by nulls, suitable for piping to xargs:

alias ls0="find . -maxdepth 1 -print0"

xargs has numerous options (see man xargs) that control how it creates
and runs the generated commands. The most important ones in my view
(other than -0) are -n and -I. The -n option controls how many
arguments are appended by xargs onto each generated command. The
default behavior is to append as many arguments as will fit within the
shell’s limits:

$ ls | xargs echo Fit as many input strings
as possible:
apple banana cantaloupe carrot echo apple banana
cantaloupe carrot
$ ls | xargs -n1 echo One argument per echo
command:
apple echo apple
banana echo banana
cantaloupe echo cantaloupe
carrot echo carrot
$ ls | xargs -n2 echo Two arguments per echo
command:
apple banana echo apple banana
cantaloupe carrot echo cantaloupe carrot
$ ls | xargs -n3 echo Three arguments per echo
command:
apple banana cantaloupe echo apple banana
cantaloupe
carrot echo carrot

The -I option controls where the input strings appear in the generated
command. By default, they’re appended to the command template, but you
can make them appear elsewhere. Follow -I with any string (of your
choice), and that string becomes a placeholder in the command template,
indicating exactly where input strings should be inserted.

7

$ ls | xargs -I XYZ echo XYZ is my favorite food Use XYZ as
a placeholder
apple is my favorite food
banana is my favorite food
cantaloupe is my favorite food
carrot is my favorite food

I chose “XYZ” arbitrarily as a placeholder for input strings and positioned
it immediately after echo, moving the input string to the beginning of each
output line. Note that the -I option limits xargs to one input string per
generated command. I recommend reading the xargs manpage thoroughly
to learn what else you can control.

LONG ARGUMENT LISTS
xargs is a problem-solver when command lines grow very long. Suppose your current
directory contains one million files named file1.txt through file1000000.txt and you try
to remove them by pattern-matching:

$ rm *.txt
bash: /bin/rm: Argument list too long

The pattern *.txt evaluates to a string of over 14 million characters, which is longer
than Linux supports. To work around this limitation, pipe a list of the files to xargs for
deletion. xargs will split the list of files across multiple rm commands. Form the list
of files by piping a full directory listing to grep, matching only filenames ending in
.txt, then pipe to xargs:

$ ls | grep '\.txt$' | xargs rm

rather than using file pattern-matching (ls *.txt), which will produce the same
“Argument list too long” error. Better yet, run find -print0 as described in “Safety
With find and xargs”:

$ find . -maxdepth 1 -name *.txt -type f -print0 |
xargs -0 rm

Process Control Techniques
So far, all commands I’ve discussed occupy the parent shell until they
finish. Let’s consider several techniques that forge a different relationship
with the parent shell:

Background commands, which immediately return the prompt and
execute out of sight

Explicit subshells, which you can launch in the middle of a
compound command

Process replacement, which supersedes the parent shell

Technique #9: Backgrounding a Command
So far, all our techniques run a command to completion while you wait, and
then present the next shell prompt. But you don’t have to wait, especially
for commands that take a long time. You can launch commands in a special
way so they disappear from sight (sort of) yet continue to run, freeing up
the current shell immediately to run further commands. This technique is
called backgrounding a commmand or running a command in the
background. In contrast, commands that occupy the shell are called
foreground commands. A shell instance runs at most one foreground
command at a time plus any number of background commands.

Launching a Command in the Background
To run a command in the background, simply append an ampersand (&).
The shell responds with a cryptic-looking message indicating that the
command is backgrounded and presents the next prompt:

$ wc -c my_extremely_huge_file.txt & Count characters in a
huge file
[1] 74931 Cryptic-looking response
$

You can then continue running foreground commands (or more background
commands) in this shell. Output from backgrounded commands may appear
at any time, even while you are typing. If the backgrounded command
finishes successfully, the shell will inform you with a Done message:

59837483748 my_extremely_huge_file.txt
[1]+ Done wc -c my_extremely_huge_file.txt

or if it fails, you’ll see an Exit message with an exit code:

[1]+ Exit 1 wc -c my_extremely_huge_file.txt

Suspending a Command and Sending It to the Background
A related technique is to run a foreground command, change your mind
during execution, and send it to the background. Press ctrl-Z to stop the
command temporarily (called suspending the command) and return to the
shell prompt, then type bg to resume running the command in the
background.

TIP
The ampersand is also a list operator, like && and ||.

$ command1 & command2 & command3 & All 3 commands in
background
[1] 57351
[2] 57352
[3] 57353
$ command4 & command5 & echo hi All in background
but "echo"
[1] 57431
[2] 57432
hi

Jobs and Job Control

Background commands are part of a shell feature called job control that
manipulates running commands in various ways, like backgrounding,
suspending, and resuming them. A job is a shell’s unit of work: a single
instance of a command running in a shell. Simple commands, pipelines, and
conditional lists are all examples of jobs — basically anything you can run
at the command line.

A job is more than a Linux process. A job may consist of one process, two
processes, or more. A pipeline of six programs, for example, is a single job
that includes (at least) six processes. Jobs are a construct of the shell. The
Linux operating system doesn’t keep track of jobs, just the underlying
processes.

At any moment, a shell may have multiple jobs running. Each job in a given
shell has a positive integer ID, called the job ID or job number. When you
run a command in the background, the shell prints the job number and the
ID of the first process it runs within the job. In the following command, the
job number is 1 and the process ID is 74931:

$ wc -c my_extremely_huge_file.txt &
[1] 74931

Common Job-Control Operations
The shell has builtin commands for controlling jobs, listed in Table 7-1.

T
a
b
l
e

7
-
1
.
J
o
b

C
o
n
t
r
o
l
C
o
m
m
a
n
d
s

Command Meaning

bg Move the current suspended job into the background

bg %n Move suspended job number n into the background (example: bg %1)

fg Move the current background job into the foreground

fg %n Move background job number n into the foreground (example: fg %2)

kill %n Terminate background job number n (example: kill %3)

jobs View a shell’s jobs

I’ll demonstrate the most common job-control operations by running a
bunch of jobs and manipulating them. To keep the jobs simple and
predictable, I’ll run the command sleep, which just sits there doing
nothing (“sleeping”) for a given number of seconds and then exits. For
example, sleep 10 sleeps for 10 seconds.

Run a job in the background to completion:

$ sleep 20 & Run in the background
[1] 126288
$ jobs List this shell's jobs
[1]+ Running sleep 20 &
$
...eventually...
[1]+ Done sleep 20

NOTE
When jobs complete, the Done message might not appear until the next time you press
Enter.

Run a background job and bring it into the foreground:

$ sleep 20 & Run in the background
[1] 126362
$ fg Bring into the foreground
sleep 20
...eventually...
$

Run a foreground job, suspend it, and bring it back into the foreground:

$ sleep 20 Run in the foreground
^Z Suspend the job
[1]+ Stopped sleep 20
$ jobs List this shell's jobs
[1]+ Stopped sleep 20
$ fg Bring into the foreground
sleep 20
...eventually...
[1]+ Done sleep 20

Run a foreground job and send it to the background:

$ sleep 20 Run in the foreground
^Z Suspend the job
[1]+ Stopped sleep 20
$ bg Move to the background
[1]+ sleep 20 &
$ jobs List this shell's jobs
[1]+ Running sleep 20 &
$
...eventually...
[1]+ Done sleep 20

Work with multiple background jobs. Refer to a job by its job number
preceded by a percent sign (%1, %2, and so on).

$ sleep 100 & Run 3 commands in the
background
[1] 126452
$ sleep 200 &
[2] 126456
$ sleep 300 &
[3] 126460
$ jobs List this shell's jobs
[1] Running sleep 100 &
[2]- Running sleep 200 &
[3]+ Running sleep 300 &
$ fg %2 Bring job 2 into the
foreground
sleep 200
^Z Suspend job 2
[2]+ Stopped sleep 200

$ jobs See job 2 is suspended
("stopped")
[1] Running sleep 100 &
[2]+ Stopped sleep 200
[3]- Running sleep 300 &
$ kill %3 Terminate job 3
[3]+ Terminated sleep 300
$ jobs See job 3 is gone
[1]- Running sleep 100 &
[2]+ Stopped sleep 200
$ bg %2 Resume suspended job 2 in
the background
[2]+ sleep 200 &
$ jobs See job 2 is running again
[1]- Running sleep 100 &
[2]+ Running sleep 200 &
$

Output and Input in the Background
A backgrounded command may write to stdout, sometimes at inconvenient
or confusing times. Notice what happens if you sort the Linux dictionary
file (100,000 lines long) and print the first two lines in the background. As
expected, the shell immediately prints the job number (1), a process ID
(81089), and the next prompt:

$ sort /usr/share/dict/words | head -n2 &
[1] 81089
$

If you wait until the job finishes, it prints two lines on stdout wherever your
cursor happens to be at the time. In this case, the cursor is sitting at the
second prompt, so you get this sloppy-looking output:

$ sort /usr/share/dict/words | head -n2 &
[1] 81089
$ A
A's

Press Enter, and the shell will print a “job done” message:

[1]+ Done sort /usr/share/dict/words | head -n2
$

Screen output from a background job can appear at any time while the job
runs. To avoid this sort of messiness, redirect stdout to a file, then examine
the file at your leisure.

$ sort /usr/share/dict/words | head -n2 > /tmp/results &
[1] 81089
$
[1]+ Done sort /usr/share/dict/words | head -n2 >
/tmp/results
$ cat /tmp/results
A
A's
$

Other odd things happen when a background job attempts to read from
stdin. The shell suspends the job, prints a Stopped message, and waits for
input in the background. Demonstrate this by backgrounding cat with no
arguments so it reads stdin:

$ cat &
[1] 82455
[1]+ Stopped cat

Jobs can’t read input in the background, so bring the job into the foreground
with fg and then supply the input:

$ fg
cat
Here is some input
Here is some input
⋮

After supplying all input, do any of the following:

Continue running the command in the foreground until it
completes

Suspend and background the command again by pressing ctrl-Z
followed by bg

End the input with ctrl-D, or kill the command with ctrl-C

Backgrounding Tips
Backgrounding is ideal for commands that take a long time to run, such as
text editors during long editing sessions, or any program that opens its own
windows. For example, programmers can save a lot of time by suspending
their text editor rather than exiting. I’ve seen experienced engineers modify
some code in their text editor, save and quit the editor, test the code, then
relaunch the editor and hunt for the spot in the code where they’d left off.
They lose 10-15 seconds to job-switching every time they quit the editor. If
they instead suspend the editor (ctrl-Z), test their code, and resume the
editor (fg), they avoiding wasting time unnecessarily.

Backgrounding is also great for running a sequence of commands in the
background using a conditional list. If any command within the list fails,
the rest won’t run and the job completes. (Just watch out for commands that
read input, since they’ll cause the job to suspend and wait for input.)

$ command1 && command2 && command3 &

Technique #10: Explicit Subshells
Each time you launch a simple command, it runs in a child process, as you
saw in “Parent and Child Processes”. Command substitution and process
substitution create subshells. There are times, however, when it’s helpful to
launch an extra subshell explicitly. To do so, simply enclose a command in
parentheses and it runs in a subshell:

$ (cd /usr/local && ls)
bin etc games lib man sbin share
$ pwd
/home/smith "cd /usr/local" occurred in a
subshell

When applied to a whole command, this technique isn’t super-useful,
except maybe to save you from running a second cd command to return to
your previous directory. However, if you place parentheses around one
piece of a combined command, you can perform some useful tricks. A
typical example is a pipeline that changes directory in the middle of
execution. Suppose you have downloaded a compressed tar file,
package.tar.gz, and you want to extract the files. A tar command to
extract the files is:

$ tar xvf package.tar.gz
Makefile
src/
src/defs.h
src/main.c
⋮

The extraction occurs relative to the current directory. What if you want to
extract them into a different directory? You could cd to the other directory
first and run tar (and then cd back), but you can also perform this task
with a single command. The trick is to pipe the tarred data to a subshell that
performs directory operations and tar as it reads from stdin:

$ cat package.tar.gz | (mkdir -p /tmp/other && cd /tmp/other &&
tar xzvf -)

This technique also works to copy files from one directory dir1 to another
existing directory dir2 using tar:

$ tar czf - dir1 | (cd /tmp/dir2 && tar xvf -)

or copy files to an existing directory on another host via SSH:

$ tar czf - dir1 | ssh myhost '(cd /tmp/dir2 && tar xvf -)'

8

9

WARNING
It’s tempting to view the parentheses as if they simply group commands together, like
parentheses in arithmetic. They do not. Each pair of parentheses causes a subshell to be
launched.

WHICH TECHNIQUES CREATE SUBSHELLS?
Many of the techniques in this chapter launch a subshell, which inherits
the parent’s environment (variables and their values) plus other shell
context such as aliases. Other techniques only launch a child process.
The simplest way to distinguish them is to evaluate the variable
BASH_SUBSHELL, which will be nonzero for a subshell and zero
otherwise. More details are in “Child Shells vs. Subshells”.

$ echo $BASH_SUBSHELL Ordinary execution
0 Not a subshell
$ (echo $BASH_SUBSHELL) Explicit subshell
1 Subshell
$ echo $(echo $BASH_SUBSHELL) Command substitution
1 Subshell
$ cat <(echo $BASH_SUBSHELL) Process substitution
1 Subshell
$ bash -c 'echo $BASH_SUBSHELL' bash -c
0 Not a subshell

Technique #11: Process Replacement
Normally when you run a command, the shell runs it in a separate process
which is destroyed when the command exits, as described in “Parent and
Child Processes”. You can change this behavior with the exec command,
which is a shell builtin. It replaces the running shell (a process) with
another command of your choice (another process). When the new
command exits, no shell prompt will follow because the original shell is
gone.

To demonstrate this, run a new shell manually and change its prompt:

$ bash Run a child shell
$ PS1="Doomed> " Change the new shell's prompt
Doomed> echo hello Run any command you like
hello

Now exec a command and watch the new shell die:

Doomed> exec ls ls replaces the child shell, runs, and
exits
animals.txt
$ A prompt from the original (parent)
shell

RUNNING EXEC MAY BE FATAL
If you run exec in a shell, the shell exits afterward. If the shell was running in a
terminal window, the window closes. If the shell was a login shell, you will be logged
out.

Why would you ever run exec? One reason is to conserve resources by not
launching a second process. Shell scripts sometimes make use of this
optimization by running exec on the final command in the script. If the
script is run many times (say, millions or billions of executions), the savings
might be worth it.

exec has a second ability — it can reassign stdin, stdout, and/or stderr for
the current shell. This is most practical in a shell script, such as this toy
example that prints information to a file, /tmp/outfile:

#!/bin/bash
echo "My name is $USER" >
/tmp/outfile
echo "My current directory is $PWD" >>
/tmp/outfile
echo "Guess how many lines are in the file /etc/hosts?" >>
/tmp/outfile
wc -l /etc/hosts >>

/tmp/outfile
echo "Goodbye for now" >>
/tmp/outfile

Instead of redirecting the output of each command to /tmp/outfile
individually, use exec to redirect stdout to /tmp/outfile for the entire script.
Subsequent commands can simply print to stdout:

#!/bin/bash
Redirect stdout for this script
exec > /tmp/outfile2
All subsequent commands print to /tmp/outfile2
echo "My name is $USER"
echo "My current directory is $PWD"
echo "Guess how many lines are in the file /etc/hosts?"
wc -l /etc/hosts
echo "Goodbye for now"

Run this script and examine the file /tmp/outfile2 to see the results:

$ cat /tmp/outfile2
My name is smith
My current directory is /home/smith
Guess how many lines are in the file /etc/hosts?
122 /etc/hosts
Goodbye for now

You probably won’t use exec often, but it’s there when you need it.

Summary
Now you have 13 techniques for running a command — the 11 in this
chapter plus simple commands and pipelines. Table 7-2 reviews some
common use cases for different techniques.

T
a
b
l
e
7
-
2
.
C
o
m
m
o
n
I
d
i
o
m
s
f
o
r
R
u
n
n
i
n
g
C
o
m

m
a
n
d
s

Problem Solution

Sending stdout from one program to stdin of another Pipelines

Inserting output (stdout) into a command Command substitution

Providing output (stdout) to a command that doesn’t
read from stdin, but does read disk files

Process substitution

Executing one string as a command bash -c, or piping to bash

Printing multiple commands on stdout and executing
them

Piping to bash

Executing many similar commands in a row xargs, or constructing the commands as
strings and piping them to bash

Managing commands that depend on one other’s
success

Conditional lists

Running several commands at a time Backgrounding

Running several commands at a time that depend on
one another’s success

Backgrounding a conditional list

Running one command on a remote host Run ssh host command

Changing directory in the middle of a pipeline Explicit subshells

Running a command later Unconditional list with sleep followed by
the command

Redirecting to/from protected files Run sudo bash -c "command > fil
e"

The next two chapters will teach you to combine techniques to achieve
business goals efficiently.

1 The command mkdir -p dir, which creates a directory path only if it doesn’t already
exist, would be a more elegant solution here.

2 This behavior is opposite of what many programming languages do, where zero means
failure.

3 Alternatively, you could use cron for the backup job and at for reminders, but Linux is all
about flexibility — finding multiple ways to achieve the same result.

4 Bank Of America’s downloadable statement files are named this way at press time.

5 Technically, diff can read one list from stdin if you provide a dash as a filename, but not
two lists.

6 This directory structure is similar to a hashtable with chaining.

7 The exact number depends on length limits on your Linux system; see man xargs.

8 Assuming that the tar archive was built with relative paths — which is typical for
downloaded software — not absolute paths.

9 This specific problem can be solved more simply with the tar option -C or --directory,
which specifies a target directory. I’m just demonstrating the general technique of using a
subshell.

Chapter 8. Building a Brash
One-Liner

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the eighth chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at vwilson@oreilly.com.

Remember this long, intricate command from the Preface?

$ paste <(echo {1..10}.jpg | sed 's/ /\n/g') \
 <(echo {0..9}.jpg | sed 's/ /\n/g') \
 | sed 's/^/mv /' \
 | bash

Such magical incantations are called brash one-liners. Let’s take this one
apart to understand what it does and how it works. The innermost echo
commands use brace expansion to generate lists of JPEG filenames:

$ echo {1..10}.jpg
1.jpg 2.jpg 3.jpg ... 10.jpg
$ echo {0..9}.jpg
0.jpg 1.jpg 2.jpg ... 9.jpg

Piping the filenames to sed replaces space characters with newlines:

1

mailto:vwilson@oreilly.com

$ echo {1..10}.jpg | sed 's/ /\n/g'
1.jpg
2.jpg
⋮
10.jpg
$ echo {0..9}.jpg | sed 's/ /\n/g'
0.jpg
1.jpg
⋮
9.jpg

The paste command prints the two lists side by side. Process substitution
allows paste to read the two lists as if they were files:

$ paste <(echo {1..10}.jpg | sed 's/ /\n/g') \
 <(echo {0..9}.jpg | sed 's/ /\n/g')
1.jpg 0.jpg
2.jpg 1.jpg
⋮
10.jpg 9.jpg

Prepending “mv” to each line prints a sequence of strings that are mv
commands.

$ paste <(echo {1..10}.jpg | sed 's/ /\n/g') \
 <(echo {0..9}.jpg | sed 's/ /\n/g') \
 | sed 's/^/mv /'
mv 1.jpg 0.jpg
mv 2.jpg 1.jpg
⋮
mv 10.jpg 9.jpg

The purpose of the command is now revealed: it generates 10 commands to
rename the image files 1.jpg through 10.jpg. The new names are 0.jpg
through 9.jpg, respectively. Piping the output to bash executes the mv
commands.

$ paste <(echo {1..10}.jpg | sed 's/ /\n/g') \
 <(echo {0..9}.jpg | sed 's/ /\n/g') \
 | sed 's/^/mv /' \
 | bash

Brash one-liners are like puzzles. You’re faced with a business problem,
such as renaming a set of files, and you apply your toolbox to construct a
Linux command to solve it. Brash one-liners challenge your creativity and
build your skills.

In this chapter, you’ll create brash one-liners like the preceding one, step by
step, using the following magical formula:

1. Invent a command that solves a piece of the puzzle

2. Run the command and check the output

3. Recall the command from history and tweak it

4. Repeat steps 2 and 3 until the command produces the desired result

This chapter will give your brain a workout. Expect to feel puzzled at times
by the examples. Just take things one step at a time, and run the commands
on a computer as you read them.

NOTE
Some brash one-liners in this chapter are too wide for a single line, so I’ve split them
onto multiple lines using backslashes. We do not, however, call them brash two-liners
(or brash seven-liners).

Get Ready To Be Brash
Before you launch into creating brash one-liners, take a moment to get into
the right mindset:

Be flexible

Think about where to start

Know your testing tools

I’ll discuss each of these ideas in turn.

Be Flexible
A key to writing brash one-liners is flexibility. You’ve learned some
awesome tools by this point — a core set of Linux programs (and umpteen
ways to run them) along with command history, command-line editing, and
more. You can combine these tools in many ways, and a given problem
usually has multiple solutions.

Even the simplest Linux tasks can be accomplished in many ways. Consider
how you might list .jpg files in your current directory. I’ll bet 99.9% of
Linux users would run a command like this:

$ ls *.jpg

But this is just one solution of many. For example, you could list all the
files in the directory and then use grep to match only the names ending in
.jpg:

$ ls | grep '\.jpg$'

Why would you choose this solution? Well, you saw an example in “Long
Argument Lists”, when a directory contained so many files that they
couldn’t be listed by pattern matching. The technique of grepping for a
filename extension is a robust, general approach for solving all sorts of
problems. What’s important here is to be flexible and understand your tools
so you can apply the best one in your time of need. That is a wizard’s skill
when creating brash one-liners.

All of the following commands list .jpg files in the current directory. Try to
figure out how each command works.

$ echo $(ls *.jpg)
$ bash -c 'ls *.jpg'
$ cat <(ls *.jpg)
$ find . -maxdepth 1 -type f -name *.jpg -print
$ ls > tmp && grep '\.jpg$' tmp && rm -f tmp
$ paste <(echo ls) <(echo *.jpg) | bash
$ bash -c 'exec $(paste <(echo ls) <(echo *.jpg))'

$ echo 'monkey *.jpg' | sed 's/monkey/ls/' | bash
$ python -c 'import os; os.system("ls *.jpg")'

Are the results identical or do some commands behave a bit differently?
Can you come up with any other suitable commands?

Think About Where to Start
Every brash one-liner begins with the output of a simple command. That
output might be the contents of a file, part of a file, a directory listing, a
sequence of numbers or letters, a list of users, a date and time, or other data.
Your first challenge, therefore, is to produce the initial data for your
command.

For example, if you want to know the 17th letter of the English alphabet,
then your initial data could be 26 letters produced by brace expansion:

$ echo {A..Z}
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Once you can produce this output, the next step is deciding how to massage
it to fit your goal. Do you need to slice the output by rows or columns? Join
the output with other information? Transform the output in a more
complicated way? Look to the programs in Chapter 1 and Chapter 5 to do
that work, like grep and sed and cut, and apply them using the
techniques of Chapter 7.

For this example, you could print the 17th field with awk, or remove spaces
with sed and locate the 17th character with cut:

$ echo {A..Z} | awk '{print $(17)}'
Q
$ echo {A..Z} | sed 's/ //g' | cut -c17
Q

As another example, if you want to print the months of the year, your initial
data could be the numbers 1 through 12, again produced by brace
expansion:

$ echo {1..12}
1 2 3 4 5 6 7 8 9 10 11 12

From there, augment the brace expansion so it forms dates for the first day
of each month (from 2021-01-01 through 2021-12-01); then run
date -d on each line to produce month names:

$ echo 2021-{01..12}-01 | xargs -n1 date +%B -d
January
February
March
⋮
December

Or, suppose you want to know the length of the longest filename in the
current directory. Your initial data could be a directory listing:

$ ls
animals.txt cartoon-mascots.txt ... zebra-stripes.txt

From there, use awk to generate commands to count characters in each
filename with wc -c.

$ ls | awk '{print "echo -n", $0, "| wc -c"}'
echo -n "animals.txt" | wc -c
echo -n "cartoon-mascots.txt | wc -c"
⋮
echo -n "zebra-stripes.txt | wc -c"

(The -n option prevents echo from printing newline characters, which
would throw off each count by one.) Finally, pipe the commands to bash
to run them, sort the numeric results from high to low, and grab the
maximum value (the first line) with head -n1:

$ ls | awk '{print "echo -n", $0, "| wc -c"}' | bash | sort -nr |
head -n1
23

This last example was tricky, generating pipelines as strings and passing
them to a further pipeline. Nevertheless, the general principle is the same:
figure out your starting data and manipulate it to fit your needs.

Know Your Testing Tools
Building a brash one-liner may require trial and error. The following tools
and techniques will help you try different solutions quickly.

Use command history and command-line editing

Don’t retype commands while you experiment. Use techniques from
Chapter 3 to recall previous commands, tweak them, and run them.

Add echo to test expressions

If you aren’t sure how an expression will evaluate, print it with echo
beforehand to see the evaluated results on stdout.

Use ls or add echo to test destructive commands

If your command invokes rm, mv, cp, or other commands that might
overwrite or remove files, place echo in front of them to confirm
which files will be affected. (So, instead of executing rm, execute echo
rm.) Another safety tactic is to replace rm with ls to list files that
would be removed.

Insert a tee to view intermediate results

If you want to view the output (stdout) in the middle of a long pipeline,
insert the tee command to save output to a file for examination. The
following command saves the output from command3 in the file
outfile, while piping that same output to command4.

$ command1 | command2 | command3 | tee outfile | command4 |

command5

$ less outfile

OK, let’s build some brash one-liners!

Inserting a Filename Into a Sequence
This brash one-liner is similar to the one that opened the chapter (renaming
.jpg files), but more detailed. It’s also a real situation I faced while writing
this book. Like the previous one-liner, it combines two techniques from
Chapter 7: process substitution and piping to bash. The result is a repeatable
pattern for solving similar problems.

I wrote this book on a Linux computer using a typesetting language called
AsciiDoc. The language details aren’t important here; what matters is each
chapter was a separate file, and originally there were 10 of them:

$ ls
ch01.asciidoc ch03.asciidoc ch05.asciidoc ch07.asciidoc
ch09.asciidoc
ch02.asciidoc ch04.asciidoc ch06.asciidoc ch08.asciidoc
ch10.asciidoc

At some point, I decided to insert an eleventh chapter between chapters 2
and 3. That meant renaming some files. Chapters 3-10 had to become 4-11,
leaving a gap so I could make a new chapter 3 (ch03.asciidoc). I could have
renamed the files manually, starting with ch11.asciidoc and working
backwards:

$ mv ch10.asciidoc ch11.asciidoc
$ mv ch09.asciidoc ch10.asciidoc
$ mv ch08.asciidoc ch09.asciidoc
⋮
$ mv ch03.asciidoc ch04.asciidoc

But this method is tedious (imagine if there 1000 files instead of 11!), so
instead, I generated the necessary mv commands and piped them to bash.
Take a good look at the preceding mv commands and think for a moment
how you might create them.

2

https://asciidoc.org/

Focus first on the original filenames ch03.asciidoc through ch10.asciidoc.
You could print them using brace expansion such as
ch{10..03}.asciidoc, like the first example in this chapter, but to
practice a little flexibility, use the seq -w command to print the numbers:

$ seq -w 10 -1 3
10
09
08
⋮
03

Then turn this numeric sequence into filenames by piping it to sed:

$ seq -w 10 -1 3 | sed 's/\(.*\)/ch\1.asciidoc/'
ch10.asciidoc
ch09.asciidoc
⋮
ch03.asciidoc

You now have a list of the original filenames. Do likewise for chapters 4-11
to create the destination filenames:

$ seq -w 11 -1 4 | sed 's/\(.*\)/ch\1.asciidoc/'
ch11.asciidoc
ch10.asciidoc
⋮
ch04.asciidoc

To form the mv commands, you need to print the original and new
filenames side by side. The first example in this chapter solved the “side by
side” problem with paste, and it used process substitution to treat the two
printed lists as files. Do the same here:

$ paste <(seq -w 10 -1 3 | sed 's/\(.*\)/ch\1.asciidoc/') \
 <(seq -w 11 -1 4 | sed 's/\(.*\)/ch\1.asciidoc/')
ch10.asciidoc ch11.asciidoc
ch09.asciidoc ch10.asciidoc
⋮
ch03.asciidoc ch04.asciidoc

TIP
The preceding command might look like a lot of typing, but with command history and
Emacs-style command-line editing, it’s really not. To go from the single "seq and sed"
line to the paste command:

1. Recall the previous command from history with the up arrow

2. Press ctrl-A, then ctrl-K to cut the whole line

3. Type the word paste followed by a space

4. Press ctrl-Y twice to create two copies of the seq and sed commands

5. Use movement and editing keystrokes to modify the second copy

6. And so on

Prepend “mv” to each line by piping the output to sed, printing exactly the
mv commands you need:

$ paste <(seq -w 10 -1 3 | sed 's/\(.*\)/ch\1.asciidoc/') \
 <(seq -w 11 -1 4 | sed 's/\(.*\)/ch\1.asciidoc/') \
 | sed 's/^/mv /'
mv ch10.asciidoc ch11.asciidoc
mv ch09.asciidoc ch10.asciidoc
⋮
mv ch03.asciidoc ch04.asciidoc

As the final step, pipe the commands to bash for execution:

$ paste <(seq -w 10 -1 3 | sed 's/\(.*\)/ch\1.asciidoc/') \
 <(seq -w 11 -1 4 | sed 's/\(.*\)/ch\1.asciidoc/') \
 | sed 's/^/mv /' \
 | bash

I used exactly this solution for my book. After the mv commands ran, the
resulting files were chapters 1, 2, and 4-11, leaving a gap for a new chapter
3:

$ ls ch*.asciidoc
ch01.asciidoc ch04.asciidoc ch06.asciidoc ch08.asciidoc

ch10.asciidoc
ch02.asciidoc ch05.asciidoc ch07.asciidoc ch09.asciidoc
ch11.asciidoc

The pattern I just presented is reusable in all kinds of situations to run a
sequence of related commands:

1. Generate the command arguments as lists on stdout

2. Print the lists side by side with paste and process substitution

3. Prepend a command name with sed by replacing the beginning-
of-line character (^) with a program name and a space

4. Pipe the results to bash

Checking Matched Pairs of Files
This brash-one liner is inspired by a real use of Mediawiki, the software
that powers Wikipedia and thousands of other wikis. Mediawiki allows
users to upload images for display. Most users follow a manual process via
web forms: click Choose File to bring up a file dialog, navigate to an image
file and select it, add a descriptive comment in the form, and click Upload.
Wiki administrators use a more automated method: a script that reads a
whole directory and uploads its images. Each image file (say,
bald_eagle.jpg) is paired with a text file (bald_eagle.txt) containing a
descriptive comment about the image.

Imagine that you’re faced with a directory filled with hundreds of image
files and text files. You want to confirm that every image file has a
matching text file and vice-versa. Here’s a smaller version of that directory:

$ ls
bald_eagle.jpg blue_jay.jpg cardinal.txt robin.jpg wren.jpg
bald_eagle.txt cardinal.jpg oriole.txt robin.txt wren.txt

Let’s develop two different solutions to identify any unmatched files. For
the first solution, create two lists, one for the JPEG files and one for the text

files, and use cut to strip off their file extensions .txt and .jpg:

$ ls *.jpg | cut -d. -f1
bald_eagle
blue_jay
cardinal
robin
wren
$ ls *.txt | cut -d. -f1
bald_eagle
cardinal
oriole
robin
wren

Then compare the lists with diff using process substitution:

$ diff <(ls *.jpg | cut -d. -f1) <(ls *.txt | cut -d. -f1)
2d1
< blue_jay
3a3
> oriole

You could stop here, because the output indicates that the first list has an
extra blue_jay (implying blue_jay.jpg) and the second list has an extra
oriole (implying oriole.txt). Nevertheless, let’s make the results more
precise. Eliminate unwanted lines by grepping for the characters < and > at
the beginning of each line:

$ diff <(ls *.jpg | cut -d. -f1) <(ls *.txt | cut -d. -f1) \
 | grep '^[<>]'
< blue_jay
> oriole

Then use awk to append the correct file extension to each filename ($2),
based on whether the filename is preceded by a leading < or >:

$ diff <(ls *.jpg | cut -d. -f1) <(ls *.txt | cut -d. -f1) \
 | grep '^[<>]' \
 | awk '/^</{print $2 ".jpg"} /^>/{print $2 ".txt"}'

blue_jay.jpg
oriole.txt

You now have your list of unmatched files. However, this solution has a
subtle bug. Suppose the current directory contained the filename
yellow.canary.jpg which has two dots. The preceding command would
produce incorrect output:

blue_jay.jpg
oriole.txt
yellow.jpg This is wrong

This problem occurs because the two cut commands remove characters
from the first dot onward, instead of the last dot onward, so
yellow.canary.jpg is truncated to yellow rather than yellow.canary. To fix
this issue, replace cut with sed to remove characters from the last dot to
the end of the string:

$ diff <(ls *.jpg | sed 's/\.[^.]*$//') \
 <(ls *.txt | sed 's/\.[^.]*$//') \
 | grep '^[<>]' \
 | awk '/</{print $2 ".jpg"} />/{print $2 ".txt"}'
blue_jay.txt
oriole.jpg
yellow.canary.txt

The first solution is now complete. The second solution takes a different
approach. Instead of applying diff to two lists, generate a single list and
weed out matched pairs of filenames. Begin by removing the file extensions
with sed (using the same sed script as before) and count the occurrences of
each string with uniq -c:

$ ls *.{jpg,txt} \
 | sed 's/\.[^.]*$//' \
 | uniq -c
 2 bald_eagle
 1 blue_jay
 2 cardinal
 1 oriole

 2 robin
 2 wren
 1 yellow.canary

Each line of output contains either the number 2, representing a matched
pair of filenames, or 1, representing an unmatched filename. Use awk to
isolate lines that begin with whitespace and a 1, and print only the second
field:

$ ls *.{jpg,txt} \
 | sed 's/\.[^.]*$//' \
 | uniq -c \
 | awk '/^ *1 /{print $2}'
blue_jay
oriole
yellow.canary

For the final step, how can you add the missing file extensions? Don’t
bother with any complicated string manipulations. Just use ls to list the
actual files in the current directory. Stick an asterisk (a wildcard) onto the
end of each line of output with awk:

$ ls *.{jpg,txt} \
 | sed 's/\.[^.]*$//' \
 | uniq -c \
 | awk '/^ *1 /{print $2 "*"}'
blue_jay*
oriole*
yellow.canary*

and feed the lines to ls via command substitution. The shell performs
pattern-matching and ls lists the unmatched filenames. Done!

$ ls -1 $(ls *.{jpg,txt} \
 | sed 's/\.[^.]*$//' \
 | uniq -c \
 | awk '/^ *1 /{print $2 "*"}')
blue_jay.jpg
oriole.txt
yellow.canary.jpg

Generating a CDPATH From Your Home
Directory
In the section “Organize Your Home Directory for Fast Navigation”, you
wrote a complicated CDPATH line by hand. It began with $HOME, followed
by all subdirectories of $HOME, and ended with the relative path .. (parent
directory):

CDPATH=$HOME:$HOME/Work:$HOME/Family:$HOME/Finances:$HOME/Linux:$
HOME/Music:..

Let’s create a brash one-liner to generate that CDPATH line automatically,
suitable for insertion into a bash configuration file. Begin with the list of
subdirectories in $HOME, using a subshell to prevent the cd command from
changing your shell’s current directory:

$ (cd && ls -d */)
Family/ Finances/ Linux/ Music/ Work/

Add $HOME/ in front of each directory with sed:

$ (cd && ls -d */) | sed 's/^/$HOME\//g'
$HOME/Family/
$HOME/Finances/
$HOME/Linux/
$HOME/Music/
$HOME/Work/

The preceding sed script is slightly complicated because the replacement
string, $HOME/, contains a forward slash, and sed substitutions also use
the forward slash as a separator. That’s why the forward slash after $HOME
is escaped: $HOME\/. To simplify things, recall from “Substitution and
Slashes” that sed accepts any convenient character as a separator. Let’s use
at signs (@) instead of forward slashes so no escaping is needed.

$ (cd && ls -d */) | sed 's@^@$HOME/@g'
$HOME/Family/

$HOME/Finances/
$HOME/Linux/
$HOME/Music/
$HOME/Work/

Next, lop off the final forward slash with another sed expression:

$ (cd && ls -d */) | sed -e 's@^@$HOME/@' -e 's@/$@@'
$HOME/Family
$HOME/Finances
$HOME/Linux
$HOME/Music
$HOME/Work

Print the output on a single line using echo and command substitution.
Notice that you no longer need plain parentheses around cd and ls to
create a subshell explicitly, because command substitution creates a
subshell of its own.

$ echo $(cd && ls -d */ | sed -e 's@^@$HOME/@' -e 's@/$@@')
$HOME/Family $HOME/Finances $HOME/Linux $HOME/Music $HOME/Work

Add the first directory $HOME and the final relative directory ..:

$ echo '$HOME' \
 $(cd && ls -d */ | sed -e 's@^@$HOME/@' -e 's@/$@@') \
 ..
$HOME $HOME/Family $HOME/Finances $HOME/Linux $HOME/Music
$HOME/Work ..

Change spaces to colons by piping all the output so far to tr:

$ echo '$HOME' \
 $(cd && ls -d */ | sed -e 's@^@$HOME/@' -e 's@/$@@') \
 .. \
 | tr ' ' ':'
$HOME:$HOME/Family:$HOME/Finances:$HOME/Linux:$HOME/Music:$HOME/W
ork:..

Finally, add the CDPATH environment variable, and you have generated a
variable definition to paste into a bash configuration file. Store this
command in a script to generate the line anytime, like when you add a new
subdirectory to $HOME.

$ echo 'CDPATH=$HOME' \
 $(cd && ls -d */ | sed -e 's@^@$HOME/@' -e 's@/$@@') \
 .. \
 | tr ' ' ':'
CDPATH=$HOME:$HOME/Family:$HOME/Finances:$HOME/Linux:$HOME/Music:
$HOME/Work:..

Generating Test Files
A common task in the software industry is testing — feeding a wide variety
of data to a program to validate that the program behaves as intended. The
next brash one-liner generates 1000 files containing random text that could
be used in software testing. The number 1000 is arbitrary; you can generate
as many files as you want.

The solution will select words randomly from a large text file and create
1000 smaller files with random contents and lengths. A perfect source file is
the system dictionary, /usr/share/dict/words, which contains 102,305 words,
each on its own line.

$ wc -l /usr/share/dict/words
102305 /usr/share/dict/words

To produce this brash one-liner, you’ll need to solve four puzzles:

1. Randomly shuffling the dictionary file

2. Selecting a random number of lines from the dictionary file

3. Creating an output file to hold the results

4. Running your solution 1000 times

To shuffle the dictionary into random order, use the aptly-named command
shuf. Each run of the command shuf /usr/share/dict/words
produces over 100,000 lines of output, so peek at the first few random lines
using head:

$ shuf /usr/share/dict/words | head -n3
evermore
shirttail
tertiary
$ shuf /usr/share/dict/words | head -n3
interactively
opt
perjurer

Your first puzzle is solved. Next, how can you select a random quantity of
lines from the shuffled dictionary? shuf has an option, -n, to print a given
number of lines, but you want the value to change for each output file you
create. Fortunately, bash has a variable, RANDOM, that holds a random
positive integer between 0 and 32767. Its value changes every time you
access the variable:

$ echo $RANDOM $RANDOM $RANDOM
7855 11134 262

Therefore, run shuf with the option -n $RANDOM to print a random
number of random lines. Again, the full output could be very long, so pipe
the results to wc -l to confirm that the number of lines changes with each
execution:

$ shuf -n $RANDOM /usr/share/dict/words | wc -l
9922
$ shuf -n $RANDOM /usr/share/dict/words | wc -l
32465

You’ve solved the second puzzle. Next, you need 1000 output files, or more
specifically, 1000 different filenames. To generate filenames, run the
program pwgen, which generates random strings of letters and digits:

$ pwgen
eng9nooG ier6YeVu AhZ7naeG Ap3quail poo2Ooj9 OYiuri9m iQuash0E
voo3Eph1
IeQu7mi6 eipaC2ti exah8iNg oeGhahm8 airooJ8N eiZ7neez Dah8Vooj
dixiV1fu
Xiejoti6 ieshei2K iX4isohk Ohm5gaol Ri9ah4eX Aiv1ahg3 Shaew3ko
zohB4geu
⋮

Add the option -N1 to generate just a single string, and specify the string
length (10) as an argument:

$ pwgen -N1 10
ieb2ESheiw

Optionally, make the string look more like the name of a text file, using
command substitution:

$ echo $(pwgen -N1 10).txt
ohTie8aifo.txt

Third puzzle complete! You now have all the tools to generate a single
random text file. Use the -o option of shuf to save its output in a file:

$ mkdir -p /tmp/randomfiles && cd /tmp/randomfiles
$ shuf -n $RANDOM -o $(pwgen -N1 10).txt /usr/share/dict/words

and check the results:

$ ls List the new file
Ahxiedie2f.txt
$ wc -l Ahxiedie2f.txt How many lines does it contain?
13544 Ahxiedie2f.txt
$ head -n3 Ahxiedie2f.txt Peek at the first few lines
saviors
guerillas
forecaster

Looks good! The final puzzle is how to run the preceding shuf command
1000 times. You could certainly use a loop:

for i in {1..1000}; do
 shuf -n $RANDOM -o $(pwgen -N1 10).txt /usr/share/dict/words
done

but that’s not as fun as creating a brash one-liner. Instead, let’s pregenerate
the commands, as strings, and pipe them to bash. As a test, print your
desired command once using echo. Add single quotes to ensure that
$RANDOM doesn’t evaluate and pwgen doesn’t run:

$ echo 'shuf -n $RANDOM -o $(pwgen -N1 10).txt
/usr/share/dict/words'
shuf -n $RANDOM -o $(pwgen -N1 10).txt /usr/share/dict/words

This command can easily be piped to bash for execution:

$ echo 'shuf -n $RANDOM -o $(pwgen -N1 10).txt
/usr/share/dict/words' | bash
$ ls
eiFohpies1.txt

Now, print the command 1000 times using the yes command piped to
head, then pipe the results to bash, and you’ve solved the fourth puzzle.

$ yes 'shuf -n $RANDOM -o $(pwgen -N1 10).txt
/usr/share/dict/words' \
 | head -n 1000 \
 | bash
$ ls
Aen1lee0ir.txt IeKaveixa6.txt ahDee9lah2.txt paeR1Poh3d.txt
Ahxiedie2f.txt Kas8ooJahK.txt aoc0Yoohoh.txt sohl7Nohho.txt
CudieNgee4.txt Oe5ophae8e.txt haiV9mahNg.txt uchiek3Eew.txt
⋮

If you’d prefer 1000 random image files instead of text files, use the same
technique (yes, head, and bash) and replace shuf with a command that
generates a random image. Here’s a brash one-liner that I adapted from a
solution by Pierre Spring on Stack Overflow. It runs the command
convert, from the graphics package ImageMagick, to produce random
images of size 100x100 pixels consisting of multicolored squares.

https://stackoverflow.com/questions/29011391/generate-random-bmp-in-cli

$ yes 'convert -size 8x8 xc: +noise Random -scale 100x100 $(pwgen
-N1 10).png' \
 | head -n 1000 \
 | bash
$ ls
Bahdo4Yaop.png Um8ju8gie5.png aing1QuaiX.png ohi4ziNuwo.png
Eem5leijae.png Va7ohchiep.png eiMoog1kou.png ohnohwu4Ei.png
Eozaing1ie.png Zaev4Quien.png hiecima2Ye.png quaepaiY9t.png
⋮
$ display Bahdo4Yaop.png View the first image

Generating Empty Files
Sometimes all you need for testing is lots of files with different names, even
if they’re empty. Generating a thousand empty files named file0001.txt
through file1000.txt is as simple as:

$ mkdir /tmp/empties Create a directory for the files
$ cd /tmp/empties
$ touch file{01..1000}.txt Generate the files

If you prefer more interesting filenames, grab them randomly from the
system dictionary. Use grep to limit the names to lower-case letters for
simplicity (avoiding spaces, apostrophes, and other characters that would be
special to the shell):

$ grep '^[a-z]*$' /usr/share/dict/words
a
aardvark
aardvarks
⋮

Shuffle the names with shuf and print the first thousand with head:

$ grep '^[a-z]*$' /usr/share/dict/words | shuf | head -n1000
triplicating
quadruplicates
podiatrists
⋮

Finally, pipe the results to xargs to create the files with touch:

$ grep '^[a-z]*$' /usr/share/dict/words | shuf | head -n1000 |
xargs touch
$ ls
abases distinctly magnolia sadden
abets distrusts maintaining sales
aboard divided malformation salmon
⋮

Summary
I hope the examples in this chapter helped to build your skills in writing
brash one-liners. Several of them provided reusable patterns that you may
find useful in other situations.

One caveat: brash one-liners are not the only solution in town. They’re just
one approach to working efficiently at the command line. Sometimes you’ll
get more bang for the buck by writing a shell script. Other times you’ll find
better solutions with a programming language such as Perl or Python.
Nevertheless, brash one-liner-writing is a vital skill for performing critical
tasks with speed and style.

1 The earliest use of this term (that I know of) is the manpage for lorder(1) in BSD Unix 4.x.
Thanks to Bob Byrnes for finding it.

2 Starting with ch03.asciidoc and working forwards would be dangerous — can you see why? If
not, create these files with the command touch ch{01..10}.asciidoc and try it
yourself.

https://www.unix.com/man-page/bsd/1/lorder

Chapter 9. Leveraging Text
Files

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the ninth chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at vwilson@oreilly.com.

Plain text is the most common data format on many Linux systems. The
content sent from command to command in most pipelines is text.
Programmers’ source code files, system configuration files in /etc, and
HTML and markdown files are all text files. Email messages are text; even
attachments are stored as text internally for transport. You might even store
everyday files like shopping lists and personal notes as text.

Contrast this with today’s internet, which is a mishmash of streaming audio
and video, social media posts, in-browser documents in Google Docs and
Office 365, PDFs, and other rich media. (Not to mention the data handled
by mobile apps, which have hidden the concept of a “file” from a whole
generation.) Against this backdrop, plain text files seem almost quaint.

Nevertheless, any text file can become a rich source of data that you can
mine with carefully crafted Linux commands, especially if the text is
structured. Each line in the file /etc/passwd, for example, represents a Linux
user and has seven fields, including username, numeric user ID, home

mailto:vwilson@oreilly.com

directory, and more. The fields are separated by colons, making the file
easily parsed by cut -d: or awk -F:. Here’s a command that prints all
usernames (the first field) alphabetically:

$ cut -d: -f1 /etc/passwd | sort
avahi
backup
daemon
⋮

And here’s one that separates human users from system accounts by their
numeric user IDs and sends users a welcome email. Let’s build this brash
one-liner step by step. First, use awk to print the usernames (field 1) when
the numeric user ID (field 3) is 1000 or greater:

$ awk -F: '$3>=1000 {print $1}' /etc/passwd
jones
smith

Then produce greetings by piping to xargs:

$ awk -F: '$3>=1000 {print $1}' /etc/passwd \
 | xargs -I@ echo "Hi there, @!"
Hi there, jones!
Hi there, smith!

Then generate commands (strings) to pipe each greeting to the mail
command, which sends email to a given user with a given subject line (-s):

$ awk -F: '$3>=1000 {print $1}' /etc/passwd \
 | xargs -I@ echo 'echo "Hi there, @!" \
 | mail -s greetings @'
echo "Hi there, jones!" | mail -s greetings jones
echo "Hi there, smith!" | mail -s greetings smith

Finally, pipe the generated commands to bash to send the emails:

$ awk -F: '$3>=1000 {print $1}' /etc/passwd \
 | xargs -I@ echo 'echo "Hi there, @!" \

 | mail -s greetings @' \
 | bash
echo "Hi there, jones!" | mail -s greetings jones
echo "Hi there, smith!" | mail -s greetings smith

The preceding solutions, like many others in this book, begin with an
existing text file and manipulate its contents with commands. It’s time to
reverse that approach and intentionally design new text files that partner
well with Linux commands. This is a winning strategy to get work done
efficiently on a Linux system. All it takes is four steps:

1. Notice a business problem you want to solve that involves data

2. Store the data in a text file in a convenient format

3. Invent Linux commands that process the file to solve the problem

4. (Optional.) Capture those commands in scripts, aliases, or
functions to be simpler to run

In this chapter, you’ll construct a variety of structured text files, and create
commands to process them, to solve several business problems.

A First Example: Finding Files
Suppose your home directory contains tens of thousands of files and
subdirectories, and every so often, you can’t remember where you put one
of them. The find command locates a file by name, such as animals.txt:

$ find $HOME -name animals.txt -print
/home/smith/Work/Writing/Books/Lists/animals.txt

but find is slow because it searches your entire home directory, and you
need to locate files regularly. This is step 1, noticing a business problem
that involves data: finding files in your home directory quickly by name.

Step 2 is storing the data in a text file in a convenient format. Run find
once to build a list of all your files and directories, one file path per line,

1

and store it in a hidden file:

$ find $HOME -print > $HOME/.ALLFILES
$ head -n3 $HOME/.ALLFILES
/home/smith
/home/smith/Work
/home/smith/Work/resume.pdf
⋮

Now you have the data: a line-by-line index of your files. Step 3 is
inventing Linux commands to speed up searches for files, and for that, use
grep. It’s much quicker to grep through a large file than to run find in a
large directory tree:

$ grep animals.txt $HOME/.ALLFILES
/home/smith/Work/Writing/Books/Lists/animals.txt

Step 4 is to make the command easier to run. Write a one-line script named
ff, for “find files,” that runs grep with any user-supplied options and a
search string, as in Example 9-1:

Example 9-1. The ff script
#!/bin/bash
$@ means all arguments provided to the script
grep "$@" $HOME/.ALLFILES

Make the script executable and place it into any directory in your search
path, such as your personal bin subdirectory:

$ chmod +x ff
$ echo $PATH Check your
search path
/home/smith/bin:/usr/local/bin:/usr/bin:/bin
$ mv ff ~/bin

Run ff anytime to locate files quickly when you can’t remember where
you put them.

$ ff animal
/home/smith/Work/Writing/Books/Lists/animals.txt

$ ff -i animal | less Case-
insensitive grep
/home/smith/Work/Writing/Books/Lists/animals.txt
/home/smith/Vacations/Zoos/Animals/pandas.txt
/home/smith/Vacations/Zoos/Animals/tigers.txt
⋮
$ ff -i animal | wc -l How many
matches?
16

Rerun the find command every so often to update the index. (Or better
yet, create a scheduled job with cron; see “Learn cron, crontab, and at”.)
Voilà — you’ve built a fast, flexible file-search utility out of two small
commands. Linux systems provide other applications that index and search
files quickly, such as the locate command and the search utilities in
GNOME, KDE Plasma, and other desktop environments, but that’s besides
the point. Look how easy it was to build it yourself. And the key to success
was to create a text file in a simple format.

Check Domain Expiration
For the next example, suppose you own some internet domain names and
want to keep track of when they expire, so you can renew them. That’s step
1, identify the business problem. Step 2 is to create a file of those domain
names, such as domains.txt, one domain name per line:

example.com
oreilly.com
efficientlinux.com
⋮

Step 3 is to invent commands that leverage this text file to determine
expiration dates. Start with the whois command, which queries a domain
registrar for information about a domain:

$ whois example.com | less
Domain Name: EXAMPLE.COM
Registry Domain ID: 2336799_DOMAIN_COM-VRSN

Registrar WHOIS Server: whois.iana.org
Updated Date: 2021-08-14T07:01:44Z
Creation Date: 1995-08-14T04:00:00Z
Registry Expiry Date: 2022-08-13T04:00:00Z
⋮

The expiration date is preceded by the string “Registry Expiry Date”, which
you can isolate with grep and awk:

$ whois example.com | grep 'Registry Expiry Date:'
Registry Expiry Date: 2022-08-13T04:00:00Z
$ whois example.com | grep 'Registry Expiry Date:' | awk '{print
$4}'
2022-08-13T04:00:00Z

Make the date more readable via the date --date command, which can
convert a date string from one format to another:

$ date --date 2022-08-13T04:00:00Z
Sat Aug 13 00:00:00 EDT 2022
$ date --date 2022-08-13T04:00:00Z +'%Y-%m-%d' Year-month-
day format
2022-08-13

Use command substitution to feed the date string from whois to the date
command:

$ echo $(whois example.com | grep 'Registry Expiry Date:' | awk
'{print $4}')
2022-08-13T04:00:00Z
$ date \
 --date $(whois example.com \
 | grep 'Registry Expiry Date:' \
 | awk '{print $4}') \
 +'%Y-%m-%d'
2022-08-13

You now have a command that queries a registrar and prints an expiration
date. Create a script check-expiry, shown in Example 9-2, that runs the
preceding command and prints the expiration date, a tab, and the domain
name:

$./check-expiry example.com
2022-08-13 example.com

Example 9-2. The check-expiry script
#!/bin/bash
expdate=$(date \
 --date $(whois "$1" \
 | grep 'Registry Expiry Date:' \
 | awk '{print $4}') \
 +'%Y-%m-%d')
echo "$expdate $1" # Two values separated by a tab

Now, check all domains in the file domains.txt using a loop, creating a new
script, check-expiry-all, shown in Example 9-3.

Example 9-3. The check-expiry-all script
#!/bin/bash
cat domains.txt | while read domain; do
 ./check-expiry "$domain"
 sleep 5 # Be kind to the registrar's server
done

Run the script in the background, since it may take a while if you have
many domains, and redirect all output (stdout and stderr) to a file:

$./check-expiry-all &> expiry.txt &

When the script finishes, the file expiry.txt contains the desired information.

$ cat expiry.txt
2022-08-13 example.com
2022-05-26 oreilly.com
2022-09-17 efficientlinux.com
⋮

Hooray! But don’t stop there. The file expiry.txt is itself nicely structured
for further processing, with two tabbed columns. For example, sort the
dates and find the next domain to renew:

$ sort -n expiry.txt | head -n1
2022-05-26 oreilly.com

Or, use awk to find domains that have expired or are expiring today — that
is, their expiration date (field 1) is less than or equal to today’s date (printed
with date +%Y-%m-%d).

$ awk "\$1<=\"$(date +%Y-%m-%d)\"" expiry.txt

A few notes on the preceding awk command:

I escaped the dollar sign (before $1) and the double quotes around
the date string so the shell doesn’t evaluate them before awk can.

I’ve cheated a bit by using the string operator <= to compare dates.
It’s not a mathematical comparison, just a string comparison, but it
works because the date format, YYYY-MM-DD, sorts alphabetically
and chronologically in the same order.

With more effort, you could do date math in awk to report expiration dates,
say, two weeks in advance, then create a scheduled job to run the script
nightly and email you a report. Feel free to experiment. The point here,
however, is that once again, with a handful of commands, you’ve built a
useful utility that’s driven by a text file.

Build an Area Code Database
The next example uses a file with three fields that you can process in many
ways. The file, named areacodes.txt, contains telephone area codes for the
United States. Retrieve one from this book’s supplemental material (look in
the directory chapter09/build_area_code_database) or create your own file,
say, from Wikipedia.

201 NJ Hackensack, Jersey City
202 DC Washington
203 CT New Haven, Stamford
⋮
989 MI Saginaw

2

https://efficientlinux.com/examples
https://en.wikipedia.org/wiki/Area_codes_list

TIP
Arrange the fields with predictable lengths first, so columns appear neatly lined up to
the eye. Look how messy the file appears if you put the city names in the first column:

Hackensack, Jersey City 201 NJ
Washington 202 DC
⋮

Once this file is in place, you can do a lot with it. Look up area codes by
state with grep, adding the -w option to match full words only (in case
other text coincidentally contains “NJ”):

$ grep -w NJ areacodes.txt
201 NJ Hackensack, Jersey City
551 NJ Hackensack, Jersey City
609 NJ Atlantic City, Trenton, southeast and central
west
⋮

or look up cities by area code:

$ grep -w 202 areacodes.txt
202 DC Washington

or by any string in the file:

$ grep Washing areacodes.txt
202 DC Washington
227 MD Silver Spring, Washington suburbs, Frederick
240 MD Silver Spring, Washington suburbs, Frederick
⋮

Count the area codes with wc:

$ wc -l areacodes.txt
375 areacodes.txt

Find the state with the most area codes (the winner is California with 38):

$ cut -f2 areacodes.txt | sort | uniq -c | sort -nr | head -n1
 38 CA

Convert the file to CSV format to import into a spreadsheet application.
Print the third field enclosed in double quotes, to prevent its commas from
being interpreted as CSV separator characters:

$ awk -F'\t' '{printf "%s,%s,\"%s\"\n", $1, $2, $3}'
areacodes.txt \
 > areacodes.csv
$ head -n3 areacodes.csv
201,NJ,"Hackensack, Jersey City"
202,DC,"Washington"
203,CT,"New Haven, Stamford"

Collate all area codes for a given state onto a single line:

$ awk '$2~/^NJ$/{ac=ac FS $1} END {print "NJ:" ac}' areacodes.txt
NJ: 201 551 609 732 848 856 862 908 973

or collate for each state, using arrays and for loops as in “Improving the
Duplicate File Detector”:

$ awk '{arr[$2]=arr[$2] " " $1} \
 END {for (i in arr) print i ":" arr[i]}' areacodes.txt \
 | sort
AB: 403 780
AK: 907
AL: 205 251 256 334 659
⋮
WY: 307

Turn any of the preceding commands into aliases, functions, or scripts,
whatever is convenient. A simple example is the areacode script in
Example 9-4.

Example 9-4. The areacode script

#!/bin/bash
if [-n "$1"]; then
 grep -iw "$1" areacodes.txt
fi

The areacode script searches for any whole word in the areacodes.txt
file, such as an area code, state abbreviation, or city name.

$ areacode 617
617 MA Boston

Build a Password Manager
For a final, in-depth example, let’s store usernames, passwords, and notes in
an encrypted text file, in a structured format for easy retrieval on the
command line. The resulting command is a basic password manager, an
application that eases the burden of memorizing lots of complicated
passwords.

WARNING
Password management is a complex topic in computer security. This example creates an
extremely basic password manager as an educational exercise. Don’t use it for mission-
critical applications.

The password file, named vault, has three fields separated by single tab
characters:

1. Username

2. Password

3. Notes (any text)

Create the vault file and add the data. The file is not encrypted yet, so insert
only fake passwords for now:

$ touch vault Create an empty
file
$ chmod 600 vault Set file
permissions
$ emacs vault Edit the file
$ cat vault
sally fake1 google.com account
ssmith fake2 dropbox.com account for work
s999 fake3 Bank Of America account, bankofamerica.com
smith2 fake4 My blog at wordpress.org
birdy fake5 dropbox.com account for home

Store the vault in a known location:

$ mkdir ~/etc
$ mv vault ~/etc

The idea is to use a pattern-matching program like grep or awk to print
lines that match a given string. This simple but powerful technique can
match any part of any line, rather than just usernames or websites. For
example:

$ cd ~/etc
$ grep sally vault Match a username
sally fake1 google.com account
$ grep work vault Match the notes
ssmith fake2 dropbox.com account for work
$ grep drop vault Match multiple
lines
ssmith fake2 dropbox.com account for work
birdy fake5 dropbox.com account for home

Capture this simple functionality in a script; then, let’s improve it step by
step, including finally encrypting the vault file. Call the script pman for
“password manager” and create the trivial version in Example 9-5.

Example 9-5. pman version 1: as simple as it gets
#!/bin/bash
Just print matching lines
grep "$1" $HOME/etc/vault

Store the script in your search path:

$ chmod 700 pman
$ mv pman ~/bin

Try out the script:

$ pman goog
sally fake1 google.com account
$ pman account
sally fake1 google.com account
ssmith fake2 dropbox.com account for work
s999 fake3 Bank Of America account, bankofamerica.com
birdy fake5 dropbox.com account for home
$ pman facebook (produces
no output)

The next version in Example 9-6 adds a bit of error-checking and some
memorable variable names.

Example 9-6. pman version 2: add some error-checking
#!/bin/bash
Capture the script name.
$0 is the path to the script, and basename prints the final
filename.
PROGRAM=$(basename $0)
Location of the password vault
DATABASE=$HOME/etc/vault

Ensure that at least one argument was provided to the script.
The expression >&2 directs echo to print on stderr instead of
stdout.
if [$# -ne 1]; then
 >&2 echo "$PROGRAM: look up passwords by string"
 >&2 echo "Usage: $PROGRAM string"
 exit 1
fi
Store the first argument in a friendly, named variable
searchstring="$1"

Search the vault and print an error message if nothing matches
grep "$searchstring" "$DATABASE"
if [$? -ne 0]; then
 >&2 echo "$PROGRAM: no matches for '$searchstring'"
 exit 1
fi

Run the script:

$ pman
pman: look up passwords by string
Usage: pman string
$ pman smith
ssmith fake2 dropbox.com account for work
smith2 fake4 My blog at wordpress.org
$ pman xyzzy
pman: no matches for 'xyzzy'

A shortcoming of this technique is that it won’t scale. If vault contained
hundreds of lines and grep matched and printed 63 of them, you’d have to
hunt by eye to find the password you need. Improve the script by adding a
unique key (a string) to each line in the third column, and update pman to
search for that unique key first. The vault file, with third column bolded,
now looks like:

sally fake1 google google.com account
ssmith fake2 dropbox dropbox.com account for work
s999 fake3 bank Bank Of America account,
bankofamerica.com
smith2 fake4 blog My blog at wordpress.org
birdy fake5 dropbox2 dropbox.com account for home

Example 9-7 shows the updated script which uses awk instead of grep. It
also uses command substitution to capture the output and check if it’s
empty (the test -z means “zero length string”). Notice that if you search for
a key that doesn’t exist in vault, pman falls back to its original behavior and
prints all lines that match the search string.

Example 9-7. pman version 3: prioritize searching for the key in the third
column
#!/bin/bash
PROGRAM=$(basename $0)
DATABASE=$HOME/etc/vault

if [$# -ne 1]; then
 >&2 echo "$PROGRAM: look up passwords"
 >&2 echo "Usage: $PROGRAM string"

 exit 1
fi
searchstring="$1"

Look for exact matches in the third column
match=$(awk '$3~/^'$searchstring'$/' "$DATABASE")

If the search string doesn't match a key, find all matches
if [-z "$match"]; then
 match=$(awk "/$searchstring/" "$DATABASE")
fi

If still no match, print an error message and exit
if [-z "$match"]; then
 >&2 echo "$PROGRAM: no matches for '$searchstring'"
 exit 1
fi

Print the match
echo "$match"

Run the script:

$ pman dropbox
ssmith fake2 dropbox dropbox.com account for work
$ pman drop
ssmith fake2 dropbox dropbox.com account for work
birdy fake5 dropbox2 dropbox.com account for home

The plain text file vault is a security risk, so encrypt it with the standard
Linux encryption program GnuPG, which is invoked as gpg. If you already
have GnuPG set up for use, that’s great. Otherwise, set it up with the
following command, supplying your email address:

$ gpg --quick-generate-key your_email_address default default
never

You’re prompted for a passphrase for the key (twice). Provide a strong
passphrase. When gpg completes, you’re ready to encrypt the password file
using public key encryption, producing the file vault.gpg.

$ cd ~/etc
$ gpg -e -r your_email_address vault

3

$ ls vault*
vault vault.gpg

As a test, decrypt the vault.gpg file to stdout:

$ gpg -d -q vault.gpg
Passphrase: xxxxxxxx
sally fake1 google google.com account
ssmith fake2 dropbox dropbox.com account for work
⋮

Next, update your script to use the encrypted vault.gpg file instead of the
plain text vault file. That means decrypting vault.gpg to stdout and piping
its contents to awk for matching, as in Example 9-8.

Example 9-8. pman version 4: using an encrypted vault
#!/bin/bash
PROGRAM=$(basename $0)
Use the encrypted file
DATABASE=$HOME/etc/vault.gpg

if [$# -ne 1]; then
 >&2 echo "$PROGRAM: look up passwords"
 >&2 echo "Usage: $PROGRAM string"
 exit 1
fi
searchstring="$1"

Store the decrypted text in a variable
decrypted=$(gpg -d -q "$DATABASE")
Look for exact matches in the third column
match=$(echo "$decrypted" | awk '$3~/^'$searchstring'$/')

If the search string doesn't match a key, find all matches
if [-z "$match"]; then
 match=$(echo "$decrypted" | awk "/$searchstring/")
fi

If still no match, print an error message and exit
if [-z "$match"]; then
 >&2 echo "$PROGRAM: no matches for '$searchstring'"
 exit 1
fi

4

Print the match
echo "$match"

The script now displays passwords from the encrypted file:

$ pman dropbox
Passphrase: xxxxxxxx
ssmith fake2 dropbox dropbox.com account for work
$ pman drop
Passphrase: xxxxxxxx
ssmith fake2 dropbox dropbox.com account for work
birdy fake5 dropbox2 dropbox.com account for home

All the pieces are in place now for your password manager. Some final
steps are:

When you’re convinced that you can decrypt the vault.gpg file
reliably, delete the original vault file.

If you wish, replace the fake passwords with real ones. See
“Editing Encrypted Files Directly” for advice on editing an
encrypted text file.

Support comments in the password vault — lines that begin with a
pound sign (#) — so you can make notes about the entries. To do
so, update the script to pipe the decrypted contents to grep -v to
filter any lines that begin with a pound sign.

decrypted=$(gpg -d -q "$DATABASE" | grep -v '^#')

Printing passwords on stdout isn’t great for security. “Improving The
Password Manager” will update this script to copy and paste passwords
instead of printing them.

EDITING ENCRYPTED FILES DIRECTLY
To modify an encrypted file, the most direct, tedious, and insecure
method is to decrypt the file, edit it, and re-encrypt it.

$ cd ~/etc
$ gpg vault.gpg Decrypt
Passphrase: xxxxxxxx
$ emacs vault Use your
favorite text editor
$ gpg -e -r your_email_address vault Encrypt for
yourself
$ rm vault

For easier editing of the vault.gpg file, both emacs and vim have
modes for editing GnuPG-encrypted files. Begin by adding this line to a
bash configuration file and sourcing it in any associated shells:

export GPG_TTY=$(tty)

For emacs, set up the EasyPG package which is built in. Add the
following lines to the configuration file $HOME/.emacs and restart
emacs. Replace the string GnuPG ID here with the email address
associated with your key, such as smith@example.com.

(load-library "pinentry")
(setq epa-pinentry-mode 'loopback)
(setq epa-file-encrypt-to "GnuPG ID here")
(pinentry-start)

Then edit any encrypted file, and emacs prompts for your passphrase
and decrypts it into a buffer for editing. On save, emacs encrypts the
contents of the buffer.

For vim, try the plugin vim-gnupg and add these lines to the
configuration file $HOME/.vimrc:

https://github.com/jamessan/vim-gnupg

let g:GPGPreferArmor=1
let g:GPGDefaultRecipients=["GnuPG ID here"]

Consider creating an alias to edit the password vault conveniently, using
the technique from the section “Edit Frequently-Edited Files With an
Alias”:

alias pwedit="$EDITOR $HOME/etc/vault.gpg"

Summary
File paths, domain names, area codes, and login credentials are just a few
examples of data that work well in a structured text file. How about:

Your music files? (Use a Linux command like id3tool to extract
ID3 information from your MP3 files and place it into a file.)

The contacts on your mobile device? (Use an app to export the
contacts to CSV format, upload them to cloud storage, then
download them to your Linux machine for processing.)

Your grades in school? (Use awk to track your grade point
average.)

A list of movies you’ve seen or books you’ve read, with additional
data (ratings, authors, actors, etc.)?

In this manner, you can build a ecosystem of time-saving commands that
are personally meaningful or productive for work, limited only by your
imagination.

1 This approach is similar to designing a database schema to work well with known queries.

2 The official list of area codes in CSV format is
https://www.nationalnanpa.com/nanp1/npa_report.csv but it lacks city names.

https://www.nationalnanpa.com/nanp1/npa_report.csv

3 This command generates a public/private key pair with all default options and an expiration
date of “never.” To learn more, see man gpg to read about gpg options, or seek out a GnuPG
tutorial online.

4 If gpg proceeds without prompting for your passphrase, it has cached (saved) your
passphrase temporarily.

Part III. Extra Goodies

The final chapters dive into specialized topics: some in detail, and others
just briefly to whet your appetite to learn more.

Chapter 10. Efficiency at the
Keyboard

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the tenth chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at vwilson@oreilly.com.

On a typical day, on a typical Linux workstation, you might have many
application windows open: web browsers, text editors, software
development environments, music players, video editors, virtual machines,
and so on. Some applications are GUI-focused, such as a paint program,
and tailored to a pointing device like a mouse or trackball. Others are more
keyboard-focused, like a shell inside a terminal program. A typical Linux
user might shift between keyboard and mouse dozens (or even hundreds) of
times per hour. Each switch takes time. It slows you down. If you can
reduce the number of switches, you can work more efficiently.

This chapter is about spending more time at the keyboard and less with a
pointing device. Ten fingers tapping one hundred keys are often more
nimble than a couple of fingers on a mouse. I’m not just talking about using
keyboard shortcuts — I’m confident you can look them up without needing
this book (though I present a few). I’m talking about a different approach to
speed up some everyday tasks that seem inherently mouse-y: working with

mailto:vwilson@oreilly.com

windows, retrieving information from the web, and copying and pasting
with the clipboard.

Working With Windows
In this section, I share tips for launching windows efficiently, particularly
shell windows (terminals) and browser windows.

Instant Shells and Browsers
Most Linux desktop environments, such as GNOME, KDE Plasma, Unity,
and Cinnamon, provide some way to define hotkeys or custom keyboard
shortcuts — special keystrokes that launch commands or perform other
operations. I strongly recommend that you define keyboard shortcuts for
these common operations:

Opening a new shell window (a terminal program)

Opening a new web browser window

With these shortcuts defined, you can open a terminal or browser anytime in
an instant, no matter what other application you’re in the middle of using.
To set this up, you need to know:

The command that launches your preferred terminal program.
Some popular ones are gnome-terminal, konsole and
xterm.

The command that launches your preferred browser. Some popular
ones are firefox, google-chrome, and opera.

How to define a custom keyboard shortcut. The instructions differ
for each desktop environment and may change from version to
version, so it’s better if you look them up on the web. Search for
the name of your desktop environment followed by “define
keyboard shortcut.”

1

On my desktop, I assign the keyboard shortcut ctrl-Windows-T to run
konsole and ctrl-Windows-C to run google-chrome.

WORKING DIRECTORIES
When you launch a shell via a keyboard shortcut in your desktop environment, it’s a
child of your login shell. Its current directory is your home directory (unless you’ve
somehow configured it to be different).

Contrast this with opening a new shell from within your terminal program — by
explicitly running (say) gnome-terminal or xterm at the command line, or using
your terminal program’s menu to open a new window. In this case, the new shell is a
child of that terminal’s shell. Its current directory is the same as its parent’s, which
might not be your home directory.

One-Shot Windows
Suppose you’re in the middle of using several applications when suddenly,
you need a shell to run one command. Many users would grab the mouse
and hunt through their open windows for a running terminal. Don’t do this 
— you’re wasting time. Just pop open a new terminal with your hotkey, run
your command, and exit the terminal right afterward.

Once you have hotkeys assigned to launch terminal programs and browser
windows, go ahead and open and close these windows in great numbers
with wild abandon. I recommend it! Create and destroy terminals and
browser windows on a regular basis, rather than leaving them open for a
long time. I call these short-lived windows one-shot windows. You pop
them open quickly, use them for a few moments, and close them.

You might leave a few shells open for a long time if you’re developing
software or performing other lengthy work, but one-shot terminal windows
are perfect for other random commands throughout the day. It’s often
quicker to pop up a new terminal than to search your screen for an existing
terminal. Don’t ask yourself, “Where’s that terminal window I need?” and
poke around the desktop looking for it. Make a new one and close it after it
has served its purpose.

Likewise for web browser windows. Do you ever lift your head after a long
day of Linux hacking to discover that your browser has just one window
and 83 open tabs? That’s a symptom of too few one-shot windows. Pop one
open, view whatever webpage you need to view, and close it. Need to
revisit the page later? Locate it in your browser history.

Browser Keyboard Shortcuts
While we’re on the topic of browser windows, make sure you know the
most important keyboard shortcuts in Table 10-1. If your hands are already
on the keyboard and you want to browse to a new website, it’s often faster
to press ctrl-L to jump to the address bar or ctrl-T to open a tab than to
point-and-click.

T
a
b
l
e
1
0
-
1
.
T
h
e
m
o
s
t
i
m
p
o
r
t
a
n
t
k
e
y
b
o
a
r
d

s
h
o
r
t
c
u
t
s
f
o
r
F
i
r
e
f
o
x
,
G
o
o
g
l
e
C
h
r
o
m
e
,
a
n
d

O
p
e
r
a

Action Keyboard Shortcut

Open new window ctrl-N

Open new private/incognito window ctrl-shift-P (Firefox), ctrl-shift-N (Chrome and Opera)

Open new tab ctrl-T

Close tab ctrl-W

Cycle through browser tabs ctrl-Tab (cycle forward) and ctrl-shift-Tab (cycle backward)

Jump to address bar ctrl-L (or alt-D or F6)

Find (search) for text in current page ctrl-F

Display your browsing history ctrl-H

Switching Windows and Desktops
When your busy desktop is filled with windows, how do you find the
window you want quickly? You could point and click your way through the
morass, but it’s often quicker to use the keyboard shortcut Alt-Tab. Keep
pressing Alt-Tab and you cycle through all windows on the desktop, one at
a time. When you reach the window you want, release the keys and that
window is in focus and ready to use. To cycle in the reverse direction, press
Alt-Shift-Tab.

To cycle through all windows on the desktop that belong to the same
application, such as all Firefox windows, press Alt-` (Alt-backquote, or Alt

plus the key above Tab). To cycle backward, add the Shift key (Alt-Shift-
backquote).

Once you can switch windows, it’s time to talk about switching desktops. If
you do serious work on Linux and you’re using just one desktop, you’re
missing out a great way to organize your work. Multiple desktops, also
called workspaces or virtual desktops, are just what they sound like. Instead
of a single desktop, you might have four or six or more, each with its own
windows, and you can switch between them.

On my workstation running Ubuntu Linux with KDE Plasma, I run six
virtual desktops and assign them different purposes. Desktop #1 is my main
workspace with email and browsing, #2 is for family-related tasks, #3 is
where I run VMware virtual machines, #4 is for writing books like this one,
and #5-6 are for any ad-hoc tasks. These consistent assignments make it
quick and easy to locate my open windows from different applications.

Each Linux desktop environment such as GNOME, KDE Plasma,
Cinnamon, and Unity has its own way to implement virtual desktops, and
they all provide a graphical “switcher” or “pager” to switch between them. I
recommend defining keyboard shortcuts in your desktop environment to
jump speedily to each desktop. On my computer, I defined Windows+F1
through Windows+F6 to jump to desktops one through six, respectively.

There are many other styles of working with desktops and windows. Some
people use one desktop per application: a desktop for shells, a desktop for
web browsing, a desktop for word processing, and so on. Some people with
small laptop screens open just one window on each desktop, full-screen,
instead of multiple windows per desktop. Find a style that works for you, as
long as it’s speedy and efficient.

Web Access From the Command Line
Point-and-click browsers are almost synonymous with the web, but you can
also access websites from the Linux command line to great effect.

Launching Browser Windows From the Command Line
You may be accustomed to launching a web browser by clicking or tapping
an icon, but you can also do it from the Linux command line. If the browser
isn’t running yet, add an ampersand to run it in the background so you get
your shell prompt back.

$ firefox &
$ google-chrome &
$ opera &

If a given browser is already running, omit the ampersand. The command
tells an existing browser instance to open a new window or tab. The
command immediately exits and gives you the shell prompt back.

TIP
A backgrounded browser command might print diagnostic messages and clutter up your
shell window. To prevent this, redirect all output to /dev/null when you first launch the
browser. For example:

$ firefox &> /dev/null &

To open a browser and visit a URL from the command line, provide the
URL as an argument.

$ firefox https://oreilly.com
$ google-chrome https://oreilly.com
$ opera https://oreilly.com

By default, the preceding commands open a new tab and bring it into focus.
To force them to open a new window instead, add an option:

$ firefox --new-window https://oreilly.com
$ google-chrome --new-window https://oreilly.com
$ opera --new-window https://oreilly.com

To open a private or incognito browser window, add the appropriate
command-line option:

$ firefox --private-window https://oreilly.com
$ google-chrome --incognito https://oreilly.com
$ opera --private https://oreilly.com

The preceding commands might seem like a lot of typing and effort, but you
can be efficient by defining aliases for sites you visit often.

Place in a shell configuration file and source it:
alias oreilly="firefox --new-window https://oreilly.com"

Likewise, if you have a file that contains a URL of interest, extract the URL
with grep, cut, or other Linux commands and pass it to the browser on
the command line with command substitution. Here’s an example with a
tab-separated file with two columns:

$ cat urls.txt
duckduckgo.com My search engine
nytimes.com My newspaper
spotify.com My music
$ grep music urls.txt | cut -f1
spotify.com
$ google-chrome https://$(grep music urls.txt | cut -f1)
Visit spotify

Or, suppose you keep track of packages you’re expecting with a file of
tracking numbers:

$ cat packages.txt
1Z0EW7360669374701 UPS Shoes
568733462924 FedEx Kitchen blender
9305510823011761842873 USPS Care package from Mom

The shell script in Example 10-1 opens the tracking pages for the
appropriate shippers (UPS, FedEx, or the US Postal Service) by appending
tracking numbers to the appropriate URLs.

Example 10-1. track-it script that hits the tracking page of shippers
#!/bin/bash
PROGRAM=$(basename $0)
DATAFILE=packages.txt
Choose a browser command: firefox, opera, google-chrome
BROWSER="opera"
errors=0

cat "$DATAFILE" | while read line; do
 track=$(echo "$line" | awk '{print $1}')
 service=$(echo "$line" | awk '{print $2}')
 case "$service" in
 UPS)
 $BROWSER "https://www.ups.com/track?tracknum=$track" &
 ;;
 FedEx)
 $BROWSER "https://www.fedex.com/fedextrack/?trknbr=$track" &
 ;;
 USPS)
 $BROWSER "https://tools.usps.com/go/TrackConfirmAction?
tLabels=$track" &
 ;;
 *)
 >&2 echo "$PROGRAM: Unknown service '$service'"
 errors=1
 ;;
 esac
done
exit $errors

Retrieving HTML With curl and wget
Web browsers aren’t the only Linux programs that visit websites. The
programs curl and wget can download web pages and other web content
with a single command, without touching a browser. By default, curl
prints its output to stdout, and wget saves its output to a file (after printing
lots of diagnostic messages).

$ curl https://efficientlinux.com/welcome.html
Welcome to Efficient Linux.com!
$ wget https://efficientlinux.com/welcome.html
--2021-10-27 20:05:47-- https://efficientlinux.com/
Resolving efficientlinux.com (efficientlinux.com)...
Connecting to efficientlinux.com (efficientlinux.com)...

⋮
2021-10-27 20:05:47 (12.8 MB/s) - ‘welcome.html’ saved [32/32]
$ cat welcome.html
Welcome to Efficient Linux.com!

TIP
Some sites don’t support retrieval by wget and curl. Both commands can masquerade
as another browser in such cases. Just tell each program to change its user agent — the
string that identifies a web client to a web server. A convenient user agent is “Mozilla.”

$ wget -U Mozilla url
$ curl -A Mozilla url

Both wget and curl have tons of options and features that you can
discover on their manpages. For now, let’s see how to incorporate these
commands into brash one-liners. Suppose the website efficientlinux.com has
a directory, images, containing files 1.jpg through 20.jpg, and you’d like to
download them. Their URLs are:

https://efficientlinux.com/images/1.jpg
https://efficientlinux.com/images/2.jpg
https://efficientlinux.com/images/3.jpg
⋮

An inefficient method would be to visit each URL in a web browser, one at
a time, and download each image. (Raise your hand if you’ve ever done
this!) A better method is to use wget. Generate the URLs with seq and
awk:

$ seq 1 20 | awk '{print "https://efficientlinux.com/images/" $1
".jpg"}'
https://efficientlinux.com/images/1.jpg
https://efficientlinux.com/images/2.jpg
https://efficientlinux.com/images/3.jpg
⋮

Then add the string “wget” into the awk program and pipe the resulting
commands to bash for execution:

$ seq 1 20 \
 | awk '{print "wget https://efficientlinux.com/images/" $1
".jpg"}' \
 | bash

Alternatively, use xargs to create and execute the wget commands:

$ seq 1 20 | xargs -I@ wget
https://efficientlinux.com/images/@.jpg

The xargs solution is superior if your wget commands contain any
special characters. The “pipe to bash” solution would cause the shell to
evaluate those characters (which you don’t want) whereas xargs would
not.

My example was a bit contrived because the image filenames are so
uniform. In a more realistic example, you could download all the images on
a webpage by retrieving the page with curl, piping it through a clever
sequence of commands to isolate the image URLs, one per line, and then
applying one of the techniques I just showed you:

curl URL | ...clever pipeline here... | xargs -n1 wget

Processing HTML with HTML-XML-utils
If you know some HTML and CSS, you can parse the HTML source of web
pages from the command line. It’s sometimes more efficient than copying
and pasting chunks of a web page from a browser window by hand. A
handy suite of tools for this purpose is HTML-XML-utils, which is
available in many Linux distros as well as from w3.org. A general recipe is:

1. Use curl (or wget) to capture the HTML source.

2. Use hxnormalize to help ensure that the HTML is well-formed

https://www.w3.org/Tools/HTML-XML-utils

3. Identify CSS selectors for the values you want to capture

4. Use hxselect to isolate the values, and pipe the output to further
commands for processing

Let’s extend the example from “Build an Area Code Database” to grab
area-code data from the web and produce the areacodes.txt file used in that
example. For your convenience, I’ve created an HTML table of area codes
at for you to download and process, shown in Figure 10-1.

Figure 10-1. A table of area codes at https://efficientlinux.com/areacodes.html

First, grab the HTML source with curl, using the -s option to suppress
onscreen messages. Pipe the output to hxnormalize -x to clean it up a
bit. Pipe it to less to view the output one screenful at a time.

$ curl -s https://efficientlinux.com/areacodes.html \
 | hxnormalize -x \
 | less
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

https://efficientlinux.com/areacodes.html

"http://www.w3.org/TR/html4/strict.dtd">
<html>
⋮
 <body>
 <h1>Area code test</h1>
 ⋮

The HTML table on that page, shown in Example 10-2, has CSS ID #ac,
and its three columns (area code, state, and location) use CSS classes ac,
state, and cities, respectively.

Example 10-2. Partial HTML source of the table in Figure 10-1
<table id="ac">
 <thead>
 <tr>
 <th>Area code</th>
 <th>State</th>
 <th>Location</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td class="ac">201</td>
 <td class="state">NJ</td>
 <td class="cities">Hackensack, Jersey City</td>
 </tr>
 ⋮
</tbody>
</table>

Run hxselect to extract the area code data from each table cell,
supplying the -c option to omit the td tags from the output. Print the
results as one long line, with fields separated by a character of your choice
(using the -s option). I chose the character @ for its easy visibility on the
page.

$ curl -s https://efficientlinux.com/areacodes.html \
 | hxnormalize -x \
 | hxselect -c -s@ '#ac .ac, #ac .state, #ac .cities'
201@NJ@Hackensack, Jersey City@202@DC@Washington@203@CT@New
Haven, Stamford@...

2

Finally, pipe the output to sed to turn this long line into three tab-separated
columns. Write a regular expression to match the following strings:

1. An area code, which consists of digits, [0-9]*

2. An @ symbol

3. A state abbreviation, which is two capital letters, [A-Z][A-Z]

4. An @ symbol

5. The cities, which is any text that doesn’t include an @ symbol,
[^@]*

6. An @ symbol

Combine the parts to produce the following regular expression:

[0-9]*@[A-Z][A-Z]@[^@]*@

Capture the area code, state, and cities as three subexpressions by
surrounding them with \(and \). You now have a complete regular
expression for sed:

\([0-9]*\)@\([A-Z][A-Z]\)@\([^@]*\)@

For sed’s replacement string, provide the three subexpressions separated
by tabs and terminated by newlines, which produces the format of the
areacodes.txt file:

\1\t\2\t\3\n

Combine the preceding regular expression and replacement string to make
this sed script:

s/\([0-9]*\)@\([A-Z][A-Z]\)@\([^@]*\)@/\1\t\2\t\3\n/g

The finished command produces the needed data for the areacodes.txt file:

$ curl -s https://efficientlinux.com/areacodes.html \
 | hxnormalize -x \
 | hxselect -c -s'@' '#ac .ac, #ac .state, #ac .cities' \
 | sed 's/\([0-9]*\)@\([A-Z][A-Z]\)@\([^@]*\)@/\1\t\2\t\3\n/g'
201 NJ Hackensack, Jersey City
202 DC Washington
203 CT New Haven, Stamford
⋮

HANDLING LONG REGULAR EXPRESSIONS
If your sed scripts become so long they look like random noise:

s/\([0-9]*\)@\([A-Z][A-Z]\)@\([^@]*\)@/\1\t\2\t\3\n/g

try splitting them up. Store parts of the regular expression in several
shell variables, and combine the variables later, as in the following shell
script.

The three parts of the regular expression.
Use single quotes to prevent evaluation by the shell.
areacode='\([0-9]*\)'
state='\([A-Z][A-Z]\)'
cities='\([^@]*\)'

Combine the three parts, separated by @ symbols.
Use double quotes to permit variable evaluation by the
shell.
regexp="$areacode@$state@$cities@"

The replacement string.
Use single quotes to prevent evaluation by the shell.
replacement='\1\t\2\t\3\n'

The sed script now becomes much simpler to read:
s/$regexp/$replacement/g
Run the full command:
curl -s https://efficientlinux.com/areacodes.html \
 | hxnormalize -x \
 | hxselect -c -s'@' '#ac .ac, #ac .state, #ac .cities' \
 | sed "s/$regexp/$replacement/g"

Retrieving Rendered Web Content With a Text-Based
Browser
Sometimes when you retrieve data from the web at the command line, you
might not want the HTML source of a web page, but a rendered version of
the page in text. The rendered text might be easier to parse. To accomplish
this task, use a text-based browser such as lynx or links. Text-based
browsers display web pages in a stripped-down format without images or
other fancy features. Figure 10-2 displays the area codes page from the
previous section as rendered by lynx.

Figure 10-2. lynx renders the page https://efficientlinux.com/areacodes.html

Both lynx and links download a rendered page with the -dump option.
Use whichever program you prefer.

https://efficientlinux.com/areacodes.html

$ lynx -dump https://efficientlinux.com/areacodes.html > tempfile
$ cat tempfile
 Area code test

Area code State Location
201 NJ Hackensack, Jersey City
202 DC Washington
203 CT New Haven, Stamford
⋮

TIP
lynx and links are also great for checking out a suspicious-looking link when you’re
unsure if it’s legitimate or malicious. These text-based browsers don’t support
JavaScript or render images, so they are less vulnerable to attack. (They can’t promise
complete security, of course, so use your best judgment.)

Clipboard Control From the Command Line
Every modern software application with an Edit menu includes the
operations cut, copy, and paste to transfer content in and out of the system
clipboard. You might also know keyboard shortcuts for these operations.
But did you know that you can process the clipboard directly from the
command line?

A bit of background first: Copy and paste operations on Linux are part of a
more general mechanism called X selections. A selection is a destination for
copied content, such as the system clipboard. “X” is just the name of the
Linux windowing software.

Most Linux desktop environments that are built on X, such as GNOME,
Unity, Cinnamon, and KDE Plasma, support two selections. The first is the
clipboard, and it works just like clipboards on other operating systems.
When you run cut or copy operations in an application, the content goes to
the clipboard, and you retrieve the content with a paste operation. A less
familiar X selection is called the primary selection. When you select text in
certain applications, it’s written to the primary selection even if you don’t

3

run a copy operation. An example is highlighting text in a terminal window
with the mouse. That text is automatically written to the primary selection.

NOTE
If you connect to a Linux host remotely by SSH or similar programs, copy/paste
generally is handled by the local computer, not by X selections on the remote Linux
host.

Table 10-2 lists mouse and keyboard operations to access X selections in
GNOME’s Terminal (gnome-terminal) and KDE’s Konsole
(konsole). If you use a different terminal program, check its Edit menu
for keyboard equivalents for Copy and Paste.

T
a
b
l
e
1
0
-
2
.
A
c
c
e
s
s
i
n
g
X

s
e
l
e
c
ti
o
n
s
i
n
c
o

m
m
o
n
t
e
r
m
i
n
a
l
p
r
o
g
r
a
m
s

Operation Clipboard Primary Selection

Copy (mouse) Open the right button
menu and select Copy

Click and drag; or double-click to select the current
word; or triple-click to select the current line

Paste (mouse) Open the right button
menu and select Paste

Press the middle mouse button (usually the scroll
wheel)

Copy (keyboard) Ctrl-Shift-C n/a

Paste (keyboard), g
nome-terminal

Ctrl-Shift-V or Ctrl-
Shift-Insert

Shift-Insert

Paste (keyboard), k
onsole

Ctrl-Shift-V or Shift-
Insert

Ctrl-Shift-Insert

Connecting Selections to stdin and stdout
Linux provides a command, xclip, that connects X selections to stdin and
stdout. You can therefore insert copy and paste operations into pipelines and
other compound commands. For example, if you’ve ever copied text into an
application like this:

1. Run a Linux command and redirect its output to a file

2. View the file

3. Use your mouse to copy the file’s content to the clipboard

4. Paste the content into another application

with xclip, you can shorten the process considerably:

1. Pipe a Linux command’s output to xclip

2. Paste the content into another application

Conversely, if you’ve ever pasted text into a file to process it with Linux
commands like this:

1. Use your mouse to copy a bunch of text in an application program

2. Paste it into a text file

3. Process the text file with Linux commands

with xclip -o, you can skip the intermediate text file:

1. Use your mouse to copy a bunch of text in an application program

2. Pipe the output of xclip -o to other Linux commands for
processing

WARNING
If you’re reading this book digitally on a Linux device and want to try some of the
xclip commands in this section, don’t copy and paste the commands into a shell
window. Type the commands by hand. Why? Because your copy operation may
overwrite the same X selection that the commands access with xclip, causing the
commands to produce unexpected results.

By default, xclip reads stdin and writes the primary selection. It can read
from a file:

$ xclip < myfile.txt

or from a pipe:

$ echo "Efficient Linux at the Command Line" | xclip

Now print the text to stdout, or pipe the selection contents to other
commands, such as wc:

$ xclip -o Paste to
stdout
Efficient Linux at the Command Line
$ xclip -o > anotherfile.txt Paste to a
file
$ xclip -o | wc -w Count words
6

Any compound command that writes to stdout can pipe its results to
xclip, like this one from “Command #6: uniq”:

$ cut -f1 grades | sort | uniq -c | sort -nr | head -n1 | cut -c9
| xclip

Clear the primary selection by setting its value to the empty string with
echo -n:

$ echo -n | xclip

The -n option is important; otherwise, echo prints a newline character on
stdout that ends up in the primary selection.

To copy text to the clipboard instead of the primary selection, run xclip
with the option -selection clipboard:

$ echo https://oreilly.com | xclip -selection clipboard
Copy
$ xclip -selection clipboard -o
Paste
https://oreilly.com

xclip options may be abbreviated as long as they’re unambiguous:

$ xclip -sel c -o Same as xclip -selection
clipboard -o
https://oreilly.com

Launch a Firefox browser window to visit the preceding URL, using
command substitution:

$ firefox $(xclip -selection clipboard -o)

Linux offers another command, xsel, that also reads and writes X
selections. It has a few extra features, like clearing a selection (xsel -c)
and appending to a selection (xsel -a). Feel free to read the manpage
and experiment with xsel.

Improving The Password Manager
Let’s use your newfound knowledge of xclip to integrate X selections
into the password manager pman from “Build a Password Manager”. When
the modified pman script matches a single line in the vault.gpg file, it
writes the username to the clipboard and the password to the primary
selection. Afterward, you can fill out a login page on the web, for example,
by pasting the username with ctrl-V and pasting the password with the
middle mouse button.

WARNING
Ensure that you are not running a clipboard manager or any other applications that keep
track of X selections and their contents. Otherwise, usernames and/or passwords
become visible in the clipboard manager, which is a security risk.

The new version of pman is in Example 10-3. pman’s behavior has
changed in the following ways:

A new function, load_password, loads the associated
username and password into X selections

If pman locates a single match for the search string, either by key
(field 3) or any other part of a line, it runs load_password

If pman locates multiple matches, it prints all the keys and notes
(fields 3 and 4) from the matching lines so the user can search
again by key

Example 10-3. An improved pman script that loads username and password
as selections
#!/bin/bash
PROGRAM=$(basename $0)
Use the encrypted file
DATABASE=$HOME/etc/vault.gpg

load_password () {
 # Place username (field 1) into clipboard
 echo "$1" | cut -f1 | tr -d '\n' | xclip -selection clipboard
 # Place password (field 2) into X primary selection
 echo "$1" | cut -f2 | tr -d '\n' | xclip -selection primary
 # Give feedback to the user
 echo "Found" $(echo "$1" | cut -f3- --output-delimiter ': ')
 echo "$PROGRAM: username and password loaded into X selections"
}

if [$# -ne 1]; then
 >&2 echo "$PROGRAM: look up passwords"
 >&2 echo "Usage: $PROGRAM string"
 exit 1
fi

searchstring="$1"

Store the decrypted text in a variable
decrypted=$(gpg -d -q "$DATABASE")
if [$? -ne 0]; then
 >&2 echo "$PROGRAM: could not decrypt $DATABASE"
 exit 1
fi

Look for exact matches in the third column
match=$(echo "$decrypted" | awk '$3~/^'$searchstring'$/')
if [-n "$match"]; then
 load_password "$match"
 exit $?
fi

Look for any match
match=$(echo "$decrypted" | awk "/$searchstring/")
if [-z "$match"]; then
 >&2 echo "$PROGRAM: no matches"
 exit 1
fi

Count the matches
count=$(echo "$match" | wc -l)

case "$count" in
 0)
 >&2 echo "$PROGRAM: no matches"
 exit 1
 ;;
 1)
 load_password "$match"
 exit $?
 ;;
 *)
 >&2 echo "$PROGRAM: multiple matches for the following
keys:"
 echo "$match" | cut -f3
 >&2 echo "$PROGRAM: rerun this script with one of the keys"
 exit
 ;;
esac

Run the script:

$ pman dropbox
Passphrase: xxxxxxxx
Found dropbox: dropbox.com account for work
pman: username and password loaded into X selections
$ pman account
Passphrase: xxxxxxxx
pman: multiple matches for the following keys:
google
dropbox
bank
dropbox2
pman: rerun this script with one of the keys

Passwords hang around in the primary selection until it’s overwritten. To
automatically clear the password after (say) 30 seconds, append the
following line to the load_password function. The line launches a
subshell in the background that waits 30 seconds and then clears the
primary selection (by setting it to the empty string). Adjust the number 30
as you see fit.

(sleep 30 && echo -n | xclip -selection primary) &

If you defined a custom keyboard shortcut to launch terminal windows in
“Instant Shells and Browsers”, you now have a quick way to access your
passwords. Pop up a terminal by hotkey, run pman, and close the terminal.

Summary
I hope this chapter has encouraged you to try some new techniques that
keep your hands on the keyboard. They may seem effortful at first, but with
practice they become quick and automatic. Soon you’ll be the envy of your
Linux friends as you smoothly manipulate desktop windows, web content,
and X selections in ways that the mouse-bound masses cannot.

1 Unless you’re working in an application that captures all keystrokes, such as a virtual
machine in a window.

2 This example uses three CSS selectors, but some old versions of hxselect can handle only
two. If your version of hxselect is afflicted by this shortcoming, download the latest
version from https://www.w3.org/Tools/HTML-XML-utils and build it with the command
configure && make.

3 Really there are three X selections, but one of them, called the secondary selection, is rarely
exposed by modern desktop environments.

https://www.w3.org/Tools/HTML-XML-utils

Chapter 11. Final Timesavers

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the eleventh chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at vwilson@oreilly.com.

I’ve had a lot of fun writing this book, and I hope you’ve had fun reading it
too. For the last act, let’s cover a bunch of smaller topics that didn’t quite fit
into the earlier chapters. These topics have made me a better Linux user and
maybe they’ll help you as well.

Quick Wins
The following timesavers are simple to learn in a few minutes.

Jumping Into Your Editor From less
When you’re viewing a text file with less and want to edit the file, don’t
exit less. Just press v to launch your preferred text editor. It loads the file
and places the cursor right at the spot you were viewing in less. Exit the
editor and you’re back in less at the original location.

For this trick to work best, set the environment variable EDITOR and/or
VISUAL to an editing command. These environment variables represent

mailto:vwilson@oreilly.com

your default Linux text editor that may be launched by various commands,
including less, lynx, git, crontab, and numerous email programs.
For example, to set emacs as your default editor, place either of the
following lines (or both) in a shell configuration file and source it:

VISUAL=emacs
EDITOR=emacs

If you don’t set these variables, your default editor is whatever your Linux
system sets it to be, which is usually vim. If you end up inside of vim and
you don’t know how to use it, don’t panic. Quit vim by pressing the Escape
key and typing :q! (a colon, the letter q, and an exclamation point), then
press Enter. To quit emacs, press ctrl-X followed by ctrl-C.

Editing Files That Contain a Given String
Want to edit every file in the current directory that contains a certain string
(or regular expression)? Generate a list of filenames with grep -l and
pass them to your editor with command substitution. Assuming your editor
is vim, the command is:

$ vim $(grep -l string *)

Edit all files containing string in an entire directory tree (current directory
and all subdirectories) by adding the -r option (recursive) to grep and
beginning in the current directory (the dot).

$ vim $(grep -lr string .)

For faster searches of large directory trees, use find with xargs instead
of grep -r:

$ vim $(find . -type f -print0 | xargs -0 grep -l string)

“Technique #3: Command Substitution” touched on this technique, but I
wanted to emphasize it since it’s so useful. Remember to watch out for
filenames containing spaces and other characters special to the shell, since
they may disrupt the results as explained in “Special Characters and
Command Substitution”.

Embracing Typos
If you consistently misspell a command, define aliases for your most
common mistakes so the correct command runs anyway.

alias firfox=firefox
alias les=less
alias meacs=emacs

Be careful not to shadow (override) an existing Linux command
accidentally by defining an alias with the same name. Search for your
proposed alias first with the command which or type (see “Locating
Programs to Be Run”), and run the man command to be extra sure there’s
no other same-named command.

$ type firfox
bash: type: firfox: not found
$ man firfox
No manual entry for firfox

Creating Empty Files Quickly
There are several ways to create empty files in Linux. The touch
command, which updates the timestamp on a file, also creates a file if one
doesn’t already exist:

$ touch newfile1

touch is great for creating large numbers of empty files for testing:

$ mkdir tmp Create a directory
$ cd tmp
$ touch file{0000..9999}.txt Create 10,000 files
$ cd ..
$ rm -rf tmp Remove the directory and
files

The echo command creates an empty file if you redirect its output to a file,
but only if you supply the -n option:

$ echo -n > newfile2

If you forget the -n option, the resulting file contains one character, a
newline, so it’s not empty.

Processing a File One Line at a Time
When you need to process a file one line at a time, cat the file into a
while read loop:

$ cat myfile | while read line; do
 ...do something here...
done

For example, to compute the length of each line of a file, such as /etc/hosts,
pipe each line to wc -c:

$ cat /etc/hosts | while read line; do
 echo "$line" | wc -c
done
65
31
1
⋮

A more practical example of this technique is in Example 9-3.

Identifying Commands That Support Recursion

In “The find Command”, I introduced find -exec which applies any
Linux command to a whole directory tree recursively:

$ find . -exec your command here \;

Certain other commands support recursion themselves, and if you’re aware
of them, you can save typing time by using their native recursion instead of
constructing a find command.

ls -R, to list directories and their contents recursively

cp -r or cp -a, to copy directories and their contents
recursively

rm -r, to delete directories and their contents recursively

grep -r, to search by regular expression throughout a directory
tree

chmod -R to change file protections recursively

chown -R to change file ownership recursively

chgrp -R to change file group ownership recursively

Read a Manpage
Pick a common command, such as cut or grep, and read its manpage
thoroughly. You’ll probably discover an option or two that you’ve never
used and will find valuable. Repeat this activity every so often to polish and
extend your Linux toolbox.

Longer Learning
The following techniques require real effort to learn, but you’ll be paid back
in time saved. I provide just a taste of each topic, not to teach you the
details but to entice you to discover more on your own.

Read the bash Manpage
Run man bash to display the full, official documentation on bash, and
read the whole thing — yes, all 46,318 words of it:

$ man bash | wc -w
46318

Take a few days. Work through it slowly. You’ll definitely learn a lot to
make your daily Linux use easier.

Learn cron, crontab, and at
In “A First Example: Finding Files”, there’s a brief note about scheduling
commands to run automatically in the future at regular intervals. I
recommend learning the program crontab to set up scheduled commands
for yourself. For example, you could back up files to an external drive on a
schedule, or send yourself reminders by email for a monthly event.

Before running crontab, define your default editor as shown in “Jumping
Into Your Editor From less”. Then run crontab -e to edit your personal
file of scheduled commands. crontab launches your default editor and
opens an empty file to specify the commands. That file is called your
crontab.

Briefly, a scheduled command in a crontab file, often called a cron job,
consists of six fields, all on a single (possibly long) line. The first five fields
determine the job’s schedule by minute, hour, day of month, month, and day
of week, respectively. The sixth field is the Linux command to run. You can
launch a command hourly, daily, weekly, monthly, yearly, at certain days or
times, or in other more complex arrangements. Some examples are:

 * * * * * command Run command every minute
30 7 * * * command Run command at 07:30 every day
30 7 5 * * command Run command at 07:30 the 5th day
of every month
30 7 5 1 * command Run command at 07:30 every January

5
30 7 * * 1 command Run command at 07:30 every Monday

Once you’ve created all six fields, saved the file, and exited your editor, the
command is launched automatically (by a program called cron) according
to the schedule you defined. The syntax for schedules is short and cryptic
but well-documented on the manpage (man 5 crontab) and numerous
online tutorials (search for “cron tutorial”).

I also recommend learning the at command, which schedules commands to
run once, rather than repeatedly, at a specified date and time. Run man at
for details. Here’s a command that sends you an email reminder tomorrow
at 10:00pm to brush your teeth:

$ at 22:00 tomorrow
warning: commands will be executed using /bin/sh
at> echo brush your teeth | mail $USER
at> ^D Type ctrl-D to end
input
job 699 at Sun Nov 14 22:00:00 2021

To list your pending at jobs, run atq:

$ atq
699 Sun Nov 14 22:00:00 20211 a smith

To view the commands in an at job, run at -c with the job number, and
print the final few lines:

$ at -c 699 | tail
⋮
echo brush your teeth | mail $USER

To remove a pending job before it’s executed, run atrm with the job
number:

$ atrm 699

Learn rsync
To copy a full directory, including its subdirectories, from one disk location
to another, many Linux users turn to the command cp -r or cp -a.

$ cp -a dir1 dir2

cp does the job fine the first time, but if you later modify a few files in
directory dir1 and perform the copy again, cp is wasteful. It dutifully
copies all files and directories from dir1 all over again, even if identical
copies already exist in dir2.

The command rsync is a smarter copy program. It copies only the
differences between the first and second directories.

$ rsync -a dir1/ dir2

NOTE
The forward slash in the preceding command means to copy the files inside dir1.
Without the slash, rsync would copy dir1 itself, creating dir2/dir1.

If you later add a file to directory dir1, rsync copies just that one file. If
you change one line inside a file in dir1, rsync copies that one line! It’s a
huge timesaver when copying large directory trees multiple times. rsync
can even copy to a remote server over an SSH connection.

rsync has dozens of options. Some particularly useful ones are:

-v (meaning “verbose”) to print the names of files as they’re
copied

-n to pretend to copy; combine with -v to see which files would
be copied

-x to tell rsync not to cross filesystem boundaries

I highly recommend getting comfortable with rsync for more efficient
copying. Read the manpage and view examples at
https://linuxconfig.org/rsync-command-examples.

Learn Another Scripting Language
Shell scripts are convenient and powerful but have some serious
shortcomings. For example, they’re terrible at handling filenames that
contain whitespace characters. Consider this short bash script that attempts
to remove a file:

#!/bin/bash
BOOKTITLE="Slow Inefficient Linux"
rm $BOOKTITLE # Wrong! Don't do
this!

It looks like the second line removes a file named Slow Inefficient Linux,
but it doesn’t. It attempts to remove three files named Slow, Inefficient, and
Linux. The shell expands the variable $BOOKTITLE before calling rm, and
its expansion is three words separated by whitespace, as if you had typed:

rm Slow Efficient Linux

The shell then invokes rm with three arguments, and potential disaster
ensues as it removes the wrong files. A correct removal command would
surround $BOOKTITLE with double quotes:

rm "$BOOKTITLE"

which the shell expands to:

rm "Slow Efficient Linux"

This sorts of subtle, potentially destructive quirk is just one example of how
unsuitable shell scripting is for serious projects. So, I recommend learning a
second scripting language, such as Perl, PHP, Python, or Ruby. They all

https://linuxconfig.org/rsync-command-examples

handle whitespace properly. They all support real data structures. They all
have powerful string-handling functions. They all do math easily. The list of
benefits goes on.

Use the shell to launch complex commands and create simple scripts, but
for more substantial tasks, turn to another language. Try one of the many
language tutorials online.

Use make For Non-Programming Tasks
The program make automatically updates files based on rules. It’s designed
to speed up software development, but with a little effort, make can
simplify other aspects of your Linux life.

Suppose you have three files named chapter1.txt, chapter2.txt, and
chapter3.txt, that you work on separately. You also have a fourth file,
book.txt, that’s a combination of the three chapter files. Anytime a chapter
changes, you need to recombine them and update book.txt, perhaps with a
command like this:

$ cat chapter1.txt chapter2.txt chapter3.txt > book.txt

This situation is perfect for using make. You have:

1. A bunch of files

2. A rule that relates the files, namely that book.txt needs an update
whenever any chapter file changes

3. A command that performs the update

make operates by reading a configuration file, usually named Makefile, that
is full of rules and commands. For example, the following Makefile rule
states that book.txt depends on the three chapter files.

book.txt: chapter1.txt chapter2.txt chapter3.txt

If the target of the rule (in this case book.txt) is older than any of its
dependencies (the chapter files), then make considers the target to be out of
date. If you supply a command on the line after the rule, make runs the
command to update the target:

book.txt: chapter1.txt chapter2.txt chapter3.txt
 cat chapter1.txt chapter2.txt chapter3.txt >
book.txt

To apply the rule, simply run the command make.

$ ls
Makefile chapter1.txt chapter2.txt chapter3.txt
$ make
cat chapter1.txt chapter2.txt chapter3.txt > book.txt
Executed by make
$ ls
Makefile book.txt chapter1.txt chapter2.txt chapter3.txt
$ make
make: 'book.txt' is up to date.
$ vim chapter2.txt
Update a chapter
$ make
cat chapter1.txt chapter2.txt chapter3.txt > book.txt

make was developed for programmers, but with a little study, you can use it
for non-programming tasks. Anytime you need to update files that depend
on other files, you can likely simplify your work by writing a Makefile.

make helped me write and debug this book. I wrote the book in a
typesetting language called AsciiDoc and regularly converted chapters to
HTML to view in a browser. Here’s a make rule to convert any AsciiDoc
file to an HTML file:

%.html: %.asciidoc
 asciidoctor -o $@ $<

It means: to create a file with the extension .html (%.html), look for a
corresponding file with the extension .asciidoc (%.asciidoc). If the

HTML file is older than the AsciiDoc file, regenerate the HTML file by
running the command asciidoctor on the dependent file ($<), sending
the output to the target HTML file (-o $@). With this slightly cryptic but
short rule in place, I type a simple make command to create the HTML
version of the chapter you’re reading now. make launches asciidoctor
to perform the update.

$ ls ch11*
ch11.asciidoc
$ make ch11.html
asciidoctor -o ch11.html ch11.asciidoc
$ ls ch11*
ch11.asciidoc ch11.html
$ firefox ch11.html View the HTML
file

It takes less than an hour to become reasonably proficient with make for
small tasks. It’s worth the effort. A helpful guide is at makefiletutorial.com.

Apply Version Control to Day-To-Day Files
Have you ever wanted to edit a file but were afraid that your changes might
mess it up? Perhaps you made a backup copy for safekeeping and edited the
original, knowing you could restore the backup if you make a mistake:

$ cp myfile myfile.bak

This solution isn’t scalable. What if you have dozens or hundreds of files,
and dozens or hundreds of people working on them? Version control
systems such as Git and Subversion were invented to solve this problem in
general by tracking multiple versions of a file conveniently.

Git is widespread for maintaining software source code, but I recommend
learning and using it for any important text files where your changes matter.
Perhaps they’re personal files, or operating system files in /etc. “Traveling
With Your Environment” suggests maintaining your bash configuration
files with version control.

https://makefiletutorial.com/

I used Git while writing this book so I could try different ways of presenting
the material. Without too much effort, I created and maintained three
different versions of the book — one for the full manuscript so far, one
containing only the chapters I’d submitted to my editor for review, and one
for experimental work where I tried out new ideas. If I didn’t like what I
wrote, a single command would restore a previous version.

Teaching Git is beyond the scope of this book, but here are some example
commands to show you the basic workflow and whet your appetite. Convert
the current directory (and all its subdirectories) into a Git repository:

$ git init

Edit some files. Afterward, add the changed files to an invisible “staging
area,” an operation that declares your intent to create a new version:

$ git add .

Create the new version, providing a comment to describe your changes to
the files:

$ git commit -m"Changed X to Y"

View your version history:

$ git log

There’s much more to it, like retrieving old versions of files and saving
(“pushing”) versions to another server. Grab a git tutorial, such as
https://www.w3schools.com/git/, and get started!

Farewell
Thank you so much for following along with me through this book. I hope
it has fulfilled the promise I made in the Preface to take your Linux

https://www.w3schools.com/git/

command-line skills to the next level. Tell me about your experience at
dbarrett@oreilly.com. Happy computing.

mailto:dbarrett@oreilly.com

Appendix A. Linux Refresher

If your Linux skills are rusty, here’s a very quick review of some details
you’ll need for this book. (If you’re a complete beginner, this review might
be too brief. Check out the references at the end.)

Commands, Arguments, and Options
To run a Linux command at the command line, type the command and press
Enter. To kill a command in progress, press ctrl-C.

A simple Linux command consists of a single word, which is usually the
name of a program, followed by additional strings called arguments. For
example, the following command consists of a program name, ls, and two
arguments:

$ ls -l /bin

Arguments that begin with a dash, such as -l, are called options because
they change the command’s behavior. Other arguments might be filenames,
directory names, usernames, hostnames, or any other strings that the
program needs. Options usually (but not always) precede the rest of the
arguments.

Command options come in various forms, depending on which program
you run.

A single letter, such as -l, sometimes followed by a value, as in -
n 10. Usually the space between the letter and the value can be
omitted: -n10.

A word preceded by two dashes, such as --long, sometimes
followed by a value, as in --block-size 100. The space

between the option and its value may often be replaced by an
equals sign: --block-size=100.

A word preceded by one dash, such as -type, optionally followed
by a value, as in -type f. This option format is rare; one
command that uses it is find.

A single letter without a dash. This option format is rare; one
command that uses it is tar.

Multiple options may often (depending on the command) be combined
behind a single dash. For example, the command ls -al is equivalent to
ls -a -l.

Options vary not only in appearance but also in meaning. In the command
ls -l, the -l means “long output,” but in the command wc -l it means
“lines of text.” Two programs also might use different options to mean the
same thing, such as -q for “run quietly” versus -s for “run silently.”
Inconsistencies like these make Linux harder to learn but you eventually get
used to them.

The Filesystem, Directories, and Paths
Linux files are contained in directories (folders) that are organized into a
tree structure, such as the one in Figure A-1. The tree begins in a directory
called the root, denoted by a single forward slash (/), which may contain
files and other directories, called subdirectories. For example, the directory
Music has two subdirectories, mp3 and SheetMusic. We call Music the
parent directory of mp3 and SheetMusic. Directories with the same parent
are called siblings.

A path through the tree is written as a sequence of directory names
separated by forward slashes, such as /home/smith/Music/mp3. A path may
also end with a filename, as in /home/smith/Music/mp3/catalog.txt. These
paths are called absolute paths because they begin at the root directory.
Paths that begin elsewhere (and don’t start with a forward slash) are called

relative paths because they are relative to the current directory. If your
current directory is /home/smith/Music, then some relative paths are mp3 (a
subdirectory) and mp3/catalog.txt (a file). Even a filename by itself, like
catalog.txt, is a relative path with respect to /home/smith/Music/mp3.

Two special relative paths are a single dot (.), which refers to the current
directory, and two dots in a row (..), which refers to the current directory’s
parent. Both can be part of larger paths. For example, if your current
directory is /home/smith/Music/mp3, then the path .. refers to Music, the
path ../../../.. refers to the root directory, and the path ../SheetMusic
refers to a sibling of mp3.

Figure A-1. Paths in a Linux Directory Tree

You and every other user on a Linux system has a designated directory,
called your home directory, where you can freely create, edit, and delete

1

files and directories. Its path is usually /home/ followed by your username,
such as /home/smith.

Directory Movement
At any moment, your command line (shell) operates in a given directory,
called your current directory, working directory or current working
directory. View the path of your current directory with the pwd (print
working directory) command:

$ pwd
/home/smith The home directory of user smith

Move between directories with the cd (change directory) command,
supplying the path (absolute or relative) to your desired destination:

$ cd /usr/local Absolute path
$ cd bin Relative path leading to
/usr/local/bin
$ cd ../etc Relative path leading to
/usr/local/etc

Creating and Editing Files
Edit files with a standard Linux text editor by running any of the following
commands:

emacs

Once emacs is running, type ctrl-h t for a tutorial

nano

Visit nano-editor.org for documentation

vim or vi

Run the command vimtutor for a tutorial

https://nano-editor.org/

To create a file, simply provide its name as an argument, and the editor
creates it.

$ nano newfile.txt

Alternatively, create an empty file with the touch command, supplying the
desired filename as an argument:

$ touch funky.txt
$ ls
funky.txt

File and Directory Handling
List the files in a directory (by default, your current directory) with the ls
command:

$ ls
animals.txt

See attributes of a file or directory with a “long” listing (ls -l):

$ ls -l
-rw-r--r-- 1 smith smith 325 Jul 3 17:44 animals.txt

Left to right, the attributes are the file permissions (-rw-r—r--) described
in “File Permissions”, the owner (smith) and group (smith), the size in
bytes (325), the last modification date and time (Jul 3 of this year at
17:44), and the filename (animals.txt).

By default, ls does not print filenames that begin with a dot. To list these
files, which are often called “dot files” or “hidden files,” add the -a option:

$ ls -a
.bashrc .bash_profile animals.txt

Copy a file with the cp command, supplying the original filename and the
new filename:

$ cp animals.txt beasts.txt
$ ls
animals.txt beasts.txt

Rename a file with the mv (move) command, supplying the original
filename and the new filename:

$ mv beasts.txt creatures.txt
$ ls
animals.txt creatures.txt

Delete a file with the rm (remove) command.

$ rm creatures.txt

WARNING
Deletion on Linux is not friendly. The rm command does not ask “Are you sure?” and
there is no trash can for restoring files.

Create a directory with mkdir, rename it with mv, and delete it (if empty)
with rmdir:

$ mkdir testdir
$ ls
animals.txt testdir
$ mv testdir newname
$ ls
animals.txt newname
$ rmdir newname
$ ls
animals.txt

Copy one or more files (or directories) into a directory:

$ touch file1 file2 file3
$ mkdir dir
$ ls
dir file1 file2 file3
$ cp file1 file2 file3 dir
$ ls
dir file1 file2 file3
$ ls dir
file1 file2 file3
$ rm file1 file2 file3

Continuing, move one or more files (or directories) into a directory:

$ touch thing1 thing2 thing3
$ ls
dir thing1 thing2 thing3
$ mv thing1 thing2 thing3 dir
$ ls
dir
$ ls dir
file1 file2 file3 thing1 thing2 thing3

Delete a directory and all its contents with rm -rf. Take care before
running this command because it is not reversible. See “Never Delete the
Wrong File Again (Thanks to History Expansion)” for safety tips.

$ rm -rf dir

File Viewing
Print a text file on the screen with the cat command:

$ cat animals.txt

View a text file one screenful at a time with the less command:

$ less animals.txt

While running less, display the next page by pressing the spacebar. To
exit less, press q. For help, press h.

File Permissions
The chmod command sets a file to be readable, writable, and/or executable
by yourself, a given group of users, or everybody. Figure A-2 is a brief
refresher on file permissions.

Figure A-2. File Permission Bits

Here are some common operations with chmod. Make a file readable and
writable by you, and only readable by everyone else:

$ chmod 644 animals.txt
$ ls -l
-rw-r--r-- 1 smith smith 325 Jul 3 17:44 animals.txt

Protect it from all other users:

$ chmod 600 animals.txt
$ ls -l
-rw------- 1 smith smith 325 Jul 3 17:44 animals.txt

Make a directory readable and enterable by everyone, but writable only by
you:

$ mkdir dir
$ chmod 755 dir
$ ls -l
drwxr-xr-x 2 smith smith 4096 Oct 1 12:44 dir

Protect a directory from all other users:

$ chmod 700 dir
$ ls -l
drwx------ 2 smith smith 4096 Oct 1 12:44 dir

Normal permissions don’t apply to the superuser, who can read and write all
files and directories on the system.

Processes
When you run a Linux command, it starts up one or more Linux processes,
each with a numeric process ID called a PID. See your shell’s current
processes with the ps command:

$ ps
 PID TTY TIME CMD
 5152 pts/11 00:00:00 bash
117280 pts/11 00:00:00 emacs
117273 pts/11 00:00:00 ps

or all running processes for all users with:

$ ps -uax

Kill a process of your own with the kill command, supplying the PID as
an argument. The superuser (Linux administrator) can kill any user’s
process.

$ kill 117280
[1]+ Exit 15 emacs animals.txt

Viewing Documentation
The man command prints documentation about any standard command on
your Linux system. Simply type man followed by the name of the
command. For example, to view documentation for the cat command, run:

$ man cat

The displayed document is known as the command’s manpage. When
someone says “view the manpage for grep,” they mean run the command
man grep.

man displays documentation one page at a time using the program less,
so the standard keystrokes for less will work. Table A-1 lists some
common keystrokes.

2

T
a
b
l
e
A
-
1
.
S
o
m
e
k
e
y
s
t
r
o
k
e
s
f
o
r
v
i
e
w
i
n
g

m
a
n
p
a
g
e
s
w
i
t
h

l

e

s

s

Keystroke Action

h Help — display a list of keystrokes for less

spacebar View the next page

b View the previous page

Enter Scroll down one line

< Jump to the beginning of the document

> Jump to the end of the document

/ Search forwards for text (type the text and press Enter)

? Search backwards for text (type the text and press Enter)

n Locate the next occurrence of the search text

q Quit man

Shell Scripts
To run a bunch of Linux commands as a unit:

1. Place the commands in a file

2. Insert a magical first line

3. Make the file executable with chmod

4. Execute the file

The file is called a script or shell script. The magical first line should be the
symbols #! (pronounced “shebang”) followed by the path to a program that
reads and runs the script:

#!/bin/bash

Here is a shell script that says hello and prints today’s date. Lines beginning
with # are comments.

#!/bin/bash
This is a sample script
echo "Hello there!"
date

Use a text editor to store these lines in a file called howdy. Then make the
file executable by running either of these commands:

$ chmod 755 howdy Set all permissions, including execute
permission
$ chmod +x howdy Or, just add execute permission

and run it:

3

$./howdy
Hello there!
Fri Sep 10 17:00:52 EDT 2021

The leading dot and slash (./) indicate that the script is in your current
directory. Without them, the Linux shell won’t find the script:

$ howdy
howdy: command not found

Linux shells provide some programming language features that are useful in
scripts. bash, for example, provides if statements, for loops, while
loops, and other control structures. A few examples are sprinkled
throughout the book. See man bash for the syntax.

Becoming the Superuser
Some files, directories, and programs are protected from normal users,
including you:

$ touch /usr/local/banana Try to create a file in a
system directory
touch: cannot touch '/usr/local/banana': Permission denied

“Permission denied” usually means you tried to access protected resources.
They are accessible only to the Linux superuser (username root). Most
Linux systems come with a program called sudo (pronounced “soo doo”)
that lets you become the superuser for the duration of a single command. If
you installed Linux yourself, your account is probably set up already to run
sudo. If you’re one user on somebody else’s Linux system, you might not
have superuser privileges; speak to your system administrator if you’re not
sure.

Assuming you’re set up properly, simply run sudo, supplying it with the
desired command to run as the superuser. You’ll be prompted for your login

4

password to prove your identity. Supply it correctly, and the command will
run with root privileges:

$ sudo touch /usr/local/banana Make the file as
root
[sudo] password for smith: password here
$ ls -l /usr/local/banana List the file
-rw-r--r-- 1 root root 0 Sep 10 17:16 banana
$ sudo rm /usr/local/banana Clean up as root

sudo may remember (cache) your passphrase for a while, depending on
how sudo is configured, so it might not prompt you every time.

References
For more basics of Linux use, read my previous book, Linux Pocket Guide,
or seek out online tutorials such as https://ubuntu.com/tutorials/command-
line-for-beginners.

1 The dot and double dot are not expressions evaluated by the shell. They are hard links present
in every directory.

2 Or another program if you redefine the value of the shell variable PAGER.

3 If you omit the shebang line, your default shell will run the script. It’s a good practice to
include the line.

4 That’s because the current directory is usually omitted from the shell’s search path, for
security reasons. Otherwise, an attacker could place a malicious, executable script named “ls”
in your current directory, and when you ran ls, the script would run instead of the true ls
command.

https://ubuntu.com/tutorials/command-line-for-beginners

Appendix B. If You Use a Different Shell

This book assumes your login shell is bash, but if it’s not, Table B-1 may help you adapt the
book’s examples for other shells. The checkmark symbol ✓ indicates compatibility — the given
feature is similar enough to bash’s that examples in the book should run correctly. However,
the feature’s behavior may differ from bash’s in other ways. Read any footnotes carefully.

NOTE
Regardless of which shell is your login shell, scripts that begin with #!/bin/bash are processed by bash.

To experiment with another shell installed on your system, simply run it by name (e.g., ksh)
and press ctrl-D when finished. To change your login shell, read man chsh.

T
a
b
l
e
B
-
1
.
b

a

s

h
f
e
a
t
u
r
e
s
s
u
p
p
o
r
t
e
d

b
y
o
t
h
e
r
s
h
e
l
l

s
,
i
n

a
l
p
h
a
b
e
t
i
c
a
l
o
r
d
e
r

bash feature dash fish ksh tcsh zsh

alias builtin ✓ ✓, but alias nam
e does not print the
alias

✓ No equals sign: al
ias g grep

✓

backgrounding
with &

✓ ✓ ✓ ✓ ✓

bash command dash fish ksh tcsh zsh

bash -c dash -c fish -c ksh -c tcsh -c zsh -c

bash location in
/bin/bash

/bin/dash /bin/fish /bin/ksh /bin/tcsh /bin/zsh

BASH_SUBSHELL
variable

brace expansion
with {}

Use seq Only {a,b,c},
not {a..c}

✓ Use seq ✓

cd builtin ✓ ✓ ✓ ✓ ✓

cd - (toggling ✓ ✓ ✓ ✓ ✓

directories)

CDPATH variable ✓ set CDPATH va
lue

✓ set cdpath =
(dir1 dir2 …)

✓

command
substitution with
$()

✓ Use () ✓ Use backquotes ✓

command
substitution with
backquotes

✓ Use () ✓ ✓ ✓

command-line
editing with arrow
keys

✓ ✓ ✓ ✓

command-line
editing with Emacs
keys

✓ ✓ ✓ ✓

command-line
editing with Vim
keys with set -o
vi

✓ Run bindkey -v ✓

complete builtin different syntax different syntax different syntax compdef

conditional lists
with && and ||

✓ ✓ ✓ ✓ ✓

configuration files
in $HOME (read
manpage for
details)

.profile .config/fish/config.f
ish

.profile, .kshrc .cshrc .zshenv, .zprofile,
.zshrc, .zlogin,
.zlogout

control structures:
for loops, if
statements, etc.

✓ different syntax ✓ different syntax ✓

dirs builtin ✓ ✓ ✓

echo builtin ✓ ✓ ✓ ✓ ✓

escape with \ ✓ ✓ ✓ ✓ ✓

escape alias with \ ✓ ✓ ✓ ✓

exec builtin ✓ ✓ ✓ ✓ ✓

exit code with $? ✓ $status ✓ ✓ ✓

export builtin ✓ set -x name v
alue

✓ setenv name v
alue

✓

functions ✓ different syntax ✓ ✓

a

a

b b b b

c

history builtin ✓, but commands
are not numbered

history is an
alias for hist -l

✓ ✓

history -c history clear Delete
~/.sh_history and
restart ksh

✓ history -p

history numbe
r

history -numb
er

history -N nu
mber

✓ history -
number

history expansion
with ! and ^

✓ ✓

history incremental
search with ctrl-R

Type beginning of
command, then
press up arrow to
search, right arrow
to select

✓ ✓ ✓

history with arrow
keys

✓ ✓ ✓ ✓

history with Emacs
keys

✓ ✓ ✓ ✓

history with Vim
keys with set -o
vi

✓ Run bindkey -v ✓

HISTCONTROL
variable

See variables with
names beginning in
HIST_ on the
manpage

HISTFILE
variable

set fish_hist
ory path

✓ set histfile =
path

✓

HISTFILESIZE
variable

set savehist =
value

SAVEHIST

HISTSIZE
variable

✓ ✓

job control with
fg, bg, ctrl-Z, job
s

✓ ✓ ✓ ✓ ✓

pattern-matching
with *, ?, []

✓ ✓ ✓ ✓ ✓

pipes ✓ ✓ ✓ ✓ ✓

popd builtin ✓ ✓ ✓

process substitution
with <()

✓ ✓

a d e

a

a

f

PS1 variable ✓ set PS1 value ✓ set prompt =
value

✓

pushd builtin ✓ ✓, but no negative
arguments

✓

quotes, double ✓ ✓ ✓ ✓ ✓

quotes, single ✓ ✓ ✓ ✓ ✓

redirection of stdin
(<), stdout (>, >>)

✓ ✓ ✓ ✓ ✓

redirection of stderr
(2>)

✓ ✓ ✓ ✓

redirection of
stdout + stderr (&>)

Append 2>&1 ✓ Append 2>&1 >& ✓

sourcing a file with
source or . (dot)

dot only ✓ ✓ source only ✓

subshell with () ✓ ✓ ✓ ✓

tab completion for
filenames

✓ ✓ ✓ ✓

type builtin ✓ ✓ type is an alias
for whence -v

No, but which is a
builtin

✓

unalias builtin ✓ functions --e
rase

✓ ✓ ✓

variable evaluation
with $name

✓ ✓ ✓ ✓ ✓

variable definition
with name=valu
e

✓ set name valu
e

✓ set name = valu
e

✓

a This feature is disabled by default. Run set -o emacs to enable it. Older versions of ksh may behave differently.

b Custom command completion, using the complete command or similar, differs significantly from shell to shell; read
the shell’s manpage.

c Functions: This shell does not support newer-style definitions that begin with the function keyword.

d Incremental search of history works differently in ksh. Press ctrl-R, type a string, and press Enter to recall the most
recent command containing that string. Press ctrl-R and Enter again to search backward for the next matching
command, and so on. Press Enter to execute.

e To enable incremental history search with ctrl-R in tcsh, run the command bindkey ^R i-search-back (and add it to
a shell configuration file). The search behavior is a bit different from bash’s; see man tcsh.

f Job control: tcsh does not track the default job number as intelligently as other shells, so you may need to supply the
job number, such as %1, as an argument to fg and bg more often.

g Redirection of stdout and stderr: The syntax in this shell is: command > file 2>&1. The final term 2>&1 means “redirect
stderr, which is file descriptor 2, to stdout, which is file descriptor 1.”

g g

h h h

a

h Sourcing in this shell requires an explicit path to the sourced file, such as ./myfile for a file in the current directory,
or the shell won’t locate the file. Alternatively, place the file into a directory in the shell’s search path.

Index

Symbols

! (exclamation point) for history expansion, History Expansion

(see also history expansion)

!! for previous command, History Expansion

!$ for final word of previous command, Never Delete the Wrong File Again
(Thanks to History Expansion)

!* for arguments of previous command, Never Delete the Wrong File Again
(Thanks to History Expansion)

!? for command history search, History Expansion

(pound sign) for shell script comment, Shell Scripts

#! to begin shell scripts, Shell Scripts, If You Use a Different Shell

$ (dollar sign)

awk field, The awk {print} Command

regular expression, grep: A Deeper Look

shell prompt, Preface

variable evaluation, Evaluating Variables

$() for command substitution, Technique #3: Command Substitution

(see also command substitution)

$0

awk input line, The awk {print} Command

shell script name, Build a Password Manager

$? for exit code, Technique #1: Conditional Lists

% (percent)

date and time formatting, The date Command

job control, Common Job-Control Operations

& (ampersand) for job control, Launching a Command in the Background

(see also job control)

&& for conditional list, Organize Your Home Directory for Fast
Navigation, Technique #1: Conditional Lists

(see also conditional lists)

&> to redirect stdout and stderr, Redirecting Input and Output

() (parentheses)

awk field numbers, The awk {print} Command

command substitution, fish shell, If You Use a Different Shell

regular expression, grep: A Deeper Look

subshell, Technique #10: Explicit Subshells

examples, Organize Your Home Directory for Fast Navigation

* (asterisk)

file pattern-matching, Pattern Matching for Filenames, Cursoring
Through History

regular expression, grep: A Deeper Look

+ (plus)

date and time formatting, The date Command

tail command, The tail Command

, (comma) in awk programs, The awk {print} Command

- (dash)

cd command, Toggle Between Two Directories With “cd -”

cut command, Command #3: cut

file pattern-matching, Pattern Matching for Filenames

options of a command, Commands, Arguments, and Options

regular expression, grep: A Deeper Look

tr character sets, The tr Command

--- separator in diff output, The diff Command

. (dot)

current directory, The Filesystem, Directories, and Paths

regular expression, grep: A Deeper Look

source command, Environments and Initialization Files, the Short
Version

..

brace expansion, Brace Expansion (A Shell Feature)

parent directory, The Filesystem, Directories, and Paths

CDPATH, Organize Your Home Directory for Fast Navigation

./ for path to current directory

running scripts, Shell Scripts

sourcing, If You Use a Different Shell

/ (forward slash)

awk operator for regular expressions, awk Essentials

file path separator, The Filesystem, Directories, and Paths

root directory, The Filesystem, Directories, and Paths

sed operator, sed Essentials, sed Essentials

/dev/null, Launching Browser Windows From the Command Line

/etc/bash.bashrc file, Configuring Your Environment

/etc/bash.bash_logout file, Configuring Your Environment

/etc/hosts file, Audience and Prerequisites, History Expansion, The awk
{print} Command, Processing a File One Line at a Time

/etc/passwd file, Command #5: sort, Producing Text, grep: A Deeper Look,
Leveraging Text Files

/etc/profile file, Configuring Your Environment

/etc/shells file, grep: A Deeper Look, Shells are Executable Files

/usr/share/dict/words file (see dictionary file)

2> to redirect stderr, Redirecting Input and Output

meaning, Technique #4: Process Substitution

2>> to redirect and append stderr, Redirecting Input and Output

: (colon)

CDPATH separator, Make a Big Filesystem Feel Smaller with
CDPATH

history expansion, History Expansion, History Expansion with Carets

PATH separator, Locating Programs to Be Run, The tr Command

; (semicolon) for unconditional list, Technique #2: Unconditional Lists

(see also unconditional lists)

< (less than)

diff output, The diff Command

redirecting stdin, Redirecting Input and Output

<() for process substitution, Technique #4: Process Substitution

(see also process substitution)

> (greater than)

diff output, The diff Command

redirecting stdout, Redirecting Input and Output

>&2 to redirect stderr to stdout, Build a Password Manager

>> to redirect and append stdout, Redirecting Input and Output

? (question mark) for file pattern-matching, Pattern Matching for Filenames

[] (square brackets)

awk arrays, Improving the Duplicate File Detector

file pattern-matching, Pattern Matching for Filenames

regular expression, grep: A Deeper Look

vs. curly braces, Brace Expansion (A Shell Feature)

\ (backslash)

line continuation, Disabling Evaluation with Quotes and Escapes

regular expression, grep: A Deeper Look

sed subexpression, referencing (\1), Matching Subexpressions With
sed

shell escape character, Disabling Evaluation with Quotes and Escapes

\(

regular expression, grep: A Deeper Look

sed subexpression, defining, Matching Subexpressions With sed

\n for newline character, Locating Programs to Be Run

^ (caret)

history expansion, History Expansion with Carets

regular expression, grep: A Deeper Look

` (backquote), Technique #3: Command Substitution

{} (curly braces)

awk action, awk Essentials

print statement, The awk {print} Command

brace expansion, Brace Expansion (A Shell Feature)

find command, The find Command

vs. square brackets, Brace Expansion (A Shell Feature)

| (vertical bar)

pipe symbol, Input, Output, and Pipes, Redirecting Input and Output

(see also pipes)

regular expression, grep: A Deeper Look

|| for conditional list, Technique #1: Conditional Lists

(see also conditional lists)

~ (tilde)

home directory, Jump to Your Home Directory

preceding a username, Jump to Your Home Directory

A

absolute path, The Filesystem, Directories, and Paths

actions, awk, awk Essentials

alias command, Shortening Commands with Aliases

aliases, Shortening Commands with Aliases

availability in scripts, Child Shells vs. Subshells

defining in combined commands, Shortening Commands with Aliases

deleting, Shortening Commands with Aliases

escaping, Disabling Evaluation with Quotes and Escapes

for directories, Hop to Frequently-Visited Directories Using Aliases or
Variables

frequently-edited files, Hop to Frequently-Visited Directories Using
Aliases or Variables

overriding search path, Locating Programs to Be Run

precedence, Shortening Commands with Aliases

recursion, preventing, Shortening Commands with Aliases

shadowing a command, Shortening Commands with Aliases

typographical errors, Embracing Typos

viewing, Shortening Commands with Aliases

alphabet

nth letter, Think About Where to Start

printing, Brace Expansion (A Shell Feature)

ampersand, job control, Launching a Command in the Background

(see also job control)

animals.txt file (running example), Six Commands To Get You Started

apropos command, Toward an Even Larger Toolbox

apt package manager, Toward an Even Larger Toolbox

area codes

areacode script, Build an Area Code Database

database, Build an Area Code Database

downloading, Processing HTML with HTML-XML-utils

argument list too long (error), Technique #8: Running a List of Commands
With xargs

arguments, Commands, Arguments, and Options

arrays, awk, Improving the Duplicate File Detector, Build an Area Code
Database

arrow keys

command history, Cursoring Through History

command-line editing, Cursoring Within a Command

ASCII zero (see null character)

AsciiDoc, Inserting a Filename Into a Sequence

HTML conversion, Use make For Non-Programming Tasks

assigning a value to a variable, Where Variables Come From

asterisk

file pattern-matching, Pattern Matching for Filenames, Cursoring
Through History

regular expression, grep: A Deeper Look

at command, Technique #2: Unconditional Lists, Learn cron, crontab, and at

atq command, Learn cron, crontab, and at

atrm command, Learn cron, crontab, and at

awk command, The awk {print} Command, The awk and sed Commands-
Improving the Duplicate File Detector

(see also awk programs)

changing field separator (-F option), The awk {print} Command, awk
Essentials

cutting columns, The awk {print} Command

examples, Think About Where to Start, Checking Matched Pairs of
Files, Checking Matched Pairs of Files, Leveraging Text Files, Check
Domain Expiration, Check Domain Expiration, Build an Area Code
Database, Build a Password Manager, Build a Password Manager,
Retrieving HTML With curl and wget

meaning of name, awk Essentials

reading program from file (-f option), awk Essentials

syntax, awk Essentials

tutorials, awk Essentials

awk programs, awk Essentials

(see also awk command)

actions, awk Essentials

arrays, Improving the Duplicate File Detector, Improving the
Duplicate File Detector, Build an Area Code Database

printing, Improving the Duplicate File Detector

BEGIN pattern, awk Essentials

commas, The awk {print} Command

default action, awk Essentials

default pattern, awk Essentials

END pattern, awk Essentials

entire line ($0), The awk {print} Command

line number (FNR), The awk {print} Command, The awk and sed
Commands, awk Essentials

loops, Improving the Duplicate File Detector

math, awk Essentials

number of fields ($NF), The awk {print} Command

patterns, awk Essentials

printing fields, The awk {print} Command-The awk {print} Command

quoting on command line, awk Essentials

regular expressions, awk Essentials

skipping lines, awk Essentials

string comparison, Check Domain Expiration

whitespace handling, The awk {print} Command

B

background commands, Technique #9: Backgrounding a Command

(see also job control)

cursor placement after output, Output and Input in the Background

input/output, Output and Input in the Background

web browsers, Launching Browser Windows From the Command Line

backquotes (backticks), Technique #3: Command Substitution

backslash

line continuation, Disabling Evaluation with Quotes and Escapes

regular expression, grep: A Deeper Look

sed subexpression, referencing (\1), Matching Subexpressions With
sed

shell escape character, Disabling Evaluation with Quotes and Escapes

bang, History Expansion

bang commands (see history expansion)

basename command, Build a Password Manager

bash, Introducing the Shell

compatibility with other shells, If You Use a Different Shell

configuration files, Environments and Initialization Files, the Short
Version, Superstition Alert: “Global” Variables, Configuring Your
Environment-Traveling With Your Environment

cleanup files, Configuring Your Environment

copying between machines, Traveling With Your Environment

initialization files, Configuring Your Environment

startup files, Configuring Your Environment

default shell

most Linux systems, Shells are Executable Files

this book, Your Shell, If You Use a Different Shell

initialization files, Environments and Initialization Files, the Short
Version

manpage, Read the bash Manpage

passing a command as an argument (-c option), Technique #5: Passing
a Command as an Argument to bash, Be Flexible

piping commands to, Technique #6: Piping a Command to bash

running manually, Shells are Executable Files

scripting language, weaknesses, Learn Another Scripting Language

skip loading initialization files (--norc option), Child Shells vs.
Subshells

startup files, Environments and Initialization Files, the Short Version

.bashrc file, Environments and Initialization Files, the Short Version,
Configuring Your Environment

BASH_ENV variable, Configuring Your Environment

.bash_login file, Configuring Your Environment

.bash_logout file, Configuring Your Environment

.bash_profile file, Configuring Your Environment

BASH_SUBSHELL variable, Child Shells vs. Subshells, Technique #10:
Explicit Subshells

BEGIN pattern, awk, awk Essentials

bg command, Suspending a Command and Sending It to the Background,
Common Job-Control Operations

brace expansion, Brace Expansion (A Shell Feature)-Brace Expansion (A
Shell Feature)

examples, Technique #4: Process Substitution, Technique #6: Piping a
Command to bash, Building a Brash One-Liner, Think About Where
to Start, Think About Where to Start

brash one-liner, Organize Your Home Directory for Fast Navigation,
Building a Brash One-Liner-Summary, Leveraging Text Files, Retrieving
HTML With curl and wget

definition, Building a Brash One-Liner

browser (see web browser)

builtins, Input, Output, and Pipes, Parent and Child Processes

bg, Suspending a Command and Sending It to the Background

complete, Hop to Frequently-Visited Directories Using Aliases or
Variables

dirs, Toggle Among Many Directories With pushd and popd

echo, Evaluating Variables

exec, Technique #11: Process Replacement

exit, Shells are Executable Files

export, Creating Environment Variables

fg, Common Job-Control Operations

for, Patterns vs. Variables, Shell Scripts

history, Viewing the Command History

if, Shell Scripts

jobs, Common Job-Control Operations

kill, Common Job-Control Operations

popd, Toggle Among Many Directories With pushd and popd

pushd, Toggle Among Many Directories With pushd and popd

read, Processing a File One Line at a Time

set, Emacs or Vim-Style Command-Line Editing

type, Locating Programs to Be Run

while, Processing a File One Line at a Time, Shell Scripts

C

caching

gpg passphrase, Build a Password Manager

program locations, Locating Programs to Be Run

sudo passphrase, Becoming the Superuser

caret symbol

history expansion, History Expansion with Carets

regular expression, grep: A Deeper Look

cascading style sheets, selectors, Processing HTML with HTML-XML-utils

cat command, Audience and Prerequisites, Combining Commands,
Producing Text, Combining Text, File Viewing

cd command, Audience and Prerequisites, Directory Movement

CDPATH variable, Make a Big Filesystem Feel Smaller with CDPATH

generating a value, Generating a CDPATH From Your Home
Directory

organizing home directory, Organize Your Home Directory for
Fast Navigation

dash argument (-), Toggle Between Two Directories With “cd -”

directory stack, Toggle Among Many Directories With pushd and popd

printing absolute path, Make a Big Filesystem Feel Smaller with
CDPATH

search path, Make a Big Filesystem Feel Smaller with CDPATH

vs. pushd, Turn a Mistaken cd Into a pushd

why a shell builtin, Parent and Child Processes

without arguments, Jump to Your Home Directory

changing

case of text, The tr Command

command line text (see command-line editing)

directory, Directory Movement

(see also cd command)

during pipeline execution, Technique #10: Explicit Subshells

your shell, If You Use a Different Shell

check-expiry scripts, Check Domain Expiration

checking matched pairs of files, Checking Matched Pairs of Files

checksum, Detecting Duplicate Files

chgrp command, Identifying Commands That Support Recursion

child process, Parent and Child Processes

copied variables, Creating Environment Variables

creation, Parent and Child Processes

vs. subshell, Technique #10: Explicit Subshells

child shell, Child Shells vs. Subshells

chmod command, Audience and Prerequisites, File Permissions

recursive (-r option), Identifying Commands That Support Recursion

chown command, Identifying Commands That Support Recursion

tab completion, Move Faster With Tab Completion

Chrome (see google-chrome command)

chronological data, reversing, The tac Command

chsh command, If You Use a Different Shell

Cinnamon, Parents, Children, and Environments, Instant Shells and
Browsers, Switching Windows and Desktops, Clipboard Control From the
Command Line

cleanup files, Configuring Your Environment

clear command, Configuring Your Environment

clipboard, Clipboard Control From the Command Line

(see also X selections)

control, Clipboard Control From the Command Line

manager, Improving The Password Manager

colon symbol

CDPATH separator, Make a Big Filesystem Feel Smaller with
CDPATH

history expansion, History Expansion, History Expansion with Carets

PATH separator, Locating Programs to Be Run, The tr Command

columns from a file, Command #3: cut

combined command, Input, Output, and Pipes

combining commands with pipes, Combining Commands

(see also pipes)

combining text

side by side, Combining Text

top to bottom, Combining Text

comma, in awk programs, The awk {print} Command

command

arguments, Commands, Arguments, and Options

backgrounding (see job control)

definition, Input, Output, and Pipes, Commands, Arguments, and
Options

foregrounding (see job control)

killing, Commands, Arguments, and Options

options, Commands, Arguments, and Options

combining, Commands, Arguments, and Options

types, Commands, Arguments, and Options

recursive, Identifying Commands That Support Recursion

running, Preface, Commands, Arguments, and Options

suspending (see job control)

switches, Commands, Arguments, and Options

template, xargs, Technique #8: Running a List of Commands With
xargs

three meanings, Input, Output, and Pipes

command history, Command #3: cut, Rerunning Commands, Viewing the
Command History-Incremental Search of Command History

absolute position, History Expansion

appending to, Viewing the Command History

exception for history expansion, History Expansion

brash one-liners, Inserting a Filename Into a Sequence

cursoring, Cursoring Through History

deleting, Viewing the Command History

expansion (see history expansion)

ignoring duplicates, Viewing the Command History

incremental search, Incremental Search of Command History

number of lines of output, Viewing the Command History

piping, Viewing the Command History

relative position, History Expansion

repeated commands, Viewing the Command History

separate vs. shared, Viewing the Command History

size, Viewing the Command History

storage location, Viewing the Command History

storage size, Viewing the Command History

up/down arrow keys, Cursoring Through History

writing brash one-liners, Know Your Testing Tools

command substitution, Technique #3: Command Substitution-Technique
#3: Command Substitution

examples, Be Flexible, Checking Matched Pairs of Files, Generating a
CDPATH From Your Home Directory, Generating Test Files, Check
Domain Expiration, Check Domain Expiration, Build a Password
Manager, Build a Password Manager, Launching Browser Windows
From the Command Line, Connecting Selections to stdin and stdout

nesting, Technique #3: Command Substitution

special characters in filenames, Technique #3: Command Substitution

subshell, Technique #10: Explicit Subshells

command-line editing, Command #3: cut, Rerunning Commands,
Command-Line Editing-Emacs or Vim-Style Command-Line Editing

brash one-liners, Inserting a Filename Into a Sequence

cursoring, Cursoring Within a Command

emacs style, Emacs or Vim-Style Command-Line Editing

keystrokes

cursor keys, Cursoring Within a Command

emacs and vim, Emacs or Vim-Style Command-Line Editing

left/right arrow keys, Cursoring Within a Command

vim style, Emacs or Vim-Style Command-Line Editing

complete command, Hop to Frequently-Visited Directories Using Aliases or
Variables

concatenating files, Combining Text, File Viewing

conditional lists, Technique #1: Conditional Lists

backgrounding, Backgrounding Tips

examples, Turn a Mistaken cd Into a pushd, Technique #4: Process
Substitution

configuration files

bash (see bash, configuration files)

desktop environments, Configuring Your Environment

other shells, If You Use a Different Shell

text editors, Environment Variables, Build a Password Manager

control-C (kill current command), Output and Input in the Background,
Commands, Arguments, and Options

control-D (end of file), Output and Input in the Background

control-Z (suspend current command), Suspending a Command and
Sending It to the Background

convert command, Generating Test Files

converting text to upper or lower case, The tr Command

copying files, File and Directory Handling, File and Directory Handling

recursively with rsync, Learn rsync

copying text, Clipboard Control From the Command Line

with mouse, Clipboard Control From the Command Line

xclip, Connecting Selections to stdin and stdout

correcting a command line (see command-line editing)

counting characters, words, and lines, Command #1: wc

cp command, Audience and Prerequisites, File and Directory Handling

recursive (-r and -a options), Identifying Commands That Support
Recursion, Learn rsync

creating directories, File and Directory Handling

creating files

empty files, Generating Empty Files, Creating and Editing Files

image files, Generating Test Files

text files, Generating Test Files, Creating and Editing Files

cron, Technique #2: Unconditional Lists, A First Example: Finding Files,
Learn cron, crontab, and at

job, Learn cron, crontab, and at

crontab command, Learn cron, crontab, and at

edit (-e option), Learn cron, crontab, and at

EDITOR variable, Jumping Into Your Editor From less

file format, Learn cron, crontab, and at

CSS selectors, Processing HTML with HTML-XML-utils

CSV format, Build an Area Code Database, Build an Area Code Database

ctrl (see control)

curl command, Retrieving HTML With curl and wget

suppress messages (-s option), Processing HTML with HTML-XML-
utils

curly braces

awk action, awk Essentials

print statement, The awk {print} Command

brace expansion, Brace Expansion (A Shell Feature)

find command, The find Command

vs. square brackets, Brace Expansion (A Shell Feature)

current directory, Directory Movement

new shell window, Instant Shells and Browsers

current shell, Shell Vocabulary

current time, The date Command

cursoring (cursor keys)

command history, Cursoring Through History

command-line editing, Cursoring Within a Command

cut command, Command #3: cut-Command #3: cut

(see also paste command)

character-based columns (-c option), Command #3: cut

column, definition of, Command #3: cut

examples, Organize Your Home Directory for Fast Navigation, grep: A
Deeper Look, The diff Command, Checking Matched Pairs of Files,
Leveraging Text Files, Build an Area Code Database

field-based columns (-f option), Command #3: cut

separator (-d option), Command #3: cut

D

dash shell, Your Shell, If You Use a Different Shell

dash symbol

cd command, Toggle Between Two Directories With “cd -”

cut command, Command #3: cut

file pattern-matching, Pattern Matching for Filenames

options of a command, Commands, Arguments, and Options

regular expression, grep: A Deeper Look

tr character sets, The tr Command

database schema, Leveraging Text Files

date command, The date Command

examples, Technique #3: Command Substitution, Check Domain
Expiration

format conversion (--date option), Check Domain Expiration

deleting directories, File and Directory Handling, File and Directory
Handling

deleting files, File and Directory Handling

mass deletion

find command, The find Command

rm -rf command, File and Directory Handling

xargs command, Technique #8: Running a List of Commands
With xargs

delimiter, Command #3: cut, The paste Command

(see also separator)

dependencies, make, Use make For Non-Programming Tasks

desktop environment, A First Example: Finding Files, Instant Shells and
Browsers, Switching Windows and Desktops, Clipboard Control From the
Command Line

launching, Parents, Children, and Environments

login shell behavior, Configuring Your Environment

desktop switching, Switching Windows and Desktops

detect repeated adjacent lines in a file, Command #6: uniq

/dev/null, Launching Browser Windows From the Command Line

df command, The awk {print} Command

dictionary file, Generating Test Files, Generating Empty Files

diff command, The diff Command

examples, Technique #4: Process Substitution, Technique #4: Process
Substitution, Checking Matched Pairs of Files

directory, The Filesystem, Directories, and Paths

changing, Directory Movement

during pipeline execution, Technique #10: Explicit Subshells

creating, File and Directory Handling

current, Directory Movement

path, The Filesystem, Directories, and Paths

popping, Toggle Among Many Directories With pushd and popd

printing, Directory Movement

pushing, Toggle Among Many Directories With pushd and popd

removing, File and Directory Handling, File and Directory Handling

renaming, File and Directory Handling

returning efficiently, Returning to Directories Efficiently

stack, Toggle Among Many Directories With pushd and popd

(see also pushd command)

shifting, Go Deeper Into the Stack

viewing, View a Directory Stack

swapping, Toggle Among Many Directories With pushd and popd

toggling, Toggle Between Two Directories With “cd -”

visiting efficiently, Visiting Specific Directories Efficiently

dirs command, Toggle Among Many Directories With pushd and popd,
View a Directory Stack

alias, View a Directory Stack

numbering lines (-v option), View a Directory Stack, Go Deeper Into
the Stack

printing vertically (-p option), View a Directory Stack

discovering new commands, Toward an Even Larger Toolbox

disk space report, The awk {print} Command

dnf package manager, Toward an Even Larger Toolbox

dollar sign

awk field, The awk {print} Command

regular expression, grep: A Deeper Look

shell prompt, Preface

variable evaluation, Evaluating Variables

domain name expiration, Check Domain Expiration

Done message (job control), Launching a Command in the Background

dot symbol

current directory, The Filesystem, Directories, and Paths

regular expression, grep: A Deeper Look

source command, Environments and Initialization Files, the Short
Version

double quotes, Disabling Evaluation with Quotes and Escapes

backslash evaluation, Disabling Evaluation with Quotes and Escapes

double rev trick, The rev Command

downloading web content, Retrieving HTML With curl and wget

duplicate detection

files, Detecting Duplicate Files

improved with awk, Improving the Duplicate File Detector

subdirectory names, Organize Your Home Directory for Fast
Navigation

dwarves, seven, Improving the Duplicate File Detector

E

EasyPG package, Build a Password Manager

echo command, Evaluating Variables, Combining Text

adding for safety, The find Command

clearing X selections, Connecting Selections to stdin and stdout

file descriptor viewing, Technique #4: Process Substitution

suppressing newline (-n option), Think About Where to Start,
Connecting Selections to stdin and stdout, Creating Empty Files
Quickly

testing expressions, Know Your Testing Tools

variable evaluation, Variables and Superstition

editing a command line (see command-line editing)

editing files that contain a given string, Editing Files That Contain a Given
String

EDITOR variable, Environment Variables, Jumping Into Your Editor From
less

editor, default, Jumping Into Your Editor From less

efficient, definition of, What This Book is Not

elements of awk arrays, Improving the Duplicate File Detector

emacs editor, Creating and Editing Files

EasyPG package, Build a Password Manager

exiting, Jumping Into Your Editor From less

tutorial, Creating and Editing Files

emerge package manager, Toward an Even Larger Toolbox

empty file creation, Creating and Editing Files

in bulk, Generating Empty Files, Creating Empty Files Quickly

empty string test, Build a Password Manager

encrypted text file, Build a Password Manager

editing, Build a Password Manager

END pattern, awk, awk Essentials

environment, Environments and Initialization Files, the Short Version,
Parent and Child Processes, Environment Variables

changes to, Parent and Child Processes

configuring (see bash, configuration files)

environment variables, Environment Variables

creating, Creating Environment Variables

definition, Environment Variables

listing, Environment Variables

not global, Superstition Alert: “Global” Variables

escape character, Disabling Evaluation with Quotes and Escapes

escaping, Disabling Evaluation with Quotes and Escapes, Summary

aliases, Disabling Evaluation with Quotes and Escapes

shell vs. awk, Check Domain Expiration

/etc/bash.bashrc file, Configuring Your Environment

/etc/bash.bash_logout file, Configuring Your Environment

/etc/hosts file, Audience and Prerequisites, History Expansion, The awk
{print} Command, Processing a File One Line at a Time

/etc/passwd file, Command #5: sort, Producing Text, grep: A Deeper Look,
Leveraging Text Files

/etc/profile file, Configuring Your Environment

/etc/shells file, grep: A Deeper Look, Shells are Executable Files

evaluating expressions, Pattern Matching for Filenames, Summary

exec command, Technique #11: Process Replacement

examples, Be Flexible

executing a configuration file, Rereading a Configuration File

exit code, Technique #1: Conditional Lists

unconditional list, Technique #2: Unconditional Lists

exit command, Shells are Executable Files

Exit message (job control), Launching a Command in the Background

expanding a pattern, Pattern Matching for Filenames

expiring domain names, Check Domain Expiration

explicit subshell, Technique #10: Explicit Subshells

export command, Creating Environment Variables

purpose, Superstition Alert: “Global” Variables

expressions, Pattern Matching for Filenames

extract columns from a file, Command #3: cut

F

ff script, A First Example: Finding Files

fg command, Common Job-Control Operations

fgrep command, grep: A Deeper Look

file

attributes, File and Directory Handling, File Permissions

copying, File and Directory Handling, File and Directory Handling

creating, Creating and Editing Files

descriptor, Technique #4: Process Substitution

empty, Generating Empty Files, Creating Empty Files Quickly,
Creating and Editing Files

encrypted, Build a Password Manager

editing, Build a Password Manager

path, The Filesystem, Directories, and Paths

pattern-matching, Pattern Matching for Filenames

dot file behavior, Pattern Matching for Filenames, Pattern
Matching for Filenames

find command, The find Command

limited to filenames, Pattern Matching for Filenames

no matches, Pattern Matching for Filenames

vs. variable evaluation, Patterns vs. Variables

your own programs, Pattern Matching for Filenames

permissions, File and Directory Handling, File Permissions

removing, File and Directory Handling

accident prevention, Never Delete the Wrong File Again (Thanks
to History Expansion)

renaming, File and Directory Handling, File and Directory Handling

text, Leveraging Text Files-Summary

(see also text files)

filename completion, Move Faster With Tab Completion

filesystem, The Filesystem, Directories, and Paths

navigation, Cruising the Filesystem

final word on a line

extracting

awk, awk Essentials

double rev trick, The rev Command

matching, history expansion, Never Delete the Wrong File Again
(Thanks to History Expansion)

find command, The find Command-The find Command

case sensitivity (-iname option), The find Command

examples, Be Flexible, A First Example: Finding Files

executing other commands (-exec option), The find Command,
Technique #8: Running a List of Commands With xargs

file pattern-matching (-name option), The find Command

limiting to files or directories (-type option), The find Command

maximum depth (-maxdepth option), Technique #8: Running a List of
Commands With xargs

print nulls (-print0 option), Technique #8: Running a List of
Commands With xargs, Technique #8: Running a List of Commands
With xargs

xargs command combination, Editing Files That Contain a Given
String

xargs command, combining, Technique #8: Running a List of
Commands With xargs

safety, Technique #8: Running a List of Commands With xargs

finding files quickly, A First Example: Finding Files

firefox command, Instant Shells and Browsers

first lines of a file, Command #2: head

fish shell, If You Use a Different Shell

fixing a command line (see command-line editing)

flexible thinking, Be Flexible

fold command, Toward an Even Larger Toolbox

folder (see directory)

for loop

awk, Improving the Duplicate File Detector, Build an Area Code
Database

bash, Patterns vs. Variables, Generating Test Files, Shell Scripts

foreground commands, Technique #9: Backgrounding a Command

suspending, Suspending a Command and Sending It to the Background

formatting dates and times, The date Command

forward slash

awk operator for regular expressions, awk Essentials

file path separator, The Filesystem, Directories, and Paths

root directory, The Filesystem, Directories, and Paths

sed operator, sed Essentials, sed Essentials

free disk space, The awk {print} Command

fsck command, The yes Command

function, shell, Hop to Frequently-Visited Directories Using Aliases or
Variables, Improving The Password Manager

G

generated commands, xargs, Technique #8: Running a List of Commands
With xargs

Git, Traveling With Your Environment, Technique #1: Conditional Lists,
Apply Version Control to Day-To-Day Files

git command, Technique #1: Conditional Lists, Apply Version Control
to Day-To-Day Files

EDITOR variable, Jumping Into Your Editor From less

GitHub, Traveling With Your Environment

global variables (not), Environments and Initialization Files, the Short
Version, Superstition Alert: “Global” Variables

globbing (see file, pattern-matching)

GNOME, Parents, Children, and Environments, A First Example: Finding
Files, Instant Shells and Browsers, Switching Windows and Desktops,
Clipboard Control From the Command Line

configuration file, Configuring Your Environment

gnome-terminal command, Instant Shells and Browsers, Clipboard Control
From the Command Line

.gnomerc file, Configuring Your Environment

google-chrome command, Instant Shells and Browsers

gpg command (GnuPG), Build a Password Manager, Improving The
Password Manager

GPG_TTY variable, Build a Password Manager

greater-than symbol

diff output, The diff Command

redirecting stdout, Redirecting Input and Output

grep command, Command #4: grep-Command #4: grep, grep: A Deeper
Look-grep: A Deeper Look

case sensitivity (-i option), grep: A Deeper Look

examples, The diff Command, Improving the Duplicate File Detector,
Be Flexible, Be Flexible, Checking Matched Pairs of Files, Generating
Empty Files, A First Example: Finding Files, Check Domain
Expiration, Build an Area Code Database, Build an Area Code
Database, Build a Password Manager

filename extensions, Be Flexible

full word matching (-w option), Command #5: sort, grep: A Deeper
Look, Build an Area Code Database

inverting the match (-v option), Command #4: grep

literal match (-F option), grep: A Deeper Look

meaning of name, grep: A Deeper Look

printing filenames (-l option), grep: A Deeper Look

recursive (-r option), Editing Files That Contain a Given String,
Identifying Commands That Support Recursion

regular expressions, grep: A Deeper Look

set of strings to match (-f option), grep: A Deeper Look

H

halshell script, Shells are Executable Files

hard links, The Filesystem, Directories, and Paths

head command, Command #2: head-Command #2: head

(see also tail command)

combining with tail, The tail Command

examples, Think About Where to Start, Generating Test Files,
Generating Test Files, Generating Test Files, Generating Empty Files,
Check Domain Expiration, Build an Area Code Database, Build an
Area Code Database

number of lines (-n option), Command #2: head

reading from stdin, Command #2: head

simpler syntax, The tail Command

help, asking for, Toward an Even Larger Toolbox

HISTCONTROL variable, Viewing the Command History

HISTFILE variable, Viewing the Command History

HISTFILESIZE variable, Viewing the Command History

history command, Viewing the Command History

clearing (-c option), Viewing the Command History

history expansion, History Expansion-Never Delete the Wrong File Again
(Thanks to History Expansion)

appending to command history, History Expansion

caret substitution, History Expansion with Carets

printing only (:p modifier), History Expansion

search, History Expansion

sed substitution, History Expansion with Carets

strings vs. commands, History Expansion

HISTSIZE variable, Viewing the Command History

home directory, The Filesystem, Directories, and Paths

HOME variable, Evaluating Variables, Jump to Your Home Directory,
Environment Variables

organizing, Organize Your Home Directory for Fast Navigation

tilde shortcut, Jump to Your Home Directory

visiting, Jump to Your Home Directory

hosts file (see /etc/hosts file)

hotkeys (see keyboard shortcuts)

HTML

parsing with HTML-XML-utils package, Processing HTML with
HTML-XML-utils

downloading, Processing HTML with HTML-XML-utils

rendering as text, Retrieving Rendered Web Content With a Text-
Based Browser

retrieving, Retrieving HTML With curl and wget

hxnormalize command, Processing HTML with HTML-XML-utils

cleaning up output (-x option), Processing HTML with HTML-XML-
utils

hxselect command, Processing HTML with HTML-XML-utils

omitting tags from output (-c option), Processing HTML with HTML-
XML-utils

output separator (-s option), Processing HTML with HTML-XML-
utils

I

if statement, Shell Scripts

image files, generating, Generating Test Files

ImageMagick, Generating Test Files

incremental history search, Incremental Search of Command History

initialization files, Environments and Initialization Files, the Short Version,
Configuring Your Environment

input redirection, Redirecting Input and Output

(see also redirection)

input strings, xargs, Technique #8: Running a List of Commands With xargs

inserting a filename into a sequence, Inserting a Filename Into a Sequence

installing new programs, Toward an Even Larger Toolbox

instance, shell, Shell Vocabulary

interactive shell, Shell Vocabulary, Configuring Your Environment

interleaving files

diff, The diff Command

paste, The paste Command

IP address, The awk {print} Command

isolating text, Isolating Text

J

job, Jobs and Job Control

cron, Learn cron, crontab, and at

number (ID), Jobs and Job Control

vs. process, Jobs and Job Control

job control, Technique #9: Backgrounding a Command-Backgrounding
Tips

backgrounding a command, Technique #9: Backgrounding a
Command, Common Job-Control Operations

definition, Jobs and Job Control

examples of common operations, Common Job-Control Operations

foregrounding a command, Common Job-Control Operations

input/output, Output and Input in the Background

suspending a command, Suspending a Command and Sending It to the
Background

table of commands, Common Job-Control Operations

jobs command, Common Job-Control Operations

K

KDE Plasma, Parents, Children, and Environments, A First Example:
Finding Files, Instant Shells and Browsers, Switching Windows and
Desktops, Switching Windows and Desktops, Clipboard Control From the
Command Line

keyboard shortcuts

custom, Instant Shells and Browsers

defining, Instant Shells and Browsers

web browser, Browser Keyboard Shortcuts

kill command, Common Job-Control Operations, Processes

killing a process, Processes

konsole command, Instant Shells and Browsers, Clipboard Control From
the Command Line

ksh shell, If You Use a Different Shell

L

largest value in a file, Command #5: sort, Think About Where to Start

last lines of a file, The tail Command

last word on a line (see final word on a line)

leading zeroes

brace expansion, Brace Expansion (A Shell Feature)

seq command, The seq Command

learning new commands, Toward an Even Larger Toolbox

less command, Audience and Prerequisites, Input, Output, and Pipes, File
Viewing

clearing the screen (-c option), Shortening Commands with Aliases

default editor, Jumping Into Your Editor From less

editing the viewed file, Jumping Into Your Editor From less

keystrokes, Viewing Documentation

less-than symbol

diff output, The diff Command

redirecting stdin, Redirecting Input and Output

limiting line length, Toward an Even Larger Toolbox

line continuation character, Disabling Evaluation with Quotes and Escapes

lines that match a string, Command #4: grep

link, hard, The Filesystem, Directories, and Paths

links command, Retrieving Rendered Web Content With a Text-Based
Browser

render and download (-dump option), Retrieving Rendered Web
Content With a Text-Based Browser

Linux

filesystem, The Filesystem, Directories, and Paths

error-checking, The yes Command

navigation, Cruising the Filesystem

processes, Processes

review of basics, Linux Refresher

tutorial, References

list of commands

backgrounding, Suspending a Command and Sending It to the
Background

conditional list, Technique #1: Conditional Lists

unconditional list, Technique #2: Unconditional Lists

xargs execution, Technique #8: Running a List of Commands With
xargs

list of shells

bash compatibility, If You Use a Different Shell

installed, grep: A Deeper Look

listing files, File and Directory Handling

many commands for, Be Flexible

loading a configuration file, Rereading a Configuration File

local variables, Environment Variables

locating

files, The find Command

quickly, A First Example: Finding Files

programs, Locating Programs to Be Run

type command, Locating Programs to Be Run

which command, Locating Programs to Be Run

login shell, Parents, Children, and Environments

long argument lists, Technique #8: Running a List of Commands With xargs

longest filename in a directory, Think About Where to Start

loops

awk, Improving the Duplicate File Detector

bash, Patterns vs. Variables, Check Domain Expiration, Launching
Browser Windows From the Command Line, Processing a File One
Line at a Time, Shell Scripts

lower case conversion, The tr Command

ls command, Audience and Prerequisites, File and Directory Handling

all files (-a option), File and Directory Handling

column control, Command #1: wc

dot file behavior, File and Directory Handling

long listing (-l option), Input, Output, and Pipes, File and Directory
Handling

multicolumn output (-C option), Command #1: wc

recursive (-R option), The find Command, Identifying Commands
That Support Recursion

redirection behavior, Command #1: wc

single column output (-1 option), Command #1: wc, Command #1: wc

testing destructive commands, Know Your Testing Tools

lynx command, Retrieving Rendered Web Content With a Text-Based
Browser

EDITOR variable, Jumping Into Your Editor From less

render and download (-dump option), Retrieving Rendered Web
Content With a Text-Based Browser

M

Mac Terminal, shells, Your Shell

mail command, Technique #2: Unconditional Lists, Leveraging Text Files

subject line (-s option), Leveraging Text Files

make command, Use make For Non-Programming Tasks

Makefile, Use make For Non-Programming Tasks

man command, Audience and Prerequisites, Viewing Documentation

keyword search (-k option), Toward an Even Larger Toolbox

manpages, Audience and Prerequisites, Viewing Documentation

continuous learning, Read a Manpage

matched pairs of files, Checking Matched Pairs of Files

maximum value in a file, Command #5: sort, Think About Where to Start

md5sum command, Detecting Duplicate Files, Improving the Duplicate File
Detector

Mediawiki, Checking Matched Pairs of Files

minimum value in a file, Command #5: sort

missing filenames in a sequence, Technique #4: Process Substitution

mkdir command, Audience and Prerequisites, File and Directory Handling

modifying a command line (see command-line editing)

months of the year, Think About Where to Start

moving directories, File and Directory Handling

moving files, File and Directory Handling, File and Directory Handling

mv command, Audience and Prerequisites, Combining Commands, File and
Directory Handling

N

nano editor, Creating and Editing Files

new commands, discovering, Toward an Even Larger Toolbox

newline character, Brace Expansion (A Shell Feature)

counting with wc, Command #1: wc

empty file generation, Creating Empty Files Quickly

escaping, Disabling Evaluation with Quotes and Escapes

paste command, The paste Command

suppressing with echo -n, Think About Where to Start

syntax (\n), Locating Programs to Be Run

translating with tr, The tr Command, The tr Command

xargs input separator, Technique #8: Running a List of Commands
With xargs

nl command, View a Directory Stack

noninteractive shell, Shell Vocabulary, Configuring Your Environment

nth letter of English alphabet, Brace Expansion (A Shell Feature)

null character, Technique #8: Running a List of Commands With xargs

converting, Technique #8: Running a List of Commands With xargs

null device, Launching Browser Windows From the Command Line

numbering lines of text, View a Directory Stack

O

okular command, Technique #3: Command Substitution

one-liner (see brash one-liner)

one-shot windows, One-Shot Windows

opera command, Instant Shells and Browsers

options, command, Commands, Arguments, and Options

output redirection, Redirecting Input and Output

(see also redirection)

/dev/null, Launching Browser Windows From the Command Line

error messages, Redirecting Input and Output

in protected directory, Technique #5: Passing a Command as an
Argument to bash

overriding a command, Locating Programs to Be Run

P

package manager, Toward an Even Larger Toolbox

package tracking, Launching Browser Windows From the Command Line

pacman package manager, Toward an Even Larger Toolbox

PAGER variable, Viewing Documentation

pairs of files, matching, Checking Matched Pairs of Files

parent directory, The Filesystem, Directories, and Paths

parent process, Parent and Child Processes

parentheses

awk field numbers, The awk {print} Command

command substitution, fish shell, If You Use a Different Shell

regular expression, grep: A Deeper Look

subshell, Technique #10: Explicit Subshells

examples, Organize Your Home Directory for Fast Navigation

parsing HTML, Processing HTML with HTML-XML-utils

passwd file (see /etc/passwd file)

password generator, Generating Test Files

password manager, Build a Password Manager

X selection support, Improving The Password Manager

paste command, The paste Command

(see also cut command)

examples, Preface, Building a Brash One-Liner, Be Flexible, Inserting
a Filename Into a Sequence

separator (-d option), The paste Command

newline character, The paste Command

transposed output (-s option), The paste Command

pasting text, Clipboard Control From the Command Line

with mouse, Clipboard Control From the Command Line

xclip, Connecting Selections to stdin and stdout

path, The Filesystem, Directories, and Paths

filesystem (absolute, relative), The Filesystem, Directories, and Paths

search, Locating Programs to Be Run

PATH variable, Locating Programs to Be Run, The tr Command

pattern matching

filenames (see file, pattern-matching)

grep command, grep: A Deeper Look

regular expressions (see regular expressions)

patterns, awk, awk Essentials

PDF format, Technique #3: Command Substitution

PDF viewer, okular, Technique #3: Command Substitution

percent symbol

date and time formatting, The date Command

job control, Common Job-Control Operations

period (see dot symbol)

Perl, Learn Another Scripting Language

permissions, file, File and Directory Handling, File Permissions

PHP, Learn Another Scripting Language

PID, Processes

pipes, Combining Commands

pipelines, Input, Output, and Pipes, Eleven More Ways to Run a
Command

child processes, Parent and Child Processes

single job, Jobs and Job Control

viewing intermediate results, Know Your Testing Tools

shell feature, Redirecting Input and Output

transparency, Input, Output, and Pipes, Introducing the Shell

piping commands to bash, Technique #6: Piping a Command to bash

examples, Preface, Building a Brash One-Liner, Be Flexible, Think
About Where to Start, Inserting a Filename Into a Sequence,
Generating Test Files, Leveraging Text Files

vs. xargs, Retrieving HTML With curl and wget

plain text (see text files)

plus sign

date and time formatting, The date Command

tail command, The tail Command

pman script, Build a Password Manager-Build a Password Manager,
Improving The Password Manager-Improving The Password Manager

pop-up windows, One-Shot Windows

popd command, Toggle Among Many Directories With pushd and popd

alias, Pop a Directory From the Stack

integer argument, Go Deeper Into the Stack

removing deeper directories, Go Deeper Into the Stack

single directory, Pop a Directory From the Stack

POSIX, Input, Output, and Pipes, Technique #4: Process Substitution

pound sign, shell script comment, Shell Scripts

precedence, Locating Programs to Be Run

aliases, Shortening Commands with Aliases

prepending to lines of text, Inserting a Filename Into a Sequence

prerequisites for this book, Audience and Prerequisites

previous command, Pattern Matching for Filenames, History Expansion

primary selection, Clipboard Control From the Command Line

print statement, awk, The awk {print} Command

print working directory, Directory Movement

printenv command, Evaluating Variables

listing environment variables, Environment Variables

process, Parent and Child Processes, Processes

ID, Processes

killing, Processes

replacement, Technique #11: Process Replacement

vs. shell job, Jobs and Job Control

process substitution, Technique #4: Process Substitution-Technique #4:
Process Substitution

examples, Preface, Be Flexible, Inserting a Filename Into a Sequence,
Checking Matched Pairs of Files

internals, Technique #4: Process Substitution

subshell, Technique #10: Explicit Subshells

producing text, Producing Text

.profile file, Configuring Your Environment

program, Input, Output, and Pipes

prompt, Preface, Introducing the Shell

changing, Shells are Executable Files

ps command, Processes

PS1 variable, Shells are Executable Files, Parent and Child Processes

pseudo-terminal, Technique #7: Executing a String Remotely With ssh

pushd command, Toggle Among Many Directories With pushd and popd

alias, Pop a Directory From the Stack

correcting for cd, Turn a Mistaken cd Into a pushd

integer argument, Go Deeper Into the Stack

jumping to bottom of stack, Go Deeper Into the Stack

pushing a directory, Push a Directory Onto the Stack

shifting the stack, Go Deeper Into the Stack

swapping directories, Swap Directories on the Stack

pwd command, Audience and Prerequisites, Directory Movement

PWD variable, Environment Variables

pwgen command, Generating Test Files

number of strings (-N option), Generating Test Files

Python, Be Flexible, Learn Another Scripting Language

Q

qcd example, Hop to Frequently-Visited Directories Using Aliases or
Variables

question mark, file pattern-matching, Pattern Matching for Filenames

quoting, Disabling Evaluation with Quotes and Escapes, Summary

preserving newlines, Technique #3: Command Substitution

R

random

number generator, Generating Test Files

shuffle, Generating Test Files

strings, Generating Test Files

RANDOM variable, Generating Test Files

range of

characters

brace expansion, Brace Expansion (A Shell Feature)

file pattern-matching, Pattern Matching for Filenames

lines from a file, The tail Command

numbers

brace expansion, Brace Expansion (A Shell Feature)

seq command, The seq Command

read command, Processing a File One Line at a Time

recursive commands, Identifying Commands That Support Recursion

redirection, Introducing the Shell, Redirecting Input and Output, Summary

regexp (see regular expressions)

registrar, domain, Check Domain Expiration

regular expressions

awk, awk Essentials

grep, grep: A Deeper Look

man, Toward an Even Larger Toolbox

sed, sed Essentials

simplifying lengthy, Processing HTML with HTML-XML-utils

subexpressions (sed), Matching Subexpressions With sed

table of, grep: A Deeper Look

relative path, The Filesystem, Directories, and Paths

reminders, sending, Technique #2: Unconditional Lists

removing directories, File and Directory Handling, File and Directory
Handling

removing files, File and Directory Handling

mass deletion

find command, The find Command

rm -rf command, File and Directory Handling

xargs command, Technique #8: Running a List of Commands
With xargs

renaming directories, File and Directory Handling

renaming files, File and Directory Handling, File and Directory Handling

repeating a string, The yes Command

replacing a process, Technique #11: Process Replacement

replacing a string, The awk and sed Commands

rereading a configuration file, Rereading a Configuration File

retrieving HTML, Retrieving HTML With curl and wget

returning to a directory, Returning to Directories Efficiently

rev command, The rev Command

reversing text

characters on a line, The rev Command

lines of a file, The tac Command

rm command, Audience and Prerequisites, File and Directory Handling

interactive (-i option), Never Delete the Wrong File Again (Thanks to
History Expansion)

recursive (-r option), Identifying Commands That Support Recursion

rmdir command, Audience and Prerequisites, File and Directory Handling

root user, Becoming the Superuser

rpm package manager, Toward an Even Larger Toolbox

rsync command, Learn rsync

Ruby, Learn Another Scripting Language

rules for updating files, Use make For Non-Programming Tasks

running commands

basics, Commands, Arguments, and Options

in shell configuration file, Rereading a Configuration File

in the background, Technique #9: Backgrounding a Command

many similar in a row, Technique #6: Piping a Command to bash

running shell, Shell Vocabulary

S

scheduled jobs, Learn cron, crontab, and at

screen command, Toggle Among Many Directories With pushd and popd

scripting languages, Learn Another Scripting Language

search path, Locating Programs to Be Run, Summary

caching, Locating Programs to Be Run

overriding with aliases, Locating Programs to Be Run

search, incremental, Incremental Search of Command History

secondary selection, Clipboard Control From the Command Line

security

clipboard manager and passwords, Improving The Password Manager

password management, Build a Password Manager

search path, Shell Scripts

web links, Retrieving Rendered Web Content With a Text-Based
Browser

sed command, The awk and sed Commands, sed Essentials-Matching
Subexpressions With sed

(see also sed scripts)

examples, Preface, Building a Brash One-Liner, Be Flexible, Inserting
a Filename Into a Sequence, Inserting a Filename Into a Sequence,
Checking Matched Pairs of Files, Checking Matched Pairs of Files,
Generating a CDPATH From Your Home Directory, Processing HTML
with HTML-XML-utils

reading script from file (-f option), sed Essentials

relationship to vim, sed Essentials

running multiple scripts (-e option), sed Essentials

tutorials, Matching Subexpressions With sed

sed scripts, sed Essentials

(see also sed command)

case sensitivity (i option), sed Essentials

deletion script, sed Essentials

global replacement (g option), sed Essentials

quoting on command line, sed Essentials

regular expressions, sed Essentials

replacement string, sed Essentials

subexpressions, Matching Subexpressions With sed, Processing
HTML with HTML-XML-utils

substitution script, sed Essentials

alternate separator character, sed Essentials

semicolon, unconditional list, Technique #2: Unconditional Lists

(see also unconditional lists)

sending a command to the background, Suspending a Command and
Sending It to the Background

separator

awk programs, awk Essentials

CSV files, Build an Area Code Database

cut command, Command #3: cut

hxselect output, Processing HTML with HTML-XML-utils

paste command, The paste Command

sed scripts, sed Essentials

whitespace, Disabling Evaluation with Quotes and Escapes

xargs command, Technique #8: Running a List of Commands With
xargs

seq command, The seq Command

equal widths (-w option), The seq Command

examples, Technique #4: Process Substitution, Inserting a Filename
Into a Sequence, Retrieving HTML With curl and wget

sequence of

filenames, Inserting a Filename Into a Sequence

letters, Brace Expansion (A Shell Feature)

numbers

brace expansion, Brace Expansion (A Shell Feature)

seq command, The seq Command

related commands, Inserting a Filename Into a Sequence

set command, Emacs or Vim-Style Command-Line Editing, Technique #4:
Process Substitution

shadowing, Shortening Commands with Aliases, Disabling Evaluation with
Quotes and Escapes, Locating Programs to Be Run, Embracing Typos

shebang, Shell Scripts

shell, Introducing the Shell-Summary, Parents, Children, and
Environments-Summary

aliases, Shortening Commands with Aliases

bash (see bash)

builtin, Input, Output, and Pipes

(see also builtins)

builtins (see builtins)

changing your default, If You Use a Different Shell

environment, Environments and Initialization Files, the Short Version

halshell example, Shells are Executable Files

instance, Shell Vocabulary

interactive, Shell Vocabulary, Configuring Your Environment

login, Parents, Children, and Environments

noninteractive, Shell Vocabulary, Configuring Your Environment

ordinary program, Shells are Executable Files

other shells, If You Use a Different Shell

pattern-matching responsibility, Pattern Matching for Filenames

piping commands to, Technique #6: Piping a Command to bash

prompt, Preface, Introducing the Shell

scripts, Audience and Prerequisites, Shell Scripts

search path, Locating Programs to Be Run

SHELL variable, Shells are Executable Files

variables, Evaluating Variables

(see also variables)

vocabulary, Shell Vocabulary

vs. programs, Introducing the Shell

window, Instant Shells and Browsers

shuf command, Generating Test Files

examples, Generating Empty Files

number of lines (-n option), Generating Test Files

output file (-o option), Generating Test Files

sibling directory, The Filesystem, Directories, and Paths

simple command, Input, Output, and Pipes, Eleven More Ways to Run a
Command

output, Think About Where to Start

single quotes, Disabling Evaluation with Quotes and Escapes

backslash evaluation, Disabling Evaluation with Quotes and Escapes

slash, backward (see backslash)

slash, forward (see forward slash)

sleep command, Technique #2: Unconditional Lists, Common Job-Control
Operations

slurp alias, Turn a Mistaken cd Into a pushd

smallest value in a file, Command #5: sort

smart copy with rsync, Learn rsync

sort command, Command #5: sort-Command #5: sort

examples, Organize Your Home Directory for Fast Navigation,
Producing Text, grep: A Deeper Look, Improving the Duplicate File
Detector, Environment Variables, Technique #4: Process Substitution,
Think About Where to Start, Leveraging Text Files, Check Domain
Expiration, Build an Area Code Database

numeric (-n option), Command #5: sort

reverse direction (-r option), Command #5: sort, The tac Command

sorting lines of a file, Command #5: sort

source command, Environments and Initialization Files, the Short Version

sourcing a file, Environments and Initialization Files, the Short
Version, Rereading a Configuration File

why it exists, Rereading a Configuration File

square brackets

awk arrays, Improving the Duplicate File Detector

file pattern-matching, Pattern Matching for Filenames

regular expression, grep: A Deeper Look

vs. curly braces, Brace Expansion (A Shell Feature)

SSH, Toggle Among Many Directories With pushd and popd, Parents,
Children, and Environments, Technique #10: Explicit Subshells, Clipboard
Control From the Command Line

ssh command, Technique #7: Executing a String Remotely With ssh

executing remote commands, Technique #7: Executing a String
Remotely With ssh

tab completion, Move Faster With Tab Completion

terminal allocation (-T option), Technique #7: Executing a String
Remotely With ssh

SSL certificates, Toggle Among Many Directories With pushd and popd

stack, Toggle Among Many Directories With pushd and popd

(see also directory stack)

Stack Exchange, The awk and sed Commands

standard error (see stderr)

standard input (see stdin)

standard output (see stdout)

startup files, Environments and Initialization Files, the Short Version,
Configuring Your Environment

stderr, Redirecting Input and Output

reassigning with exec, Technique #11: Process Replacement

redirection, Redirecting Input and Output

stdin, Input, Output, and Pipes

pipes, Input, Output, and Pipes

reassigning with exec, Technique #11: Process Replacement

redirection, Redirecting Input and Output

X selections, Connecting Selections to stdin and stdout

stdout, Input, Output, and Pipes

pipes, Input, Output, and Pipes

reassigning with exec, Technique #11: Process Replacement

redirection, Redirecting Input and Output

X selections, Connecting Selections to stdin and stdout

subdirectory, The Filesystem, Directories, and Paths

subexpression, Matching Subexpressions With sed

subshell, Child Shells vs. Subshells, Child Shells vs. Subshells

command substitution, Technique #3: Command Substitution

detection, Child Shells vs. Subshells

examples, Generating a CDPATH From Your Home Directory

explicit, Technique #10: Explicit Subshells

process substitution, Technique #4: Process Substitution

vs. child process, Technique #10: Explicit Subshells

substitution

command (see command substitution)

process (see process substitution)

sed script, sed Essentials

Subversion, Traveling With Your Environment, Apply Version Control to
Day-To-Day Files

sudo command, Audience and Prerequisites, Becoming the Superuser

redirection, Technique #5: Passing a Command as an Argument to
bash

superuser, Becoming the Superuser

suspending a command, Suspending a Command and Sending It to the
Background

suspending a text editor, Backgrounding Tips

swapping directories

cd - (dash), Toggle Between Two Directories With “cd -”

pushd and popd, Toggle Among Many Directories With pushd and
popd, Swap Directories on the Stack

swapping strings, The awk and sed Commands

switches, command, Commands, Arguments, and Options

switching desktops, Switching Windows and Desktops

switching windows, Switching Windows and Desktops

system dictionary (see dictionary file)

T

tab completion, Move Faster With Tab Completion, Move Faster With Tab
Completion

customized, Hop to Frequently-Visited Directories Using Aliases or
Variables

varies by program, Move Faster With Tab Completion

tac command, The tac Command

tail command, The tail Command

combining with head, The tail Command

examples, Technique #3: Command Substitution, Learn cron, crontab,
and at

number of lines (-n option), The tail Command

plus sign, The tail Command

simpler syntax, The tail Command

tar command, Technique #10: Explicit Subshells

target, make, Use make For Non-Programming Tasks

tcsh shell, If You Use a Different Shell

tee command, Know Your Testing Tools

terminal multiplexer, Toggle Among Many Directories With pushd and
popd

terminal program, Instant Shells and Browsers

X selections, Clipboard Control From the Command Line

test files, generating, Generating Test Files

text

combining, Combining Text

editors, Creating and Editing Files

suspending, Backgrounding Tips

files, Leveraging Text Files

arranging columns neatly, Build an Area Code Database

designing, Leveraging Text Files

encrypted, Build a Password Manager

isolating, Isolating Text

Linux data format, Leveraging Text Files

producing, Producing Text

transforming, Transforming Text

text-based web browser, Retrieving Rendered Web Content With a Text-
Based Browser

tilde symbol

home directory, Jump to Your Home Directory

preceding a username, Jump to Your Home Directory

time of day, The date Command

tmux command, Toggle Among Many Directories With pushd and popd

today’s date, The date Command

touch command, Creating Empty Files Quickly, Creating and Editing Files

examples, Technique #1: Conditional Lists, Technique #4: Process
Substitution, Inserting a Filename Into a Sequence, Generating Empty
Files, Generating Empty Files

touch typing, Rerunning Commands

tr command, The tr Command

converting newlines to nulls, Technique #8: Running a List of
Commands With xargs

converting spaces to newlines, Brace Expansion (A Shell Feature)

deleting characters (-d option), The tr Command

deleting whitespace, Brace Expansion (A Shell Feature), The tr
Command

examples, Locating Programs to Be Run, Generating a CDPATH From
Your Home Directory

track-it script, Launching Browser Windows From the Command Line

tracking packages, Launching Browser Windows From the Command Line

transforming text, Transforming Text

translating characters, Locating Programs to Be Run, The tr Command

traps, Child Shells vs. Subshells

tree structure of filesystem, The Filesystem, Directories, and Paths

tutorials

awk, awk Essentials

emacs, Creating and Editing Files

Linux, References

sed, Matching Subexpressions With sed

typing, Rerunning Commands

vim, Creating and Editing Files

type command, Locating Programs to Be Run

typing speed, Rerunning Commands

typographical errors, intentional in aliases, Embracing Typos

U

unalias command, Shortening Commands with Aliases

unconditional lists, Technique #2: Unconditional Lists

exit code, Technique #2: Unconditional Lists

uniq command, Command #6: uniq-Command #6: uniq

counting occurrences (-c option), Command #6: uniq

examples, Organize Your Home Directory for Fast Navigation,
Checking Matched Pairs of Files, Build an Area Code Database

Unity, Parents, Children, and Environments, Instant Shells and Browsers,
Switching Windows and Desktops, Clipboard Control From the Command
Line

up arrow key, Pattern Matching for Filenames

upper case conversion, The tr Command

user agent, Retrieving HTML With curl and wget

USER variable, Evaluating Variables

/usr/share/dict/words file (see dictionary file)

utility, Input, Output, and Pipes

V

variables, Evaluating Variables

assigning a value, Where Variables Come From

BASH_ENV, Configuring Your Environment

BASH_SUBSHELL, Child Shells vs. Subshells, Technique #10:
Explicit Subshells

breaking up regular expressions, Processing HTML with HTML-
XML-utils

CDPATH, Make a Big Filesystem Feel Smaller with CDPATH

containing directory paths, Hop to Frequently-Visited Directories
Using Aliases or Variables

copied from parent to child, Environment Variables

defining, Where Variables Come From

EDITOR, Environment Variables, Jumping Into Your Editor From less

environment (see environment variables)

exporting, Creating Environment Variables

GPG_TTY, Build a Password Manager

HISTCONTROL, Viewing the Command History

HISTFILE, Viewing the Command History

HISTFILESIZE, Viewing the Command History

HISTSIZE, Viewing the Command History

HOME, Evaluating Variables, Jump to Your Home Directory,
Environment Variables

modifying, Where Variables Come From

PAGER, Viewing Documentation

PATH, Locating Programs to Be Run, The tr Command

predefined, Where Variables Come From

printing the value, Evaluating Variables

PS1, Shells are Executable Files, Parent and Child Processes

PWD, Environment Variables

RANDOM, Generating Test Files

SHELL, Shells are Executable Files

storing command output, Technique #3: Command Substitution

USER, Evaluating Variables

VISUAL, Jumping Into Your Editor From less

vs. file pattern-matching, Patterns vs. Variables

version control

day-to-day files, Apply Version Control to Day-To-Day Files

of configuration files, Traveling With Your Environment

vertical bar

pipe symbol, Input, Output, and Pipes, Redirecting Input and Output

(see also pipes)

regular expression, grep: A Deeper Look

vi (see vim editor)

viewing files, File Viewing

one screenful at a time, Input, Output, and Pipes, File Viewing

vim editor, Creating and Editing Files

exiting, Jumping Into Your Editor From less

tutorial, Creating and Editing Files

vim-gnupg plugin, Build a Password Manager

vimtutor command, Creating and Editing Files

virtual desktops, Switching Windows and Desktops

visiting a directory, Visiting Specific Directories Efficiently

VISUAL variable, Jumping Into Your Editor From less

W

w3.org, Processing HTML with HTML-XML-utils

wc command, Command #1: wc

character counting (-c option), Command #1: wc

examples, Producing Text, Think About Where to Start, Generating
Test Files, Generating Test Files, Generating Test Files, Build an Area
Code Database, Connecting Selections to stdin and stdout

line counting (-l option), Command #1: wc

reading from stdin, Command #1: wc

word counting (-w option), Command #1: wc

web browser

keyboard shortcuts, Browser Keyboard Shortcuts

launching from command line, Launching Browser Windows From the
Command Line

arguments, Launching Browser Windows From the Command
Line

incognito/private, Launching Browser Windows From the
Command Line

text-based, Retrieving Rendered Web Content With a Text-Based
Browser

user agent, Retrieving HTML With curl and wget

window, Instant Shells and Browsers

web pages, downloading, Retrieving HTML With curl and wget

wget command, Retrieving HTML With curl and wget

which command, Locating Programs to Be Run

while loop, Shell Scripts

while read, Check Domain Expiration, Launching Browser Windows
From the Command Line, Processing a File One Line at a Time

whitespace

deleting, The tr Command

separator, Disabling Evaluation with Quotes and Escapes, Technique
#8: Running a List of Commands With xargs

significant, Disabling Evaluation with Quotes and Escapes

whois command, Check Domain Expiration

Wikipedia software, Checking Matched Pairs of Files

wildcard, Introducing the Shell

(see also file, pattern-matching)

windows

pop-up, One-Shot Windows

switching, Switching Windows and Desktops

words file (see dictionary file)

working directory (see current directory)

wrapping text, Toward an Even Larger Toolbox

X

X (windowing software), Clipboard Control From the Command Line

configuration file, Configuring Your Environment

X selections

appending, Connecting Selections to stdin and stdout

clearing, Connecting Selections to stdin and stdout, Connecting
Selections to stdin and stdout

from command line, Clipboard Control From the Command Line

xargs command, Technique #8: Running a List of Commands With xargs

examples, Generating Empty Files, Leveraging Text Files, Retrieving
HTML With curl and wget

find command, combining, Technique #8: Running a List of
Commands With xargs

input string separators, Technique #8: Running a List of Commands
With xargs

maximum arguments per command line (-n option), Technique #8:
Running a List of Commands With xargs

null separators (-0 option), Technique #8: Running a List of
Commands With xargs, Technique #8: Running a List of Commands
With xargs

replacement string (-I option), Technique #8: Running a List of
Commands With xargs

safety, Technique #8: Running a List of Commands With xargs

solving argument list too long error, Technique #8: Running a List of
Commands With xargs

vs. file pattern-matching, Technique #8: Running a List of Commands
With xargs

vs. piping commands to bash, Retrieving HTML With curl and wget

xclip command, Connecting Selections to stdin and stdout

abbreviating options, Connecting Selections to stdin and stdout

choose selection (--selection option), Connecting Selections to stdin
and stdout

output (-o option), Connecting Selections to stdin and stdout

.xinitrc file, Configuring Your Environment

xsel command, Connecting Selections to stdin and stdout

xterm command, Instant Shells and Browsers

Y

yes command, The yes Command

examples, Generating Test Files, Generating Test Files

yum package manager, Toward an Even Larger Toolbox

Z

zero

ASCII (see null character)

leading, The seq Command, Brace Expansion (A Shell Feature)

string length test, Build a Password Manager

zsh shell, Your Shell, If You Use a Different Shell

zypper package manager, Toward an Even Larger Toolbox

About the Author
Daniel J. Barrett has been teaching and writing about Linux and related
technologies for over 30 years. He is an author of numerous O’Reilly books
such as Linux Pocket Guide, Linux Security Cookbook, SSH, The Secure
Shell: The Definitive Guide, Macintosh Terminal Pocket Guide, and
MediaWiki. Dan has also been a software engineer, heavy metal singer,
system administrator, university lecturer, web designer, and humorist. He
works at Google.

	Preface
	What You’ll Learn
	What This Book is Not
	Audience and Prerequisites
	Your Shell
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	I. Core Concepts
	1. Combining Commands
	Input, Output, and Pipes
	Six Commands To Get You Started
	Command #1: wc
	Command #2: head
	Command #3: cut
	Command #4: grep
	Command #5: sort
	Command #6: uniq

	Detecting Duplicate Files
	Summary

	2. Introducing the Shell
	Shell Vocabulary
	Pattern Matching for Filenames
	Evaluating Variables
	Where Variables Come From
	Variables and Superstition
	Patterns vs. Variables

	Shortening Commands with Aliases
	Redirecting Input and Output
	Disabling Evaluation with Quotes and Escapes
	Locating Programs to Be Run
	Environments and Initialization Files, the Short Version
	Summary

	3. Rerunning Commands
	Viewing the Command History
	Recalling Commands from the History
	Cursoring Through History
	History Expansion
	Never Delete the Wrong File Again (Thanks to History Expansion)
	Incremental Search of Command History

	Command-Line Editing
	Cursoring Within a Command
	History Expansion with Carets
	Emacs or Vim-Style Command-Line Editing

	Summary

	4. Cruising the Filesystem
	Visiting Specific Directories Efficiently
	Jump to Your Home Directory
	Move Faster With Tab Completion
	Hop to Frequently-Visited Directories Using Aliases or Variables
	Make a Big Filesystem Feel Smaller with CDPATH
	Organize Your Home Directory for Fast Navigation

	Returning to Directories Efficiently
	Toggle Between Two Directories With “cd -”
	Toggle Among Many Directories With pushd and popd

	Summary

	II. Next-Level Skills
	5. Expanding Your Toolbox
	Producing Text
	The date Command
	The seq Command
	Brace Expansion (A Shell Feature)
	The find Command
	The yes Command

	Isolating Text
	grep: A Deeper Look
	The tail Command
	The awk {print} Command

	Combining Text
	The tac Command
	The paste Command
	The diff Command

	Transforming Text
	The tr Command
	The rev Command
	The awk and sed Commands

	Toward an Even Larger Toolbox
	Summary

	6. Parents, Children, and Environments
	Shells are Executable Files
	Parent and Child Processes
	Environment Variables
	Creating Environment Variables
	Superstition Alert: “Global” Variables

	Child Shells vs. Subshells
	Configuring Your Environment
	Rereading a Configuration File
	Traveling With Your Environment

	Summary

	7. Eleven More Ways to Run a Command
	List Techniques
	Technique #1: Conditional Lists
	Technique #2: Unconditional Lists

	Substitution Techniques
	Technique #3: Command Substitution
	Technique #4: Process Substitution

	Command-as-String Techniques
	Technique #5: Passing a Command as an Argument to bash
	Technique #6: Piping a Command to bash
	Technique #7: Executing a String Remotely With ssh
	Technique #8: Running a List of Commands With xargs

	Process Control Techniques
	Technique #9: Backgrounding a Command
	Technique #10: Explicit Subshells
	Technique #11: Process Replacement

	Summary

	8. Building a Brash One-Liner
	Get Ready To Be Brash
	Be Flexible
	Think About Where to Start
	Know Your Testing Tools

	Inserting a Filename Into a Sequence
	Checking Matched Pairs of Files
	Generating a CDPATH From Your Home Directory
	Generating Test Files
	Generating Empty Files
	Summary

	9. Leveraging Text Files
	A First Example: Finding Files
	Check Domain Expiration
	Build an Area Code Database
	Build a Password Manager
	Summary

	III. Extra Goodies
	10. Efficiency at the Keyboard
	Working With Windows
	Instant Shells and Browsers
	One-Shot Windows
	Browser Keyboard Shortcuts
	Switching Windows and Desktops

	Web Access From the Command Line
	Launching Browser Windows From the Command Line
	Retrieving HTML With curl and wget
	Processing HTML with HTML-XML-utils
	Retrieving Rendered Web Content With a Text-Based Browser

	Clipboard Control From the Command Line
	Connecting Selections to stdin and stdout
	Improving The Password Manager

	Summary

	11. Final Timesavers
	Quick Wins
	Jumping Into Your Editor From less
	Editing Files That Contain a Given String
	Embracing Typos
	Creating Empty Files Quickly
	Processing a File One Line at a Time
	Identifying Commands That Support Recursion
	Read a Manpage

	Longer Learning
	Read the bash Manpage
	Learn cron, crontab, and at
	Learn rsync
	Learn Another Scripting Language
	Use make For Non-Programming Tasks
	Apply Version Control to Day-To-Day Files

	Farewell

	A. Linux Refresher
	Commands, Arguments, and Options
	The Filesystem, Directories, and Paths
	Directory Movement
	Creating and Editing Files
	File and Directory Handling
	File Viewing
	File Permissions
	Processes
	Viewing Documentation
	Shell Scripts
	Becoming the Superuser
	References

	B. If You Use a Different Shell
	Index
	About the Author

