

Introduction to the Command Line

The Fat-Free Guide to Unix and Linux Commands
Second Edition

Introduction to the Command Line

The Fat-Free Guide to Unix and Linux Commands

Second Edition

Copyright © 2010 Nicholas Marsh

All rights reserved.

ISBN: 1450588301

EAN-13: 9781450588300

www.DontFearTheCommandLine.com

AIX® is a registered trademark of IBM Corp.

BSD® is a registered trademark of the University of California, Berkeley

CentOS is property of CentOS Ltd.

Debian® is a registered trademark of Software in the Public Interest, Inc

Fedora® is a registered trademark of Red Hat, Inc.

FreeBSD® is a registered trademark of The FreeBSD Foundation

Gentoo® is a registered trademark of The Gentoo Foundation

HP-UX® and Tru-64® are registered trademarks of Hewlett-Packard Company

IRIX® is a registered trademark of Silicon Graphics, Inc.

Linux® is the registered trademark of Linus Torvalds.

Mac OS X® is a registered trademark of Apple, Inc.

Windows® is a registered trademark of Microsoft Corporation

NetBSD® is a registered trademark of The NetBSD Foundation

OpenBSD® is a registered trademark of Theo DeRaadt

Red Hat® is a registered trademark of Red Hat, Inc.

Solaris® and OpenSolaris are registered trademarks of Sun Microsystems

SUSE® is a trademark of Novell, Inc.

Ubuntu® is a registered trademark of Canonical Ltd.

UNIX® is a registered trademark of The Open Group

UnixWare® and OpenServer® are registered trademarks of The SCO Group

All other trademarks used in this book are the property of their respective owners.

Use of any trademark in this book does not constitute an affiliation with or

endorsement from the trademark holder.

All information in this book is presented on an "as-is" basis. No warranty or

guarantee is provided and the author and/or publisher shall not be held liable for

any loss or damage.

Contents at a Glance

Introduction .. 6

Section 1: Overview of Unix, Linux and BSD Architecture 10

Section 2: Command Line Basics .. 18

Section 3: Advanced Shell Features and Commands 38

Section 4: Text Editing and Extraction .. 60

Section 5: Users, Groups, and Security ... 81

Section 6: Process Control and Scheduling 106

Section 7: Startup and Shutdown .. 122

Section 8: Network Commands ... 139

Section 9: Hardware Management Commands 167

Section 10: File Systems .. 177

Section 11: Backup and Restore Commands 192

Section 12: Monitoring and Troubleshooting 200

Section 13: Printing Commands ... 224

Section 14: Software Installation ... 231

Section 15: System Administration Utilities 245

Appendix A: Bash Shortcut Keys .. 248

 "UNIX is basically a simple operating system, but you have
to be a genius to understand the simplicity."

– Dennis Ritchie
Creator of the C programming language and co-creator of UNIX

Introduction

The command line can be an intimidating and unforgiving environment. Unlike

working in graphical environments, it's not entirely clear what commands one must

execute in a terminal to accomplish a given task. Couple this with the fact that the

command line does not prevent you from doing things that might cause irreparable

damage to your system, and it becomes clear why many people never take the time

to learn how to use it.

Despite the hidden dangers and uncertainty faced by new users (known jokingly as

"newbies" in the technology industry), you shouldn't fear the command line.

Armed with the information in this book you will acquire the skills necessary to

become more proficient in the command line environment. You will discover that

most Unix, Linux, and BSD systems share the same core architecture, with only a

few subtle differences. After learning the basic architecture and commands of Unix,

Linux, and BSD systems you will easily be able to transition between the different

platforms.

To aid the learning process, I recommend downloading one or more of the free

operating systems listed below to practice the commands in this guide.

Operating System Type Website

Ubuntu Linux www.ubuntu.com

Fedora Linux www.fedoraproject.org

CentOS Linux www.centos.org

openSUSE Linux www.opensuse.org

OpenSolaris Unix www.opensolaris.org

FreeBSD BSD www.freebsd.org

It's a worthwhile experience to experiment with multiple Unix, Linux, and BSD

distributions to get a broader knowledge of the various platforms. This will help

expand your knowledge of the various Unix-like operating systems and give you the

skills necessary to work in any command line environment.

Linux is the recommended starting point for beginners. It has support for all the

latest hardware and provides a user-friendly installation process. The OpenSolaris

Unix platform is also a good starting point, as it is one of the most newbie-friendly

Unix-based systems. BSD installation is a bit more challenging and requires

advanced technical knowledge or previous experience with Unix and Linux systems.

Tip

I highly recommend Ubuntu Server Edition. It provides an easy install

experience and an excellent command line learning environment. Visit

www.ubuntu.com for more information about the Ubuntu Server Linux

distribution.

If you are a Microsoft Windows user, you may already have some command line

experience. If you have ever opened a DOS prompt and executed a command such

as ping, nslookup, or ipconfig then you know these can be immensely

helpful. Unix, Linux, and BSD systems offer similar commands. For example, the

ping and nslookup commands work the same on Unix/Linux as they do in

DOS. You should note, however, that the DOS ipconfig command's

counterpart in the Unix/Linux/BSD world is ifconfig. If you're not a DOS

veteran, don't worry - we will cover all of these topics throughout this guide.

Are you running Mac OS X? If so, then you are already running a Unix-based

operating system. Behind the shiny graphical user interface of Mac OS X is a solid

Unix core. To access the command line in Mac OS X simply launch the Terminal

application (located in Applications > Utilities > Terminal). From there you will

have access to all the standard Unix command line utilities discussed in this guide.

Brief History of Unix, Linux, and BSD

Unix was created in 1969 at Bell Laboratories which was, at the time, a research

and development division of AT&T. Since that time, Unix has branched into many

different commercial and open source implementations, most of which are based

on the original AT&T standard. Modern Unix-based systems are typically classified

into one of the following groups:

Unix Commercial implementations derived from the original AT&T code base

BSD Open source operating system derived from the original Unix code base

Linux Open source Unix compatible clone written from scratch

In the 1970s, researchers at the University of California, Berkeley began developing

BSD (short for Berkeley Software Distribution). BSD was originally based on the

AT&T Unix codebase, but has been rewritten over time to remove AT&T

copyrighted code from the system. This allows BSD to be distributed with minimal

restrictions. Since that time, the BSD code-base has split to form a number of

popular operating systems including FreeBSD, OpenBSD, and NetBSD. BSD code can

also be found in proprietary proprietary operating systems created by Microsoft,

Apple, and Sun Microsystems.

Commercial Unix systems began to appear in the early 1980s. These systems

combined various amounts of Unix and BSD code along with vendor-specific

enhancements to create new platforms such as AIX, HP-UX, and Sun Solaris. Today,

commercial Unix systems can be found in data centers at many large companies

running mission critical applications.

In 1991, a computer science student at the University of Helsinki in Finland named

Linus Torvalds created the Linux operating system. While Linux shares much of the

core concepts of Unix, it contains no Unix code. This means it can be freely

distributed in the same manner as BSD (although under a different license). The

first commercial Linux distributions hit the market in the mid 1990s. Since then

hundreds of Linux variants have been developed. The open nature of the Linux

operating system has contributed to its success and helped make it one of the most

popular server operating systems in use today.

The Unix platform has been around since long before graphical user interfaces were

invented. The fact that Unix-based systems are still a commanding force in modern

computing is a testament to the industrial design of the platform. With Unix, Linux,

and BSD popularity at an all time high, now is the perfect time to explore these

platforms and join the movement.

Conventions Used in This Book

/path/to/file

File and directory paths are displayed in a fixed width font

command

Commands are displayed in a bold fixed width font

[FILE], [DIRECTORY], [ETC]

Items enclosed in brackets represent a variable parameter to be specified by the
user (such as a file or directory)

$ ping 192.168.1.1

Examples using the $ shell prompt are executed with a non-privileged user account

ping 192.168.1.1

Examples using the # shell prompt are executed at the root user

...

Additional command output truncated (to save space)

$ whe<TAB>

Items enclosed in <> indicate an action key such as <TAB>, <ESC>, <SPACE>, etc.

Section 1:

Overview of Unix, Linux and BSD

Architecture

The Kernel

At the heart of every Unix, Linux, and BSD system is the kernel. The kernel provides

a layer between the computer hardware and user applications. When applications

need to display output to a screen or write files to the disk, the kernel facilitates

these actions. Think of the kernel as the conductor in a symphony; it directs all the

actions of the operating system.

Overview of the Kernel

When you type a command on the keyboard, the computer hardware receives the

signals and transfers them to the kernel. The kernel recognizes the key strokes and

draws them on the display. Once the typed command is executed, the program will

utilize the kernel to request processor, memory, and other resources in order to

perform the requested task.

Popular Versions of Unix, Linux, and BSD

There are many different Unix, Linux, and BSD distributions. The tables below list

the most popular systems in use today.

BSD Systems

OS Description

Darwin BSD-based core of the Mac OS X operating system

FreeBSD User friendly BSD-based operating system

OpenBSD Security focused BSD-based operating system

NetBSD Highly portable BSD-based operating system

Linux Systems

OS Description

Red Hat

Enterprise Linux

Popular commercial Linux distribution created by Red Hat,

Inc.

Fedora
Free community-based distribution that serves as a test bed

for new technologies that feed into Red Hat Enterprise Linux

CentOS Free binary-compatible clone of Red Hat Enterprise Linux

Debian Popular non-commercial Linux distribution

Ubuntu User-friendly Linux distribution based on Debian

SuSE Enterprise

Linux
Commercial Linux distribution created by Novell, Inc.

openSUSE
Free community-based distribution based on SUSE Enterprise

Linux

Unix Systems

OS Description

AIX IBM's proprietary Unix platform

HP-UX Hewlett Packard's proprietary Unix platform

Solaris Sun Microsystems' proprietary Unix platform

OpenSolaris Open source version of the Solaris operating system

Note

Other notable Unix platforms include SGI IRIX, Compaq Tru64, and SCO

UnixWare/OpenServer; however, these systems are no longer widely used

or supported.

Unix, Linux, and BSD Directory Structure

Most Unix, Linux, and BSD systems share a similar directory structure. The table

below lists the main directories commonly used across all platforms.

Directory Purpose

/ Root (top level) directory

/boot Linux kernel and boot loader files

/stand

/unix

/vmunix

/kernel

Unix kernel directories

/bin

/usr

/usr/bin

Core binary programs for normal users

/sbin

/usr/sbin
Administrative programs primarily used by the root user

/opt Optional add-on/third-party software

/etc System configuration files

/home User home directories

/root Home directory of the root user

/lib Shared libraries used by various programs

/media

/mnt
Mounted local and remote file systems

/var Variable data (such as system logs) that changes often

/tmp Temporary files used by various programs

/dev Device files

/sys Virtual device driver files used by the kernel

/proc
Virtual parameter and informational files used by the

kernel

/lost+found Files that have been recovered (after a system failure)

Unix, Linux, and BSD directory structure

These directories are organized in a manner which separates various components

of the operating system in an easy to manage file structure. The /home directory

is where users spend most of their time. Files outside of this directory are usually

secured so that only the root user can edit or delete them. This protects vital

programs and configuration files and prevents users from accidently damaging the

core operating system. It also helps secure the system by preventing malicious

programs from being able to compromise critical files and settings.

Important Files

In addition to sharing a similar directory structure, most systems will also have the

important files listed in following table.

File Purpose

/etc/passwd User account settings

/etc/shadow Encrypted passwords for user accounts

/etc/group Group settings

/etc/fstab Local file system settings

/etc/mtab Mounted file systems

/etc/inittab System startup settings

/etc/exports NFS share settings

/etc/hosts Static name resolution file

/etc/hostname System host name setting

/etc/hosts.allow
Network hosts allowed to connect to the

system

/etc/resolve.conf DNS settings

/etc/hosts.deny
Network hosts not allowed to connect to the

system

/etc/issue Message displayed at shell login

/etc/issue.net Remote login message

/etc/motd Message displayed after logging in

/etc/profile Shell environment settings

/etc/shells Valid shells permitted to login

/etc/sudoers
Users allowed to use the su command

(discussed on page 91)

/var/log/messages Kernel messages log file

/var/log/wtmp Current user login log file

/var/log/lastlog User login history log file

/var/log/kern.log Kernel log file

/var/log/syslog Syslog messages log file

Important files

This is just a brief list of the most commonly used files shared across most

platforms. As a general rule, configuration files are located in the /etc directory

and system logs are stored in /var/log. As you become more familiar with Unix,

Linux, and BSD systems you will begin working with these files to manage system

configuration and troubleshoot problems.

Common Unix, Linux, and BSD File Systems

Unix, Linux, and BSD share support for several types of file systems. The table

below provides a matrix of the most common file systems and their supported

platforms.

 AIX HP-UX Solaris BSD Linux

EXT2-4 Partial No Partial Partial Yes

JFS (IBM) Yes No No No Yes

HFS+ No No No No Partial

UFS No Yes Yes Yes Partial

VxFS Yes Yes Yes No Yes

ZFS No No Yes Yes Yes

File system support matrix

EXT versions 2 through 4 are file systems used by the Linux operating system.

Currently, ext3 is the most widely used file system on Linux distributions. The

recently released ext4 file system has many new features and performance benefits

over ext3. It will become the default file system for most Linux systems within the

next few years. Versions before ext3 are considered obsolete and are rarely.

JFS is IBM's journaling file system primarily used on the AIX operating system.

HFS+ is Apple's file system used on their Unix-based Mac OS X operating system.

HFS+ isn't widely supported by other operating systems but it can be mounted as

read-only on Linux systems.

UFS is a Unix file system used primarily by BSD distributions.

VxFS is a file system developed by Veritas Software Corporation (now known as

Symantec) and used on HP-UX systems. It is also supported on several other Unix

and Linux systems although it is rarely used outside of HP-UX.

ZFS is a new and highly robust file system developed by Sun Microsystems. It is

primarily used on the Solaris operating system but also has limited support for

some Linux and BSD systems.

Devices

Every Unix, Linux, and BSD system has a directory that is known as /dev. This

directory contains device files (sometime referred to as special files) that represent

hardware installed on the system such as /dev/mouse and /dev/cdrom.

ls -l /dev/

crw-rw----+ 1 root audio 14, 12 2010-04-22 16:30 adsp

crw------- 1 root video 10, 175 2010-04-22 11:30 agpgart

crw-rw----+ 1 root audio 14, 4 2010-04-22 16:30 audio

crw-rw---- 1 root root 10, 59 2010-04-22 11:30 binder

drwxr-xr-x 2 root root 700 2010-04-22 16:30 block

drwxr-xr-x 3 root root 60 2010-04-22 11:30 bus

lrwxrwxrwx 1 root root 3 2010-04-22 16:30 cdrom -> sr0

lrwxrwxrwx 1 root root 3 2010-04-22 16:30 cdrw -> sr0

drwxr-xr-x 2 root root 3220 2010-04-22 16:30 char

crw------- 1 root root 5, 1 2010-04-23 07:36 console

lrwxrwxrwx 1 root root 11 2010-04-22 16:30 core -> /proc/kcore

crw-rw---- 1 root root 10, 58 2010-04-22 11:30 cpu_dma_latency

drwxr-xr-x 6 root root 120 2010-04-22 11:30 disk

drwxr-xr-x 2 root root 80 2010-04-22 11:30 dri

crw-rw----+ 1 root audio 14, 3 2010-04-22 16:30 dsp

lrwxrwxrwx 1 root root 3 2010-04-22 16:30 dvd -> sr0

...

Example listing of devices in the /dev directory

Within the /dev directory there can be several hundred files. Most of these files

are of little use in everyday activities. As the system administrator of a Unix or Linux

system you will primarily be working with the device files that represent your disk

drive(s). Knowing the path to your hard drive is important when working with

commands related to file systems. More on this topic is covered in Section 10 of

this guide.

Note Device naming conventions used in /dev vary across each distribution.

Within /dev, there are also a few helpful pseudo-devices. Pseudo-devices do not

represent actual hardware and exist only to perform a specific task. The table

below describes the most commonly used pseudo-devices.

File Purpose

/dev/zero File that produces a continuous stream of 0-byte characters

/dev/random Random number generator

/dev/null Special file that discards any data written to it

The Shell

The command line interpreter, also known as the shell, is a program that accepts

input from a user (typically a command of some sort) and performs the requested

task. Once that task has completed, the program will terminate and return the user

to the shell.

The shell's prompt identifies the type of shell being used. There are two basic types

of shell prompts:

$ Normal user shell (may also be % or > on some systems)

Root user shell

Below is the output of the whoami command (discussed on page 94) which

highlights the difference between normal user and root shell prompts on the

command line.

$ whoami

nick
 # whoami

root

Normal user shell Root user shell

Normal users typically have a limited amount of access to the system while the root

user has unrestricted access. Section 5 covers this topic in more detail.

Warning

The root user can do anything on Unix, Linux, and BSD systems. It is

important to know when you are working as root to prevent accidental

damage to your system.

Many systems add customized information to the shell prompt. This information

can be a handy indicator of things like the current user's login name, system host

name, and the current directory as shown in the next example.

nick@mylaptop:/var/log $

Example of a customized shell prompt

The table below describes the information displayed in the customized shell

prompt displayed in the previous example.

nick @ mylaptop : /var/log $

User
Name

Spacer Computer
Name

Spacer Current
Directory

Shell
Prompt

Types of Shells

There are several different types of shells for Unix, Linux, and BSD systems. Each

shell has its own set of features and usage syntax. The next table describes the

most popular shells that are currently available.

Shell Prompt Name Notes

sh $ Borne Shell Default on some Unix systems

bash $
Borne

Again Shell

Enhanced replacement for the Borne shell

Default on most Linux and Mac OS X systems

csh % C Shell Default on many BSD systems

tcsh > T C Shell Enhanced replacement for the C shell

ksh $ Korn shell Default on AIX systems

Types of shells

The bash shell is the most popular shell in use today. It is the default shell on all

Linux systems and is also available for most Unix and BSD systems. Other shells like

csh, tcsh, and ksh are typically used by default on non-Linux systems.

Accessing the Shell

When you first boot your system you are presented with a login prompt similar to

the example pictured below.

Ubuntu Linux 9.04

Login: nick

Password: ******

$

After you enter your username and password the system will authenticate your

login credentials via the /etc/passwd file. If the login information is correct,

the system will start your shell (which is also specified in /etc/passwd). The $

shell prompt indicates you are logged in and "ready to go."

Welcome to the world of the command line… Let's get started!

Section 2:

Command Line Basics

Overview

This section covers the most essential commands every user should know. These

basic commands cover topics like getting help, navigating directories, and listing

files. Before you begin, there are three important rules you need to know about the

command line:

1. Unix, Linux, and BSD systems are case (and space) sensitive. This means

that a file named MyFile is not same as myfile as it would be on a

DOS or Windows system.

2. There is no "recycle bin" or "trash can" when working in the command line

environment. When files are deleted on the command line, they instantly

disappear forever.

3. You should always practice new commands on a testing system that is not

used in a production environment. This minimizes the chances of an

accident that can take down an important system.

Knowing this, we can now begin working with basic Unix, Linux and BSD

commands.

Note

Examples listed in this book were created on various Unix, Linux, and BSD

systems. Many of the commands, options, and features are the same on

other platforms; however, there may be slight differences. You should

always consult the manual for your specific platform to ensure

compatibility with the examples provided. See page 20 for more

information on how to access the online manual.

Commands covered in this section:

Command Purpose

man Online manual for command line programs.

whatis Display a description of the specified command.

ls List the contents of a directory.

pwd Display the current/working directory.

cd Change (navigate) directories.

tree Display the contents of a directory in a tree hierarchy format.

find Search for files and directories.

locate Search the locate database for files and directories.

whereis
Display the location of binary files, manual pages, and source code

for the specified command.

file Display the file type of the specified file.

stat Display extended information about a file system, file, or directory.

date Display or set the system clock.

cal Display a calendar on the command line.

history Display commands that have recently been executed.

clear Clear the contents of the current screen.

logout Logout of the system.

exit Exit the current shell.

Glossary of terms used in this section:

Argument One or more variable input items used by a command line

program.

Binary A compiled program or data file.

Flag Synonym for Option.

Man Page Online manual for shell commands.

Option A modifier that alters the default operation of a command.

Parameter Synonym for Argument.

Recursively Includes all subdirectories when executing a command.

Shell Script A grouping of commands in a plain text executable file.

Source Code Uncompiled code for a program.

Switch Synonym for Option.

Working Directory Your current location within the directory tree.

man

Purpose: Online manual for command line programs.

Usage syntax: man [OPTIONS] [COMMAND/FILE]

$ man ls

LS(1) User Commands LS(1)

NAME

 ls - list directory contents

SYNOPSIS

 ls [OPTION]... [FILE]...

DESCRIPTION

 List information about the FILEs (the current directory by

 default). Sort entries alphabetically if none of -cftuvSUX nor

 --sort.

 -a, --all

 do not ignore entries starting with .

...

Viewing the manual page for the ls command

The man command displays the manual (often referred to as the man page) for

the specified command. Each manual page provides detailed information about a

command's options and usage. In the above example, executing man ls

displays the manual for the ls command.

The table below describes the keys that can be used to navigate the manual

program.

Key Function Key Function
Up Arrow Navigate one line up Down Arrow Navigate one line down

Page Up Navigate one page up Page Down Navigate one page down

Q Quit the man program /[STRING] Search for a string of text

The man command is your most valuable resource for help on the command line.

Always look to the manual pages for any command if you are unsure of its proper

usage syntax.

Common usage examples:

man [COMMAND] Display the manual for the specified command

man -k [KEYWORD] Search manual pages for the specified keyword

whatis

Purpose: Display a description of the specified command.

Usage syntax: whatis [OPTIONS] [COMMAND]

$ whatis ls

ls (1) - list directory contents

Viewing the manual description of the ls command

whatis displays a brief description of the specified command. The above

example displays the description of the ls command using whatis. This can

be used as a helpful reminder of a command's purpose without having to refer to

the man command.

Multiple commands can be used with one whatis query to display the

description of each individual command. For example, typing whatis ls who

rm would display the description of all three commands at once as demonstrated

in the next example.

$ whatis ls who rm

ls (1) - list directory contents

who (1) - show who is logged on

rm (1) - remove files or directories

Viewing the manual description of multiple commands

Note
Some Unix systems may use the apropos command in place of

whatis.

Common usage examples:

whatis [COMMAND] Display the description of the specified command

whatis -w [WILDCARD] Search for commands using a wildcard

ls

Purpose: List the contents of a directory.

Usage syntax: ls [OPTIONS] [DIRECTORY/FILE]

$ ls

Notes.txt ShoppingList.txt ToDoList.txt

Typical output of the ls command

Executing the ls command displays a simple list of files in the current directory,

as shown in the above example. To see more information about the files in a

directory you can use command line options to activate additional features, as

demonstrated in the next example.

$ ls -l

-rw-r--r-- 1 nick sales 35068 2009-05-19 08:41 Notes.txt

-rw-r--r-- 1 nick sales 23 2009-05-19 08:43 ShoppingList.txt

-rw-r--r-- 1 nick sales 37 2009-05-19 08:43 ToDoList.txt

Using the -l option with the ls command

In this example, the -l option is used to produce a detailed list of files including

the permissions, owner, group, and modification date/time. The table below

describes the output of the ls -l command.

Permissions Number of
Links

Owner &
Group

Size Modification Date File or
Directory

-rw-r--r-- 1 nick sales 35068 2009-05-19 08:41 Notes.txt

Description of fields displayed with the ls -l command

Most command line programs have numerous options available. The ls

command is no exception. By combining these options you can activate multiple

features at the same time. For example, combining the -a option with -l

produces a detailed file list that includes hidden files (files begin with a dot).

$ ls -l -a

drwxr-xr-x 2 nick sales 4096 2009-05-19 21:14 .

drwxr-xr-x 92 nick sales 4096 2009-05-19 20:46 ..

-rw-r--r-- 1 nick sales 168 2009-05-19 21:14 .MyHiddenFile

-rw-r--r-- 1 nick sales 35068 2009-05-19 08:41 Notes.txt

-rw-r--r-- 1 nick sales 23 2009-05-19 08:43 ShoppingList.txt

-rw-r--r-- 1 nick sales 37 2009-05-19 08:43 ToDoList.txt

Using multiple options with the ls command

(Continued…)

Tip
Most command line options can be combined using shorthand notation.

For example, ls -l -a can be shortened to ls -la.

Note

Command line options are not universal. Each command has its own set

of options that are specific to that program. Additionally, each

implementation of the same command on different platforms may use

different options. Refer to the man pages for a complete list of command

line options supported on your system.

Common usage examples:

ls Display a basic list of files in the current directory

ls [DIRECTORY] Display a basic list of files in the specified directory

ls -l List files with details

ls -la List hidden files

ls -lh List file sizes in "human readable format" (KB, MB, etc.)

ls -R Recursively list all subdirectories

ls -d [DIRECTORY] List only the specified directory (not its contents)

pwd

Purpose: Display the current/working directory.

Usage syntax: pwd

$ pwd

/home/nick

Using the pwd command the display the current directory

The pwd command (short for Print Working Directory) displays your current

location within the file system. In the above example, executing pwd displays

/home/nick as the current working directory.

Note

Unix, Linux, and BSD systems use a forward slash (i.e. /home/nick) to

separate directory names in contrast to MS-DOS and Windows systems

which use a back slash (i.e. C:\Windows\system32).

Common usage examples:

pwd Display the current working directory.

cd

Purpose: Change (navigate) directories.

Usage syntax: cd [DIRECTORY]

$ cd /etc

$ pwd

/etc

Using the cd command to navigate to the /etc directory

The cd command (short for Change Directories) changes your location within the

file system to the specified path. In the above example, executing cd /etc

makes /etc the new working directory.

The cd command interprets directory paths relative to your current location

unless you manually specify a full path (such as cd /etc as used in the first

example.) The next example demonstrates using cd to change directories relative

to the current location.

$ pwd

/home/nick

$ cd documents

$ pwd

/home/nick/documents

Using the cd command to navigate to a directory relative to the current location

In this example, the starting directory is /home/nick. Typing cd documents

makes /home/nick/documents the new working directory. If you were

starting in a different location you would have to type the full path (i.e.

cd /home/nick/documents) to achieve the same results. Since the previous

location was /home/nick, typing the full path is not necessary.

Tip
Executing the cd command with no options returns you to your home

directory regardless of your current location.

Common usage examples:

cd [DIRECTORY] Navigate to the specified directory

cd Navigate to the user's home directory

cd - Go back to the previous working directory

cd .. Navigate up one level in the directory tree

tree

Purpose: Display the contents of a directory in a tree hierarchy format.

Usage syntax: tree [OPTIONS] [DIRECTORY]

$ cd /

$ tree -d -L 2

.

|-- bin

|-- boot

| `-- grub

|-- cdrom -> media/cdrom

|-- dev

| |-- block

| |-- bus

| |-- char

| |-- disk

| |-- fd -> /proc/self/fd

| |-- input

...

|-- etc

| |-- ConsoleKit

| |-- NetworkManager

| |-- PolicyKit

| |-- X11

| |-- acpi

| |-- alsa

| |-- alternatives

...

Tree listing of directory structures

The tree command displays a directory listing in tree form. This is useful for

visualizing the layout of a directory structure. In the above example, executing

tree -d -L 2 displays 2 directory levels (relative to the current location) in

tree form.

Common usage examples:

tree Display the contents of the current directory in tree form

tree [DIR] Display the contents of the specified directory in tree form

tree -a Include hidden files in the tree listing

tree -d List directories only

tree -L [NUM] List the specified number of levels deep

find

Purpose: Search for files and directories.

Usage syntax: find [PATH] [OPTIONS] [CRITERIA]

find / -name hosts

/etc/avahi/hosts

/etc/hosts

/usr/share/hosts

Using the find command to locate files with the word "hosts" in their name

The find command performs a raw search on a file system to locate the

specified items. You can search for files using a number of characteristics - the most

common being file name, owner, size, or modification time. The above example

displays the results of a search for files that contain the word "hosts" in their file

name.

The next example displays the results of a search for files owned by the specified

user located within the /var directory.

find /var -user nick

/var/mail/nick

Locating files owned by a specific user within the /var directory

Note

Since the find command performs a raw search on the file system,

results can sometimes be slow. It's a good idea to narrow your search to a

specific location instead of the entire file system. This will produce faster

results and not bog down the system while searching.

Common usage examples:

find [PATH] -name [NAME] Find files with the specified name

find [PATH] -user [USERNAME] Find files owned by the specified user

find [PATH] -size [FILESIZE] Find files larger than the specified size

find [PATH] -mtime 0 Find files modified in the last 24 hours

locate

Purpose: Search the locate database for files and directories.

Usage syntax: locate [OPTIONS] [DIRECTORY/FILE]

$ locate hosts

/etc/avahi/hosts

/etc/hosts

/usr/share/hosts

Searching the locate database for files that contain the word "hosts" in their name

The locate command displays the location of files that match the specified

name. While similar to the find command, locate is significantly faster

because it searches a database of indexed filenames rather than performing a raw

search of the entire file system. A disadvantage of the locate command is the

fact that it lacks the ability to search for advanced characteristics such as file

owner, size, and modification time.

Most Linux and BSD systems have implemented locate in order to provide a

quick method to locate files by name without affecting the performance of the

system.

Note

The locate database is updated daily via an automatically scheduled

cron job (discussed on page 121) that indexes all local file systems. By

default, this usually happens once a day. This means that results are not

updated in real-time and newly created or deleted files may not reflect in

the results until the next scheduled update.

Common usage examples:

locate [FILE] Locate the specified file

locate -i [FILE] Ignore case when searching

whereis

Purpose: Display the location of binary files, manual pages, and source code for the

specified command.

Usage syntax: whereis [OPTIONS] [COMMAND/FILE]

$ whereis ls

ls: /bin/ls /usr/share/man/man1/ls.1.gz

Displaying the file locations of the ls program using whereis

whereis displays the file locations for the specified command. In the above

example, whereis displays the binary file and manual page location for the ls

command.

Note

If the source code is available, whereis will also display the location

of the source files for the specified command. Source code is not installed

by default on most systems.

Tip

The which command is similar to whereis except it only displays

results for binary commands. This is useful when you only care to see the

path to the binary file for the specified command. For example, typing

which ls would display the location of binary the file for the ls

command. See man which for more information.

Common usage examples:

whereis [COMMAND] Display the location of the specified command

whereis -b [COMMAND] Display binary programs only

whereis -m [COMMAND] Display manual pages only

whereis -s [COMMAND] Display source code only (if available)

file

Purpose: Display the file type of the specified file.

Usage syntax: file [OPTIONS] [FILE]

$ file /bin/bash

/bin/bash: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),

dynamically linked (uses shared libs), for GNU/Linux 2.6.15, stripped

$ file /etc/hosts

/etc/hosts: ASCII English text

$ file /home/nick/backup.tgz
backup.tgz: gzip compressed data, from Unix, last modified: Tue May 19

22:29:29 2009

$ file /dev/cdrom

/dev/cdrom: symbolic link to 'sr0'

$ file /dev/sr0

/dev/sr0: block special

Using the file command to identify several different types of files

The file command displays information about the contents of the specified file.

Microsoft Windows systems often use a file extension (such as .txt, .exe,

.zip, etc.) to identify the type of data found in a file. Unix, Linux, and BSD files

rarely include an extension which can make identifying their file type a challenge.

The file command is provided to resolve this problem.

The above example displays results for several file types commonly found on Unix,

Linux, and BSD systems. The table below displays more information about these file

types.

Type Description

Ascii Text Files Plain text files

Binary Files
Executable programs such as those located in the /bin

and /usr/bin directories

Compressed Files
Files compressed through the compress or gzip

programs

Device Files Special virtual files that represent devices

Links Links (AKA shortcuts) that point to other files or directories

Basic file types found on Unix, Linux, and BSD systems

Common usage examples:

file [FILE] Display the file type for the specified files

stat

Purpose: Display extended information about a file system, file, or directory.

Usage syntax: stat [OPTIONS] [FILE/DIRECTORY]

$ stat /etc/hosts

 File: '/etc/hosts'
 Size: 266 Blocks: 8 IO Block: 4096 regular file
Device: 805h/2053d Inode: 788 Links: 1

Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)

Access: 2009-05-25 20:47:14.916626707 -0500

Modify: 2009-05-25 20:46:57.512623325 -0500

Change: 2009-05-25 20:46:57.512623325 -0500

Displaying information for the /etc/hosts file using the stat command

The stat command displays extended information about files. It includes helpful

information not available when using the ls command such as the file's last

access time and technical information about the file's location within the file

system. The example above displays the stat output for the /etc/hosts

file. The next example displays the stat output for the /etc directory itself.

$ stat /etc

 File: '/etc'

 Size: 4096 Blocks: 8 IO Block: 4096 directory

Device: 801h/2049d Inode: 316993 Links: 75

Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)

Access: 2010-04-01 12:17:44.000000000 -0500

Modify: 2010-03-28 12:47:21.000000000 -0500

Change: 2010-03-28 12:47:21.000000000 -0500

Displaying stat output for a directory

The -f option can be used with stat to display information for an entire file

system as shown in the next example.

$ stat -f /

 File: "/"
 ID: e708bc097a45b919 Namelen: 255 Type: ext2/ext3
Block size: 4096 Fundamental block size: 4096

Blocks: Total: 9965379 Free: 9723316 Available: 9221085

Inodes: Total: 2514944 Free: 2476388

Using the -f option with stat to display information about a file system

Common usage examples:

stat [FILE/DIR] Display information for the specified file/directory

stat -f [FILESYSTEM] Display information for the specified file system

date

Purpose: Display or set the system clock.

Usage syntax: date [OPTIONS] [TIME/DATE]

$ date

Wed Jun 10 20:33:27 CDT 2009

Output of the date command

The date command displays the current time and date for the local system, as

shown in the above example.

Note Unix, Linux, and BSD systems track time in 24-hour format.

The -s option can be used to set the time/date on the system as demonstrated

in the next example.

date -s "07/10/2009 11:30"

Fri Jul 10 11:30:00 CDT 2009

Setting the time and date

When setting both the time and date you must use "MM/DD/YYYY HH:MM"

format. To set the time only you can simply use date -s HH:MM.

Note
You must login as root or use the sudo command (discussed on page

91) to set the system clock.

Common usage examples:

date Display the time and date

date -s [HH:MM] Set the time

date -s ["MM/DD/YYYY HH:MM"] Set the time and date

cal

Purpose: Display a calendar on the command line.

Usage syntax: cal [OPTIONS] [MONTH] [YEAR]

$ cal

 May 2009

Su Mo Tu We Th Fr Sa

 1 2

 3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

Displaying a calendar for the current month

The cal command displays a simple calendar on the command line. Executing

cal with no arguments will display a calendar for the current month, as shown in

the above example. Adding a month and year as arguments will display a calendar

for the specified month and year, as shown in the next example.

$ cal 8 2009
 August 2009

Su Mo Tu We Th Fr Sa

 1

 2 3 4 5 6 7 8

 9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30 31

 Displaying a calendar for the specified month

Common usage examples:

cal Display a calendar for the current month

cal -m Display Monday as the first day of the week

cal [MONTH] [YEAR] Display a calendar for the specified month and year

cal [YEAR] Display a calendar for the specified year

cal -y Display a calendar for the current year

history

Purpose: Display commands that have recently been executed.

Usage syntax: history [OPTIONS]

$ history 10

 686 man uptime
 687 cat /etc/hosts
 688 ls -l
 689 uptime
 690 dmesg
 691 iostat
 692 vmstat
 693 ping google.com
 694 tracepath google.com
 695 history 10

Display 10 lines of command history

The history command displays a user's command line history. Executing the

history command with no arguments will display the entire command line

history for the current user. For a shorter list, a number can be specified as an

argument. Typing history 10, for example, will display the last 10 commands

executed by the current user as shown in the above example.

Tip

You can execute a previous command using ![NUM] where NUM is the

line number in history you want to recall. For example, executing !687

will rerun the command listed on line 687 in the above example.

In Linux, each user has a file called .bash_history in their home directory

that contains their command line history. Unix systems typically store history in a

file called .sh_history or .history.

Note

The history file may contain sensitive information about commands you

have recently executed. Most systems will automatically overwrite

command line history after a certain period. To manually erase the

history file in your home directory type >$HOME/.*history on the

command line.

Common usage examples:

history Display the entire command line history

history [NUM] Display the specified number of history items

history|grep [PATTERN] Search history for the specified pattern

clear

Purpose: Clear the contents of the current screen.

Usage syntax: clear

$ ls -la

drwxr-xr-x 2 nick nick 4096 2009-05-19 21:14 .

drwxr-xr-x 92 nick nick 4096 2009-05-19 20:46 ..

-rw-r--r-- 1 nick nick 35068 2009-05-19 08:41 Notes.txt

-rw-r--r-- 1 nick nick 168 2009-05-19 21:14 .MyHiddenFile

-rw-r--r-- 1 nick nick 23 2009-05-19 08:43 ShoppingList.txt

-rw-r--r-- 1 nick nick 37 2009-05-19 08:43 ToDoList.txt

$ clear

Screen contents before the clear command is executed

$

Screen contents after the clear command has been executed

The clear command clears the contents of the terminal screen. This is useful

for uncluttering the display after you have executed several commands and are

preparing to move to the next task. The example above demonstrates the before

and after effects of the clear command. While clearing the screen after each

command isn't necessary, it does make it easier to read the information on the

display.

Tip
CTRL + L is a keyboard shortcut to clear the screen in the Bash shell. See

Appendix A for more information about Bash shortcut keys.

Common usage examples:

clear Clear the contents of the screen

logout

Purpose: Log out of the system.

Usage syntax: logout

$ logout

Ubuntu 9.04

login:

Results of the logout command

The logout command logs your account out of the system. This will end your

terminal session and return to the login screen.

Some systems may have a file called .logout or .bash_logout in each

user's home directory. This file contains commands to be run during the logout

process. It is used to perform cleanup operations and clear the screen before

ending the user's session.

Tip

The logout command is the recommended way to exit the shell. For

security purposes, users with administrative access should always logout

of any open terminal sessions when away from their desk.

Common usage examples:

logout Log out of the system

exit

Purpose: Exit the current shell.

Usage syntax: exit [CODE]

$ exit

login:

Example output of the exit command

The exit command is similar to the logout command with the exception

that it does not run the logout script located in the user's home directory. The

above example shows the results of exiting the shell and returning to the login

prompt.

Shell scripts typically use the exit command to properly terminate while users

use the logout command to properly log out of a system. The exception to this

rule is when a terminal application is opened from within a graphical environment

on the local system. The logout command cannot be used in this situation

because terminal session is started as sub shell under the graphical environment.

Most systems will display an error in this case as shown in the next example.

$ logout

bash: logout: not login shell: use "exit"

Logout error message

Tip
CTRL + D is a keyboard shortcut for exiting the shell. See Appendix A for

more information on shortcut keys.

Common usage examples:

exit Exit the current shell

exit [CODE] Exit the shell and report an exit code (useful in shell scripting)

Section 3:

Advanced Shell Features

and Commands

Overview

This chapter discusses advanced commands for Unix, Linux, and BSD systems.

Advanced commands can be used to perform tasks such as copying, moving,

renaming, and deleting files. It will also cover advanced shell features like auto

completion, wildcards, pipes, and redirection.

Commands covered in this section:

Command Purpose

mv Move or rename files and directories.

cp Copy files and directories.

rm Remove files.

mkdir

rmdir
Create/remove directories.

touch Update time stamps on a file.

lsof List open files.

fuser Display information about open files.

cksum Display the checksum of a file.

md5sum Display the MD5 hash of a file.

ln Create links (shortcuts) to files or directories.

alias Create command line aliases.

gzip

gunzip
Compress/uncompress files.

split Split large files into multiple pieces.

shred Securely erase files.

watch Periodically execute the specified command.

env Display environment variables.

Glossary of terms used in this section:

Alias A shortcut for a command.

Append Add data to the end of a file instead of overwriting its

contents.

Checksum A data integrity verification algorithm.

Compression A process used to reduce the size of files.

Interactive Display confirmation prompts before executing a task.

Link A shortcut to a file or directory.

MD5 Sum An enhanced data integrity verification algorithm.

Parent Directory Higher level directory that contains the current directory.

Pipe A command line facility that connects the output of one

command to the input of another.

Redirection Command line facilities used to redirect the input or output of

a command.

Variable Adjustable program/environment settings stored in memory.

Verbose Extended output from a command.

Wildcards Symbols used to match text patterns.

 Auto-Completion

Most shells support command line completion. Command line completion is used

to have the shell automatically complete commands or file paths. Command line

completion is activated using the Tab key on most systems and shown in the

following example.

$ whe<TAB>

$ whereis

Using command line completion

In the above example typing whe and pressing the Tab key automatically

completes the command whereis without having to type the entire command.

Auto-completion also works on file paths. Typing ls -l /etc/en and

pressing the Tab key would auto-complete to the file /etc/environment as

shown in the next example.

$ ls -l /etc/en<TAB>

$ ls -l /etc/environment

Command line completion of file names

When more than one match is found, the shell will display all matching results. In

the next example, typing ls -l /etc/host and pressing Tab displays all

matching files in the /etc directory.

$ ls -l /etc/host<TAB>

host.conf hostname hosts hosts.allow hosts.deny

Displaying multiple matches using file name completion

Tip

In addition to command line completion, some shells offer the ability to

recall previously executed commands by using the Up Arrow key on the

keyboard.

Wildcards

Wildcards are used to pattern match one against one or more text elements. They

are helpful on the command line for performing bulk tasks such as listing or

removing groups of files. The table below lists the different types of wildcards that

can be used on the command line.

Wildcard Function

* Matches 0 or more characters

? Matches 1 character

[abc] Matches one of the characters listed

[a-c] Matches one character in the range

[!abc] Matches any character not listed

[!a-c] Matches any character not listed in the range

{tacos,nachos} Matches one word in the list

Types of wildcards

The asterisk (*) is the simplest and most helpful wildcard. The example below

demonstrates using the asterisk wildcard to display all files that match a file name.

$ ls -l /etc/host*

-rw-r--r-- 1 root root 92 2008-12-23 12:53 /etc/host.conf

-rw-r--r-- 1 root root 6 2009-04-23 15:50 /etc/hostname

-rw-r--r-- 1 root root 251 2009-05-22 14:55 /etc/hosts

-rw-r--r-- 1 root root 579 2009-04-20 09:14 /etc/hosts.allow

-rw-r--r-- 1 root root 878 2009-04-20 09:14 /etc/hosts.deny

Listing files using the asterisk wildcard

Typing ls -l /etc/host* lists all the files in the /etc directory that start

with the word host. Other examples of wildcards are demonstrated below.

$ ls -l /etc/hosts.{allow,deny}

-rw-r--r-- 1 root root 579 2009-04-20 09:14 /etc/hosts.allow

-rw-r--r-- 1 root root 878 2009-04-20 09:14 /etc/hosts.deny

$ ls -l /etc/hosts.[!a]*

-rw-r--r-- 1 root root 878 2009-04-20 09:14 /etc/hosts.deny

$ ls -l /etc/host?

-rw-r--r-- 1 root root 251 2009-05-22 14:55 /etc/hosts

Examples of other wildcards

In this example, the first command uses {allow,deny} to display all matches

that end with the word allow or deny. The second command uses [!a]* to

display matches that do not begin with the letter a (after the period). The third

example uses the ? wildcard to match only a single character.

Pipes

Pipes (also referred to as pipelines) can be used to direct the output of one

command to the input of another. Pipes are executed using the | key (usually

located above the backslash key) on the keyboard.

$ ls -l /etc | more

total 968

-rw-r--r-- 1 root root 2975 2008-08-18 13:30 adduser.conf

-rw-r--r-- 1 root root 44 2010-04-06 16:59 adjtime

-rw-r--r-- 1 root root 51 2008-08-18 13:49 aliases

-rw-r--r-- 1 root root 12288 2009-08-28 13:39 aliases.db

drwxr-xr-x 2 root root 4096 2010-04-05 10:59 alternatives

drwxr-xr-x 7 root root 4096 2010-04-05 10:59 apache2

drwxr-xr-x 3 root root 4096 2008-08-18 13:48 apm

drwxr-xr-x 2 root root 4096 2009-08-28 13:39 apparmor

drwxr-xr-x 6 root root 4096 2008-08-18 13:47 apparmor.d

drwxr-xr-x 4 root root 4096 2010-01-25 13:44 apt

-rw-r----- 1 root daemon 144 2007-02-20 07:41 at.deny

-rw-r--r-- 1 root root 1733 2008-05-12 13:33 bash.bashrc

-rw-r--r-- 1 root root 216529 2008-04-14 20:45 bash_completion

drwxr-xr-x 2 root root 4096 2010-04-05 10:59 bash_completion.d

:

Using pipes on the command line

Using ls -l on the /etc directory would normally rapidly scroll the contents

of the directory across the screen. Piping the output of ls -l to the more

command (discussed on page 71) displays the contents of the /etc directory

one page at a time.

Another command commonly used with pipes is grep (discussed on page 76).

The grep utility can be used to filter the output of a command or file and display

matching results. The next example demonstrates piping the output of the ls

command to grep to filter the results and display matches that contain the word

hosts.

$ ls -l /etc | grep host

-rw-r--r-- 1 root root 92 2007-10-20 06:51 host.conf

-rw-r--r-- 1 root root 9 2008-08-19 15:29 hostname

-rw-r--r-- 1 root root 300 2009-12-07 09:19 hosts

-rw-r--r-- 1 root root 579 2008-08-18 13:30 hosts.allow

-rw-r--r-- 1 root root 878 2008-08-18 13:30 hosts.deny

Using a pipe with the grep command to filter a command's output

Note
Pipes are extremely useful when working on the command line. From this

point on they will be appearing frequently in examples.

Redirection

The output of a command can be redirected to other locations such as a text file.

Redirection is initiated by using the > character on the keyboard.

$ date > date.txt

$ ls -l date.txt

-rw-r--r-- 1 nick nick 29 2009-06-10 11:37 date.txt

Redirecting the output of the date command to a file

In the above example, the date command's output is redirected to a file called

date.txt instead of being displayed on the screen. If the specified file does not

exist it will automatically be created. If it does exist, it will be overwritten. To

prevent overwriting a file you can use >> to append to the file as shown in the

next example.

$ date >> date.txt

Appending the output of a command to a file

There are two different types of output:

1. Standard output (STDOUT)

2. Error output (STDERR)

STDOUT and STDERR can be selectively directed to specific files. This is useful when

trying to capture error messages as demonstrated below.

$ ls -l /NonExistantFile 1>ls.txt 2>lserror.txt

$ ls -l ls*

-rw-r--r-- 1 nick nick 61 2009-06-10 11:46 lserror.txt

-rw-r--r-- 1 nick nick 0 2009-06-10 11:46 ls.txt

Selectively redirecting STDOUT and STDERR

In this example, 1> represents STDOUT and 2> is for STDERR. Since the

requested file does not exist, an error message is logged in the lserror.txt

file. All non-error output is saved in the ls.txt file.

In addition to STDOUT and STDERR you can also redirect input from another

location (such as a file) to a command. This is known as standard input or STDIN.

The next example demonstrates using STDIN to feed the contents of a file to the

mail command (discussed on page 163).

$ mail grepnick@gmail.com < ShoppingList.txt

Redirecting input from a file to a command

mv

Purpose: Move or rename files and directories.

Usage syntax: mv [OPTIONS] [SOURCE] [DESTINATION]

$ ls -l

-rw-r--r-- 1 nick nick 55 2009-05-20 15:32 MyFile

$ mv MyFile MyFile.old

$ ls -l

-rw-r--r-- 1 nick nick 55 2009-05-20 15:32 MyFile.old

Using the mv command to rename a file

The mv command moves or renames files. In the above example, MyFile file is

renamed to MyFile.old using the mv command. In the next example,

MyFile.old is moved to the /tmp directory.

$ mv MyFile.old /tmp/

$ ls -l /tmp/

-rw-r--r-- 1 nick nick 55 2009-05-20 15:32 MyFile.old

Moving a file to a different directory

The mv command can also be used to move or rename directories. In the

example below, the NewFiles directory is renamed to OldFiles.

$ ls -ld NewFiles/

drwxr-xr-x 2 nick nick 4096 2009-06-28 13:23 NewFiles/

$ mv NewFiles/ OldFiles/

$ ls -ld OldFiles/

drwxr-xr-x 2 nick nick 4096 2009-06-28 13:23 OldFiles/

Moving an entire directory

Warning

The default behavior the mv command will overwrite any existing

file(s). The -i option overrides this behavior and prompts the user

before overwriting the destination file.

Common usage examples:

mv [SOURCE] [DEST] Move a file or directory to the specified location

mv -i [SOURCE] [DEST] Prompt before overwriting the destination file

mv -f [SOURCE] [DEST] Force overwriting if the destination file exists

cp

Purpose: Copy files and directories.

Usage syntax: cp [OPTIONS] [SOURCE] [DESTINATION]

$ cp MyFile MyFile.copy

$ ls -l

-rw-r--r-- 1 nick nick 55 2009-05-20 15:32 MyFile

-rw-r--r-- 1 nick nick 55 2009-05-20 15:32 MyFile.copy

Creating a copy of a file

The cp command copies files and directories. In the above example, MyFile is

copied to create the MyFile.copy file.

The next example demonstrates using cp -r to recursively copy the contents of

a directory.

$ ls -l

drwxr-xr-x 2 root root 4096 Jul 1 14:06 MyDocuments

$ cp -r MyDocuments/ MyDocuments2/

$ ls -l

drwxr-xr-x 2 root root 4096 Jul 1 14:06 MyDocuments

drwxr-xr-x 2 root root 4096 Jul 1 14:06 MyDocuments2

Using the -r option with cp to recursively copy a directory

After executing the cp -r command an exact copy of the specified directory is

created.

Warning

The default behavior the cp command will overwrite any existing

file(s). The -i option overrides this behavior and prompts the user

before overwriting the destination file.

Common usage examples:

cp [SOURCE] [DEST] Create a copy of the specified file

cp -r [SOURCE] [DEST] Recursively copy a directory

cp -i [SOURCE] [DEST] Prompt before overwriting the destination file

cp -f [SOURCE] [DEST] Force overwriting if the destination file exists

cp -v [SOURCE] [DEST] Display verbose messages while copying

rm

Purpose: Remove files.

Usage syntax: rm [OPTIONS] [FILE]

$ rm MyFile

$ ls -l MyFile

ls: cannot access MyFile: No such file or directory

Using the rm command to remove a file

The rm command removes files. In the above example, the rm command is

used to remove MyFile. After executing the rm command, MyFile is

deleted from the disk and no longer accessible.

Notice that no warning is given when the file is removed. This is the default

behavior of rm on most systems. To change this, use the -i option as

demonstrated in the next example. This will instruct the system to prompt you to

verify you want to remove the file.

$ rm -i MyFile

rm: remove regular file 'MyFile'? y

Using the -i option with the rm command for interactive prompts

Tip

You can use the alias command (see page 54) to make rm -i the

default remove action. This is highly recommended as it helps prevent

accidental disasters when deleting files.

Common usage examples:

rm [FILE] Remove the specified file

rm -r [DIRECTORY] Recursively remove all items in the specified directory

rm -i [FILE] Prompt to confirm the removal of the specified file

mkdir / rmdir

Purpose: Create/remove directories.

Usage syntax: mkdir [OPTIONS] [DIRECTORY]

mkdir test

ls -ld test/

drwxr-xr-x 2 root root 4096 Jun 4 09:00 test

Creating a directory with mkdir

The mkdir command creates directories. The above example demonstrates

creating a directory called test. Notice the permissions section of the ls

output contains a d prefix. This indicates that the item is a directory.

Tip
Use mkdir "my directory" or mkdir my\ directory to

create a directory with a space in its name.

The rmdir command removes directories. In the next example, the rmdir

command is used to remove the previously created test directory.

Usage syntax: rmdir [DIRECTORY]

$ rmdir test/

$ ls -ld test/

ls: cannot access test/: No such file or directory

Removing a directory using rmdir

Note

rmdir will only remove empty directories. To remove a non-empty

directory, use rm -r [DIRECTORY] in place of the rmdir

command.

Common usage examples:

mkdir [DIRECTORY] Create the specified directory

mkdir -p [PATH/DIRECTORY] Create parent directories if needed

rmdir [DIRECTORY] Remove the specified directory

touch

Purpose: Update time stamps on a file.

Usage syntax: touch [OPTIONS] [FILE]

$ ls -l testfile

-rw-r--r-- 1 root root 251 2009-04-21 15:50 testfile
$ touch testfile

$ ls -l testfile

-rw-r--r-- 1 root root 251 2009-05-23 14:54 testfile

$ date

Sat May 23 14:54:35 CDT 2009

Using the touch command to update the time stamp on a file

The touch command updates the time stamps on the specified file(s). Notice

the timestamp on the file in the above example is updated to match the current

time and date after executing the touch command.

If the file does not exist, the touch command will create an empty file with the

specified file name, as demonstrated in the next example.

$ ls -l MyFile

ls: cannot access MyFile: No such file or directory

$ touch MyFile

$ ls -l MyFile
-rw-r--r-- 1 nick nick 0 2009-05-23 14:54 MyFile

Creating a new empty file with the the touch command

Common usage examples:

touch [FILE] Update the time stamp on the specified file

touch -a [FILE] Update the access time stamp on the specified file

touch -m [FILE] Update the modified time stamp on the specified file

lsof

Purpose: List open files.

Usage syntax: lsof [OPTIONS] [NAME]

lsof /etc/hosts

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

tail 12793 nick 3r REG 8,1 256 1777676 /etc/hosts

Using the lsof command to display information about an open file

The lsof command displays information about open files. Executing the lsof

command with no arguments will display all open files on the system. Specifying

the name of an open file will display information about who is using the file. In the

example above, lsof displays which user is using the /etc/hosts file along

with other helpful information such as the command name and PID number.

The -u option allows you to see all files open by the specified user as displayed in

the next example.

lsof -u nick

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

sshd 17899 nick cwd DIR 8,1 4096 2 /

sshd 17899 nick rtd DIR 8,1 4096 2 /

tail 12793 nick 3r REG 8,1 256 1777676 /etc/hosts

sshd 17899 nick 0u CHR 1,3 5818 /dev/null

sshd 17899 nick 1u CHR 1,3 5818 /dev/null

sshd 17899 nick 2u CHR 1,3 5818 /dev/null

...

Using the lsof command to display files opened by a specific user

Common usage examples:

lsof List all open files

lsof [FILE] List information about a specific file

lsof -u [USERNAME] List files open by the specified user

lsof -p [PID] List open files by the specified PID number

lsof -c [PROCESSNAME] List open files with the specified process name

lsof -i List open network ports and sockets

fuser

Purpose: Display information about open files.

Usage syntax: fuser [OPTIONS] [DIRECTORY/FILE]

$ fuser -v /home/nick/ShoppingList.txt

28528c(nick)

 USER PID ACCESS COMMAND

ShoppingList.txt: nick 14044 ..c.. tail

Displaying information about open files with fuser

fuser is a helpful program for identifying the person or program that is using a

file. In the example above the fuser command displays the user, process id, and

command currently using the ShoppingList.txt file.

The -ki option can be used with the fuser command to terminate the

process currently using the specified file as shown in the next example.

$ fuser -ki /home/nick/ShoppingList.txt

/home/nick/ShoppingList.txt: 14044

Kill process 14044 ? (y/N) y

Using the -ki option with fuser to terminate the processes using a file

Note Section 6 of this guide covers processes in more detail.

Common usage examples:

fuser [FILE] Display processes using the specified file

fuser -v [FILE] Display detailed information about the file in use

fuser -ki [FILE] Kill all processes using the specified file

cksum

Purpose: Display the checksum of a file.

Usage syntax: cksum [OPTIONS] [FILE]

$ cksum ubuntu.iso

3212199805 730554368 ubuntu.iso

Displaying the checksum of a large file

The cksum command displays the checksum of the specified file. It is typically

used to verify the integrity of files transferred across a network connection. In the

above example, the checksum for a downloaded Ubuntu Linux CD image is

displayed. The resulting checksum can be compared to the checksum from the

original file to ensure it arrived without errors.

The table below describes the output fields of the cksum command.

Checksum File Size File Name

3212199805 730554368 ubuntu.iso

Output fields of the cksum command

Tip

Multiple files can be analyzed with one invocation of the cksum

command using the following syntax: cksum [FILE1] [FILE2]

[FILE3] [ETC].

Common usage examples:

cksum [FILE] Display the checksum of the specified file(s)

md5sum

Purpose: Display the MD5 hash of a file.

Usage syntax: md5sum [OPTIONS] [FILE]

$ md5sum ubuntu.iso
cace6ea9dde8dc158174e345aabe3fae ubuntu.iso

Displaying the md5 hash of a large file using the md5sum command

The md5sum command computes the MD5 sum (sometimes referred to as the

hash) of the specified file. It is similar to the previously discussed cksum

command except more intensive. MD5 hashes are the equivalent of a digital

fingerprint and are not likely to be duplicated or padded in the same way that

cksum hashes (in some rare instances) can.

The above example displays the MD5 hash for a Ubuntu Linux CD image

downloaded from the internet. The resulting MD5 hash can be compared to the

hash from the download site to ensure it arrived without errors.

Note The md5 command is used on BSD systems in place of md5sum.

Common usage examples:

md5sum [FILE] Compute the MD5 sum for the specified file(s)

md5sum -c [FILE] Compare the MD5 sum in the specified file

ln

Purpose: Create links (shortcuts) to files or directories.

Usage syntax: ln [OPTIONS] [TARGET] [LINK]

$ ln -s TheSourceFile ThisIsTheLink

$ ls -l

-rw-r--r-- 1 nick nick 14 2009-05-23 10:16 TheSourceFile

lrwxrwxrwx 1 nick nick 13 2009-05-23 10:18 ThisIsTheLink -> TheSourceFile

Creating a link to a file using the ln command

The ln command creates links to files or directories. A link is the command line

equivalent of a shortcut. In the above example, a link to a file called

TheSourceFile is created. Notice the link in the above example has an l

prefix in the permissions section. This indicates that the file is a link.

The default operation of the ln command on most systems creates what is

known as a hard link. Hard links have two major limitations:

1. Hard links cannot refer to directories
2. Hard links cannot span multiple file systems/disks

Symbolic links are more commonly used today to overcome the shortfalls of hard

links. They are created when using the -s option with the ln command. This is

the recommended way to create a link as it will not suffer from the same

limitations of a hard link.

Note
Editing a symbolic link file is the same as editing the source file, but

deleting the symbolic link does not delete the source file.

Common usage examples:

ln [SOURCE] [TARGET] Create a hard link to the specified target

ln -s [SOURCE] [TARGET] Create a symbolic link to the specified target

alias

Purpose: Create command line aliases.

Usage syntax: alias [OPTIONS] [COMMAND]

$ alias rm="rm -i"

$ rm TestFile

rm: remove regular empty file 'TestFile'? y

Creating a command alias

The alias command creates command line aliases. This allows you to

abbreviate a long command string to something simple. In the above example, the

rm command is aliased to be rm -i so that every time the rm command is

executed the -i option is automatically included (without having to type it).

Executing alias with no arguments will display all currently defined aliases, as

demonstrated in the next example.

$ alias

alias cp='cp -i'

alias l='ls -l'

alias rm='rm -i'

Displaying all defined aliases

Tip

Aliases are lost when you log out. The unalias command can be used

to delete aliases without having to logoff. To make an alias permanent

you must add it to /etc/profile or .*profile file in the user's

home directory.

Common usage examples:

alias Display defined aliases

alias [NAME]="[COMMAND]" Create an alias for the specified command

gzip / gunzip

Purpose: Compress/uncompress files.

Usage syntax: gzip [OPTIONS] [FILE]

ls -lh BigFile

-rw-r--r-- 1 root root 3.0M 2010-05-20 14:02 BigFile

gzip BigFile

ls -lh BigFile.gz

-rw-r--r-- 1 root root 433K 2010-05-20 14:02 BigFile.gz

Using gzip to compress a file

gzip is a simple compression utility found on most Linux and BSD systems. In the

above example gzip is used to reduce the size of the BigFile file by

compressing it into a .gz archive.

The gunzip (or gzip -d) command uncompresses gzip archives as

demonstrated in the next example.

Usage syntax: gunzip [OPTIONS] [FILE]

$ gunzip BigFile.gz

ls -lh BigFile

-rw-r--r-- 1 root root 3.0M 2010-05-20 14:02 BigFile

Uncompressing a file with gunzip

Note

On older Unix systems the compress and uncompress commands

are used in place of gzip and gunzip. Compressed files on these

systems will usually have a .Z file extension in place of .gz.

Common usage examples:

gzip [FILE] Compress the specified file

gzip --fast [FILE] Compress the specified file using the fastest method

gzip --best [FILE] Compress the file using the highest compression level

gzip -tv [ARCHIVE] Test the specified archive for errors

gzip -l [ARCHIVE] Display information about the specified archive file

gunzip [ARCHIVE] Uncompress the specified archive

gzip -d [ARCHIVE] Uncompress the specified archive

split

Purpose: Split large files into multiple pieces.

Usage syntax: split [OPTIONS] [FILE] [OUTPUT]

$ ls -l ubuntu.iso

-rw-r--r-- 1 nick nick 671686656 2009-10-27 12:07 ubuntu-9.10.iso

$ split -d -b 100M ubuntu.iso ubuntu.iso.

$ ls -lh ubuntu*

-rw-r--r-- 1 nick nick 641M 2009-10-27 12:07 ubuntu-9.10.iso

-rw-r--r-- 1 nick nick 100M 2010-04-11 11:44 ubuntu.iso.00

-rw-r--r-- 1 nick nick 100M 2010-04-11 11:44 ubuntu.iso.01

-rw-r--r-- 1 nick nick 100M 2010-04-11 11:44 ubuntu.iso.02

-rw-r--r-- 1 nick nick 100M 2010-04-11 11:44 ubuntu.iso.03

-rw-r--r-- 1 nick nick 100M 2010-04-11 11:44 ubuntu.iso.04

-rw-r--r-- 1 nick nick 100M 2010-04-11 11:44 ubuntu.iso.05

-rw-r--r-- 1 nick nick 41M 2010-04-11 11:44 ubuntu.iso.06

Using the split command to split a large file into multiple pieces

The split command splits large files into multiple pieces. The above example

demonstrates splitting the large ubuntu.iso file into several 100MB pieces (as

specified by the -b 100M parameter). In this example, the split command

will create the required number of 100MB files with an incrementing extension.

Note The original file is left in place when creating split files.

The cat command (discussed on page 68) can be used to rejoin the split files as

demonstrated in the next example.

$ cat ubuntu.iso.* > ubuntu-joined.iso

$ ls -lh *.iso

-rw-r--r-- 1 nick nick 641M 2009-10-27 12:07 ubuntu-9.10.iso

-rw-r--r-- 1 nick nick 641M 2010-04-11 11:47 ubuntu-joined.iso

Combining split files using the cat command

Tip
You can use the cksum or md5sum command to verify the joined file

is the same as the original.

Common usage examples:

split -b [SIZE] [FILE] [OUTPUT] Split a file into multiple pieces

split -d -b [SIZE] [FILE] [OUTPUT] Use numeric suffixes

shred

Purpose: Securely erase files.

Usage syntax: shred [OPTIONS] [DIRECTORY/FILE]

$ shred -u SecretPlans.txt

$ ls -l SecretPlans.txt

ls: cannot access SecretPlans.txt: No such file or directory

Using the shred command to securely overwrite a file

The shred command securely overwrites (and optionally deletes) files. In the

above example, executing shred -u securely overwrites and removes the

SecretPlans.txt file from the disk.

The default operation of the shred command overwrites the specified file with

3 passes of random data. The -n option can be used to specify a custom number

of overwrite iterations as displayed in the next example.

$ shred -n 10 -v SecretPlans.txt

shred: SecretPlans.txt: pass 1/10 (random)...

shred: SecretPlans.txt: pass 2/10 (ffffff)...

shred: SecretPlans.txt: pass 3/10 (000000)...

shred: SecretPlans.txt: pass 4/10 (333333)...

shred: SecretPlans.txt: pass 5/10 (555555)...

shred: SecretPlans.txt: pass 6/10 (random)...

shred: SecretPlans.txt: pass 7/10 (aaaaaa)...

shred: SecretPlans.txt: pass 8/10 (924924)...

shred: SecretPlans.txt: pass 9/10 (492492)...

shred: SecretPlans.txt: pass 10/10 (random)...

Specifying a number of overwrite iterations

Note
The -v option is applied in the above example to verbosely display the

progress of the shred command.

Common usage examples:

shred [FILE] Shred the specified file

shred -u [FILE] Shred and delete the specified file

shred -zu [FILE] Attempt to hide evidence of file shredding

shred -v [FILE] Display the progress of each pass

shred -n [NUM] [FILE] Perform the specified number of overwrite passes

watch

Purpose: Periodically execute the specified command.

Usage syntax: watch [OPTIONS] [COMMAND]

$ watch -n 10 who

Every 10.0s: who Sat May 23 11:00:19 2009

steve tty1 2009-05-21 10:24

root tty2 2009-05-21 10:44

nick tty3 2009-05-23 12:20

Executing the who command every 10 seconds using watch

watch periodically runs the specified command. It is a helpful program for

monitoring the output of a command over a period of time. In the above example,

watch -n 10 is used to execute the who command (discussed on page 94)

every 10 seconds.

If the -n option is omitted watch will execute the specified command with a

two second interval.

Tip
Press CTRL + C on your keyboard to end monitoring and exit the watch

program.

Common usage examples:

watch [COMMAND] Run the specified command every 2 seconds

watch -n [NUM] [COMMAND] Run a command at the specified interval

watch -b [COMMAND] Beep if the command exits with an error

watch -d [COMMAND] Highlight differences between updates

env

Purpose: Display environment variables.

Usage syntax: env [OPTIONS]

$ env

TERM=xterm

SHELL=/bin/bash

USER=nick

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:

LANG=en_US.UTF-8

HOME=/home/nick

...

Output of the env command

The env command displays your defined environment variables. These variables

hold information for common account settings like the location of a user's home

directory and the type of shell they use by default.

The following table describes the most common environment variables used on

Unix, Linux, and BSD systems.

Variable Function

EDITOR Specifies the user's preferred text editor

HISTFILE Location of the user's command line history file

HISTFILESIZE Specifies the number of commands to save in HISTFILE

HOME Path to the user's home directory

LANG Specifies the user's language locale settings

MAIL Path to the user's mail file

PATH Path to search for binary programs

PS1 Customized shell prompt settings

SHELL Location of the user's shell

TERM Specifies the type of terminal being used

USER User's username

Common environment variables used on Unix, Linux, and BSD systems

Common usage examples:

env Display all defined environment variables

Section 4:

Text Editing and Extraction

Overview

Extracting and editing text is an important part of working on the command line.

Text editors and utilities are commonly used for administrative purposes such as

changing settings in configuration files or viewing system log files. This chapter

provides a basic overview of working with text editing and extraction programs for

Unix, Linux, and BSD systems.

Commands covered in this section:

Command Purpose

nano Simple text editor.

vi/vim Full featured text editor.

emacs Robust and extensible text editor.

sed Complex stream editor.

awk Text processing and pattern matching program.

strings Extract readable characters from binary files.

cat Concatenate files and display their contents.

tac Concatenate files in reverse order.

wc Count the number of lines, words, and characters in a file.

more Display the output of a command or text file one page at a time.

less
Display the output of a command or text file one page (or line) at

a time.

head Display the first part of a file.

tail Display the last part of a file.

tee Display the output of a command and write the output to a file.

grep Match patterns and filter data.

sort Sort the contents of an input stream or file.

zcat Read the contents of a compressed file.

diff Compare files.

dostounix

unixtodos

Convert text file formats between Windows/DOS and Unix/Linux

systems.

Glossary of terms used in this section:

Editor A program used to create/edit text documents.

Concatenate Process used to join files.

Regular Expression A complex pattern matching language.

Stream A channel of data to/from another program or file.

nano

Purpose: Simple text editor.

Usage syntax: nano [OPTIONS] [FILE]

$ nano ShoppingList.txt

 GNU nano 2.0.9 File: /home/nick/ShoppingList.txt

Milk

Eggs

Cheese

Tacos

^G Get Help ^O WriteOut ^R Read File ^Y Prev Page ^K Cut Text ^C Cur Pos

^X Exit ^J Justify ^W Where Is ^V Next Page ^U UnCut Text ^T To Spell

Editing a text file with nano

nano is a simple editor found on most Linux and BSD systems. It is the

recommended editor for new users. Nano's functions such as searching, saving,

and closing files are controlled using function keys. The basic functions are listed at

the bottom of the nano screen. For example, pressing CTRL + O saves the

changes to a file and CTRL + X exits the nano editor. Other functions are

described in the following table.

Keys Function Keys Function

CTRL + O Save CTRL + X Exit

CTRL + G Help ESC + X Toggle menu display

Page Up Previous page Page Down Next Page

ESC + D Display word count CTRL + C Display current position

CTRL + K Cut current line ESC + 6 Copy current line

CTRL + U Paste CTRL + \ Find and replace

CTRL + W Search CTRL + - Go to line

CTRL + A Go to beginning of line CTRL + E Go to end of line

ESC + \ Go to first line of the file ESC + / Go to last line of the file

Function keys for the nano editor

Note On some systems the pico editor may be used in place of nano.

Common usage examples:

nano [FILE] Open the specified file for editing

nano -v [FILE] Open the specified file in read only mode

vi / vim

Purpose: Full featured text editor.

Usage syntax: vi/vim [OPTIONS] [FILE]

$ vim ShoppingList.txt

Milk

Eggs

Cheese

Tacos

~

~

~

~

~

~

"/home/nick/ShoppingList.txt" 4 lines, 19 characters

Using vi to edit a text file

The vi editor (also known as vim) is a complex and full featured text editor for

Unix, Linux, and BSD systems. Traditional Unix systems typically utilize vi as the

default text editor. Modern Linux and BSD systems use vim which is an enhanced

version of vi.

The vi and vim editors have two basic modes of operation: command mode

and editing mode. Pressing Esc on the keyboard activates command mode. When

in command mode, command keys can be used to activate specific editing

functions. The following table lists the most common commands for vi and

vim.

Key(s) Function Key(s) Function

:w Save A Append text after

:x Save and exit r Replace text before cursor

:q Quit R Replace text after cursor

i Insert text before yy Copy current line

I Insert text after p Paste copied text

a Append text before /[TEXT] Search for the specified text

Command keys for vi and vim

Common usage examples:

vi [FILE] Open the specified file for editing in vi

vim [FILE] Open the specified file for editing in vim

view [FILE] Open the specified file in read only mode

emacs

Purpose: Robust and extensible text editor.

Usage syntax: emacs [OPTIONS] [FILE]

$ emacs ShoppingList.txt

File Edit Options Buffers Tools Help

Milk

Eggs

Cheese

Tacos

--u-:%%-F1 ShoppingList.txt (Fundamental)--L12--Top-------------------

Buffer is read-only: #<buffer services>

Editing a text file with emacs

emacs is one of the oldest text editors still in use today on Unix, Linux, and BSD

systems. Its programmable macros and code syntax highlighting make it a popular

choice for software developers and web programmers. The screenshot above

displays the emacs editor user interface.

Note

emacs is an incredibly powerful editor geared towards advanced users,

software developers, and publishers. New users should focus on learning

the nano and vi editors before attempting to master emacs.

Common usage examples:

emacs [FILE] Open the specified file for editing.

sed

Purpose: Complex stream editor.

Usage syntax: sed [OPTIONS] [FILE]

$ cat ShoppingList.txt

Milk

Eggs

Cheese

Tacos

$ sed s/Tacos/Nachos/ ShoppingList.txt > NewShoppingList.txt

$ cat NewShoppingList.txt

Milk

Eggs

Cheese

Nachos

Using the sed command to replace text in a file

sed is a complex stream editor. It uses regular expressions to modify data

streamed to it. Regular expressions are a pattern matching language supported on

all Unix, Linux, and BSD systems.

In the above example, the sed command reads the contents of the

ShoppnigList.txt file and uses a regular expression to replace all instances

of the word Tacos with Nachos. The results are output to a new file called

NewShoppingList.txt.

Note

Regular expressions are complex and can't be fully covered in this book.

Visit www.DontFearTheCommandLine.com to find resources for learning

more about regular expressions syntax.

Common usage examples:

sed [OPTIONS] [EXPRESSION] [FILE] Edit a file using sed

awk

Purpose: Text processing and pattern matching program.

Usage syntax: awk [EXPRESSION]

$ ls -l ShoppingList.*

-rw-r--r-- 1 nick nick 24 2010-04-12 23:10 ShoppingList.old

-rw-r--r-- 1 nick nick 23 2010-04-12 19:33 ShoppingList.txt

$ ls -l ShoppingList.* | awk -F" " '{ print $1 " " $8 }'

-rw-r--r-- ShoppingList.old

-rw-r--r-- ShoppingList.txt

Modifying the output of the ls command using the awk command

awk is a pattern matching and text processing utility. It treats each line of input as

a series of fields. The fields in each line are grouped into an array and assigned a

variable related to their position. In the above example, awk is used to extract

and print the first and eighth ($1 and $8) fields from the output of the ls

command.

The awk command can also be used to perform batch processing functions such

as renaming multiple files as demonstrated in the next example.

$ ls

File1 File3 File5 File7 File9

File2 File4 File6 File8

$ ls | awk '{print "mv "$1" "$1".txt"}' | sh

$ ls

File1.txt File3.txt File5.txt File7.txt File9.txt

File2.txt File4.txt File6.txt File8.txt

Batch renaming files using the awk command

In this example the awk command is used to rename the listed files by appending

a .txt extension to them.

Note

awk is a powerful and complex utility that can't be fully covered in this

book. Visit www.DontFearTheCommandLine.com to find resources for

learning more about awk usage syntax.

Common usage examples:

[INPUT] | awk [EXPRESSION] Process input using the awk command

strings

Purpose: Extract readable characters from binary files.

Usage syntax: strings [OPTIONS] [FILE]

$ strings unknown.mp3

...

TAG Girl You Know It's True

Milli Vanilli

Girl You Know It's True

1989

...

Using the strings command to extract text from a binary file

The strings command extracts text from binary files. Binary files contain data

that is unreadable using standard text processing programs. Examples of binary

files include MP3, JPEG, and MPEG to name a few.

 In the above example, readable text is extracted from the unknown.mp3 file.

This information can be used to identify the contents of the binary file.

Note

The strings command displays results that are a minimum of 4

characters by default. You can override the default minimum character

length using the -n option.

Common usage examples:

strings [FILE] Display readable text characters in a binary file

strings -n [NUM] [FILE] Set the minimum number of characters

cat

Purpose: Concatenate files and display their contents.

Usage syntax: cat [OPTIONS] [FILE]

$ cat ShoppingList.txt

Milk

Eggs

Cheese

Tacos

Output of the cat command

The cat command concatenates and displays files. Executing cat on the

ShoppingList.txt file displays its contents as shown in the above example.

To join two or more files, simply provide the file names to be concatenated

separated by a space as demonstrated in the next example.

$ cat ShoppingList.txt NachoIngredients.txt

Milk

Eggs

Cheese

Tacos

2 cloves garlic, crushed

6 green onions, sliced, white parts and tops separated

1 cup salsa

1/2 (12 ounce) package tortilla chips

1 (8 ounce) package shredded Cheddar/Monterey Jack cheese blend

1/2 large tomato, diced

Joining two files using the cat command

Common usage examples:

cat [FILE] Display the contents of the specified file

cat [FILE1] [FILE2] [ETC] Join the specified files

cat -n [FILE] Display numbered output for each line

cat -s [FILE] Suppress blank lines

tac

Purpose: Concatenate files in reverse order.

Usage syntax: tac [FILE]

$ cat ShoppingList.txt

Milk

Eggs

Cheese

Tacos

$ tac ShoppingList.txt

Tacos

Cheese

Eggs

Milk

Comparison of the output from the cat and tac commands

The tac command is similar to the previously discussed cat command, except

it displays a file's contents in reverse order. In the above example, the output of the

cat command is compared to the tac command to demonstrate the

differences between the output generated by these two commands.

Tip

tac is extremely useful when reviewing the contents of log files on Unix,

Linux, BSD systems. The newest entries in log files are always appended to

the end of the file. tac allows you to read these files in reverse order

displaying the most recent entries first.

Common usage examples:

tac [FILE] Display the contents of the specified file in reverse order

wc

Purpose: Count the number of lines, words, and characters in a file.

Usage syntax: wc [OPTIONS] [FILE]

$ wc /etc/hosts

 10 28 251 /etc/hosts

Output of the wc command

The wc command (short for Word Count) displays the total number of lines,

words, and characters in the specified file. The above example displays the totals

for the /etc/host file. The table below explains the output fields generated by

the wc command.

Lines Words Characters File

10 28 251 /etc/hosts

Output fields of the wc command

Common usage examples:

wc [FILE] Display the number of lines, words, and characters in a file

wc -w [FILE] Display the number of words in a file

wc -l [FILE] Display the number of lines in a file

wc -c [FILE] Display the number of characters in a file

more

Purpose: Display the output of a command or text file one page at a time.

Usage syntax: more [OPTIONS] [FILE]

$ more /var/log/syslog

May 20 11:49:15 e6400 NetworkManager: SCPlugin-Ifupdown: (19599648)

... get_connections (managed=false): return empty list.

May 20 11:49:15 e6400 modem-manager: Loaded plugin Longcheer

May 20 11:49:15 e6400 modem-manager: Loaded plugin Option

May 20 11:49:15 e6400 modem-manager: Loaded plugin MotoC

May 20 11:49:15 e6400 modem-manager: Loaded plugin Option High-Speed

May 20 11:49:15 e6400 modem-manager: Loaded plugin Generic

May 20 11:49:15 e6400 modem-manager: Loaded plugin Gobi

May 20 11:49:15 e6400 modem-manager: Loaded plugin Nokia

May 20 11:49:15 e6400 modem-manager: Loaded plugin Novatel

May 20 11:49:15 e6400 modem-manager: Loaded plugin AnyData

May 20 11:49:15 e6400 modem-manager: Loaded plugin Huawei

May 20 11:49:15 e6400 modem-manager: Loaded plugin ZTE

May 20 11:49:15 e6400 modem-manager: Loaded plugin Sierra

May 20 11:49:15 e6400 modem-manager: Loaded plugin Ericsson MBM

--More--(14%)

Viewing a text file with the more command

The more command displays the output of a command or text file one page at a

time. This is useful for large files or commands that generate many lines of output.

The above example demonstrates using the more command to read a large text

file one page at a time.

Tip
The space bar is used to scroll output using more. The Q key closes the

file without having to scroll to the end.

Common usage examples:

more [FILE] Display the specified file one page at a time

more +[NUM] [FILE] Start reading a file at the specified line number

[COMMAND] | more Display a command's output one page at a time

less

Purpose: Display the output of a command or text file one page (or line) at a time.

Usage syntax: less [OPTIONS] [FILE]

$ less /var/log/syslog

May 20 11:49:15 e6400 NetworkManager: SCPlugin-Ifupdown: (19599648)

... get_connections (managed=false): return empty list.

May 20 11:49:15 e6400 modem-manager: Loaded plugin Longcheer

May 20 11:49:15 e6400 modem-manager: Loaded plugin Option

May 20 11:49:15 e6400 modem-manager: Loaded plugin MotoC

May 20 11:49:15 e6400 modem-manager: Loaded plugin Option High-Speed

May 20 11:49:15 e6400 modem-manager: Loaded plugin Generic

May 20 11:49:15 e6400 modem-manager: Loaded plugin Gobi

May 20 11:49:15 e6400 modem-manager: Loaded plugin Nokia

May 20 11:49:15 e6400 modem-manager: Loaded plugin Novatel

May 20 11:49:15 e6400 modem-manager: Loaded plugin AnyData

May 20 11:49:15 e6400 modem-manager: Loaded plugin Huawei

May 20 11:49:15 e6400 modem-manager: Loaded plugin ZTE

May 20 11:49:15 e6400 modem-manager: Loaded plugin Sierra

May 20 11:49:15 e6400 modem-manager: Loaded plugin Ericsson MBM

:

Viewing a text file with the less command

The less command is similar to the previously discussed more command

except it supports scrolling in both directions (up and down) where more can

only go down.

Tip
The arrow keys and Page Up/Down keys are used to scroll output using

less. The Q key closes the file without having to scroll to the end.

Common usage examples:

less [FILE] Display the specified file one page at a time

less +[NUM] [FILE] Start reading a file at the specified line number

[COMMAND] | less Display a command's output one page at a time

head

Purpose: Display the first part of a file.

Usage syntax: head [OPTIONS] [FILE]

$ head -n 2 ShoppingList.txt

Milk

Eggs

Using the head command to display the first two lines of a file

The head command displays the first few lines (known as the head) of the

specified file. In the above example, the -n 2 option is used to display only the

first two lines of the specified file. If the head command is executed with no

options it will display the first 10 lines in the file by default.

Common usage examples:

head [FILE] Display the first 10 lines of the specified file

head -n [NUM] [FILE] Display the specified number of lines

tail

Purpose: Display the last part of a file.

Usage syntax: tail [OPTIONS] [FILE]

$ tail -n 2 ShoppingList.txt

Cheese

Tacos

Displaying the last two lines in a file with tail

The tail command displays the last few lines (known as the tail) of the

specified file. In the above example, the -n 2 option is used to display only the

last two lines of the specified file. If the tail command is executed with no

options it will display the last 10 lines in the file by default.

Another useful feature of the tail command is the -f option which is used to

"follow" a file as it grows. This instructs the tail command to open the

specified file and display new lines as they are written to it. The next example

demonstrates using the tail -f command to monitor new log entries in real-

time in the /var/log/syslog file.

tail -f /var/log/syslog

May 22 13:41:50 e6400 NetworkManager: <info> (wlan0): supplicant

connection state: completed -> group handshake

May 22 13:41:50 e6400 NetworkManager: <info> (wlan0): supplicant

connection state: group handshake -> completed

May 22 13:41:51 e6400 wpa_supplicant[848]: WPA: EAPOL-Key Replay

Counter did not increase - dropping packet

May 22 13:41:51 e6400 wpa_supplicant[848]: WPA: Invalid EAPOL-Key MIC -

dropping packet

May 22 13:42:15 e6400 wpa_supplicant[848]: last message repeated 6

times

May 22 13:45:13 e6400 anacron[1290]: Job 'cron.daily' started

May 22 13:45:13 e6400 anacron[2167]: Updated timestamp for job

'cron.daily' to 2010-05-22

...

Using the tail command to monitor a growing log file in real time

Common usage examples:

tail [FILE] Display the last 10 lines of the specified file

tail -n [NUM] [FILE] Display the specified number of lines

tail -f [FILE] Follow the file as it grows

tee

Purpose: Display the output of a command and write the output to a file.

Usage syntax: tee [OPTIONS] [FILE]

$ ls -l /etc/ | tee etc.txt

-rw-r--r-- 1 root root 2975 2009-02-04 11:12 adduser.conf

-rw-r--r-- 1 root root 46 2010-06-27 16:53 adjtime

-rw-r--r-- 1 root root 532 2009-11-30 14:33 aliases

-rw-r--r-- 1 root root 12288 2010-07-01 12:23 aliases.db

drwxr-xr-x 2 root root 4096 2010-05-04 13:24 alternatives

drwxr-xr-x 4 root root 4096 2009-03-12 14:08 amavis

drwxr-xr-x 3 root root 4096 2009-02-04 12:49 apm

drwxr-xr-x 2 root root 4096 2009-08-28 14:45 apparmor

drwxr-xr-x 6 root root 4096 2010-06-27 16:53 apparmor.d

...

Using the tee command to capture the output of a command

The tee command displays the output of a command and also saves the output

to a file. In the above example, the tee command displays the output of the

ls -l /etc command while simultaneously saving the results to a file called

etc.txt file. Viewing the etc.txt file shows its contents are the same as

the output displayed on the command line, as demonstrated in the next example.

$ more etc.txt

-rw-r--r-- 1 root root 2975 2009-02-04 11:12 adduser.conf

-rw-r--r-- 1 root root 46 2010-06-27 16:53 adjtime

-rw-r--r-- 1 root root 532 2009-11-30 14:33 aliases

-rw-r--r-- 1 root root 12288 2010-07-01 12:23 aliases.db

drwxr-xr-x 2 root root 4096 2010-05-04 13:24 alternatives

drwxr-xr-x 4 root root 4096 2009-03-12 14:08 amavis

drwxr-xr-x 3 root root 4096 2009-02-04 12:49 apm

drwxr-xr-x 2 root root 4096 2009-08-28 14:45 apparmor

drwxr-xr-x 6 root root 4096 2010-06-27 16:53 apparmor.d

...

Viewing the contents of the output file created by the tee command

Common usage examples:

[COMMAND] | tee [FILE] Save a command's output to a file

[COMMAND] | tee -a [FILE] Append the output to the specified file

grep

Purpose: Match patterns and filter data.

Usage syntax: grep [OPTIONS] [FILE]

$ grep -i failed /var/log/syslog

Apr 4 07:52:44 kernel: [0.000000] Fast TSC calibration failed

Apr 4 07:52:44 kernel: [1.587770] PM: Resume from disk failed.

Apr 4 07:52:44 kernel: [6.252517] PM: Resume from disk failed.

Apr 11 12:11:28 init: Unable to connect to the system bus: Failed to

connect to socket /var/run/dbus/system_bus_socket: Connection refused

...

Using the grep command to filter a file

The grep command filters data from a file or command. In the above example,

grep is used to filter the /var/log/syslog file and display matches that

contain the word failed.

Tip
Unix, Linux, and BSD systems are case sensitive. In the above example, the

-i option is used to overcome this and perform a case insensitive search.

The grep command can also be used to filter the output of a command. In the

next example the output of the dmesg command (discussed on page 216) is

piped to the grep command to only display results that contain the word error.

$ dmesg | grep -i error

[16074.400692] PM: Device 2-3 failed to resume: error -19

[20792.424537] npviewer.bin[20044]: segfault at ff9bea2c ip

00000000ff9bea2c sp 00000000ffca507c error 14

[21301.607988] npviewer.bin[24229]: segfault at ff9bea2c ip

00000000ff9bea2c sp 00000000ff83a40c error 14

...

Using the grep command to filter a command's output

Common usage examples:

grep [STRING] [FILE] Display matching lines in a file

grep -c [STRING] [FILE] Count the number of matches in a file

grep -i [STRING] [FILE] Ignore case when matching

[COMMAND] | grep [STRING] Filter a command's output to match a string

sort

Purpose: Sort the contents of an input stream or file.

Usage syntax: sort [OPTIONS] [FILE]

$ cat ShoppingList.txt

Milk

Eggs

Cheese

Tacos

$ sort ShoppingList.txt

Cheese

Eggs

Milk

Tacos

Using the sort command to sort a file

The sort command sorts the contents command or file. In the above example,

the sort command is used to alphabetically sort the ShoppingList.txt

file and display the results.

sort can also be used with pipes to sort the output of a command as shown in

the next example.

$ ls | sort

acpi

adduser.conf

adjtime

aliases

aliases.db

alsa

alternatives

anacrontab

apache2

...

Using the sort command to sort the output of a command

Common usage examples:

sort [FILE] Sort and display the specified file

sort -r [FILE] Reverse sort the specified file

[COMMAND] | sort Sort the output of the specified command

zcat

Purpose: Read the contents of a compressed file.

Usage syntax: zcat [OPTIONS] [FILE]

$ file ShoppingList.txt.gz

ShoppingList.txt.gz: gzip compressed data, was "ShoppingList.txt", from

Unix, last modified: Mon Apr 12 19:33:38 2010

$ zcat ShoppingList.txt.gz

Milk

Eggs

Cheese

Tacos

Viewing the contents of a compressed text file with the zcat command

The zcat command allows you to read the contents of a compressed text file

without having to manually uncompress it first. In the above example the

ShoppingList.txt.gz file is a compressed gzip archive. Using the

traditional cat command would produce unreadable output in this scenario. The

zcat command, however, allows you to view the contents of the file without

having to first uncompress it.

Common usage examples:

zcat [FILE] Read the contents of a compressed file

diff

Purpose: Compare files.

Usage syntax: diff [OPTIONS] [FILE]

$ diff ShoppingList.txt ShoppingList.old

4c4

< Tacos

> Nachos

Default output of the diff command

The diff command allows you to compare two text files line by line and display

the differences between them. The diff command provides two types of

output:

1. Single column (default)

2. Two column side-by-side comparison (activated with the -y option)

In the above example the diff command displays the default single column

output which only shows the differences between the two files. Indicators are used

to mark the differing lines:

< Indicates the text in the first file

> Indicates the text in the second file

The -y option can be used to display two column side-by-side output. The next

example demonstrates the output generated with this option.

$ diff -y ShoppingList.txt ShoppingList.old

Milk Milk

Eggs Eggs

Cheese Cheese

Tacos | Nachos

Comparing two files with the diff command

Common usage examples:

diff [FILE1] [FILE2] Compare files and display differences

diff -y [FILE1] [FILE2] Compare files side by side

diff -i [FILE1] [FILE2] Ignore case when comparing files

dos2unix / unix2dos

Purpose: Convert file formats between Windows/MS-DOS and Unix/Linux systems.

Usage syntax: dos2unix / unix2dos [OPTIONS] [FILE]

$ cat ShoppingList.txt

Milk^M

Eggs^M

Cheese^M

Tacos

$ dos2unix ShoppingList.txt
$ cat ShoppingList.txt

Milk

Eggs

Cheese

Tacos

Converting a Windows-formatted text file to a Unix-formatted file

Text files created in Windows and MS-DOS are formatted with line feed characters

that are not compatible with Unix/Linux systems. The dos2unix command

reformats the specified file so that is will display properly on Unix/Linux systems. In

the above example, the line feed characters in the ShoppingList.txt file

are converted so they will display properly on Unix-based systems.

Similar to the dos2unix command, unix2dos formats text files created on

Unix/Linux systems so they can be displayed properly when transferred to

Windows systems.

Tip
Conversions are done directly to the specified file. Use the -b option to

create a backup of the file before converting.

Common usage examples:

dos2unix [FILE] Convert a Windows text file to a Unix-formatted file

dos2unix -b [FILE] Create a backup before converting

unix2dos [FILE] Convert a Unix text file to a Windows-formatted file

unix2dos -b [FILE] Create a backup before converting the file

Section 5:

Users, Groups, and Security

Overview

This chapter covers the most common commands related to users, groups, and

security. It will also discuss topics like account creation/deletion, file and directory

permissions, and other user/security related commands.

Commands covered in this section:

Command Purpose

chmod Change file and directory permissions.

chown Change the owner of a file or directory.

chgrp Change the group of files and directories.

umask Display/set a user's default file creation mask.

su Switch user accounts.

sudo Run a single command as a different user.

id Display information about a user's identity.

groups Display which groups a user belongs to.

who Display who is logged into the system.

whoami Display the current user's identity

w
Display detailed information about users logged in to the

system.

last

lastb
Display the last successful/failed user logins.

lastlog Display the most recent user login information.

finger Display information a about user account.

passwd Change passwords.

useradd

userdel
Create/delete user accounts.

adduser

deluser
Create/delete user accounts on Linux systems.

groupadd

groupdel
Add/remove a group.

(Continued...)

Command Purpose

usermod

groupmod
Modify user and group account settings.

wall Broadcast a message to all users on the system.

ulimit Display/set system resource limits.

Glossary of terms used in this section:

GID (Group IDentifier) A numerical value assigned to a group in

the /etc/group file.

Group A grouping of user accounts used to simplify security and

access control.

Mode Indicator of permissions for files and directories.

Octal Notation A numerical value used to apply permissions to files and

directories.

Permissions Settings used to control access to a file or directory.

Profile Collection of settings assigned to a user.

Symbolic Notation A user friendly way to display or apply permissions to files

and directories.

UID (User IDentifier) A numerical value assigned to a user

account in the /etc/passwd file.

User Account An account assigned to each person with login access to the

local system.

Types of Accounts

There are several types of user accounts used on Unix, Linux, and BSD systems. The

graphic below illustrates the user security model used on most systems.

Unix/Linux/BSD user security model

By default, normal users and the programs they execute are given the least amount

of privileges on the system. System accounts have slightly elevated privileges and

are used to run system services (like a web server or FTP server). The root account

has unrestricted administrative access to the entire system.

Groups

Groups are used to simplify the management of system security. Users can be a

member of one or more groups. All users are part of at least one group by default;

this group is known as the user's primary group.

File and Directory Permissions

File and directory permissions are managed using a set of nine "flags". The

following example describes permissions found on a typical file.

- rwx r-x r-x
 1 2 3 4 5 6 7 8 9

File
Type

User
(Owner)

Group Other
(Everyone)

Within these nine flags, three sets of permissions are specified:

 User (AKA owner) permissions

 Group permissions

 Other (i.e. everyone else)

There are four types of permissions that can be used to control access to a file or

directory. The following table describes each permission.

Symbolic Meaning
r Read

w Write

x Execute

- No access

Example of directory permissions

In most cases, the owner of a file will always have full read/write access to that file.

Execute permission is a special flag used for programs, scripts, and directories to

indicate they are executable.

The example below displays basic file permissions.

$ ls -l ShoppingList.txt

-rw-r--r-- 1 nick users 254 2009-06-01 15:35 ShoppingList.txt

Output of the ls -l command displaying file permissions

 User Group Other

Symbolic rw- r-- r--

Meaning Read & Write Read only Read only

Example of file permissions

The next example demonstrates directory permissions. Directory permissions work

the same as file permissions except they are used to control access to directories.

$ ls -ld finance/

drwxr-x--- 2 root finance 4096 2009-06-12 09:48 finance/

Output of the ls -ld command displaying directory permissions

 User Group Other

Symbolic rwx r-x ---

Meaning Read, Write,
& Execute

Read only &
Execute

No Access

Example of directory permissions

Each file and directory has its own set of permissions. Permissions are not inherited

from the parent directory. Additionally, directories require execute permission in

order to be accessible, as shown in the previous example.

chmod

Purpose: Change file and directory permissions.

Usage syntax: chmod [OPTIONS] [MODE] [DIRECTORY/FILE]

chmod 664 ShoppingList.txt

ls -l ShoppingList.txt

-rw-rw-r-- 1 root root 23 2009-05-27 22:31 ShoppingList.txt

Using the chmod command to change file permissions

The chmod command sets permissions on files and directories. By default,

permissions are specified in numerical (octal) format such as 664 as shown in the

above example. In octal form, three digits are used to represent owner, group, and

everyone else's permissions. The first number represents the owner's permissions,

the second number is the group's permissions, and the third number is for

everyone else.

The table below provides a cross reference of symbolic and octal permissions.

Permission Symbolic Octal

Read r 4

Write w 2

Execute x 1

None - 0

Permissions cross reference

The sum of the octal permissions becomes what is known as the mode. The valid

modes are described in the following table.

Mode Octal Symbolic Effective Permission

7 4+2+1 rwx Read/Write/Execute

6 4+2 rw- Read/Write

5 4+1 r-x Read/Execute

4 4 r-- Read

0 0 --- None

Mode cross reference

The combination of 3 modes determines the permissions for the file. A mode of

664 would create rw-rw-r-- permissions giving read/write access to the user

and group, and read only to everyone else.

(Continued…)

The concept of permissions on Unix, Linux, and BSD systems can be hard to grasp

as first. Several additional examples are provided below to help clarify this topic.

Example 1: A mode of 660 would provide read/write access to the owner and
group and no access to everyone else.

chmod 660 MyFile

ls -l MyFile

-rw-rw---- 1 root sales 23 2009-05-27 22:31 MyFile

Result of a 660 mode

Example 2: A mode of 755 would provide full access to the owner and

read/execute access for the group and everyone else.

chmod 755 MyProgram.sh

ls -l MyProgram.sh

-rwxr-xr-x 1 root sales 23 2009-05-27 22:31 MyProgram.sh

Result of a 755 mode

Example 3: A mode of 600 would provide read/write access to the owner and no

access to everyone else.

chmod 600 MyFile

ls -l MyFile

-rw------- 1 root sales 23 2009-05-27 22:31 MyFile

Result of a 600 mode

Example 4: A mode of 775 applied to a directory would provide read/write/execute

access to the owner and group and read only access to everyone else.

$ chmod 775 MyDirectory

$ ls -ld test

drwxrwxr-x 2 root sales 4096 2009-05-27 16:04 MyDirectory

Result of a 775 mode applied to a directory

Common usage examples:

chmod [MODE] [FILE] Change the permissions on the specified file

chmod [MODE] -R [DIR] Recursively change the permissions on all files

chown

Purpose: Change the owner of a file or directory.

Usage syntax: chown [OPTIONS] [USER:GROUP] [DIRECTORY/FILE]

ls -l ShoppingList.txt

-rw-r--r-- 1 nick nick 23 2009-05-27 22:31 ShoppingList.txt

chown root ShoppingList.txt

ls -l ShoppingList.txt

-rw-r--r-- 1 root nick 23 2009-05-27 22:31 ShoppingList.txt

Using the chown command to change the owner of a file

The chown command changes the owner of a file or directory. In the above

example, the owner of the ShoppingList.txt file is changed from nick to

root.

The next example demonstrates changing both the owner and group of a file using

the chown command.

ls -l ShoppingList.txt

-rw-r--r-- 1 root nick 23 2009-05-27 22:31 ShoppingList.txt

chown nick:sales ShoppingList.txt

ls -l ShoppingList.txt

-rw-r--r-- 1 nick sales 23 2009-05-27 22:31 ShoppingList.txt

Using the chown command to change the owner and group of a file

After executing the chown nick:sales ShoppingList.txt command,

the ShoppingList.txt file is updated with the owner of nick and the group

of sales.

Tip
You can use the chgrp command (discussed on page 88) if you only

need to change the group of a file.

Common usage examples:

chown [USER] [FILE] Change the owner of a file

chown [USER]:[GROUP] [FILE] Change the owner and group of a file

chown -R [USER] [DIR] Recursively change the owner on all

files in the specified directory

chgrp

Purpose: Change the group of files and directories.

Usage syntax: chgrp [OPTIONS] [GROUP] [DIRECTORY/FILE]

ls -l ShoppingList.txt

-rw-r--r-- 1 root root 23 2009-05-27 22:31 ShoppingList.txt

chgrp sales ShoppingList.txt

ls -l ShoppingList.txt

-rw-r--r-- 1 root sales 23 2009-05-27 22:31 ShoppingList.txt

Using the chgrp command to change the group of a file

The chgrp command changes the group of a file or directory. In the above

example the chgrp command is used to change the group from root to sales on

the ShoppingList.txt file.

Common usage examples:

chgrp [GROUP] [FILE] Change a file's group to the specified group

chgrp -R [DIR] Recursively change the group on all files

umask

Purpose: Display/set a user's default file creation mask.

Usage syntax: umask [OPTIONS] [MODE]

$ umask

022

Displaying the current user's umask

umask controls a user's default file creation mask. This determines the

permissions that will be assigned to newly created files and directories. To

determine the file/directory creation mode the umask value is subtracted from 777

for directories and 666 for files. For example, a umask of 022 would create effective

permissions of 644 (rw-r--r--) for files and 755 (rwxr-xr-x) for directories.

On some systems the -S option can be used to display a more user friendly

symbolic output of the umask value, as shown in the next example.

$ umask -S

u=rwx,g=rx,o=rx

Displaying the umask in symbolic notation

The umask command can also be used to change the umask value as displayed

in the next example.

$ umask 077

Setting the umask value

In this example, a umask value of 077 would create effective permissions of 600

(rw-------) for files and 700 (rwx------) for directories.

Note

A umask value specified on the command line is reset when you log out.

To make the umask permanent you must add it to the .*profile file

in the user's home directory or /etc/profile (for all users).

Common usage examples:

umask Display the umask in octal format

umask -S Display the umask in symbolic format

umask [MODE] Set the umask to the specified value

su

Purpose: Switch user accounts.

Usage syntax: su [OPTIONS] [USER]

$ whoami

nick

$ su

Password: ******

whoami

root

Using the su command to switch from a normal user to the root user

The su command (short for Switch User) allows you to login as another user

without having to first log out of the system. In the above example su is used by

a normal user to switch to the root user account. Notice that when you become

the root user your shell prompt changes from $ to #. As the root user you can

now run commands that require elevated privileges.

Tip
You should always limit the amount of time you spend logged in as the

root user. This is a good practice that can help reduce accidents.

By default, executing su with no arguments switches to the root user account. A

user name can be specified with su to become a different user as shown in the

next example.

$ whoami

nick

$ su steve

Password: ******

$ whoami

steve

Using su to switch to another user

Common usage examples:

su Switch to the root user account

su - Switch to the root user account and load root's profile

su [USERNAME] Switch to the specified username

sudo

Purpose: Run a single command as a different user.

Usage syntax: sudo [OPTIONS] [COMMAND]

$ whoami

nick

$ sudo whoami

[sudo] password for nick: *******

root

$ whoami

nick

Using sudo to run a command as the root user

The sudo command allows you to run a single command as another user. It is

most commonly used to execute commands that require root privileges. In this

example whoami is executed as root via the sudo command.

Using the sudo command is the recommended way to run commands that

require elevated privileges as it limits the amount of time spent with root

privileges. This greatly helps prevent disasters such as accidental deletion of

important system files.

Note
User (or group) accounts must be listed in the /etc/sudoers file in

order to execute commands as root with sudo.

Common usage examples:

sudo [COMMAND] Run the specified command as root

sudo -u [USER] [COMMAND] Run a command as the specified user

sudo !! Run the last command as root

id

Purpose: Display information about a user's identity.

Usage syntax: id [OPTIONS] [USER]

id

uid=0(root) gid=0(root) groups=0(root)

Displaying user and group information for the current user

The id command displays user and group information for the specified user.

Executing id with no options displays the current user's information as displayed

in the above example. The next example demonstrates using the id command to

display information about a specific user.

id nick

uid=1000(nick) gid=1000(nick) groups=4(adm), 20(dialout),24(cdrom),

46(plugdev), 106(lpadmin), 121(admin), 122(sambashare), 1000(nick)

Displaying user and group information for a specific user

Note

Unix, Linux, and BSD systems assign a numerical UID (User ID) and GID

(Group ID) for each user and group on the system. A user friendly name is

also assigned to each UID and GID which is displayed in parenthesis next

to each ID number. This information is stored in /etc/passwd for

users and /etc/group for groups.

Common usage examples:

id Display the current user's ID information

id [USER] Display user and group information for the specified user

groups

Purpose: Display which groups a user belongs to.

Usage syntax: groups [OPTIONS] [USER]

groups

root

Displaying group information for the current user

The groups command displays a user's group membership. Executing groups

with no options displays the current user's groups, as shown in the above example.

A user name can be used with the groups command to display the specified

user's group membership as shown in the next example.

groups nick

nick adm dialout cdrom plugdev lpadmin admin sambashare

Displaying group information for the specified user

Common usage examples:

groups Display the current user's group membership

groups [USER] Display group membership for the specified user

who / whoami

Purpose: Display who is logged into the system.

Usage syntax: who [OPTIONS]

$ who

root tty2 2010-05-17 11:32

nick tty1 2010-05-17 11:31

nick pts/0 2010-05-17 08:40 (10.10.1.251)

dave pts/1 2010-05-17 12:32 (10.10.1.188)

mike pts/2 2010-05-17 14:28 (10.10.1.167)

lisa pts/3 2010-05-17 14:50 (10.10.1.204)

nick pts/4 2010-05-17 15:33 (10.10.1.251)

Output of the who command

The who command displays information about users currently logged in to the

system. The default output of the who command displays the username, terminal

ID, and date/time the user logged in as shown in the above example.

Note
Users logged in via telnet or SSH sessions will also display the IP address

of the remote client in parentheses.

The whoami command displays the username of the current user. This is helpful

to verify which user's environment and security privileges are available when

switching between different accounts.

Usage syntax: whoami

$ whoami

nick

Using whoami to display the name of the current user

Common usage examples:

who Display who is currently logged into the system

who -b Display the last system boot time

who -r Display the current run level

whoami Display the name of the current user

w

Purpose: Display detailed information about users logged in to the system.

Usage syntax: w [OPTIONS] [USER]

$ w

 15:39:12 up 4 days, 6:09, 5 users, load average: 0.06, 0.05, 0.01

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

nick pts/0 10.10.1.251 08:40 1:10 0.18s 0.15s -bash

dave pts/1 10.10.1.188 12:32 0.00s 0.14s 0.14s vim

mike pts/2 10.10.1.167 14:28 0.00s 0.12s 0.12s tail

lisa pts/3 10.10.1.204 14:50 9.00s 0.14s 0.14s -bash

nick pts/4 10.10.1.251 15:33 0.00s 0.15s 0.01s w

Output of the w command

The w command shows detailed information about users logged into the system.

It is similar to the previously discussed who command except it provides

additional information such as the user's last login time, how long they have been

idle, and what program they are currently running.

The w command also displays a system summary line that shows the host's

uptime, number of connected users, and samples of system load averages for the

past 1, 5, and 15 minutes.

Tip

The information displayed on the first line is the same output generated

by the uptime command. See page 215 for more information about

system uptime and load averages.

Common usage examples:

w Display detailed information about users currently logged in to the system

last / lastb

Purpose: Display the last successful/failed user logins.

Usage syntax: last [OPTIONS] [USER]

$ last

nick pts/1 192.168.1.50 Sat May 22 13:42 still logged in

nick pts/0 192.168.1.50 Sat May 22 13:40 still logged in

nick tty7 :0 Sat May 22 13:40 still logged in

reboot system boot 2.6.32-21-ge Sat May 22 13:40 - 14:02 (00:21)

nick pts/0 :0.0 Thu May 20 21:33 - 21:36 (00:03)

nick pts/0 :0.0 Thu May 20 21:30 - 21:33 (00:02)

root pts/0 :0.0 Thu May 20 21:27 - 21:30 (00:03)

nick tty7 :0 Thu May 20 21:25 - crash (1+16:14)

...

Output of the last command

The last command displays the login and logout times for each user on the

system. It also shows information about system shutdowns and restarts as shown

in the above example.

The lastb command displays failed login attempts and shown in the next

example.

Usage syntax: lastb [OPTIONS] [USER]

$ lastb

nick tty1 Sat May 22 13:59 - 13:59 (00:00)

nick tty1 Thu May 20 21:27 - 21:27 (00:00)

root tty1 Thu May 20 15:27 - 15:27 (00:00)

btmp begins Sat May 20 13:59:28 2010

Output of the lastb command

Note
User login/logout activity is stored in the /var/log/wtmp file. Failed

login attempts are logged in /var/log/btmp.

Common usage examples:

last Display the last user login information

last –[NUMBER] Display the specified number of logins

last [USER] Display the last logins for the specified user

lastb Display failed login attempts

lastb –[NUMBER] Display the specified number of failed login attempts

lastb [USER] Display failed login attempts for the specified user

lastlog

Purpose: Display the most recent user login information.

Usage syntax: lastlog [OPTIONS]

$ lastlog | more

Username Port From Latest

root tty2 Sat May 30 11:32:33 -0500 2009

dave tty3 Sat May 30 10:22:51 -0500 2009

nick pts/0 10.10.1.251 Sat May 30 11:31:51 -0500 2009

steve **Never logged in**

bin **Never logged in**

sync **Never logged in**

lp **Never logged in**

...

Output of the lastlog command

The lastlog command displays the most recent user login time and dates for

every user on the system. Executing lastlog with no options displays the last

login information for all users, as shown in the above example. This output is

similar to the last command except lastlog only displays the most current

login activity where last displays all available login events.

The -u option can be used to display the last login for a specific user as

demonstrated in the next example.

$ lastlog -u nick

Username Port From Latest

nick pts/0 10.10.1.251 Sat May 30 11:31:51 -0500 2009

Displaying the last login for a specific user

Common usage examples:

lastlog Display the last login information for all users

lastlog -u [USER] Display the last login information for the specified user

finger

Purpose: Display information about a user account.

Usage syntax: finger [OPTIONS] [USER]

$ finger nick

Login: nick Name: Nick Marsh

Directory: /home/nick Shell: /bin/bash

On since Sat May 30 11:32 (CDT) on tty2 10 minutes 32 seconds idle

New mail received Mon May 17 16:08 2010 (CDT)

 Unread since Tue Apr 13 08:43 2010 (CDT)

No Plan.

Using the finger command to display information about a user account

The finger command displays information about user accounts. It shows

details about the user's shell, home directory, and other helpful information. The

example above demonstrates the typical user information displayed when using

the finger command.

Tip

The finger command looks for a file called .plan in the specified

user's home directory. This file can be edited by the user to contain a note

about their status and is displayed whenever they are queried with the

finger command. If this file does not exist, the finger command

will display "No Plan" for the user.

Common usage examples:

finger [USER] Display information about the specified user

passwd

Purpose: Change passwords.

Usage syntax: passwd [OPTIONS] [USER]

$ passwd

Enter new UNIX password: ******

Retype new UNIX password: ******

passwd: password updated successfully

Changing the current user's password

The passwd command changes a user's password. Executing passwd with no

arguments changes the password for the current user as shown in the above

example.

The root user can change other user's passwords by specifying a username as

demonstrated in the next example.

passwd nick

Enter new UNIX password: ******

Retype new UNIX password: ******

passwd: password updated successfully

Changing a specific user's password

Common usage examples:

passwd Set the password for the current user

passwd [USER] Set the password for the specified user

passwd -e [USER] Force a user to change their password at the next login

passwd -l [USER] Lock the specified user account

passwd -u [USER] Unlock the specified user account

passwd -S [USER] Display the status of the specified user account

useradd / userdel

Purpose: Create/delete user accounts.

Usage syntax: useradd [OPTIONS] [USER]

useradd -m steve

passwd steve

Enter new UNIX password: ******

Retype new UNIX password: ******

passwd: password updated successfully

Adding a user account to the system (and setting their password)

The useradd command creates new user accounts. In the above example,

executing useradd -m steve creates a basic login account for a user. The

-m option is used to automatically create a home directory for the specified user

(recommended). The password is then set for the new user using the previously

discussed passwd command.

Note
You must set the password for the new user using the passwd

command before they can login.

The userdel command deletes user accounts from the system. The next

example demonstrates using userdel to remove an account. The optional -r

option is used to have the system automatically delete the specified user's home

directory after removing their account.

Usage syntax: userdel [OPTIONS] [USER]

userdel -r steve

Removing a user account

Note
The rmuser command may be used on some Unix and BSD systems in

place of userdel.

Common usage examples:

useradd [USER] Create the specified user account

useradd -m [USER] Automatically create a home directory for the user

userdel [USER] Delete the specified user account

userdel -r [USER] Delete a user's account and their home directory

adduser / deluser

Purpose: Create/delete user accounts on Linux systems.

Usage syntax: adduser [OPTIONS] [USER]

adduser mike

Adding user 'mike' ...

Adding new group 'mike' (1002) ...

Adding new user 'mike' (1002) with group 'mike' ...

Creating home directory '/home/mike' ...

Copying files from '/etc/skel' ...

Enter new UNIX password: ******

Retype new UNIX password: ******

passwd: password updated successfully

Changing the user information for mike

Enter the new value, or press ENTER for the default

 Full Name []: Mike Smith

 Room Number []: Computer Room

 Work Phone []: 555-1212

 Home Phone []:

Is the information correct? [y/N] y

Creating a user with the adduser command

The adduser command is a user-friendly frontend for the previously discussed

useradd command. It simplifies the creation of user accounts on Linux systems

by prompting for necessary information when creating accounts (rather than

having to specify a number of command line options). The above example

demonstrates the typical usage of the adduser command.

The deluser command deletes user accounts as shown in the next example.

Usage syntax: deluser [OPTIONS] [USER]

deluser mike

Removing user 'mike' ...

Warning: Removing group 'mike', since no other user is part of it.

Done.

Removing a user with the deluser command

Note
Default settings for the adduser and deluser commands are

stored in /etc/adduser.conf and /etc/deluser.conf.

Common usage examples:

adduser [USER] Create a user account

deluser [USER] Remove a user account

groupadd / groupdel

Purpose: Add/remove a group.

Usage syntax: groupadd [GROUP]

groupadd accounting

Creating a new group with groupadd

The groupadd command creates new group accounts. Groups are helpful in

managing access to files and directories in a multiuser environment. In the above

example a new group called accounting is created. The resulting group entry in the

/etc/group file is displayed below.

grep accounting /etc/group

accounting:x:1002:

Displaying a group entry in the /etc/group file

The groupdel command deletes groups from the system. The next example

demonstrates using the groupdel command to remove the previously created

accounting group from the system

Usage syntax: groupdel [GROUP]

groupdel accounting

Deleting a group using groupdel

Common usage examples:

groupadd [GROUP] Create a new group

groupdel [GROUP] Delete a group

usermod / groupmod

Purpose: Modify user and group account settings.

Usage syntax: usermod [OPTIONS] [USER]

usermod -aG sales nick

Changing a user's group membership using the usermod command

The usermod command modifies user account settings. In the above example,

the -aG option is used to add the user nick to the sales group. You can also use

the usermod command to change a user's home directory location using the

-d option or default shell using -s.

The groupmod command modifies groups. Its primary purpose is to rename a

group. In the next example the accounting group is renamed to finance using

groupmod -n.

Usage syntax: groupmod [OPTIONS] [GROUP]

groupmod accounting -n finance

grep finance /etc/group

finance:x:1002:

Renaming a group using the groupmod command

Common usage examples:

usermod -s [SHELL] [USER] Change a user's default shell

usermod -d [DIR] [USER] Change a user's home directory location

usermod -aG [GROUP] [USER] Add a user to the specified group

groupmod [OLD] -n [NEW] Rename the specified group

wall

Purpose: Broadcast a message to all users on the system.

Usage syntax: wall [FILE]

wall

Anyone want some tacos?

<CTRL + D>

Using the wall command to send a message to all users logged into the system

The wall command sends a message to all users currently logged into the

system. The text entered in the above example will display on all local terminals

and remote sessions currently logged into the system.

Note Pressing CTRL + D ends the message editor and sends the message.

The next example displays a sample of the wall message output as seen by

other users on the system.

$

Broadcast Message from root@e6400 (/dev/pts/0) at 11:56 ...

Anyone want some tacos?

Output of the wall message displayed on all terminals

In place of manually entering a message, a text file with a prewritten message can

be used with the wall command, as shown in the next example.

wall /home/nick/message.txt

Using a text file to send a message with the wall command

Common usage examples:

wall Send a message to all users

wall [FILE] Send the message in the specified file to all users

ulimit

Purpose: Display/set system resource limits.

Usage syntax: ulimit [OPTIONS] [LIMIT]

$ ulimit -a

core file size (blocks, -c) 0

data seg size (kbytes, -d) unlimited

scheduling priority (-e) 20

file size (blocks, -f) unlimited

pending signals (-i) 16382

max locked memory (kbytes, -l) 64

max memory size (kbytes, -m) unlimited

open files (-n) 1024

pipe size (512 bytes, -p) 8

POSIX message queues (bytes, -q) 819200

real-time priority (-r) 0

stack size (kbytes, -s) 8192

cpu time (seconds, -t) unlimited

max user processes (-u) unlimited

virtual memory (kbytes, -v) unlimited

file locks (-x) unlimited

Displaying defined resource limits using the ulimit command

The ulimit command displays and sets system resource limits. These limits

control the maximum amount of system resources available to programs. It can be

used to control the maximum amount of memory, CPU time, and file sizes available

to each program launched by a user.

Tip
Ulimit configuration is typically stored in /etc/limits.conf or

/etc/security/limits.conf on most systems.

Common usage examples:

ulimit -a Display all defined resource limits

ulimit [OPTION] [LIMIT] Set ulimit values

Section 6:

Process Control and Scheduling

Overview

Every program that runs on Unix, Linux, and BSD systems is considered to be a

process. Processes are assigned a unique identifier which it used to monitor and

control the process. This process identifier (PID) can be used to control processes

using the command line utilities discussed in this section.

Commands covered in this section:

Command Purpose

ps Display running processes.

pgrep Find processes by name.

pstree Display all running processes in a tree view.

kill Terminate a process.

killall Terminate all processes with the specified name.

nice Execute programs at the specified CPU priority level.

renice Alter the priority of a running process.

& Start a process in the background.

bg

fg
Move a process to the background/foreground.

jobs Display background and suspended jobs.

nohup Run a process immune to hang-up signals.

batch Schedule programs to run during low CPU load.

at Schedule programs to run at the specified time.

atq Display queued at jobs.

atrm Remove scheduled at jobs from the queue.

crontab Schedule programs to run at the specified time(s).

Glossary of terms used in this section:

Cron A scheduling system used to execute programs at specific time

intervals.

Job A program that has been scheduled, suspended, or is currently

running using the at or batch scheduling programs.

Nice Value A numerical indicator assigned to processes to indicate and control

their CPU scheduling priority.

PID (Process IDentifier) A unique numeric value assigned to each

process executed on a system.

PPID (Parent Process IDentifier) The PID of the parent process that

started a child process.

Priority Synonym for Nice Value.

Process Any program that has been executed.

ps

Purpose: Display running processes.

Usage syntax: ps [OPTIONS]

$ ps

 PID TTY TIME CMD
 4958 pts/0 00:00:00 bash
 9596 pts/0 00:00:00 ps

Example output of the ps command

The ps command displays running process on the system. Executing the ps

command with no options will display all processes owned by the current user as

shown in the above example. For a complete listing of processes, use the -e

option as demonstrated in the next example.

$ ps -e

 PID TTY TIME CMD

 1 ? 00:00:01 init

 2 ? 00:00:00 kthreadd

 3 ? 00:00:00 migration/0

 4 ? 00:00:00 ksoftirqd/0

 5 ? 00:00:00 watchdog/0
...

Using the -e option with the ps command

The -ef option can be used to display detailed information about all processes

on the system. This includes the user ID, process ID, parent process ID, and other

helpful information, as shown in the next example.

$ ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Jun24 ? 00:00:02 /sbin/init

root 2 0 0 Jun24 ? 00:00:00 [kthreadd]

root 3 2 0 Jun24 ? 00:00:00 [migration/0]

root 4 2 0 Jun24 ? 00:00:00 [ksoftirqd/0]

root 5 2 0 Jun24 ? 00:00:00 [watchdog/0]

...

Output of the ps -ef command

Common usage examples:

ps Display the current user's processes

ps -e Display all processes running on the system

ps -ef Display detailed information about running processes

ps -u [USER] Display processes owned by the specified user

pgrep

Purpose: Find processes by name.

Usage syntax: pgrep [OPTIONS] [NAME]

$ pgrep apache

3952

4075

4076

4077

4078

4079

Displaying PIDs with the name of apache using the pgrep command

The pgrep command displays all processes matching the specified name. In the

above example the PIDs for the apache web server are displayed. This is the

equivalent of typing ps -e|grep apache and is provided as a shortcut to

produce the same results.

The -l option can be used with pgrep to display the full process name for

each PID as demonstrated in the next example.

$ pgrep -l apache

3952 apache2

4075 apache2

4076 apache2

4077 apache2

4078 apache2

4079 apache2

Using the -l option with pgrep to display the full name of each process

Note
Some systems may use the pidof command in place of the pgrep

command.

Common usage examples:

pgrep [NAME] Display PIDs matching the specified name

pgrep -l [NAME] Display the process name in addition to the PID

pgrep -P [PPID] Display all child processes of the specified PPID

pgrep -c [NAME] Display the total number of matching processes

pstree

Purpose: Display all running processes in a tree view.

Usage syntax: pstree [OPTIONS]

$ pstree

init─┬─NetworkManager─┬─dhclient

 │ └─{NetworkManager}

 ├─acpid

 ├─apache2───5*[apache2]

 ├─atd

 ├─cron

 ├─cupsd

 ├─dbus-launch

 ├─dd

 ├─fast-user-switc

 ├─gconfd-2

 ├─6*[getty]

 ├─gnome-keyring-d

 ├─gnome-power-man───{gnome-power-man}

 ├─gnome-screensav

 ├─gnome-settings-───{gnome-settings-}

 ├─gnome-terminal─┬─bash───pstree

 │ ├─gnome-pty-helpe

 │ └─{gnome-terminal}

 │

 ├─gvfsd

 ├─gvfsd-burn

...

Displaying a process tree using the pstree command

The pstree command draws a process tree for all processes currently running

on the system, as shown in the above example. The output of pstree makes it

easy to see the relationship between parent and child processes.

Common usage examples:

pstree Display a basic process tree listing

pstree -p Include PID numbers in the tree listing

pstree -a Include command line options for each process

pstree [USER] Display processes owned by the specified user

pstree [PID] Display child processes of the specified PID

kill

Purpose: Terminate a process.

Usage syntax: kill [OPTIONS] [PID]

pgrep -l mysqld

5540 mysqld

kill 5540

Using the kill command to terminate a process

The kill command terminates the specified PID. In the above example, the

mysqld process with a PID of 5540 is terminated using kill.

The default behavior of the kill command requests the process to gracefully

exit. If a process fails to properly terminate, optional kill signals can be sent to force

the process to end. The most commonly used kill signal in this situation is -9

which forcefully terminates the specified PID as displayed in the next example.

pgrep -l mysqld
5545 mysqld

kill -9 5545

Using the -9 option to kill a hung process

Note

It is recommended to only use the kill -9 command in rare

situations where a hung process refuses to gracefully exit. The -9 signal

is only used in these extreme situations, as it can cause undesired results

such as system instability and "zombie" child processes.

Common usage examples:

kill [PID] Terminate the specified process

kill -9 [PID] Force an unresponsive process to terminate

killall

Purpose: Terminate all processes with the specified name.

Usage syntax: killall [OPTIONS] [NAME]

pgrep -l apache2

3952 apache2

4075 apache2

4076 apache2

4077 apache2

4078 apache2

4079 apache2

killall apache2

Terminating processes by name using the killall command

The killall command terminates all processes that match the specified name.

This can be helpful if you have several processes with the same name that you

need to kill. In the above example, multiple processes related to the apache2

service are terminated using killall.

Tip

The -i parameter can be used with killall to prompt for

confirmation before terminating each process. This is recommended as it

helps prevent killing the wrong process due to typos.

Common usage examples:

killall [NAME] Terminate all processes with the specified name

killall -i [NAME] Prompt for confirmation before killing processes

nice

Purpose: Execute programs at the specified CPU priority level.

Usage syntax: nice [OPTIONS] [COMMAND]

nice -n 19 LowPriority.sh

nice -n -20 HighPriority.sh

Changing the priority of a process using the nice command

The nice command allows programs to be started at a lower or higher than

normal scheduling priority. This allows you to control which processes the kernel

should favor when dividing processor time among running programs. Processes

with the lowest nice number are executed with the highest priority and vice

versa. The example above demonstrates using nice to start programs with

modified scheduling priority.

On most systems, priority levels for normal users range from 0 to 19, with 0 being

the highest priority and 19 being the lowest priority. The root user can create

processes with a range of -20 (highest) to 19 (lowest).

Unix/Linux/BSD scheduling priority

Most programs start with a nice level of 0 by default. Critical system services

usually have a negative nice level so that they are always given preference over

user programs.

Note

Some Unix systems may use a range of 0 to 39 with 0 being the highest

priority and 39 being the lowest. For more information see man nice

on your local system.

Common usage examples:

nice -n [NUM] [COMMAND] Start a program with the specified priority

renice

Purpose: Alter the priority of a running process.

Usage syntax: renice [OPTIONS] [PID]

renice +5 -p 7279

7279: old priority 0, new priority 5

Changing the priority of a process

The renice command adjusts the priority of a running process. In the above

example PID 7279 is adjusted to have a +5 priority. This effectively lowers the

priority of the process since the previous priority was 0.

Common usage examples:

renice +/-[NUM] -p [PID] Change the specified PID's priority

&

Purpose: Start a process in the background.

Usage syntax: [COMMAND] &

$./SomeProgram.sh &

[1] 10717

$ ps

 PID TTY TIME CMD
10696 pts/0 00:00:00 bash

10717 pts/0 00:00:03 SomeProgram.sh

10721 pts/0 00:00:00 ps

Executing a program in the background with the & command line operator

& is a command line operator that instructs the shell to start the specified

program in the background. This allows you to have more than one program

running at the same time without having to start multiple terminal sessions. In the

above example, a shell script called SomeProgram.sh is started as a

background process. Executing the ps command shows the requested program is

now running in the background.

Tip

Output from background programs will still be displayed in the shell. You

can redirect this output to a file by using the following syntax:

SomeProgram.sh > output.log & This will redirect all the

output of the background program to a file called output.log in the

current directory.

Common usage examples:

[COMMAND] & Execute the specified command in the background

[COMMAND] > [FILE] & Redirect the output of the background command

to a file

bg / fg

Purpose: Move a process to the background/foreground.

Usage syntax: bg [JOBID]

$./SomeProgram.sh

<CTRL + Z>

[1]+ Stopped SomeProgram.sh

$ bg 1

$ jobs

[1]- Running SomeProgram.sh

Suspending a running program and then resuming it in the background

The bg command sends a process to the background. This allows you to

multitask several programs within a single terminal session. In the above example

the shell script SomeProgram.sh is suspended (by pressing CTRL + Z on the

keyboard) and then resumed as a background process using bg.

Note
The jobs command (see page 117) can be used to verify the program

is now running in the background.

The fg command moves background processes to the foreground. In the next

example the fg command is used to bring the specified job ID to the foreground.

Usage syntax: fg [JOBID]

$ jobs

[1]- Running SomeProgram.sh

$ fg 1

SomeProgram.sh

...

Moving a background job to the foreground

Common usage examples:

bg [JOBID] Send the specified job to the background

fg [JOBID] Move the specified job to the foreground

jobs

Purpose: Display background and suspended jobs.

Usage syntax: jobs [OPTIONS]

$ jobs

[1]- Running SomeProgram.sh

[2]+ Stopped AnotherProgram.sh

[3] Stopped Test.sh

Displaying background programs using the jobs command

The jobs command displays the status of background programs and suspended

processes. In the above example, three background jobs are displayed. The

previously mentioned fg and bg commands can be used to move the

processes to the foreground and background respectively.

The following table describes the output fields of the jobs command.

Job ID Status Program
[1]- Running SomeProgram.sh

[2]+ Stopped AnotherProgram.sh

[3]. Stopped Test.sh

Output fields of the jobs command

Note

The plus sign is used to indicate what job is considered to be the default

job (for use with the bg and fg commands). The minus sign indicates

the job that will become the default if the current default job terminates.

There can be only one + and - at any given time. All other jobs will not

have any indicators.

Common usage examples:

jobs Display all jobs

jobs -l Display all jobs and their PID

nohup

Purpose: Run a process immune to hang-up signals.

Usage syntax: nohup [COMMAND] &

$ nohup SomeProgram.sh &

nohup: ignoring input and appending output to 'nohup.out'

$ exit

Using the nohup command to launch a background program

The nohup command makes processes immune to hang-up signals. A hang-up

signal is used to inform child processes of a shell that the parent process is

terminating. This would normally cause all child processes to terminate. Using

nohup allows a program to continue running after you log out, as demonstrated

in the above example.

Tip
Output from the program is stored in a file called nohup.out in the

directory where the nohup command was executed.

Common usage examples:

nohup [COMMAND] & Execute a program immune to hang-up signals

at / atq / atrm

Purpose: Schedule a program to run at the specified time.

Usage syntax: at [OPTIONS] [TIME|DATE]

$ at 1am

at> MyProgram.sh

at> <CTRL + D>

job 1 at Sat May 30 01:00:00 2009

Scheduling a process using the at command

The at command schedules programs to run at the specified time. In the above

example, the at command is used to launch a shell script called

MyProgram.sh. The launch time in this example is specified as 1am on the

command line. You can also use more traditional Unix time specifications such as

01:00 or any other HH:MM combination.

Tip

The at command has a special command line argument called now.

This can be used as a shortcut to save time when scheduling jobs. For

example typing at now + 15 minutes would schedule the job to

launch 15 minutes from the current time.

The atq command displays information about queued at jobs as shown in the

next example.

Usage syntax: atq

$ atq

1 Sat May 30 01:00:00 2009 MyProgram.sh nick

Using the atq command to display the job queue

The atrm command deletes a scheduled job as shown in the next example.

Usage syntax: atrm [JOBID]

$ atrm 1

Removing a scheduled job using the atrm command

Common usage examples:

at [TIME] Schedule a program to run at the specified time

atq Display the at job queue

atrm [JOBID] Remove a scheduled job from the at queue

batch

Purpose: Schedule programs to run during low CPU load.

Usage syntax: batch [OPTIONS]

$ batch

at> BigProgram.sh

at> <CTRL + D>

job 1 at Fri May 29 20:01:00 200

Scheduling a batch process

The batch command schedules a program to run when the system CPU load is

low. This is useful for running resource-intensive programs that would normally

interfere with system performance.

In this example the batch program is used to schedule the BigProgram.sh

script to run when the system CPU load is low.

Note
Each platform has its own definition of low load. See man batch for

more information about your system's batch command usage.

Common usage examples:

batch Launch the batch scheduling shell

crontab

Purpose: Schedule programs to run at the specified time(s).

Usage syntax: crontab [OPTIONS]

crontab -l

30 12 * * 1-5 /root/SomeProgram.sh

Displaying configured cron jobs

The crontab command manages a user's scheduled cron jobs. Cron is a

subsystem found on most Unix, Linux, and BSD systems that schedules programs to

run at a specific interval. It differs from the previously discussed at command

because cron jobs run at reoccurring intervals (where at jobs run only once).

Note
The name cron comes from the Greek word "chronos" which means

"time".

In the above example, the -l option is used to display the current user's crontab.

The table below describes the fields found in the crontab file.

Minute Hour Day of
Month

Month Day of
Week

Program

30 12 * * 1-5 /root/SomeProgram.sh

Crontab fields

In this example SomeProgram.sh is run every Monday-Friday at 12:30 PM.

The day of week is symbolized as 0=Sunday, 1=Monday, 2=Tuesday, etc. An asterisk

(*) is a wild card that represents all valid values.

crontab -e is used to edit the current user's crontab as demonstrated in the

next example.

crontab -e

 30 12 * * 1-5 /root/SomeProgram.sh

Editing the crontab

Common usage examples:

crontab -l List the current user's crontab

crontab -e Edit the current user's crontab

crontab -r Delete the current user's crontab

Section 7:

Startup and Shutdown

Overview

This chapter covers commands used to startup and shutdown Unix, Linux, and BSD

systems. It also provides an overview of platform specific service control

commands for popular platforms.

Commands covered in this section:

Command Purpose

shutdown Shut down the system.

poweroff Power off the system.

reboot Reboot the system.

halt Halt the system.

telinit Change the runlevel.

runlevel Display the previous and current runlevel.

service Manage services on a Linux system.

sysv-rc-conf Display and edit Linux runlevel configuration.

chkconfig
Display and edit runlevel configuration on Red Hat Linux-

based systems.

rc-update
Display and edit runlevel configuration on Gentoo Linux

systems.

rc-status Display the status of services on Gentoo Linux systems.

stopsrc

startsrc
Stop/start services on AIX systems.

lssrc Display the status of services on AIX systems.

svcs Display the status of services on Solaris systems.

svcadm Start/stop services on Solaris systems.

Glossary of terms used in this section:

Init (INITialization) A program that controls the startup (AKA initialization)

of Unix, Linux, and BSD systems.

Runlevel A set of profiles used by the init program that defines the programs

and services to load during system startup (or when called by the

telinit command).

Service A system program that provides a service as a web server, DNS server,

email server, etc. Services are sometimes referred to as Daemons or

Service Daemons.

shutdown

Purpose: Shut down the system.

Usage syntax: shutdown [OPTIONS] [TIME] [MESSAGE]

shutdown now

BROADCAST MESSAGE FROM ROOT:

The system is going down for shutdown now!

* Stopping services [OK]

* Terminating processes [OK]

...

The system will now halt.

Example output from the shutdown command

The shutdown command is used to shutdown the local system. There are

several different types of shutdowns that can be performed: halt, poweroff, and

reboot.

Note

Usage of the shutdown command varies between the various Unix,

Linux, and BSD platforms. Examples on this page are intended for Linux

systems. For usage examples specific to your environment, type man

shutdown on your local system.

When the shutdown command is executed, a warning is broadcast to all users

logged in to the local system. An optional message can be specified following the

time argument as shown in the next example.

shutdown 2 Save your work and log off ASAP!

BROADCAST MESSAGE FROM ROOT:

The system is going down for shutdown in 2 minutes!

Save your work and log off ASAP!

Example output from the shutdown command's broadcast message

Common usage examples:

shutdown now Shutdown the system immediately

shutdown [MIN] Wait the specified number of minutes before shutting

down

shutdown [HH:MM] Shutdown at the specified time (24-hour format)

shutdown -r now Restart the system

shutdown -H now Halt the system

shutdown -P now Power off the system

poweroff

Purpose: Power off the system.

Usage syntax: poweroff

poweroff

BROADCAST MESSAGE FROM ROOT:

The system is going down for power off now!

* Stopping services [OK]

* Terminating processes [OK]

...

The system will now power off.

Example output of the poweroff command

The poweroff command will immediately shutdown and power off the system.

It is essentially a shortcut for shutdown -P now. The poweroff command

is found on all Linux distributions and some BSD and Unix systems.

Note
To see if the poweroff command is supported on your system, type

whereis poweroff.

Warning
The poweroff command does not offer a grace period and will

immediately bring down the system when executed.

Common usage examples:

poweroff Shutdown and poweroff the system

reboot

Purpose: Reboot the system.

Usage syntax: reboot

reboot

BROADCAST MESSAGE FROM ROOT: The system is going down for reboot now!

* Stopping services [OK]

* Terminating processes [OK]

...

The system will now reboot.

Example output of the reboot command

The reboot command is used to gracefully reboot the system. It is essentially a

shortcut for shutdown -r now. Executing reboot on the command line

will immediately reboot the system as demonstrated in the above example.

Warning
The reboot command does not offer a grace period and will

immediately reboot the system when executed.

Common usage examples:

reboot Gracefully reboot the system

halt

Purpose: Halt the system.

Usage syntax: halt

halt

BROADCAST MESSAGE FROM ROOT: The system is going down for halt now!

* Stopping services [OK]

* Terminating processes [OK]

...

The system will now halt.

Example output of the halt command

The halt command will halt an online system. A halt is a special type of

shutdown which gracefully shuts down the operating system without powering off

the system.

Note

Some commercial Unix systems will enter maintenance mode when

halted. This can be used to access a pre-boot configuration/diagnostic

environment.

Common usage examples:

halt Halt the system

telinit

Purpose: Change the runlevel.

Usage syntax: telinit [RUNLEVEL]

telinit 1

*** Switching to run level 1 ***

runlevel

3 1

Using telinit to change the system's runlevel

telinit tells the system's init process to stop and start the necessary services

configured for the specified runlevel. In the above example the telinit

command is used to change the system to runlevel 1. The runlevel command

(see page 129) is then executed to display the current and previous runlevels.

Each system's runlevel configuration is specific to the distribution being used and

can be customized to fit your needs. Most Unix, Linux, and BSD systems will have a

runlevel configuration similar to the one described in the following table.

Runlevel Purpose

0 Shutdown or special administrative mode

1 Single user mode

2 Multiuser mode

3 Multiuser mode

4 Multiuser mode

5 Distribution specific

6 Reboot

Typical Unix, Linux, and BSD runlevels

Common usage examples:

telinit [RUNLEVEL] Tell the init process to load the specified runlevel

runlevel

Purpose: Display the previous and current runlevel.

Usage syntax: runlevel

$ runlevel

3 1

Output of the runlevel command

The runlevel command displays the current and previous runlevel. The

runlevel is an initialization sequence called by the init process and defines

procedures for system startup and shutdown. In the above example, runlevel

is used to display the current runlevel information. The first number displayed is

the previous runlevel and the second number is the current runlevel.

Note
 If there is no previous runlevel, the system will display N in the first

field.

Common usage examples:

runlevel Display the previous and current runlevel

service

Purpose: Manage services on a Linux system.

Usage syntax: service [OPTIONS] [SERVICE] [ACTION]

service --status-all

 [+] acpid
 [-] anacron
 [+] apache2
 [+] atd
 [+] cups
 [+] dbus
 [+] gdm
 [+] hal
 [+] klogd
 [+] ssh
 [+] sysklogd
...

Displaying the status of services with the service command

The service command manages services on Linux systems. In the above

example, the --status-all option displays the status of all services on the

system. The + symbol indicates a running service and the - symbol indicates a

stopped service.

The start, stop, restart, and status options can be used to control

individual services as demonstrated in the next example.

service ssh stop

 * Stopping OpenBSD Secure Shell server sshd [OK]
service ssh start

 * Starting OpenBSD Secure Shell server sshd [OK]
service ssh restart

 * Restarting OpenBSD Secure Shell server sshd [OK]
service ssh status

 * sshd is running

Stopping, starting, restarting, and viewing the status of services

Common usage examples:

service [SERVICE] stop Stop the specified service

service [SERVICE] start Start the specified service

service [SERVICE] restart Restart the specified service

service [SERVICE] status Display the status of the specified service

service --status-all Display the status of all services

sysv-rc-conf

Purpose: Display and edit Linux runlevel configuration.

Usage syntax: sysv-rc-conf [OPTIONS] [SERVICE] [ON|OFF]

sysv-rc-conf

┌ SysV Runlevel Config -: stop service =/+: start service h: help q: quit ┐

│ │

│ service 1 2 3 4 5 0 6 S │

│ -- │

│ acpid [] [X] [X] [X] [X] [] [] [] │

│ anacron [] [X] [X] [X] [X] [] [] [] │

│ apache [] [X] [X] [X] [X] [] [] [] │

│ apparmor [] [] [] [] [] [] [] [X] │

│ apport [] [X] [X] [X] [X] [] [] [] │

│ atd [] [X] [X] [X] [X] [] [] [] │

│ bind9 [] [X] [X] [X] [X] [] [] [] │

└──┘

┌──┐

│ Use the arrow keys or mouse to move around. ^n: next pg ^p: prev pg │

│ space: toggle service on / off │

└──┘

Example output of the sysv-rc-conf command

The sysv-rc-conf command manages service/runlevel configuration on

Linux systems. In the above example, executing sysv-rc-conf starts a

configuration utility which enables the user to select which services start on the

various runlevels.

Services can also be displayed and modified via the command line using the

--list and --level options as demonstrated in the next example.

sysv-rc-conf --level 2345 apache off

sysv-rc-conf --list apache2

apache2 2:off 3:off 4:off 5:off

sysv-rc-conf --level 2345 apache2 on

sysv-rc-conf --list apache2

apache2 2:on 3:on 4:on 5:on

Using the sysv-rc-conf command to mange services on the command line

Common usage examples:

sysv-rc-conf Display the runlevel configuration utility

sysv-rc-conf --list List runlevel configuration for all services

sysv-rc-conf --level \

[LEVEL] [SERVICE] on

Enable a service on the specified level(s)

sysv-rc-conf --level \

[LEVEL] [SERVICE] off

Disable a service on the specified level(s)

chkconfig

Purpose: Display and edit runlevel configuration on Red Hat Linux-based systems.

Usage syntax: chkconfig [OPTIONS] [SERVICE] [ON|OFF] [LEVEL]

chkconfig -l

acpi-support 0:off 1:off 2:on 3:on 4:on 5:on 6:off

acpid 0:off 1:off 2:on 3:on 4:on 5:on 6:off

alsa-utils 0:off 1:off 2:off 3:off 4:off 5:off 6:off

anacron 0:off 1:off 2:on 3:on 4:on 5:on 6:off

apache2 0:off 1:off 2:off 3:off 4:off 5:off 6:off

apport 0:off 1:off 2:on 3:on 4:on 5:on 6:off

...

Listing service configuration with the chkconfig command

The chkconfig command manages services on Red Hat Linux systems. The -l

parameter lists the current runlevel configuration, as shown in the above example.

If no service is specified, all services will be displayed. Specifying a service name

will display the runlevel configuration for the service, as shown in the next

example.

chkconfig -l apache2

apache2 0:off 1:off 2:on 3:on 4:on 5:on 6:off

Listing a specific service with the chkconfig command

The -s option is used to enable or disable services at the specified run levels as

demonstrated in the next example.

chkconfig -s apache2 off 2345

chkconfig -l apache2

apache2 0:off 1:off 2: off 3: off 4: off 5:off 6:off

chkconfig -s apache2 on 2345

chkconfig -l apache2

apache2 0:off 1:off 2:on 3:on 4:on 5:on 6:off

Managing services with the chkconfig command

Common usage examples:

chkconfig -l List runlevel configuration for all services

chkconfig -l [SERVICE] List a service's current configuration

chkconfig -s [SERVICE] \

on [LEVEL]

Enable a service on the specified level(s)

chkconfig -s [SERVICE] \

off [LEVEL]

Disable a service on the specified level(s)

rc-status

Purpose: Display the status of services on Gentoo Linux systems.

Usage syntax: rc-status [OPTIONS]

rc-status

Runlevel: default

 amavisd [started]
 apache2 [started]
 clamd [started]
 courier-authlib [started]
 courier-imapd [started]
 courier-imapd-ssl [started]
 courier-pop3d [started]

 hostname [started]

 keymaps [started]
...

Output of the rc-status command

The rc-status displays the status of services on Gentoo Linux systems. In the

above example, all services for the current level are listed along with their current

status.

Note

Gentoo Linux uses a nontraditional init structure that differs from most

Linux systems. You can read more about Gentoo's init system online at

www.gentoo.org/doc/en/handbook/.

Common usage examples:

rc-status List services for the current runlevel

rc-status -a List all services

rc-status -l List all defined run levels

rc-update

Purpose: Display and edit runlevel configuration on Gentoo Linux systems.

Usage syntax: rc-update [OPTIONS] [SERVICE] [LEVEL]

rc-update show

 amavisd | default
 apache2 | default
 bootmisc | boot
 checkfs | boot
 checkroot | boot
 clamd | default
 clock | boot
 consolefont | boot
 courier-authlib | default
 courier-imapd | default
 courier-imapd-ssl | default
 courier-pop3d | default
 courier-pop3d-ssl | default
 ...

Using the rc-update command to display runlevel configuration

The rc-update command manages services on Gentoo Linux-based systems. In

the above example, the show option is used to display the current runlevel

configuration.

The add and del options are used to add and delete services from the

specified runlevel, as shown in the next example.

rc-update add sshd default

 * sshd added to runlevel default
rc-update del sshd default

* 'sshd' removed from the following runlevels: default

Adding and removing services to the default runlevel using rc-update

Common usage examples:

rc-update show List runlevel configuration for all services

rc-update add \

[SERVICE] default

Add the specified service to the default runlevels

rc-update del \

[SERVICE] default

Remove the specified service from the default

runlevels

lssrc

Purpose: Display the status of services on AIX systems.

Usage syntax: lssrc [OPTIONS] [SERVICE/GROUP]

lssrc -a

Subsystem Group PID Status

 syslogd ras 147590 active

 sendmail mail 188508 active

 portmap portmap 126980 active

 snmpmibd tcpip 151728 active

 inetd tcpip 163958 active

 snmpd tcpip 180316 active

 hostmibd tcpip 159852 active

 aixmibd tcpip 168024 active

 biod nfs 196706 active

 rpc.statd nfs 209038 active

 rpc.lockd nfs 204984 active

 qdaemon spooler 217200 active

 writesrv spooler 233588 active

 ctrmc rsct 241870 active

 pconsole pconsole 270470 active

 cimsys 229504 active

 IBM.ServiceRM rsct_rm 311470 active

 IBM.CSMAgentRM rsct_rm 291004 active

 lpd spooler inoperative

...

Listing the status of all services

The lssrc command displays the status of services on AIX systems. The above

example demonstrates using the -a option to display the status of all services.

The next example demonstrates using the -s option to list a specific service.

lssrc -s nfsd

Subsystem Group PID Status

 nfsd nfs inoperative

Listing a specific service

Common usage examples:

lssrc –a Display the status of all services

lssrc –s [SERVICE] Display the status of the specified services

lssrc –g [GROUP] Display the status of the specified group of services

stopsrc / startsrc

Purpose: Start/stop services on AIX systems.

Usage syntax: startsrc [OPTIONS] [SERVICE/GROUP]

startsrc -s nfsd

0513-059 The nfsd Subsystem has been started. Subsystem PID is 221400.

Starting a service on AIX with startsrc

The startsrc command starts services (known as SRCs or system resource

controllers) on AIX systems. The above example demonstrates using the

startsrc command to start the NFS service.

The stopsrc command stops services on AIX systems. The next example

demonstrates using stopsrc to stop the NFS service.

Usage syntax: startsrc [OPTIONS] [SERVICE/GROUP]

stopsrc -s nfsd

0513-044 The nfsd Subsystem was requested to stop.

Stopping a service on AIX with stopsrc

Common usage examples:

startsrc -s [SERVICE] Start the specified service

stopsrc -s [SERVICE] Stop the specified service

startsrc -g [GROUP] Start the specified group of services

stopsrc -g [GROUP] Stop the specified group of services

stopsrc -a Stop all running services

svcs

Purpose: Display the status of services on Solaris systems.

Usage syntax: svcs [OPTIONS] [SERVICE]

svcs

STATE STIME FMRI

legacy_run 19:41:19 lrc:/etc/rcS_d/S50sk98sol

legacy_run 19:42:11 lrc:/etc/rc2_d/S10lu

legacy_run 19:42:11 lrc:/etc/rc2_d/S20sysetup

legacy_run 19:42:11 lrc:/etc/rc2_d/S40llc2

legacy_run 19:42:12 lrc:/etc/rc2_d/S42ncakmod

legacy_run 19:42:13 lrc:/etc/rc2_d/S47pppd

legacy_run 19:42:13 lrc:/etc/rc2_d/S70uucp

legacy_run 19:42:13 lrc:/etc/rc2_d/S72autoinstall

legacy_run 19:42:13 lrc:/etc/rc2_d/S73cachefs_daemon

legacy_run 19:42:14 lrc:/etc/rc2_d/S81dodatadm_udaplt

legacy_run 19:42:14 lrc:/etc/rc2_d/S89PRESERVE

legacy_run 19:42:14 lrc:/etc/rc2_d/S94ncalogd

legacy_run 19:42:15 lrc:/etc/rc2_d/S98deallocate

legacy_run 19:42:16 lrc:/etc/rc3_d/S16boot_server

legacy_run 19:42:17 lrc:/etc/rc3_d/S50apache

...

Listing services on a Solaris system with the svcs command

The svcs command displays the status of services on Solaris systems. Executing

svcs with no options will list all active services, as shown in the example above.

To see the status of an individual service, a service name can be specified as

demonstrated in the next example.

svcs apache

STATE STIME FMRI

legacy_run 19:42:17 lrc:/etc/rc3_d/S50apache

Listing the status of an individual service using the svcs command

Common usage examples:

svcs Display all active services

svcs -a Display all services

svcs [SERVICE] Display the specified service

svcs -d [SERVICE] Display the specified service's dependencies

svcs -D [SERVICE] Display services that depend on the specified service

svcs -l [SERVICE] Display detailed information about the specified

service

svcadm

Purpose: Start/stop services on Solaris systems.

Usage syntax: svcadm [OPTIONS] [SERVICE]

svcadm enable sendmail

svcs sendmail

STATE STIME FMRI

online 14:26:14 svc:/network/smtp:sendmail

Starting a service with the svcadm command

The svcadm command controls services on Solaris systems. It can be used to

start, stop, and restart services. In the above example, the enable parameter is

used to start the sendmail service. The next example demonstrates using the

disable parameter to stop the sendmail service.

svcadm disable sendmail

svcs sendmail

STATE STIME FMRI

disabled 14:27:51 svc:/network/smtp:sendmail

Stopping a service with the svcadm command

To restart a service, use the restart parameter as demonstrated in the next

example.

svcadm restart sendmail

Restarting a service with the svcadm command

Common usage examples:

svcadm enable [SERVICE] Start the specified service

svcadm disable [SERVICE] Stop the specified service

svcadm restart [SERVICE] Restart the specified service

Section 8:

Network Commands

Overview

This section covers basic networking utilities and configuration commands found

on most platforms. It also provides an overview of remote access to network-based

services like SSH, NFS, and FTP.

Commands covered in this section:

Command Purpose

hostname Display the system's host name.

ifconfig Display network interfaces.

ifup

ifdown
Enable/disable network interfaces.

iwconfig Display wireless network interfaces.

ethtool Display and edit ethernet card settings.

arp Display the ARP cache.

ping Send ICMP echo requests to network hosts.

traceroute Display TCP/IP routing information.

tracepath Display TCP/IP routing information on Linux systems.

nslookup Perform DNS lookups on Unix systems.

dig Perform DNS lookups on BSD and Linux systems.

host Simple DNS lookup utility.

whois Lookup domain name registry information in the whois database.

netstat Display network connections, statistics, and routing information.

route Display and configure TCP/IP routes.

ifstat Display network interface statistics.

tcpdump Display raw traffic on a network interface.

dhclient DHCP client for Linux and BSD systems.

nmap Scan TCP/IP ports on network systems.

telnet Client for connecting to remote servers via the telnet protocol.

ssh Client for connecting to remote servers via the SSH protocol.

(Continued...)

Command Purpose

minicom Serial communication application.

mail Send email to local and remote users.

ftp Transfer files using FTP (File Transfer Protocol).

wget File download utility for Linux systems.

showmount Display NFS mount and export information.

Glossary of terms used in this section:

ARP (Address Resolution Protocol) Protocol for resolving MAC

addresses.

DHCP (Dynamic Host Configuration Protocol) Protocol for automatically

assigning IP addresses.

DNS (Domain Name System) System that resolves host names to IP

addresses.

FTP (File Transfer Protocol) Protocol used to transfer files to and from

remote systems.

Hostname The name assigned to a computer system.

ICMP (Internet Control Message Protocol) Protocol used to relay error

messages to network systems.

Loopback A virtual network interface found on Unix, Linux, and BSD systems

used to communicate with network services on the local machine.

MAC Address (Media Access Control Address) A unique identifier assigned to

network interfaces.

NFS (Network File System) Protocol used to share storage via a

network on Unix, Linux, and BSD systems.

Packet A unit of data transmitted between network systems.

Route The path a packet travels across a network to the destination.

Serial A legacy form of communication used to link devices together.

Telnet A legacy protocol for connecting to remote systems.

SSH (Secure SHell) A secure protocol for connecting to remote

systems.

hostname

Purpose: Display the system's host name.

Usage syntax: hostname [OPTIONS]

hostname

mylaptop

Displaying the system's hostname

The hostname command displays the name assigned to the local system. The

above example demonstrates the typical output of the hostname command.

hostname can also be used to display the system's domain name as

demonstrated in the next example.

hostname -d

mydomain.com

Displaying the system's domain name

Using the -f option, you can see the the system's FQDN (Fully Qualified Domain

Name) as show in the below example.

hostname -f

mylaptop.mydomain.com

Displaying the system's FQDN

Note Host name configuration is stored in /etc/hostname on most systems.

Common usage examples:

hostname Display the system's host name

hostname -d Display the system's domain name

hostname -f Display the system's fully qualified domain name

ifconfig

Purpose: Display network interfaces.

Usage syntax: ifconfig [OPTIONS] [INTERFACE]

$ ifconfig -a

eth0 Link encap:Ethernet HWaddr 00:21:70:ac:f7:e7

 inet addr:10.10.1.100 Bcast:10.10.1.255 Mask:255.255.255.0
 inet6 addr: fe80::221:70ff:feac:f7e7/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:2937 errors:0 dropped:0 overruns:0 frame:0
 TX packets:2088 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:2199807 (2.1 MB) TX bytes:548839 (548.8 KB)
 Memory:f6fe0000-f7000000

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:316 errors:0 dropped:0 overruns:0 frame:0
 TX packets:316 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:26552 (26.5 KB) TX bytes:26552 (26.5 KB)

Using the ifconfig command to display network interfaces

The ifconfig command displays the system's network interface configuration.

The output of ifconfig displays information such as IP address, MAC address,

and interface statistical counters, as shown in the above example.

The most common type of network interface is a standard ethernet card. This

interface is usually designated as eth0 or en0. Systems with multiple network

cards will have eth0, eth1, eth2, etc.

Note

The loopback interface (lo) is present on all Unix, Linux, and BSD systems.

It is critical for normal system operations and should not be disabled or

modified. This interface will always have an IP address of 127.0.0.1.

Common usage examples:

ifconfig Display enabled network interfaces

ifconfig -a Display all network interfaces

ifconfig [INTERFACE] Display the specified network interface

ifup / ifdown

Purpose: Enable/disable network interfaces.

Usage syntax: ifup [OPTIONS] [INTERFACE]

ifup eth0

Enabling a network interface using the ifup command

ifup enables a network interface. In the above example the interface eth0 is

enabled. After executing the ifup command, the eth0 interface is activated

and available for use.

ifdown disables network interfaces. This takes the specified interface offline and

makes it unavailable for use. The next example demonstrates using ifdown to

shutdown the eth0 interface.

Usage syntax: ifdown [OPTIONS] [INTERFACE]

ifdown eth0

Disabling a network interface using the ifdown command

Note
Some systems may designate ethernet interfaces as en0 instead of

eth0.

Common usage examples:

ifup [INTERFACE] Enable the specified network interface

ifup -a Enable all network interfaces

ifdown [INTERFACE] Disable the specified network interface

ifdown -a Disable all network interfaces

iwconfig

Purpose: Display wireless network interfaces.

Usage syntax: iwconfig [INTERFACE] [OPTIONS]

$ iwconfig

wlan0 IEEE 802.11abgn ESSID:"my-wlan"

 Mode:Managed Frequency:2.437 GHz Access Point: 00:14:BF:E4:1B:E2

 Bit Rate=54 Mb/s Tx-Power=15 dBm

 Retry min limit:7 RTS thr:off Fragment thr=2352 B

 Power Management:off

 Link Quality=97/100 Signal level:-52 dBm Noise level=-91 dBm

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

Displaying wireless network interfaces using the iwconfig command

iwconfig displays wireless network interfaces on Linux systems. It is similar to

the previously discussed ifconfig command, except it displays information

specific to wireless networks.

In the above example the information for the wlan0 interface is displayed. It

shows information such as signal level, noise level, and transmission rate for the

connected wireless network.

Common usage examples:

iwconfig Display all wireless network interfaces

iwconfig [INTERFACE] Display the specified wireless network interface

ethtool

Purpose: Display ethernet card settings.

Usage syntax: ethtool [OPTIONS] [INTERFACE]

ethtool eth0

Settings for eth0:

 Supported ports: [TP]

 Supported link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full

 1000baseT/Full

 Supports auto-negotiation: Yes

 Advertised link modes: 10baseT/Half 10baseT/Full

 100baseT/Half 100baseT/Full

 1000baseT/Full

 Advertised pause frame use: No

 Advertised auto-negotiation: Yes

 Link partner advertised link modes: Not reported

 Link partner advertised pause frame use: No

 Link partner advertised auto-negotiation: No

 Speed: 100Mb/s

...

Typical output of the ethtool command

ethtool is a Linux utility for displaying information about network interfaces.

The default output displays advanced network interface settings as displayed in the

above example. It can also be used to display network statistics using the -S

parameter as shown in the next example.

ethtool -S eth0

NIC statistics:

 rx_packets: 125

 tx_packets: 114

 rx_bytes: 14459

 tx_bytes: 17596

 rx_broadcast: 9

 tx_broadcast: 3

 rx_multicast: 14

 tx_multicast: 19

 rx_errors: 0

...

Displaying interface statistics using the -S parameter

Common usage examples:

ethtool [INTERFACE] Display network interface settings

ethtool -S [INTERFACE] Display network interface statistics

arp

Purpose: Display the ARP cache.

Usage syntax: arp [OPTIONS]

$ arp

Address HWtype HWaddress Flags Mask Iface

10.10.2.1 ether 00:06:B1:12:0D:16 C eth1

10.10.2.5 ether 00:14:22:0E:35:5C C eth1

10.10.2.6 ether 00:0C:29:1E:10:70 C eth1

10.10.2.7 ether 00:0C:29:C1:02:C0 C eth1

10.10.2.10 ether 00:0C:29:38:00:F6 C eth1

Output of the arp command

The arp command displays the ARP cache. Local networks use ARP to

communicate with neighboring systems. The ARP protocol resolves an IP address to

the MAC address of the destination system. Resolved addresses are stored in a

cache which can be displayed using the arp command, as shown in the above

example.

Common usage examples:

arp Display the address resolution protocol cache

ping

Purpose: Send ICMP echo requests to network hosts.

Usage syntax: ping [OPTIONS] [HOST]

$ ping -c 5 10.10.1.1

PING 10.10.1.1 (10.10.1.1) 56(84) bytes of data.

64 bytes from 10.10.1.1: icmp_seq=1 ttl=64 time=0.286 ms

64 bytes from 10.10.1.1: icmp_seq=2 ttl=64 time=0.235 ms

64 bytes from 10.10.1.1: icmp_seq=3 ttl=64 time=0.232 ms

64 bytes from 10.10.1.1: icmp_seq=4 ttl=64 time=0.212 ms

64 bytes from 10.10.1.1: icmp_seq=5 ttl=64 time=0.216 ms

--- 10.10.1.1 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4002ms

Using the ping command to ping a network host

The ping command sends ICMP echo requests to network hosts. This can be

helpful when troubleshooting network connectivity problems. In the above

example, executing ping -c 5 sends five ping packets to the host with the IP

address of 10.10.1.1.

Note
If the -c parameter is omitted, the ping command will continue until

interrupted (by pressing CTRL + C).

Tip The ping6 command is used to ping IP version 6 hosts.

Common usage examples:

ping [HOST] Ping the specified host

ping -c [NUM] [HOST] Send the specified number of ICMP packets

ping -f [HOST] Perform a rapid (flood) ping

traceroute

Purpose: Display TCP/IP routing information.

Usage syntax: traceroute [OPTIONS] [HOST]

$ traceroute -n www.google.com

traceroute to www.google.com (74.125.95.103), 30 hops max, 60 byte

packets

 1 192.168.1.254 3.634 ms 3.758 ms 4.511 ms

 2 99.60.32.2 25.398 ms 27.472 ms 28.040 ms

 3 76.196.172.4 28.261 ms 28.739 ms 28.926 ms

 4 151.164.94.52 29.057 ms 29.583 ms 29.824 ms

 5 69.220.8.57 39.645 ms * 40.455 ms

 6 72.14.197.113 41.461 ms 39.534 ms 39.995 ms

 7 72.14.233.67 39.437 ms 72.14.233.65 31.567 ms 36.633 ms

 8 216.239.47.121 42.631 ms 43.298 ms 216.239.47.131 44.649 ms

...

Using traceroute to display the route of TCP/IP packets

The traceroute command traces the path that packets travel in TCP/IP

networks. The above example demonstrates using the traceroute command

to display the network route to www.google.com. Routers (AKA hops) along the

network path are identified, along with a response time (in milliseconds).

Tip The traceroute6 command is used to trace IP version 6 hosts.

Common usage examples:

traceroute [HOST] Trace the route to the specified host

traceroute -n [HOST] Do not lookup DNS names when tracing

tracepath

Purpose: Display TCP/IP routing information on Linux systems.

Usage syntax: tracepath [OPTIONS] [HOST]

$ tracepath -n www.google.com

 1: 192.168.1.64 0.207ms pmtu 1500

 1: 192.168.1.254 1.482ms

 1: 192.168.1.254 1.263ms

 2: 99.60.32.2 27.476ms

 3: 76.196.172.4 27.227ms

 4: 151.164.94.52 27.428ms

 5: 69.220.8.57 37.468ms asymm 7

 6: no reply

 7: no reply

 8: no reply

...

Using the tracepath command to display routing paths

The tracepath command is a replacement for the traceroute command

on Linux systems. You can use either program on Linux, but many distributions only

include tracepath by default. The above example demonstrates using

tracepath to display the route to www.google.com.

Tip The tracepath6 command is used to trace IP version 6 hosts.

Common usage examples:

tracepath [HOST] Trace the path to the specified host

tracepath -n [HOST] Do not lookup DNS names when tracing

nslookup

Purpose: Perform DNS lookups on Unix systems.

Usage syntax: nslookup [OPTIONS] [HOST]

$ nslookup www.dontfearthecommandline.com

Server: 68.105.28.14

Address: 68.105.28.14#53

Non-authoritative answer:

Name: dontfearthecommandline.com

Address: 64.202.189.170

Using the nslookup command to resolve a domain name

The nslookup command performs DNS lookup queries. It resolves DNS names

to IP addresses and is helpful for troubleshooting network name resolution

problems. In the above example, the IP address of the specified host is resolved

and displayed.

Note

nslookup is considered to be a legacy program and has been replaced

by more modern commands such as dig (see page 151) and host

(see page 152) on many systems.

Common usage examples:

nslookup [HOST] Resolve the specified host name

dig

Purpose: Perform DNS lookups on BSD and Linux systems.

Usage syntax: dig [OPTIONS] [HOST]

$ dig dontfearthecommandline.com

; <<>> DiG 9.5.1-P2 <<>> dontfearthecommandline.com

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 20739

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;dontfearthecommandline.com. IN A

;; ANSWER SECTION:

dontfearthecommandline.com. 2681 IN A 64.202.189.170

;; Query time: 4 msec

;; SERVER: 10.10.1.44#53(10.10.1.44)

;; WHEN: Mon Jun 1 05:38:40 2009

;; MSG SIZE rcvd: 60

Typical output of the dig command

The dig command performs DNS queries on Linux and BSD systems. It is a

modern replacement for the nslookup command. The above example

demonstrates the typical usage of the dig command.

Common usage examples:

dig [HOST] Display DNS information for the specified host

dig -t MX [HOST] Display the mail server for the specified host

dig -t NS [HOST] Display the name server for the specified host

host

Purpose: Simple DNS lookup utility.

Usage syntax: host [OPTIONS] [HOST]

$ host dontfearthecommandline.com

dontfearthecommandline.com has address 64.202.189.170

dontfearthecommandline.com mail is handled by 0 smtp.secureserver.net.

dontfearthecommandline.com mail is handled by 10

mailstore1.secureserver.net.

Resolving a name using the host command

The host command is a simple DNS lookup utility for Unix and Linux systems. It

is similar to the nslookup and dig utilities, except it provides user friendly

output that is easier to read and understand. The above example displays a sample

of the output produced by the host command.

The -t option can be used with the host command to lookup other

information about the domain such as the mail server (-t MX) and name server

(-t NS) as shown in the next example.

$ host -t MX dontfearthecommandline.com

dontfearthecommandline.com mail is handled by 10

mailstore1.secureserver.net.

dontfearthecommandline.com mail is handled by 0 smtp.secureserver.net.

$ host -t NS dontfearthecommandline.com

dontfearthecommandline.com name server ns36.domaincontrol.com.

dontfearthecommandline.com name server ns35.domaincontrol.com.

Resolving MX and NS records using the host command

Common usage examples:

host [HOST] Display DNS information for the specified host

host -t MX [HOST] Display the mail server for the specified host

host -t NS [HOST] Display the name server for the specified host

host -a [HOST] Display detailed information for the specified host

whois

Purpose: Lookup domain name registry information in the WHOIS database.

Usage syntax: whois [OPTIONS] [DOMAIN]

$ whois google.com

Registrant:

 Dns Admin

 Google Inc.

 Please contact contact-admin@google.com

 1600 Amphitheatre Parkway

 Mountain View CA 94043

 dns-admin@google.com +1.650******* Fax: +1.650*******

 Domain Name: google.com

 Registrar Name: Markmonitor.com

 Registrar Whois: whois.markmonitor.com

 Registrar Homepage: http://www.markmonitor.com

 Created on..............: 1997-09-15.

 Expires on..............: 2011-09-13.

 Record last updated on..: 2008-06-08.

 Domain servers in listed order:

 ns1.google.com ns2.google.com

...

Using the whois command to query domain information

The whois command is used to query an internet registry and display

information about the registrant of a domain name. In the above example, the

whois command displays information for google.com.

Tip
You can also use the whois command to lookup information about an

IP address by executing whois [IP ADDRESS].

Common usage examples:

whois [DOMAIN] Display information about a domain's registrant

whois [IP ADDRESS] Display information about the owner of an IP address

netstat

Purpose: Display network connections, statistics, and routing information.

Usage syntax: netstat [OPTIONS]

netstat

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 463 10.10.2.4:110 12.185.92.178:50598 ESTABLISHED

tcp 0 0 10.10.2.4:110 66.103.123.134:1402 TIME_WAIT

tcp 0 0 127.0.0.1:10030 127.0.0.1:53041 ESTABLISHED

tcp 0 0 127.0.0.1:10025 127.0.0.1:38740 TIME_WAIT

tcp 0 72 10.10.2.4:22 10.10.1.251:50082 ESTABLISHED

...

Default output of the netstat command

netstat is a helpful utility that displays network status information. Executing

netstat with no options will display all active network connections on the local

system, as show in the above example. It can also be used to display detailed

network statistics using the -s option, as shown in the next example.

netstat -s

Ip:

 200104378 total packets received

 0 forwarded

 0 incoming packets discarded

 200104318 incoming packets delivered

 258439688 requests sent out

...

Using the -s option to display network statistics with netstat

The -rn option is another helpful feature that displays TCP/IP routing tables.

$ netstat -r

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface

10.10.2.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

0.0.0.0 10.10.2.1 0.0.0.0 UG 0 0 0 eth0

Displaying routing tables with netstat

Common usage examples:

netstat Display active network connections

netstat -s Display network statistics

netstat -r Display routing information

route

Purpose: Display and configure TCP/IP routes.

Usage syntax: route [OPTIONS]

$ route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.101.0 0.0.0.0 255.255.255.0 U 0 0 0 wlan0

10.10.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

0.0.0.0 10.10.1.1 0.0.0.0 UG 0 0 0 eth0

0.0.0.0 192.168.101.1 0.0.0.0 UG 0 0 0 wlan0

Displaying routing tables

The route command displays and configures network routes. In the above

example, executing route -n displays the local system's routing table.

The add and del options can be used to add or delete static routes as shown

in the next example.

route add -net 10.10.2.0/24 gw 10.10.1.1 eth0

route del -net 10.10.2.0/24

Adding and removing static TCP/IP routes

Common usage examples:

route -n Display routing tables

route add [ROUTE] Add the specified static route

route del [ROUTE] Delete the specified static route

ifstat

Purpose: Display network interface statistics.

Usage syntax: ifstat [DELAY] [COUNT]

$ ifstat 2 10

 eth1

 KB/s in KB/s out

 0.02 0.04

 0.02 0.04

 10.68 0.86

 44.49 2.93

 3.45 7.95

 2.33 48.46

 0.40 0.86

 0.04 0.11

 3.26 0.58

 0.02 0.04

Displaying network interface statistics using ifstat

ifstat displays network interface statistics. It can be used to monitor network

interface activity over a period of time. In the above example, executing

ifstat 2 10 displays interface statistics every two seconds for ten iterations.

Note
If no arguments are specified, ifstat will continuously display network

utilization until interrupted (by pressing CTRL + C).

Common usage examples:

ifstat Continuously display network utilization

ifstat [DELAY] Update results at the specified interval

ifstat [DELAY] [COUNT] End after reaching the specified count

tcpdump

Purpose: Displays raw traffic on a network interface.

Usage syntax: tcpdump [OPTIONS]

tcpdump

listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes

05:59:05.027107 arp who-has 10.10.1.242 tell lt-cad12-

01.dontfearthecommandline.com

05:59:05.028261 IP dt-office-27.dontfearthecommandline.com.50999 >

exchange-01.dontfearthecommandline.com.domain: 9454+ PTR?

242.1.10.10.in-addr.arpa. (42)

05:59:05.028459 arp who-has dt-office-27.dontfearthecommandline.com

tell exchange-01.dontfearthecommandline.com

05:59:05.028475 arp reply dt-office-27.dontfearthecommandline.com is-at

00:21:70:ac:f7:e7 (oui Unknown)

...

18 packets captured

303 packets received by filter

0 packets dropped by kernel

Using the tcpdump command to capture network traffic

tcpdump displays network packets sent and received to and from the local

system. It can be helpful in monitoring network conditions or troubleshooting

connectivity problems.

In the above example, tcpdump captures network traffic on the eth0

interface. Information on each packet is then displayed on the screen. The capture

will continue until interrupted (by pressing CTRL + C).

Tip

Output from tcpdump can be difficult to interpret. A free utility called

Wireshark is available that can be used to import tcpdump packet

captures for easy viewing. Wireshark is available for Linux, Mac OS X, and

Windows systems. Visit www.wireshark.com for more information.

Common usage examples:

tcpdump Display network traffic on the screen

tcpdump > [FILE] Save the packet capture to a file

tcpdump -i [INTERFACE] Capture traffic on the specified interface

tcpdump -vv Display verbose packet information

tcpdump -c [COUNT] Stop after receiving the specified number of

packets

dhclient

Purpose: DHCP client for Linux and BSD systems.

Usage syntax: dhclient [OPTIONS] [INTERFACE]

dhclient eth0

Listening on LPF/eth0/00:21:70:ac:f7:e7

Sending on LPF/eth0/00:21:70:ac:f7:e7

Sending on Socket/fallback

DHCPREQUEST of 10.10.1.100 on eth0 to 255.255.255.255 port 67

DHCPACK of 10.10.1.100 from 10.10.1.45

bound to 10.10.1.100 -- renewal in 37193 seconds.

Using dhclient to request a DHCP address

dhclient is a client for requesting an IP address from a DHCP server. The above

example demonstrates using the dhclient command to request an IP address

for the eth0 interface.

Tip
To release a DHCP address, execute dhclient -r on the command

line.

Common usage examples:

dhclient [INTERFACE] Request an IP address from the DHCP server

dhclient -r [INTERFACE] Release an assigned IP address

nmap

Purpose: Scan TCP/IP ports on network systems.

Usage syntax: nmap [OPTIONS] [HOST]

nmap -O 10.10.1.70

Starting Nmap 5.00 (http://nmap.org) at 2010-05-06 16:55 CDT

Interesting ports on 10.10.1.70:

Not shown: 995 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

5800/tcp open vnc-http

5900/tcp open vnc

MAC Address: 00:1A:A0:05:6B:19 (Dell)

Device type: general purpose

Running: Microsoft Windows XP

OS details: Microsoft Windows XP SP2 or SP3, or Windows Server 2003

Network Distance: 1 hop

OS detection performed. Please report any incorrect results at

http://nmap.org/submit/

Nmap done: 1 IP address (1 host up) scanned in 2.94 seconds

Using the nmap command to scan a network host

nmap is a network scanning utility. It can be used to evaluate security and

troubleshoot network connectivity issues. In the above example, the nmap

command is used to identify the operating system and open ports on the specified

target host.

Tip

For the best results, use nmap as the root user or via the sudo

command. This allows nmap to have access to have unrestricted access

to system resources when performing network scans.

Common usage examples:

nmap [HOST] Display open ports on the specified host

nmap -PN [HOST] Do not ping the target before scanning

nmap -O [HOST] Display the operating system of the target system

nmap -A [HOST] Perform an aggressive scan

telnet

Purpose: Client for connecting to remote servers via the telnet protocol.

Usage syntax: telnet [OPTIONS] [HOST]

$ telnet myserver

login: nick

password: ******

$

Connecting to a remote system using the telnet command

The telnet command is used to connect to remote systems via the telnet

protocol. The above example demonstrates connecting to a remote system using

telnet. Once connected to the remote system you can execute commands as if

you were logged into the system locally.

Note

Telnet is an insecure legacy protocol and has largely been replaced by SSH

for security reasons. Usernames, passwords, and other sensitive

information transmitted via telnet are sent in plain text making it very

easy for hackers to capture. Avoid using telnet whenever possible,

especially when communicating over untrusted networks such as the

internet.

Common usage examples:

telnet [HOST] Start a telnet session to a remote system

ssh

Purpose: Client for connecting to remote servers via the SSH protocol.

Usage syntax: ssh [OPTIONS] [HOST]

$ ssh myserver

nick@myserver's password: ******

$

Using the ssh command to connect to a remote system

The ssh command is used to connect to remote systems via the SSH protocol.

SSH creates an encrypted connection between two systems and provides a secure

channel for communication. This helps prevent "man in the middle" hackers from

being able to capture sensitive information (such as usernames and passwords)

when connecting to remote systems.

Tip

PuTTY, a free SSH and telnet client for Windows, can be downloaded at

www.chiark.greenend.org.uk/~sgtatham/putty/. This allows you to

connect to remote Unix, Linux, and BSD servers directly from Windows

systems.

Common usage examples:

ssh [HOST] Start an SSH session to a remote system

ssh -l [USER] [HOST] Login as the specified user on the target system

ssh -C [HOST] Enable compression (for slow connections)

minicom

Purpose: Serial communication application.

Usage syntax: minicom [OPTIONS]

$ minicom

Welcome to minicom 2.3

OPTIONS: I18n

Compiled on Sep 25 2009, 23:40:20.

Port /dev/ttyS0

 Press CTRL-A Z for help on special keys

cisco-router>

Using minicom to connect to a serial console device

minicom is a serial communication utility for BSD and Linux systems. It can be

used to connect to serial devices (like routers and switches) via the command line.

The example above demonstrates using minicom to connect to a serial attached

Cisco router.

Tip
Press CTRL + A then Z for a minicom help summary. To exit

minicom, press CTRL + A then X.

Common usage examples:

minicom Connect to the default serial device

minicom -s Edit minicom settings

mail

Purpose: Send email to local and remote users.

Usage syntax: mail [OPTIONS] [ADDRESS]

$ mail grepnick@gmail.com

Subject: Hello

Want to go get some tacos?

<CTRL + D>

Sending an email message with the mail command

The mail command sends email messages. In the above example, a new email

message is created and addressed to the specified recipient. After pressing enter,

the mail client will prompt you for a subject for the message. Pressing enter again

will start the body of the message. Pressing CTRL + D exits the mail client and sends

the message.

Tip
Press CTRL + C twice to cancel editing and discard a mail message

(without sending).

A text file can be substituted for the body of an email message. In the next

example, the text in the message.txt file will be sent as the body of the

message.

$ mail -s "Hello" grepnick@gmail.com < message.txt

Using a text file as a message body

Common usage examples:

mail Check for new email

mail [ADDRESS] Start a new message to the specified address

mail [ADDRESS] < [FILE] Use the specified file as the message body

mail -s "[SUBJECT]" \

[ADDRESS]

Specify a message subject on the command

line

ftp

Purpose: Transfer files using FTP (File Transfer Protocol).

Usage syntax: ftp [OPTIONS] [HOST]

ftp 10.10.1.48

Connected to 10.10.1.48.

Name (10.10.1.48): nick

Password: ********

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp>

Connecting to an FTP server using the ftp command

The ftp command transfers files using the FTP protocol. The above example

demonstrates using the ftp command to connect to a remote FTP server. Once

connected to the remote system, you can execute one of the FTP shell commands

listed in the following table.

Command Function

ascii Transfer files in ASCII format

binary Transfer files in binary format

status Display the connection status

pwd Print the current working directory

ls List remote directory contents

get [FILE] Download the specified remote file

put [FILE] Upload the specified local file

cd [PATH] Change directories on the remote system

lcd [PATH] Change directories on the local system

mkdir [DIR] Create a directory

rmdir [DIR] Remove a directory

delete [FILE] Remove a file

rename [FILE] Rename a file

bye Terminate the FTP connection

FTP commands

Common usage examples:

ftp [HOST] Start an FTP session with the specified host

ftp -p [HOST] Use passive mode for data transfers

wget

Purpose: File download utility for Linux systems.

Usage syntax: wget [OPTIONS] [SOURCE]

$ wget http://kernel.org/pub/linux/kernel/v2.6/patch-2.6.29.4.bz2

--2009-06-02 01:15:58-- http://kernel.org/pub/linux/kernel/v2.6/patch-

2.6.29.4.bz2

Resolving kernel.org... 149.20.20.133, 204.152.191.37

Connecting to kernel.org|149.20.20.133|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 91866 (90K) [application/x-bzip2]

Saving to: 'patch-2.6.29.4.bz2'

100%[======================================>] 91,866 99.6K/s in 0.9s

2009-06-02 01:16:03 (99.6 KB/s) - 'patch-2.6.29.4.bz2' saved

Downloading a file from the internet with the wget command

wget is a file download utility for the command line. It can be used to download

files via HTTP and FTP protocols. In the above example, a file is downloaded from a

remote HTTP system and saved in the current directory.

Tip

Use the --user=[USERNAME] and --password=[PASSWORD]

options to specify a username and password to used when connecting to

the remote system.

Common usage examples:

wget http://[HOST/FILE] Download the specified file via HTTP

wget ftp://[HOST/FILE] Download the specified file via FTP

showmount

Purpose: Display NFS mount and export information.

Usage syntax: showmount [OPTIONS]

showmount

Hosts on noc-01:

10.10.1.48

Displaying connected NFS clients using the showmount command

The showmount command displays information about an NFS server running on

the local system. The above example demonstrates using showmount to display

a list of clients currently connected to the NFS server.

The next example demonstrates using the -e option to display the NFS server's

export list.

showmount -e

Export list for noc-01:

/home 10.10.1.0/255.255.255.0

Displaying a list of exported directories

The -d option is used to display a list of exported directories that are currently in

use, as shown in the next example.

showmount -d

Directories on noc-01:

/home

Displaying a list of exported directories that are currently in use

Common usage examples:

showmount Display NFS clients currently connected to the server

showmount -e Display the NFS server's exported directories

showmount -d List exported directories that are currently in use

showmount -a Display NFS clients and the directories they have mounted

Section 9:

Hardware Management
Commands

Overview

Commands in this section cover basic Unix, Linux, and BSD hardware management

utilities. These commands can be used to identify, configure, and troubleshoot

system devices.

Commands covered in this section:

Command Purpose

lshw List hardware on Linux systems.

ioscan List hardware on HP-UX systems.

lsdev List hardware on AIX systems.

lspci List PCI devices on Linux systems.

pciconf List PCI devices on BSD systems.

lsusb List USB devices on Linux systems.

dmidecode Display detailed information about devices on the system.

hdparm Display/set hard drive parameters on Linux systems.

eject Unload removable media.

Glossary of terms used in this section:

IDE (Integrated Drive Electronics) Legacy interface used to link disk drives to

a computer.

PCI (Peripheral Component Interconnect) Interface used to connect internal

devices to a computer.

SATA (Serial Advanced Technology Attachment) Modern interface used to link

disk drives to a computer.

USB (Universal Serial Bus) Interface used to connect external devices to a

computer.

lshw

Purpose: List hardware on Linux systems.

Usage syntax: lshw [OPTIONS]

lshw -short

H/W path Device Class Description

===

 system OptiPlex GX520

/0 bus 0WG233

/0/0 memory 64KiB BIOS

/0/400 processor Intel(R) Pentium(R) 4 CPU 3.00GHz

/0/400/700 memory 16KiB L1 cache

/0/400/701 memory 2MiB L2 cache

/0/400/0.1 processor Logical CPU

/0/400/0.2 processor Logical CPU

/0/1000 memory 2GiB System Memory

/0/1000/0 memory 1GiB DIMM DDR Synchronous 533 MHz

...

Output of the lshw command using the -short option

The lshw command lists information about all hardware installed on Linux

systems. In the above example, the -short option is used to provide a simple

listing of hardware detected on the local system. Omitting the -short option

will display a detailed listing of devices, as demonstrated in the next example.

lshw

noc-01

 description: Mini Tower Computer

 product: OptiPlex GX520

 vendor: Dell Inc.

 serial: *******

 width: 32 bits

 capabilities: smbios-2.3 dmi-2.3 smp-1.4 smp

 configuration: administrator_password=enabled boot=normal

chassis=mini-tower cpus=1

 *-core

 description: Motherboard

 product: 0WG233

 vendor: Dell Inc.

...

Default output of the lshw command

Common usage examples:

lshw Display a detailed hardware listing

lshw -short Display a simple hardware listing

ioscan

Purpose: List hardware on HP-UX systems.

Usage syntax: ioscan [OPTIONS]

ioscan

H/W Path Class Description

==

 bc

8 bc I/O Adapter

8/0 ext_bus GSC add-on Fast/Wide SCSI Interface

8/0.5 target

8/0.5.0 disk SEAGATE ST34371W

8/0.7 target

8/0.7.0 ctl Initiator

8/0.8 target

8/0.8.0 disk SEAGATE ST318436LC

8/4 ba PCI Bus Bridge - GSCtoPCI

8/4/1/0 lan HP J3515A HSC 10/100Base-TX D-Class

1 port

8/16 ba Core I/O Adapter

8/16/0 ext_bus Built-in Parallel Interface

8/16/4 tty Built-in RS-232C

8/16/5 ext_bus Built-in SCSI

8/16/5.0 target

8/16/5.0.0 tape HP C1537A

8/16/5.2 target

8/16/5.2.0 disk SONY CD-ROM CDU-76S

8/16/5.7 target

8/16/5.7.0 ctl Initiator

8/16/6 lan Built-in LAN

8/16/7 ps2 Built-in Keyboard/Mouse

8/20 ba Core I/O Adapter

8/20/2 tty Built-in RS-232C

...

Listing devices with ioscan on HP-UX

ioscan displays information about hardware installed on HP-UX systems. The

above example displays the typical output of this command which shows

information about the system's hardware profile.

Common usage examples:

ioscan Display a simple hardware listing

ioscan -f Display a detailed hardware listing

lsdev

Purpose: List hardware on AIX systems.

Usage syntax: lsdev [OPTIONS]

lsdev

L2cache0 Available L2 Cache

cd0 Available 1G-19-00 IDE DVD-ROM Drive

en0 Available 1L-08 Standard Ethernet Network Interface

en1 Defined 1j-08 Standard Ethernet Network Interface

ent0 Available 1L-08 10/100 Mbps Ethernet PCI Adapter II

ent1 Available 1j-08 10/100/1000 Base-TX PCI-X Adapter

et0 Defined 1L-08 IEEE 802.3 Ethernet Network Interface

et1 Defined 1j-08 IEEE 802.3 Ethernet Network Interface

fd0 Available 01-D1-00-00 Diskette Drive

fda0 Available 01-D1 Standard I/O Diskette Adapter

hd1 Defined Logical volume

hd2 Defined Logical volume

hd3 Defined Logical volume

hd4 Defined Logical volume

hd5 Defined Logical volume

hd6 Defined Logical volume

hd8 Defined Logical volume

hd10opt Defined Logical volume

hd11admin Defined Logical volume

hd9var Defined Logical volume

hdisk0 Available 1S-08-00-5,0 16 Bit LVD SCSI Disk Drive

hdisk1 Defined 1S-08-00-8,0 Other SCSI Disk Drive

hdisk2 Available 1S-08-00-8,0 16 Bit LVD SCSI Disk Drive

ide0 Available 1G-19 ATA/IDE Controller Device

...

Listing devices on AIX with lsdev

lsdev displays information about hardware installed on AIX systems. The above

example displays the typical output of this command which includes information

about hardware installed on the local system.

Common usage examples:

lsdev Display a simple hardware listing

lspci

Purpose: List PCI devices on Linux systems.

Usage syntax: lspci [OPTIONS]

lspci

00:00.0 Host bridge: Intel Corporation 82945G/GZ/P/PL Memory Controller

Hub (rev 02)

00:01.0 PCI bridge: Intel Corporation 82945G/GZ/P/PL PCI Express Root

Port (rev 02)

00:02.0 VGA compatible controller: Intel Corporation 82945G/GZ

Integrated Graphics Controller (rev 02)

00:02.1 Display controller: Intel Corporation 82945G/GZ Integrated

Graphics Controller (rev 02)

00:1c.0 PCI bridge: Intel Corporation 82801G (ICH7 Family) PCI Express

Port 1 (rev 01)

00:1c.1 PCI bridge: Intel Corporation 82801G (ICH7 Family) PCI Express

Port 2 (rev 01)

...

Displaying a PCI device listing using the lspci command

lspci lists PCI devices on Linux systems. In the above example, a basic PCI device

list is displayed. A more detailed listing can be produced by using the -v option

as demonstrated in the next example.

lspci -v

00:00.0 Host bridge: Intel Corporation 82945G/GZ/P/PL Memory Controller

Hub (rev 02)

 Subsystem: Dell Device 01ad

 Flags: bus master, fast devsel, latency 0

 Capabilities: [e0] Vendor Specific Information <?>

 Kernel driver in use: agpgart-intel

 Kernel modules: intel-agp

00:01.0 PCI bridge: Intel Corporation 82945G/GZ/P/PL PCI Express Root

Port (rev 02)

 Flags: bus master, fast devsel, latency 0

 Bus: primary=00, secondary=01, subordinate=01, sec-latency=0

 Memory behind bridge: fe900000-fe9fffff

 Capabilities: [88] Subsystem: Intel Corporation Device 0000

 Capabilities: [80] Power Management version 2

...

Displaying a verbose PCI device listing

Common usage examples:

lspci Display a simple PCI device list

lspci -v Display a detailed PCI device list

pciconf

Purpose: List PCI devices on BSD systems.

Usage syntax: pciconf [OPTIONS]

pciconf -lv | less

hostb0@pci0:0:0:0: class=0x060000 card=0x00000000 chip=0x12378086

rev=0x02 hdr=0x00

 vendor = 'Intel Corporation'

 device = '82440/1FX 440FX (Natoma) System Controller'

 class = bridge

 subclass = HOST-PCI

isab0@pci0:0:1:0: class=0x060100 card=0x00000000 chip=0x70008086

rev=0x00 hdr=0x00

 vendor = 'Intel Corporation'

 device = 'PIIX3 PCI-to-ISA Bridge (Triton II) (82371SB)'

 class = bridge

 subclass = PCI-ISA

atapci0@pci0:0:1:1: class=0x01018a card=0x00000000 chip=0x71118086

rev=0x01 hdr=0x00

 vendor = 'Intel Corporation'

 device = 'PIIX4/4E/4M IDE Controller (82371AB/EB/MB)'

 class = mass storage

 subclass = ATA

vgapci0@pci0:0:2:0: class=0x030000 card=0x00000000 chip=0xbeef80ee

...

Output of the pciconf command

The pciconf command displays PCI devices on BSD systems. The above

example demonstrates listing PCI devices on a BSD system.

Note
The pcidump or devinfo commands may be used on some BSD

systems in place of the pciconf command.

Common usage examples:

pciconf -lv Display a complete list of PCI devices

lsusb

Purpose: List USB devices on Linux systems.

Usage syntax: lsusb [OPTIONS]

lsusb

Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Bus 001 Device 004: ID 0930:6544 Kingston DataTraveler 2.0 Stick (2GB)

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Bus 002 Device 003: ID 0461:4d15 Dell Optical Mouse

Bus 002 Device 002: ID 413c:2105 Dell Model L100 Keyboard

Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Displaying a USB device listing using lsusb

lsusb lists USB devices on Linux systems. Executing lsusb with no options

will display a simple listing of all USB devices on the local system, as shown in the

above example.

The -v option can be used with lsusb to display a verbose listing of USB

devices as shown in the next example.

lsusb -v | less

Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Device Descriptor:

 bLength 18

 bDescriptorType 1

 bcdUSB 1.10

 bDeviceClass 9 Hub

 bDeviceSubClass 0 Unused

 bDeviceProtocol 0 Full speed (or root) hub

 bMaxPacketSize0 64

 idVendor 0x1d6b Linux Foundation

 idProduct 0x0001 1.1 root hub

 bcdDevice 2.06

...

Displaying a detailed USB device list

Common usage examples:

lsusb Display USB devices

lsusb -v Display a detailed list of USB devices

lsusb -t Display USB devices in tree mode

dmidecode

Purpose: Display detailed information about devices on the system.

Usage syntax: dmidecode [OPTIONS]

dmidecode

SMBIOS 2.31 present.

45 structures occupying 1654 bytes.

Table at 0x000E0010.

Handle 0x0000, DMI type 0, 20 bytes

BIOS Information

 Vendor: Phoenix Technologies LTD

 Version: 6.00

 Release Date: 04/17/2006

 Address: 0xE7C70

 Runtime Size: 99216 bytes

 ROM Size: 64 kB

 Characteristics:

 ISA is supported

 PCI is supported

 PC Card (PCMCIA) is supported

 PNP is supported

 APM is supported

 BIOS is upgradeable

 BIOS shadowing is allowed

 ESCD support is available

 USB legacy is supported

 Smart battery is supported

 BIOS boot specification is supported

Handle 0x0001, DMI type 1, 25 bytes

System Information

 Manufacturer: VMware, Inc.

 Product Name: VMware Virtual Platform

 Version: None

...

Displaying a list of devices in tree view

dmidecode displays a detailed list of devices on the system. The above example

demonstrates the typical output of this command which includes verbose

information about the system's hardware.

Tip
The output of the dmidecode command can be quite lengthy. Typing

dmidecode|more will display the output one page at a time.

Common usage examples:

dmidecode Display detailed information about devices on the system

hdparm

Purpose: Display/set hard drive parameters on Linux systems.

Usage syntax: hdparm [OPTIONS] [DEVICE]

hdparm /dev/sda

/dev/sda:

 IO_support = 0 (default)
 readonly = 0 (off)
 readahead = 6144 (on)
 geometry = 19457/255/63, sectors = 312581808, start = 0

Typical output of the hdparm command

The hdparm command displays and edits hard drive settings. The example above

displays the specified drive's settings. The fields displayed will vary depending on

the type of drive in use.

Note

The hdparm command has dozens of options that can be used to

modify disk drive settings. The options available depend on the type of

drive being used (IDE, SATA, etc.). See man hdparm for more

information and warnings specific to each option.

The hdparm command can also be used as a performance benchmark for disk

drives using the -Tt option as displayed in the next example.

hdparm -Tt /dev/sda

/dev/sda:

 Timing cached reads: 11832 MB in 1.99 seconds = 5932.95 MB/sec

 Timing buffered disk reads: 582 MB in 4.30 seconds = 135.30 MB/sec

Using the -Tt option to display disk performance benchmarks

Common usage examples:

hdparm [DISK] Display settings for the specified disk

hdparm -Tt [DISK] Display performance information for the specified disk

eject

Purpose: Unload removable media.

Usage syntax: eject [OPTIONS] [DEVICE]

eject

Using the eject command to remove a CD or DVD

The eject command unloads removable media devices. It is primarily used to

unmount and eject a CD or DVD. On most systems, simply typing the eject

command will unmount and eject the tray on the disc drive.

Note
Some systems may require you to specify which device to eject, such as

eject /dev/cdrom.

The -v option can be used with the eject command to display verbose

messages when ejecting removable media as shown in the next example.

eject -v /dev/cdrom

eject: device name is '/dev/cdrom'

eject: expanded name is '/dev/cdrom'

eject: '/dev/cdrom' is a link to '/dev/sr0'

eject: '/dev/sr0' is mounted at '/media/FOTC_S2_DISC1'

eject: unmounting device '/dev/sr0' from '/media/FOTC_S2_DISC1'

eject: '/dev/sr0' is not a multipartition device

eject: trying to eject '/dev/sr0' using CD-ROM eject command

eject: CD-ROM eject command succeeded

Displaying verbose messages with the eject -v command

Common usage examples:

eject Eject the default removable device

eject [DEVICE] Eject the specified device

eject -c [SLOT] [DEVICE] Eject a specific slot on a CD changer device

eject -v Display verbose messages

Section 10:

File Systems

Overview

This section covers usage of basic file system management commands. It also

covers popular partition editors for Unix, Linux, and BSD systems such as fdisk

and parted. These commands can be used to create, modify, and delete file

systems.

Warning

The following commands can cause irreparable damage to your system

if used incorrectly. Always experiment with new commands in a testing

environment.

Commands covered in this section:

Command Purpose

fdisk Display and edit hard disk partitions.

parted Display and edit partitions on Linux systems.

mkfs Create file systems.

fsck Check and repair file systems.

badblocks Check a disk drive for bad blocks.

tune2fs Adjust Linux file system parameters.

mount

umount
Mount/unmount local and remote file systems.

mkswap Create swap space storage.

swapon

swapoff
Activate/deactivate swap space.

swapinfo Display swap space information.

sync Flush file system buffers.

Glossary of terms used in this section:

Blocks Physical storage units on a disk drive.

File System A method and format for storing data on a disk drive.

Format The process of preparing a disk drive for a specific file system.

Mount Process used to attach storage devices to a local system.

Partition A division of a disk drive.

Swap A file or partition that acts as secondary storage for RAM.

fdisk

Purpose: Display and edit hard disk partitions.

Usage syntax: fdisk [OPTIONS] [DEVICE]

fdisk -l /dev/sda

Disk /dev/sda: 160.0 GB, 1600418'696 bytes

255 heads, 63 sectors/track, 19457 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Disk identifier: 0x98000000

 Device Boot Start End Blocks Id System

/dev/sda1 * 1 12 96358+ de Dell Utility

/dev/sda2 13 19457 156191962+ 5 Extended

/dev/sda5 13 504 3951958+ 82 Linux swap / Solaris

/dev/sda6 505 19457 152239941 83 Linux

Listing the partitions on a disk using the fdisk command

fdisk is a disk partition editor for Unix, Linux, and BSD systems. In the above

example, the -l option is used to display the partition information for the

specified hard disk.

Executing fdisk with no options will open the specified disk for editing, as

displayed in the next example.

fdisk /dev/sda

Command (m for help): p

Disk /dev/sda: 160.0 GB, 160041885696 bytes

255 heads, 63 sectors/track, 19457 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

Disk identifier: 0x98000000

 Device Boot Start End Blocks Id System

/dev/sda1 * 1 12 96358+ de Dell Utility

/dev/sda2 13 19457 156191962+ 5 Extended

/dev/sda5 13 504 3951958+ 82 Linux swap / Solaris

/dev/sda6 505 19457 152239941 83 Linux

Using the fdisk utility to modify a partition

In this example, the fdisk utility starts an interactive shell that can be used to

display and modify a disk's partitions. Within the shell, command keys are used to

perform a specific task. The following table describes the basic commands available

within the fdisk utility.

(Continued...)

Command Function

m Display the help menu

p Display the partition table

n Create a new partition

a Make a partition bootable

d Delete a partition

l List partition types

q Quit without saving changes

w Save changes and exit

Basic fdisk commands

Warning

Incorrectly using the fdisk utility can cause data loss or leave your

system unbootable. Always use caution when editing disk partitions

and make sure to have a backup of your important data.

Common usage examples:

fdisk -l List the partition tables for all devices

fdisk -l [DEVICE] List the partition tables on the specified device

fdisk [DEVICE] Open the specified device for editing

parted

Purpose: Display and edit partitions on Linux systems.

Usage syntax: parted [OPTIONS] [DEVICE]

parted -l /dev/sda

Model: ATA SAMSUNG HD080HJ/ (scsi)

Disk /dev/sda: 80.0GB

Sector size (logical/physical): 512B/512B

Partition Table: msdos

Number Start End Size Type File system Flags

 1 1049kB 106MB 105MB primary ntfs boot

 2 106MB 47.2GB 47.1GB primary ntfs

 3 47.2GB 80.0GB 32.8GB extended

 5 47.2GB 78.6GB 31.4GB logical ext4

 6 78.6GB 80.0GB 1398MB logical linux-swap(v1)
Displaying the partition layout of a disk using the parted utility

parted is a disk partition manager for Linux systems. It is similar to the fdisk

utility (which is also available for Linux), except it offers a more user friendly

interface. In the above example, the -l option is used to display the partition

information for the specified hard disk.

Executing parted with no options will open the specified disk for editing, as

displayed in the next example.

parted /dev/sda

GNU Parted 1.8.8.1.159-1e0e

Using /dev/sda

Welcome to GNU Parted! Type 'help' to view a list of commands.

(parted) print

Model: ATA SAMSUNG HD080HJ/ (scsi)

Disk /dev/sda: 80.0GB

Sector size (logical/physical): 512B/512B

Partition Table: msdos

Number Start End Size Type File system Flags

 1 1049kB 106MB 105MB primary ntfs boot

 2 106MB 47.2GB 47.1GB primary ntfs

 3 47.2GB 80.0GB 32.8GB extended

 5 47.2GB 78.6GB 31.4GB logical ext4

 6 78.6GB 80.0GB 1398MB logical linux-swap(v1)
Editing a disk's partition using the parted utility

(Continued...)

The following table provides an overview of basic parted partition editing

commands.

Command Function

print Display the partition table

help Display the help menu

mkpart Create a new partition

rm Delete a partition

quit Exit the program

Basic parted commands

Common usage examples:

parted -l List the partition tables for all devices

parted -l [DEVICE] List the partition tables on the specified device

parted [DEVICE] Open the specified device for editing

mkfs

Purpose: Create file systems.

Usage syntax: mkfs [OPTIONS] [DEVICE]

mkfs -t ext4 /dev/sdb1

mke2fs 1.41.9 (22-Aug-2009)

Filesystem label=

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

122400 inodes, 489131 blocks

24456 blocks (5.00%) reserved for the super user

First data block=0

Maximum file system blocks=503316480

15 block groups

32768 blocks per group, 32768 fragments per group

8160 inodes per group

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912

Writing inode tables: done

Creating journal (8192 blocks): done

Writing superblocks and file system accounting information: done

This file system will be automatically checked every 21 mounts or

180 days, whichever comes first. Use tune2fs -c or -i to override.

Creating an ext4 formatted file system using the mkfs command

The mkfs command creates (AKA formats) a file system on a disk drive. In the

above example, the mkfs command is used on a Linux system to format the first

partition of the /dev/sdb disk drive.

Warning The mkfs command will destroy all data on the target device.

Note

Usage syntax and supported options for mkfs vary across the different

Unix, Linux, and BSD platforms. The above example was created on a

Linux system. See man mkfs to find the correct usage syntax for your

system.

Common usage examples:

mkfs -t [FSTYPE] [DEVICE] Create a file system on the specified drive

mkfs -ct [FSTYPE] [DEVICE] Check for bad blocks before formatting

fsck

Purpose: Check and repair file systems.

Usage syntax: fsck [OPTIONS] [FILESYSTEM]

fsck -n /

fsck 1.40.8 (13-Mar-2008)

e2fsck 1.40.8 (13-Mar-2008)

/dev/sda1 contains a file system with errors, check forced.

Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

...

Using the fsck command to check a file system

fsck checks the specified file systems for errors and repairs them if necessary. In

the above example, the / file system is checked for errors. The

-n option is used to instruct fsck to check but not repair the specified file

system. This is necessary since, in this case, the / file system is a live (mounted)

file system and cannot be repaired unless first unmounted.

Warning

The fsck command should never be used to repair a mounted file

system as it will cause data corruption. In Linux, you can safely run

fsck at the next reboot by typing sudo touch /forcefsck

on the command line. Other systems may require booting recovery

media in order to use fsck. See man fsck for more information

about usage on your system.

Common usage examples:

fsck [FILESYSTEM] Check and repair the specified file system

fsck -n [FILESYSTEM] Check the specified file system without repairing it

badblocks

Purpose: Check a disk drive for bad blocks.

Usage syntax: badblocks [OPTIONS] [DEVICE]

badblocks -v /dev/sda

Checking blocks 0 to 8388607

Checking for bad blocks (read-only test): done

Pass completed, 0 bad blocks found.

Checking a device for bad blocks using the badblocks command

The badblocks command is a Linux utility used to search a disk drive for bad

blocks. In the above example, the badblocks command is used to check

/dev/sda for bad blocks. The -v option is included to display verbose status

information during the scan.

A disk drive that is healthy should have no bad blocks. If bad blocks are found, the

drive should be replaced immediately to avoid data loss.

Warning

The default badblocks test is read-only and generally safe to use

on a live file system. Specifying the -w option will perform a

read/write test and will destroy all data on the specified disk. It should

only be used to test a disk that does not contain critical data, as it will

be completely overwritten.

Common usage examples:

badblocks [DEVICE] Check the specified device for bad blocks

badblocks -v [DEVICE] Display verbose messages when checking

badblocks -w [DEVICE] Perform a read/write test on the disk

tune2fs

Purpose: Adjust Linux file system parameters.

Usage syntax: tune2fs [OPTIONS] [DEVICE]

tune2fs -l /dev/sda5

tune2fs 1.41.9 (22-Aug-2009)

Filesystem volume name: <none>

Last mounted on: /

Filesystem UUID: 68df1b51-492b-489a-80d8-0623900de3ba

Filesystem magic number: 0xEF53

Filesystem revision #: 1 (dynamic)

Filesystem features: has_journal ext_attr resize_inode dir_index

filetype needs_recovery extent flex_bg sparse_super large_file

Filesystem flags: signed_directory_hash

Default mount options: (none)

Filesystem state: clean

...

Displaying a file system's parameters using the tune2fs command

The tune2fs command displays and edits file system settings on Linux systems.

It supports the ext2, ext3, and ext4 file systems. In the above example, the -l

parameter is used to display detailed information about the specified file system.

tune2fs is most commonly used to adjust the fsck intervals for a file system.

This is the interval in which the system will automatically run an fsck on the file

system. The next example displays the variables that control this.

tune2fs -l /dev/sda5 | grep -Ei 'check|max'

Maximum mount count: 32

Last checked: Wed Mar 24 14:14:20 2010

Check interval: 15552000 (6 months)

Next check after: Mon Sep 20 14:14:20 2010

Displaying a file system's fsck parameters

Common usage examples:

tune2fs -l [device] Display information about the specified file

system

tune2fs -c [count] \

[device]

Force the fsck command to check the file

system after the specified number of mounts

tune2fs -i [interval] \

[device]

Force the fsck command to check the file

system at the specified interval in days,

weeks, or months

mount / umount

Purpose: Mount local and remote file systems.

Usage syntax: mount [OPTIONS] [SOURCE] [TARGET]

mount /dev/sb1 /mnt/Seagate

Mounting a local file system

The mount command mounts file systems. In the above example, the device

/dev/sdb1 is mounted under the /mnt/Seagate directory. This is an

example of mounting a local file system.

Tip
Local file systems can be configured to mount automatically at boot using

the /etc/fstab file.

mount can also be used to mount remote file systems via NFS, as shown in the

next example.

mount 10.10.1.48:/home/nick /mnt/nick

Mounting an NFS file system

In this example, /home/nick on the remote machine (10.10.1.48) is shared via

NFS and mounted locally in /mnt/nick.

Note
NFS must be properly configured on the remote system for this to work.

NFS settings are managed via the /etc/exports file.

The umount command unmounts file systems as shown in the next example.

Usage syntax: umount [OPTIONS] [DIRECTORY]

umount /mnt/Seagate

Unmounting a file system

Common usage examples:

mount Display all mounted file systems

mount [DEVICE] [DIR] Mount the specified device

mount [IP]:[REMOTE] [LOCAL] Mount the specified NFS share

umount [PATH] Unmount a file system

mkswap

Purpose: Create swap space storage.

Usage syntax: mkswap [OPTIONS] [DEVICE]

mkswap /dev/sdb1

Setting up swapspace version 1, size = 522076 KiB

no label, UUID=cc35b16c-985f-4723-a5c4-e4dd2377aad

Creating swap storage using the mkswap command

The mkswap command creates swap space on Linux systems. Swap storage is

used to store data in memory that is rarely accessed. This frees up RAM for active

programs. In the above example, the mkswap command is used to create swap

storage on the /dev/sdb1 partition.

Tip

Swap utilization has a significant impact on system performance. If a

system is utilizing swap space heavily, it should be upgraded with

additional memory to increase performance. Additionally, creating swap

storage on its own dedicated disk is a good practice that is used to

prevent degraded performance.

mkswap is a Linux command. Similar commands exist on other platforms and are

detailed in the following cross-reference table.

AIX BSD HP-UX Linux Solaris
mkps swapctl lvcreate mkswap swap

Swap command cross reference

Common usage examples:

mkswap [DEVICE] Create swap space on the specified device

mkswap -c [DEVICE] Check the device for bad blocks before formatting

swapon / swapoff

Purpose: Activate/deactivate swap space.

Usage syntax: swapon [OPTIONS] [DEVICE]

swapon /dev/sdb1

Activating swap storage

The swapon command activates swap storage. The above example

demonstrates activating a newly created swap space using swapon.

Note

Newly created swap space does not become usable by the system until it

is activated using the swapon command. Most systems have at least

one swap space that is activated at boot by default. Additional swap

devices created after installation must be added to the /etc/fstab

file to be automatically activated at boot.

The swapoff command deactivates swap storage. The next example

demonstrates using swapoff to deactivate the /dev/sdb1 swap device.

Usage syntax: swapoff [OPTIONS] [DEVICE]

swapoff /dev/sdb1

Deactivating swap storage

Swap storage must be deactivated with the swapoff command before it can be

changed or removed.

Note
Solaris systems use the swap command in pace of swapon and

swapoff.

Common usage examples:

swapon -a Enable all swap spaces

swapon [DEVICE] Enable the specified swap space

swapon -s Display swap usage by device

swapoff -a Disable all active swap spaces

swapoff [DEVICE] Disable the specified swap space

swapinfo

Purpose: Display swap space information.

Usage syntax: swapinfo [OPTIONS]

swapinfo

 Kb Kb Kb PCT START/ Kb

TYPE AVAIL USED FREE USED LIMIT RESERVE PRI NAME

dev 524288 0 524288 0% 0 - /dev/vg00/lvol2

reserve - 111696 -111696

memory 389816 143784 246032 37%

Output of the swapinfo command on HP-UX

swapinfo displays details about active swap storage. The above example

displays the output of the swapinfo command on an HP-UX system. It includes

information about the size and location of swap storage and the amount of

memory and swap utilization.

swapinfo is available on BSD and HP-UX systems. Other platforms use the

commands listed in the cross-reference below to display information about swap

utilization.

AIX BSD HP-UX Linux Solaris
lsps swapinfo swapinfo free swap

Swap command cross reference

Common usage examples:

swapinfo Display swap space utilization on BSD and HP-UX systems

sync

Purpose: Flush file system buffers.

Usage syntax: sync

sync

Flushing the file system buffer with the sync command

The sync command flushes the file system buffer. Unix, Linux, and BSD systems

pool disk activity to increase performance. When this happens, pending write

operations are buffered in memory and processed at an opportune time. The

sync command forces the buffer to flush, which completes all pending write

operations.

While the sync command is rarely used, it can be helpful in situations where the

system must be rebooted in an abnormal manner, such as unplugging the system

or pressing the reset button. Executing sync before powering off a system in this

manner can help prevent file system corruption by ensuring all disk buffers are

completely flushed.

Tip

Executing the sync command twice is a common practice to ensure all

file system buffers have been flushed. The can be done with one

command by executing sync;sync on the command line.

Common usage examples:

sync Flush the file system buffer

sync ; sync Really flush the file system buffer

Section 11:

Backup and Restore Commands

Overview

This section covers utilities used to backup and restore files. Creating a good

backup is very important for recovering from system failure or natural disaster.

Most systems have a number of built-in backup programs. These programs can

create full, partial, and incremental backups and should be incorporated into your

disaster recovery plan.

Commands covered in this section:

Command Purpose

tar Create/extract archive files.

dump Create incremental backups.

restore Restore files from dump archives.

dd Create raw copies of data devices.

cpio Create/extract cpio archives.

mt Control tape devices.

mksysb Create a backup image of an AIX system.

Glossary of terms used in this section:

Full Backup A backup that includes all files on the local system.

Incremental Backup A backup that includes only files that have changed since

the last full backup.

tar

Purpose: Create/extract archive files.

Usage syntax: tar [OPTIONS] [OUTPUT] [INPUT]

tar -cvf backup.tar /etc/*

/etc/acpi/

/etc/acpi/stopbtn.sh

/etc/acpi/videobtn.sh

/etc/acpi/ibm-wireless.sh

/etc/acpi/hibernate.sh

/etc/acpi/resume.d/

/etc/acpi/resume.d/15-video-post.sh

/etc/acpi/resume.d/62-ifup.sh

/etc/acpi/resume.d/10-thinkpad-standby-led.sh

...

Creating a backup archive of the /etc directory using the tar command

The tar command creates and extracts tar archives. It is the most commonly

used utility for creating backups on Unix, Linux, and BSD systems. In the above

example, the -cvf option is used to create a backup archive of the /etc

directory called backup.tar.

In the next example, the -xvf option is used to extract the /etc/hosts file

from the archive created in the first example.

tar -xvf backup.tar etc/hosts

etc/hosts

Extracting files from a tar archive

Note

The default operation of the tar command strips the leading / from

the file path. This means that files restored from tar archives will be

placed in a location relative to the current directory. The -P option can

be specified to override this behavior.

Common usage examples:

tar -cvf [FILE] [ITEM] Backup the specified item(s)

tar -czvf [FILE] [ITEM] Compress the archive to save space

tar -xvf [FILE] [ITEM] Restore the specified item(s)

tar -tf [FILE] List all files in the specified archive

dump

Purpose: Create incremental backups.

Usage syntax: dump [OPTIONS] [OUTPUT] [INPUT]

dump -0 -uf backup.dump /

Creating a full backup using the dump command

dump is an archive utility that creates incremental backups. In the above example,

the -0 option indicates a full backup of the / file system to a file called

backup.dump.

Subsequent incremental backups are specified as -1, -2, -3, etc. The

subsequent backups will only archive files that have changed since the last full

backup. This can save time and storage space when creating backups, but it will

take longer to restore since the incremental backups must be restored in layers.

Note

Information about backed up files is stored in a file called dumpdates.

On Unix systems, this file is usually found in /etc/dumpdates. Linux

systems store this information in /var/lib/dumpdates.

Common usage examples:

dump -0 -uf [OUTPUT] [INPUT] Create a full backup

dump -[NUM] -uf [OUTPUT] [INPUT] Create an incremental backup

restore

Purpose: Restore files from dump archives.

Usage syntax: restore [OPTIONS] [FILE]

restore -if backup.dump

restore > pwd

/

restore > cd etc

restore > add hosts

restore > extract

...

Restoring files from a dump archive

The restore command restores files from archives created with the dump

command. The above example demonstrates starting the interactive restore

shell to extract files from a dump archive.

The following table describes the basic restore shell commands.

Command Function

ls [PATH] List the contents of the current or specified directory

cd [PATH] Navigate the dump archive

pwd Display the current working directory

add [PATH]
Add the current directory (or specified item) to the
restore list

delete [PATH]
Delete the current directory (or specified item) from
the restore list

extract Extract all files on the restore list

help Display the help menu

quit Exit the restore shell

Restore shell commands

Common usage examples:

restore -if [FILE] Open the specified archive in the restore shell

restore -rf [FILE] Restore an entire file system from a dump archive

restore -tf [FILE] List all items in the specified dump archive

dd

Purpose: Create raw copies of data devices.

Usage syntax: dd if=[SOURCE] of=[TARGET] [OPTIONS]

dd if=/dev/sdb of=/dev/sdc

Creating a copy of a disk using the dd command

The dd command performs raw (bit for bit) copies of data devices. The if

parameter specifies the input file or device to be read. The of parameter

specifies the output location. In the above example, the entire hard drive

/dev/sdb is copied to /dev/sdc.

dd can also be used to create image files of a disk. The next example

demonstrates using dd to create an ISO image file from a CD-ROM.

dd if=/dev/cdrom of=/tmp/image.iso

Converting a CD-ROM into an ISO file using the dd command

Warning

The dd command is often referred to as the "data destroyer" because

it can be very destructive if used incorrectly. Always use caution when

experimenting with dd.

Common usage examples:

dd if=[SOURCE] of=[TARGET] Create a raw copy of the specified device

cpio

Purpose: Create or extract cpio archives.

Usage syntax: [INPUT] | cpio [OPTIONS] > [OUTPUT]

cd /etc

ls | cpio -ov > /tmp/backup.cpio

adduser.conf

adjtime

aliases

alternatives

...

Creating a backup with the cpio command

The cpio utility creates simple backups. In the above example, the

-ov option creates a cpio backup of the /etc directory.

The next example demonstrates restoring files from the backup.cpio archive

using the -idv option.

cd /etc

cpio -idv < /tmp/backup.cpio

adduser.conf

adjtime

aliases

alternatives

...

Extracting files from a cpio archive

Note

cpio is a legacy program that is rarely used for backup on modern

systems. Use tar and dump in place of cpio as they offer a more

complete and user-friendly backup solution.

Common usage examples:

ls | cpio -ov > backup.cpio Backup the specified item(s)

cpio -idv < backup.cpio Restore the specified item(s)

cpio --list < backup.cpio List all items in the specified archive

mt

Purpose: Control tape devices.

Usage syntax: mt -f [DEVICE] [OPERATION]

mt -f /dev/rmt0 rewind

Rewinding a tape using the mt command

The mt command controls removable tape devices. It can be used to display the

status of the drive and manage its removable media. The example above

demonstrates using the mt command to rewind the tape in the /dev/rmt0

drive.

The following table lists the most common operations used with the mt utility.

Operation Function

rewind Rewind the tape device

retension Retension the tape

erase Erase the tape

status Display the tape device status

offline Rewind and eject the tape

Common mt operations

Common usage examples:

mt -f [DEVICE] [OPERATION] Execute the specified operation on a

tape drive

mksysb

Purpose: Create a backup image of an AIX system.

Usage syntax: mksysb [OPTIONS] [DEVICE/FILE]

mksysb -i /dev/rmt0

Creating information file (/image.data) for rootvg.

Creating list of files to back up.

Backing up 64981 files..............................

51767 of 64981 files (79%)..

64981 of 64981 files (100%)

0512-038 mksysb: Backup Completed Successfully.

Creating a mksysb backup on AIX

The mksysb command creates a backup image of an AIX system. This image can

be used to restore the base operating system in the event of system failure.

In the above example a mksysb system image is written to the /dev/rmt0

tape device.

Note

mksysb is not a substitute for a traditional backup as is does not include

files outside of the base operating system. Databases, 3rd party software,

etc. are not backed up in a mksysb image. These files should be backed

up separately using another method (such as the tar command.)

Common usage examples:

mksysb -i [DEVICE/FILE] Create a system image backup

Section 12:

Monitoring and Troubleshooting

Overview

This section covers commands used to monitor and troubleshoot Unix, Linux, and

BSD systems. These commands can be used to diagnose problems or resolve

performance problems.

Commands covered in this section:

Command Purpose

top Monitor system performance and running processes.

htop Advanced system monitor for Linux.

topas Performance monitor for AIX systems.

iotop Monitor disk input and output operations.

mpstat Display processor utilization information.

vmstat Display virtual memory usage information.

iostat Display I/O utilization statistics.

dstat Monitor CPU, disk, network, and swap utilization.

nfsstat Display NFS statistics.

free Display system memory and swap space usage information.

df Display file system usage information.

du Display disk usage.

uname Display information about the operating system.

uptime Display how long the system has been online.

dmesg Display kernel log messages.

errpt Display system error messages on AIX systems.

strace Trace system calls and signals.

ltrace Trace library calls.

lsmod Display Linux kernel module information.

insmod

rmmod
Install/remove kernel modules.

modinfo Display information about Linux kernel modules.

(Continued...)

Command Purpose

sysctl Display and edit kernel parameters on Linux and BSD systems.

Glossary of terms used in this section:

I/O (Input/Output) The process of reading or writing to a disk

drive.

Kernel Module An extension to the kernel that provides a driver, feature, or

service.

Library A collection of subroutines used by applications.

Load Average The average of system load over a period of time.

System Call The process of a program requesting access to system

resources such as kernel facilities or system hardware.

Trace The process of monitoring internal functions of a program such

as system calls and library calls.

Virtual Memory A logical combination of physical memory and swap storage.

top

Purpose: Monitor system performance and running processes.

Usage syntax: top [OPTIONS]

$ top

top - 18:56:55 up 21 min, 2 users, load average: 0.22, 0.35, 0.31

Tasks: 140 total, 2 running, 138 sleeping, 0 stopped, 0 zombie

Cpu(s): 9.0%us, 2.0%sy, 0.1%ni, 85.1%id, 3.5%wa, 0.1%hi, 0.2%si, 0.0%st

Mem: 3988516k total, 1089196k used, 2899320k free, 35832k buffers

Swap: 3951948k total, 0k used, 3951948k free, 664684k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 5297 nick 20 0 19112 1224 892 R 4 0.0 0:00.02 top

 1 root 20 0 4100 920 632 S 0 0.0 0:01.16 init

 2 root 15 -5 0 0 0 S 0 0.0 0:00.00 kthreadd

 3 root RT -5 0 0 0 S 0 0.0 0:00.00 migration/0

 4 root 15 -5 0 0 0 S 0 0.0 0:00.82 ksoftirqd/0

 5 root RT -5 0 0 0 S 0 0.0 0:00.00 watchdog/0

 6 root RT -5 0 0 0 S 0 0.0 0:00.00 migration/1

 7 root 15 -5 0 0 0 S 0 0.0 0:00.06 ksoftirqd/1

 8 root RT -5 0 0 0 S 0 0.0 0:00.00 watchdog/1

 9 root 15 -5 0 0 0 S 0 0.0 0:00.01 events/0

 10 root 15 -5 0 0 0 S 0 0.0 0:00.04 events/1

 11 root 15 -5 0 0 0 S 0 0.0 0:00.00 khelper

Monitoring system activity with the top command

top is a process and performance monitor for Unix, Linux, and BSD systems. The

first few lines of top output displays information about processor, memory, and

swap utilization. The remaining portion of the screen is used to display information

about running processes. The process listing updates every few seconds to display

the most resource-intensive processes.

Tip

There are several interactive commands that can be used to control the

output of the top command. Press the ? key within top for a

complete listing of these commands.

Common usage examples:

top Monitor system performance and processes

top -u [USER] Only display processes owned by the specified user

top -d [SECONDS] Update at the specified interval (in seconds)

top -i Do not display idle processes

htop

Purpose: Advanced system monitor for Linux.

Usage syntax: htop

Monitoring system activity with htop

htop is an alternative system monitor for Linux that is similar to the previously

discussed top command. The example above displays a screenshot of the htop

interface. It features color output and uses a graphical scale to visualize processor,

memory, and swap utilization.

Tip
Similar to top, htop supports interactive commands. Press the F1 key

within htop for a complete listing of interactive options.

Common usage examples:

htop Run the top monitor with default settings

htop -u [USER] Only display processes from the specified user

topas

Purpose: Performance monitor for AIX systems.

Usage syntax: topas [OPTIONS]

topas

Topas Monitor for host: localhost EVENTS/QUEUES FILE/TTY

Sat May 15 16:16:19 2010 Interval: 2 Cswitch 63 Readch 1228

 Syscall 74 Writech 176

CPU User% Kern% Wait% Idle% Reads 2 Rawin 0

ALL 0.0 0.0 0.0 100.0 Writes 3 Ttyout 1226

 Forks 0 Igets 0

Network KBPS I-Pack O-Pack KB-In KB-Out Execs 0 Namei 4

Total 1.4 2.5 2.5 0.1 1.3 Runqueue 0.0 Dirblk 0

 Waitqueue 0.0

Disk Busy% KBPS TPS KB-Read KB-Writ MEMORY

Total 0.0 0.0 0.0 0.0 0.0 PAGING Real,MB 2048

 Faults 0 % Comp 36

FileSystem KBPS TPS KB-Read KB-Writ Steals 0 % Noncomp 7

Total 1.2 1.5 1.2 0.0 PgspIn 0 % Client 7

 PgspOut 0

Name PID CPU% PgSp Owner PageIn 0 PAGING SPACE

topas 221296 0.1 1.3 root PageOut 0 Size,MB 512

java 286878 0.0 49.4 pconsole Sios 0 % Used 1

telnetd 307338 0.0 0.7 root % Free 99

netm 40980 0.0 0.1 root Press: "h"-help

cimserve 319686 0.0 30.5 root "q"-quit

Screenshot of the topas monitor for AIX

topas is the performance monitor for AIX systems. Executing topas with no

options shows an overview of all areas of system utilization, as shown in the above

example.

topas also has several options to monitor specific aspects of the system. For

example, the -D option displays disk utilization information for each disk on the

system as shown in the next example.

topas -D

Topas Monitor for host: localhost Interval: 2 Sat May 15 16:43:32 2010

===

Disk Busy% KBPS TPS KB-R ART MRT KB-W AWT MWT AQW AQD

hdisk1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

hdisk0 0.0 2.7K 701.0 2.7K 1.0 42.1 0.0 0.0 0.0 0.0 0.0

Screenshot of the topas monitor for AIX

Common usage examples:

topas Display the topas monitor

topas -D Monitor disk activity

topas -P Monitor processes

topas -V Monitor volume group activity

topas -F Monitor file system activity

topas -E Monitor ethernet activity

iotop

Purpose: Monitor disk input and output operations.

Usage syntax: iotop [OPTIONS]

$ iotop

Total DISK READ: 52.68 M/s | Total DISK WRITE: 0.00 B/s

 TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND

 4310 be/4 root 9.33 M/s 0.00 B/s 0.00 % 0.00 % hdparm -Tt

 4311 be/4 root 4.84 M/s 0.00 B/s 0.00 % 0.00 % hdparm -Tt

 4312 be/4 root 9.46 M/s 0.00 B/s 0.00 % 0.00 % hdparm -Tt

 4313 be/4 root 13.68 M/s 0.00 B/s 0.00 % 0.00 % hdparm

 1 be/4 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % init

 2 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [kthreadd]

 3 rt/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [migration/0]

 4 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [ksoftirqd/0]

 5 rt/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [watchdog/0]

 6 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [events/0]

 7 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [cpuset]

 8 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [khelper]

 9 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [netns]

 10 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [async/mgr]

 11 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [kintegrityd/0]

 12 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [kblockd/0]

 13 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [kacpid]

 14 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [kacpi_notify]

 15 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [kacpi_hotplug]

 16 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [ata/0]

 17 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [ata_aux]

Monitoring disk utilization using iotop

iotop is a utility for monitoring disk I/O operations on Linux systems. It can be

useful for monitoring disk performance and tracking down resource intensive

applications. The example above displays the default iotop interface.

Tip Press the Q key to exit the iotop utility.

Common usage examples:

iotop Monitor system I/O statistics

iotop -o Only display processes performing I/O

iotop -u [USER] Only display I/O activity from the specified user

iotop -d [SECONDS] Update at the specified interval (in seconds)

mpstat

Purpose: Display processor utilization information.

Usage syntax: mpstat [OPTIONS] [DELAY] [COUNT]

$ mpstat 2 10

Linux 2.6.24-19-server (vmware-02) 05/03/2010

10:46:53 AM CPU %user %nice %sys %iowait %irq %soft %steal %idle intr/s

10:46:55 AM all 0.00 0.00 2.22 0.00 0.00 0.00 0.00 97.78 82.50

10:46:57 AM all 0.62 0.00 2.49 0.00 0.00 0.00 0.00 96.89 126.50

10:46:59 AM all 0.12 0.00 2.21 0.00 0.00 0.12 0.00 97.54 84.00

10:47:01 AM all 0.25 0.00 5.29 0.62 0.12 0.00 0.00 93.73 403.00

10:47:03 AM all 0.00 0.00 2.55 0.00 0.00 0.00 0.00 97.45 106.50

10:47:05 AM all 0.25 0.00 2.84 0.00 0.00 0.00 0.00 96.91 101.50

10:47:07 AM all 0.00 0.00 3.28 0.00 0.00 0.00 0.00 96.72 118.00

10:47:09 AM all 0.24 0.00 3.40 0.00 0.00 0.00 0.00 96.36 126.00

10:47:11 AM all 0.00 0.00 3.91 0.00 0.00 0.00 0.00 96.09 97.50

10:47:13 AM all 0.00 0.00 3.27 0.00 0.12 0.00 0.00 96.61 107.00

Average: all 0.15 0.00 3.15 0.06 0.02 0.01 0.00 96.61 135.25

Output of the mpstat command

mpstat displays processor utilization information on Linux systems. In the above

example, executing mpstat 2 10 instructs the program to display results in

two second intervals and exit after displaying 10 lines. If the delay and count

options are omitted mpstat will display one line of results and then terminate.

Common usage examples:

mpstat Display processor utilization once and exit

mpstat [DELAY] Update display at the specified interval

mpstat [DELAY] [COUNT] End monitoring after reaching the specified

count

vmstat

Purpose: Display virtual memory usage information.

Usage syntax: vmstat [OPTIONS] [DELAY] [COUNT]

vmstat 2 10

procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----

 r b swpd free buff cache si so bi bo in cs us sy id wa

 0 0 88 79260 149184 7400704 0 0 0 93 1 4 0 2 97 0

 0 1 88 78996 149184 7400704 0 0 0 2 119 2933 0 4 90 6

 2 0 88 78996 149184 7400704 0 0 0 12 115 3083 0 3 94 3

 0 0 88 78872 149184 7400704 0 0 0 1828 259 3275 0 3 97 0

 0 0 88 78872 149184 7400704 0 0 0 62 145 3031 0 4 96 0

 0 0 88 78748 149184 7400704 0 0 0 0 114 2965 0 2 98 0

 0 0 88 78452 149184 7400704 0 0 0 498 150 3170 0 3 97 0

 0 0 88 78004 149184 7400704 0 0 0 0 114 3073 0 3 97 0

 0 0 88 77632 149184 7400704 0 0 0 198 306 4659 0 5 95 0

 0 0 88 77260 149184 7400708 0 0 0 52 130 2864 0 3 97 0

Displaying memory utilization using the vmstat command

The vmstat command displays virtual memory statistics. In the above example,

executing vmstat 2 10 instructs the program to display results in two second

intervals and exit after displaying 10 lines. If the delay and count parameters are

omitted, vmstat will display one line of results and then terminate.

Tip
The -Sm option can be used with the vmstat command on some

systems to display the memory totals in megabytes instead of kilobytes.

Common usage examples:

vmstat Display memory utilization once and exit

vmstat [DELAY] Update results at the specified interval

vmstat [DELAY] [COUNT] End after reaching the specified count

vmstat -s Display a table of memory statistics

vmstat -Sm Display utilization in megabytes

iostat

Purpose: Display I/O utilization statistics.

Usage syntax: iostat [OPTIONS] [DELAY] [COUNT]

iostat -d 2 5

Linux 2.6.24-19-server (vmware-02) 05/03/2010

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

sda 56.65 3.44 756.95 9462264 2080033488

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

sda 3.50 0.00 64.00 0 128

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

sda 6.97 0.00 59.70 0 120

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

sda 0.00 0.00 0.00 0 0

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

sda 61.50 0.00 524.00 0 1048

Displaying I/O utilization using the iostat command

The iostat command displays I/O utilization statistics for disk drives and

network file systems. It is helpful in monitoring disk drives as they can be a

significant bottleneck in system performance. In the above example, five lines of

I/O statistics are displayed. The first line displays the statistics since the system was

last booted. Subsequent lines display the totals since the previous line was printed.

Common usage examples:

iostat Display I/O utilization once and exit

iostat [DELAY] Update I/O utilization at the specified interval

iostat [DELAY] [COUNT] End after reaching the specified count

iostat -k Display statistics in kilobytes per second

iostat -m Display statistics in megabytes per second

iostat -d Only display I/O devices

iostat -p Display each partition individually

iostat -n Display NFS I/O utilization

dstat

Purpose: Monitor CPU, disk, network, and swap utilization.

Usage syntax: dstat [OPTIONS] [DELAY] [COUNT]

$ dstat 2 10

----total-cpu-usage---- -dsk/total- -net/total- ---paging-- ---system--

usr sys idl wai hiq siq| read writ| recv send| in out | int csw

 0 2 97 0 0 0|1763B 379k| 0 0 | 0 0 | 131 2611

 0 9 91 0 0 0| 0 0 | 346k 99k| 0 0 | 482 4748

 0 3 97 0 0 0| 0 410k| 141k 16k| 0 0 | 125 3189

 0 3 97 0 0 0| 0 0 | 55k 9090B| 0 0 | 114 3054

 0 3 96 0 0 0| 0 0 | 55k 9.9k| 0 0 | 100 2723

 0 4 96 0 0 0| 0 376k| 63k 11k| 0 0 | 115 2904

 0 3 96 0 0 0| 0 0 | 55k 9.8k| 0 0 | 127 3221

 0 2 98 0 0 0| 0 182k| 64k 13k| 0 0 | 135 3067

 0 2 97 0 0 0| 0 0 | 55k 10k| 0 0 | 115 2925

 0 4 96 0 0 0| 0 0 | 54k 9832B| 0 0 | 118 3129

 0 13 87 0 0 0| 0 94k| 37k 11k| 0 0 | 548 4950

Monitoring system performance using the dstat command

dstat is an all-in-one performance monitoring utility for Linux systems. The

above example demonstrates the default output of dstat which displays CPU,

disk, network, and swap utilization in a single and easy-to-read display.

Tip
dstat output can be custom-tailored to your needs using a number of

command line options. See man dstat for more information.

Common usage examples:

dstat Monitor system utilization

dstat [DELAY] Update results at the specified interval

dstat [DELAY] [COUNT] End monitoring after reaching the specified

count

nfsstat

Purpose: Display NFS statistics.

Usage syntax: nfsstat [OPTIONS]

nfsstat

Server rpc stats:

calls badcalls badauth badclnt xdrcall

1 0 0 0 0

Server nfs v3:

null getattr setattr lookup access readlink

1 100% 0 0% 0 0% 0 0% 0 0% 0 0%

read write create mkdir symlink mknod

0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

remove rmdir rename link readdir readdirplus

0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

fsstat fsinfo pathconf commit

0 0% 0 0% 0 0% 0 0%

Client rpc stats:

calls retrans authrefrsh

2924 0 0

Client nfs v3:

null getattr setattr lookup access readlink

0 0% 2761 94% 0 0% 2 0% 87 2% 0 0%

read write create mkdir symlink mknod

1 0% 0 0% 0 0% 3 0% 0 0% 0 0%

remove rmdir rename link readdir readdirplus

0 0% 0 0% 0 0% 0 0% 0 0% 66 2%

fsstat fsinfo pathconf commit

0 0% 2 0% 1 0% 0 0%

Displaying NFS statistics

nfsstat displays NFS utilization statistics. This can be helpful for monitoring

performance of NFS services. The above example shows various utilization

indicators for the NFS client and server running on the local system

Common usage examples:

nfsstat Display all NFS statistics

nfsstat -s Display server statistics only

nfsstat -c Display client statistics only

free

Purpose: Display system memory and swap space usage information.

Usage syntax: free [OPTIONS]

$ free

 total used free shared buffers cached

Mem: 8186412 8136752 49660 0 181960 7352700

-/+ buffers/cache: 602092 7584320

Swap: 23695832 88 23695744

Displaying memory and swap space utilization using the free command

free displays memory and swap space utilization on Linux systems. The default

output of the free command displays totals in kilobytes, as displayed in the

above example. The next example demonstrates using the -m option which

produces a more "human friendly" output in megabytes.

$ free -m

 total used free shared buffers cached

Mem: 7994 7946 48 0 177 7180

-/+ buffers/cache: 588 7406

Swap: 23140 0 23140

Displaying memory and swap space utilization in "human friendly" format

Common usage examples:

free Display memory usage in kilobytes

free -m Display memory usage in megabytes

free -g Display memory usage in gigabytes

df

Purpose: Display file system usage information.

Usage syntax: df [OPTIONS]

$ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/sda6 143G 9.1G 127G 7% /

/dev/sdb1 466G 426G 41G 92% /media/Seagate

tmpfs 2.0G 0 2.0G 0% /lib/init/rw

varrun 2.0G 104K 2.0G 1% /var/run

varlock 2.0G 0 2.0G 0% /var/lock

udev 2.0G 172K 2.0G 1% /dev

tmpfs 2.0G 508K 2.0G 1% /dev/shm

lrm 2.0G 2.7M 1.9G 1% /lib/modules/2.6.28-11

Typical output of the df command

The df command displays file system usage information on Unix, Linux, and BSD

systems. The resulting output displays the size, used space, and available space for

each file system.

On some systems, df will also display information about pseudo file systems.

These file systems typically do not contain real files and exist only in memory to

provide access to kernel facilities. In the above example, the first two lines are

actual file systems and the remaining entries are pseudo file systems.

Tip

Some systems may support the use of the -h parameter as shown in the

above example. This option displays "human readable" output in

kilobytes, megabytes, and gigabytes as opposed to the default unit of

measure (which is usually 1k or 512k blocks). See man df to verify the

unit of measure used by default on your local system.

Common usage examples:

df Display file system usage information

df -h Display sizes in human readable format (i.e., megabytes and gigabytes)

du

Purpose: Display disk usage.

Usage syntax: du [OPTIONS] [DIRECTORY/FILE]

$ du -hs /usr

523M /usr

Using the du command to display the size of a directory

The du command displays information about disk usage. It can display the size of

a specific directory or group of files. The above example demonstrates using the

du command to display the size of the /usr directory. The -hs option

instructs du to show summarized results in "human readable" form. Omitting the

-s option will recursively display the size of each file under /usr, as

demonstrated below.

$ du -h /usr/

4.0K /usr/local/etc

1.4M /usr/local/bin

4.0K /usr/local/games

4.0K /usr/local/src

4.0K /usr/local/sbin

224K /usr/local/share/man/man1

228K /usr/local/share/man

Displaying the size of files using the du command

Some systems may not support the -h parameter. In this case, the du

command will display file sizes in blocks rather than a "human readable" unit of

measure, as shown in the next example.

$ du -s /usr

534884 /usr

Output of the du command on older Unix systems

Common usage examples:

du -hs Display the size of the current directory

du -hs [DIRECTORY] Display the size of the specified directory

du -h [DIRECTORY] Display the size of each file in the specified directory

uname

Purpose: Display information about the operating system.

Usage syntax: uname [OPTIONS]

uname -a

Linux mylaptop 2.6.28-11-generic x86_64 GNU/Linux

Output of the uname command on Linux systems

uname displays information and the hardware and software versions installed on

the system. This includes information such as processor type, kernel version, and

hardware platform for the local system.

The above example displays uname output on a Linux system. The next example

displays the output on an HP-UX system.

uname -a

HP-UX server1 B.10.20 C 9000/861 32-user license

Output of the uname command on HP-UX systems

The output of the uname varies across platforms. The table below describes the

typical information displayed when executing uname -a.

Platform Hostname Version Hardware Other
Linux mylaptop 2.6.28-11-generic x86_64 GNU/Linux

HP-UX server1 B.10.20 C 9000/861 32-user license

Common usage examples:

uname -a Display all information

uname -r Display the kernel version number

uptime

Purpose: Display how long the system has been online.

Usage syntax: uptime

$ uptime

 19:15:55 up 2 days 40 min, 2 users, load average: 0.13, 1.15, 1.24

Output of the uptime command

The uptime command displays how long a system has been online since the last

shutdown or restart. It also displays the number of users currently logged into the

system and the CPU load average.

The load average information displays three numeric fields. These represent three

samples of system load taken over the last 1, 5, and 15 minutes. The lower the

number, the lower the system load is. For example, on a single CPU system, a .13

load average correlates to a 13% load. A 1.15 load average would be a 115% load

meaning that the system is 15% overloaded because processes have to wait 15% of

the time for system resources (such as CPU and disk I/O).

Note

The load average is displayed for informational purposes only. It is not

meant to be used as an accurate performance gauge, as it can be affected

by various factors.

Common usage examples:

uptime Display system uptime and load average information

dmesg

Purpose: Display kernel log messages.

Usage syntax: dmesg [OPTIONS]

dmesg | less

[0.000000] Initializing cgroup subsys cpuset

[0.000000] Initializing cgroup subsys cpu

[0.000000] Linux version 2.6.24-27-server (buildd@palmer) (gcc version

4.2.4 (Ubuntu 4.2.4-1ubuntu3)) #1 SMP Fri Mar 12 01:45:06 UTC 2010

(Ubuntu 2.6.24-27.68-server)

[0.000000] BIOS-provided physical RAM map:

[0.000000] BIOS-e820: 0000000000000000 - 000000000009f800 (usable)

[0.000000] BIOS-e820: 000000000009f800 - 00000000000a0000 (reserved)

[0.000000] BIOS-e820: 00000000000ca000 - 00000000000cc000 (reserved)

[0.000000] BIOS-e820: 00000000000dc000 - 0000000000100000 (reserved)

...

Displaying kernel messages using dmesg

The dmesg command displays the kernel message log. This is the first place you

should check when troubleshooting a problem. Executing dmesg displays all

messages in the kernel log buffer, as demonstrated in the above example.

dmesg output can be very lengthy. Using grep with the demsg command is

helpful to search for a specific message. The next example demonstrates filtering

dmesg using grep to search for the word fail.

$ demsg | grep fail

[39176.231722] usb-storage: probe of 2-2:1.0 failed with error -5

[41421.627352] PM: Device 2-2 failed to resume: error -19

[41429.152942] usb-storage: probe of 2-3:1.0 failed with error -5

[46938.994016] usb-storage: probe of 2-3:1.0 failed with error -5

[49869.891317] usb-storage: probe of 2-3:1.0 failed with error -5

[57103.036672] PM: Device 2-3 failed to resume: error -19

...

Searching dmesg output for an error message

Tip Kernel messages are typically stored in the /var/log/dmesg file.

Common usage examples:

dmesg Display the kernel log

dmesg -c Clear all kernel log messages

errpt

Purpose: Display system error messages on AIX systems.

Usage syntax: errpt [OPTIONS]

errpt

IDENTIFIER TIMESTAMP T C RESOURCE_NAME DESCRIPTION

A6DF45AA 0515143110 I O RMCdaemon The daemon is started.

2BFA76F6 0515142910 T S SYSPROC SYSTEM SHUTDOWN BY USER

9DBCFDEE 0515143010 T O errdemon ERROR LOGGING TURNED ON

67145A39 0510232410 U S SYSDUMP SYSTEM DUMP

BE0A03E5 0510232410 P H sysplanar0 ENVIRONMENTAL PROBLEM

F48137AC 0510232410 U O minidump COMPRESSED MINIMAL DUMP

BFE4C025 0510231210 P H sysplanar0 UNDETERMINED ERROR

...

Example output of the errpt command

errpt displays the error log on IBM AIX systems. It can be helpful when

troubleshooting problems with system hardware and software. Executing the

errpt command displays a short list of logged errors as shown in the above

example. The -a option can be used with errpt to display detailed

information about each error, as shown in the next example.

errpt -a

--

LABEL: EPOW_SUS_CHRP

IDENTIFIER: BE0A03E5

Date/Time: Sat May 15 14:29:54 CDT 2010

Sequence Number: 47

Machine Id: 0008A41D4C00

Node Id: localhost

Class: H

Type: PERM

WPAR: Global

Resource Name: sysplanar0

...

Output of the errpt -a command

Tip To clear the AIX error log, execute errclear 0 as the root user.

Common usage examples:

errpt Display a summary of system errors

errpt -a Display detailed information for all errors

errpt -aj [IDENTIFIER] Display detailed information for a specific error

strace

Purpose: Trace system calls and signals.

Usage syntax: strace [OPTIONS] [PROGRAM]

$ strace ls

open("/usr/lib/locale/en_US.utf8/LC_NAME", O_RDONLY) = 3

fstat64(3, {st_mode=S_IFREG|0644, st_size=77, ...}) = 0

mmap2(NULL, 77, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb75f8000

close(3) = 0

open("/usr/lib/locale/en_US.UTF-8/LC_PAPER", O_RDONLY) = -1 ENOENT (No

such file or directory)

open("/usr/lib/locale/en_US.utf8/LC_PAPER", O_RDONLY) = 3

fstat64(3, {st_mode=S_IFREG|0644, st_size=34, ...}) = 0

mmap2(NULL, 34, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb75f7000

close(3) = 0

open("/usr/lib/locale/en_US.UTF-8/LC_MESSAGES", O_RDONLY) = -1 ENOENT

(No such file or directory)

open("/usr/lib/locale/en_US.utf8/LC_MESSAGES", O_RDONLY) = 3

fstat64(3, {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0

close(3) = 0

open("/usr/lib/locale/en_US.utf8/LC_MESSAGES/SYS_LC_MESSAGES",

O_RDONLY) = 3

fstat64(3, {st_mode=S_IFREG|0644, st_size=52, ...}) = 0

mmap2(NULL, 52, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb75f6000

close(3) = 0

...

Using the strace command to trace system calls

strace is a debugging tool that is used to trace system calls and signals. This

information can used to troubleshoot problems with a command or program. The

above example displays the typical output of the strace command. This output

can be difficult to interpret; however, it is extremely helpful to developers when

reporting bugs in a program.

Note Some systems may use the truss command in place of strace.

Common usage examples:

strace [PROGRAM] Trace the specified program

strace -o [FILE] [PROGRAM] Save trace output to the specified file

ltrace

Purpose: Trace library calls.

Usage syntax: ltrace [OPTIONS] [PROGRAM]

$ ltrace ls

__libc_start_main(0x804e880, 1, 0xbfb04944, 0x8059e70, 0x8059e60

<unfinished ...>

setlocale(6, "") = "en_US.UTF-8"

bindtextdomain("coreutils", "/usr/share/locale") = "/usr/share/locale"

textdomain("coreutils") = "coreutils"

__cxa_atexit(0x8051b10, 0, 0, 0xb76dfff4, 0xbfb048a8) = 0

isatty(1) = 0

getenv("QUOTING_STYLE") = NULL

getenv("LS_BLOCK_SIZE") = NULL

getenv("BLOCK_SIZE") = NULL

getenv("BLOCKSIZE") = NULL

getenv("POSIXLY_CORRECT") = NULL

getenv("BLOCK_SIZE") = NULL

getenv("COLUMNS") = NULL

ioctl(1, 21523, 0xbfb0487c) = -1

getenv("TABSIZE") = NULL

getopt_long(1, 0xbfb04944, "abcdfghiklmnopqrstuvw:xABCDFGHI:"...,

0x805ca00, 0xbfb04890) = -1

__errno_location() = 0xb757369c

malloc(36) = 0x8065170

...

Using ltrace to debug a program

Similar to the previously discussed strace command, ltrace is a debugging

tool for Linux systems that is used to trace library calls. The above example

demonstrates the typical output of the ltrace command.

Common usage examples:

ltrace [PROGRAM] Trace the specified program

ltrace -o [FILE] [PROGRAM] Save trace output to the specified file

lsmod

Purpose: Display Linux kernel module information.

Usage syntax: lsmod

$ lsmod

Module Size Used by

af_packet 23684 0

nfsd 228720 13

auth_rpcgss 43424 1 nfsd

exportfs 6016 1 nfsd

nfs 262156 0

lockd 67720 3 nfsd,nfs

nfs_acl 4608 2 nfsd,nfs

sunrpc 185500 11 nfsd,auth_rpcgss,nfs,lockd,nfs_acl

iptable_filter 3840 0

ip_tables 14820 1 iptable_filter

x_tables 16132 1 ip_tables

lp 12324 0

loop 19076 0

ipv6 273188 18

parport_pc 36644 1

...

Output of the lsmod command

lsmod displays information about installed kernel modules. Kernel modules are

an extension of the kernel itself. Each module generally serves a singular purpose,

such as adding support for a specific technology or type of hardware. The above

example displays the installed kernel modules on a Linux system.

lsmod is a Linux command. Similar commands exist on other platforms and are

detailed in the following cross-reference table.

AIX BSD HP-UX Linux Solaris
gexkex kldstat kmadmin lsmod modinfo

Kernel module command cross-reference

Common usage examples:

lsmod List installed kernel modules

insmod / rmmod

Purpose: Install/remove kernel modules.

Usage syntax: insmod [MODULE]

insmod /lib/modules/2.6.24-27-server/kernel/drivers/block/floppy.ko

lsmod | grep floppy

floppy 59332 0

Loading a module into the kernel

The insmod command is used install to kernel modules on Linux systems. The

above example demonstrates using insmod to install the floppy.ko module,

which adds support to the system for floppy disk drives.

The rmmod command unloads modules from the kernel. The next example

demonstrates removing the previously loaded floppy.ko module using the

rmmod command.

Usage syntax: rmmod [MODULE]

rmmod floppy

Removing a kernel module

insmod and rmmod are Linux commands. Similar commands exist on other

platforms and are detailed in the following cross-reference table.

 BSD HP-UX Linux Solaris

Install kldload kmadmin insmod modload

Remove kldunload kmadmin rmmod modunload

Kernel module command cross-reference

Common usage examples:

insmod [MODULE] Load the specified module into the kernel

rmmod [MODULE] Unload the specified module

modinfo

Purpose: Display information about Linux kernel modules.

Usage syntax: modinfo [OPTIONS] [MODULE]

$ modinfo nfs

filename: /lib/modules/2.6.28-11-generic/kernel/fs/nfs/nfs.ko

license: GPL

author: Olaf Kirch <okir@monad.swb.de>

srcversion: A400A43B7849FBE18225BCF

depends: sunrpc,lockd,nfs_acl

vermagic: 2.6.28-11-generic SMP mod_unload modversions

parm: enable_ino64:bool

Using the modinfo command to display information about the NFS module

modinfo displays information about Linux kernel modules. It includes helpful

information such as the file location, license, version, and dependencies for the

module. The above example demonstrates using modinfo to display

information about the NFS kernel module.

Note
Linux kernel modules typically are stored in the /var/lib/modules

directory.

Common usage examples:

modinfo [MODULE] Display information about the specified module

sysctl

Purpose: Display and edit kernel parameters on Linux and BSD systems.

Usage syntax: sysctl [OPTIONS]

$ sysctl -a

kernel.sched_shares_ratelimit = 500000

kernel.sched_shares_thresh = 4

kernel.sched_child_runs_first = 1

kernel.sched_features = 24191

kernel.sched_migration_cost = 500000

kernel.sched_nr_migrate = 32

kernel.sched_rt_period_us = 1000000

kernel.sched_rt_runtime_us = 950000

kernel.sched_compat_yield = 0

kernel.panic = 0

kernel.core_uses_pid = 0

kernel.core_pattern = core

...

Displaying kernel parameters

The sysctl command displays and edits tunable kernel parameters. This allows

you to fine tune various aspects of the operating system.

Warning
You should not change these values unless you fully understand the

impact of the parameter you are setting.

Kernel parameters are typically stored in the /etc/sysctl.conf file. Settings

changed on the command line via sysctl will be lost at reboot unless they are

added to the sysctl.conf file.

Note
HP-UX and Solaris use the sysdef command in place of sysctl. AIX

systems use the tunchange command.

Common usage examples:

sysctl -a Display all kernel parameters

sysctl -w [SETTING]=[VALUE] Set the specified kernel parameter

Section 13:

Printing Commands

Overview

Commands in this section cover the basics of printer management on Unix, Linux,

and BSD systems. The Unix printing subsystem is known as LPD (Line Printer

Daemon). Linux uses a newer printing system called CUPS (Common Unix Printing

System). Although these two printing services are very different at their core, they

share mostly interchangeable commands.

Commands covered in this section:

Command Purpose

lp Print files.

lpstat Display printer and print job status information.

lpq Display print queue status.

cancel Cancel and delete queued print jobs.

enable

disable
Enable/disable printers.

lpadmin Administer printers.

Glossary of terms used in this section:

CUPS (Common Unix Printing System) A modern printing system for Unix,

Linux, and BSD systems.

Print Job A file that has been submitted for printing.

LPD (Line Printer Daemon) Printing system used primarily on Unix and BSD

systems.

Queue A spooling system for print jobs waiting to be printed.

lp

Purpose: Print files.

Usage syntax: lp [OPTIONS] [FILE]

$ lp -d HP-4350 /etc/hosts

request id is HP-4350-4 (1 file(s))

Printing a file using the lp command

The lp command submits files for printing. In the above example, the

/etc/hosts file is printed on the specified destination printer. The system will

display a job summary after executing the command. Included in the job summary

is the print job's ID number. On most systems, the ID number consists of the printer

name with the job ID for the specified printer appended to it (4 in this case).

Note
If no destination is specified, the file will print on the default system

printer.

Common usage examples:

lp [FILE] Print a file to the default printer

lp –d [PRINTER] [FILE] Print to the specified printer

lp -n [NUM] -d [PRINTER] [FILE] Print the specified number of

copies

lpstat

Purpose: Display printer and print job status information.

Usage syntax: lpstat [OPTIONS]

$ lpstat

HP-4350-5 nick 1024 Tue 02 Jun 2009 12:56:50 PM CDT

HP-4350-6 nick 1024 Tue 02 Jun 2009 12:56:51 PM CDT

HP-4350-7 nick 1024 Tue 02 Jun 2009 12:56:52 PM CDT

HP-4350-8 nick 1024 Tue 02 Jun 2009 12:56:52 PM CDT

Using the lpstat command to display queued print requests

The lpstat command displays information about printers and queued print

jobs. In the above example, executing lpstat with no options displays the

status of all queued print jobs.

The output of the lpstat command is defined in the following table.

Field 1 Field 2 Field 3 Field 4

PrinterName-JobID Job owner Job size Submission time and date

The -a option shows the status of all printers on the local system as

demonstrated in the next example.

$ lpstat -a

HP-4350 accepting requests since Tue 02 Jun 2009 12:51:08 PM CD

HP-5100 accepting requests since Tue 02 Jun 2009 12:51:08 PM CD

Displaying the status of all print queues on the local system

Common usage examples:

lpstat Display the status of the print queue

lpstat -a Display the current state of all printers

lpstat -p Display the printing status of all printers

lpstat -s Display a status summary

lpstat -t Display all status information

lpq

Purpose: Display print queue status.

Usage syntax: lpq [OPTIONS]

$ lpq -a

Rank Owner Job File(s) Total Size

1st nick 2 hosts 1024 bytes

2nd nick 3 hosts 1024 bytes

3rd nick 4 hosts 1024 bytes

4th nick 5 hosts 1024 bytes

5th nick 6 hosts 1024 bytes

6th nick 7 hosts 1024 bytes

7th nick 8 hosts 1024 bytes

8th nick 9 hosts 1024 bytes

9th nick 10 hosts 1024 bytes

Displaying the status of queued print jobs using the lpq command

The lpq command displays the status of queued print jobs. It is similar to the

lpstat command except it provides more user-friendly output. Unlike the

lpstat command, the lpq command only supports a limited number of

command line options.

In the above example, executing lpq -a displays all queued print jobs. The next

example demonstrates using the -P option to display the status of a specific

printer.

$ lpq -P HP-4350

HP-4350 is not ready

Rank Owner Job File(s) Total Size

1st nick 2 hosts 1024 bytes

2nd nick 3 hosts 1024 bytes

3rd nick 4 hosts 1024 bytes

4th nick 5 hosts 1024 bytes

Displaying the status of a specific printer using the lpq command

Common usage examples:

lpq -a Display the status of all queued print jobs

lpq -P [PRINTER] Display the status of the specified printer

cancel

Purpose: Cancel and delete queued print jobs.

Usage syntax: cancel [OPTIONS] [JOBID]

$ lpq -P HP-4350

HP-4350 is not ready

Rank Owner Job File(s) Total Size

1st nick 6 hosts 1024 bytes

2nd nick 7 hosts 1024 bytes

3rd nick 8 hosts 1024 bytes

4th nick 9 hosts 1024 bytes

5th nick 10 hosts 1024 bytes

$ cancel 10

Using the cancel command to cancel an individual print job

The cancel command deletes queued print jobs. In the above example,

cancel is used to remove an individual job by specifying the job's ID number.

The next example demonstrates using the -a parameter to remove all queued

print jobs from the specified printer.

$ lpq -P HP-4350

HP-4350 is not ready

Rank Owner Job File(s) Total Size

1st nick 6 hosts 1024 bytes

2nd nick 7 hosts 1024 bytes

3rd nick 8 hosts 1024 bytes

4th nick 9 hosts 1024 bytes

$ cancel -a HP-4350

$ lpq -P HP-4350

HP-4350 is not ready

no entries

Using the cancel command to cancel all queued print jobs on a printer

Note Some UNIX systems may use the lprm command in place of cancel.

Common usage examples:

cancel [JOB] Cancel the specified print job

cancel -a Cancel all print jobs on all printers

cancel -a [PRINTER] Cancel all jobs on the specified printer

enable / disable

Purpose: Enable/disable printers.

Usage syntax: enable [OPTIONS] [PRINTER]

enable HP-4350

lpq

HP-4350 is ready

Enabling a printer using the enable command

The enable command enables printers which makes them available for printing.

In the above example, the specified printer is enabled and made available for

printing after executing the enable command.

The disable command takes printers offline and disables them from printing,

as demonstrated in the next example.

Usage syntax: disable [OPTIONS] [PRINTER]

disable HP-4350

lpq

HP-4350 is not ready

Disabling a printer using the disable command

Most systems will continue to accept print requests when a printer is disabled. The

jobs will remain in the queue until the printer is enabled.

Note

Systems with CUPS (Common Unix Printing System) will use the

cupsenable and cupsdisable commands in place of enable

and disable.

Common usage examples:

enable [PRINTER] Enable the specified printer

disable [PRINTER] Disable the specified printer

disable -c [PRINTER] Disable a printer and cancel all queued jobs

lpadmin

Purpose: Administer printers.

Usage syntax: lpadmin [OPTIONS] [PRINTER]

$ lpadmin -p HP-5200 -E -v socket://10.10.1.32

$ lpstat -a

HP-5200 accepting requests since Fri 16 Apr 2010 12:41:01 PM CDT

Adding a printer using the lpadmin command

The lpadmin command manages printers on Unix, Linux, and BSD systems. In

the above example, a network printer with the IP address of 10.10.1.32 is

added to the system using the lpadmin command.

The next example demonstrates removing the printer created in the previous
example using lpadmin -x.

$ lpadmin -x HP-5200

$ lpstat -a

Removing a printer using the lpadmin command

Note
Command line options for the lpadmin utility vary across the different

platforms. See man lpadmin for information specific to your system.

Common usage examples:

lpadmin -p [NAME] -v [DEVICE] Add a printer to the system

lpadmin -x [PRINTER] Remove a printer from the system

Section 14:

Software Installation

Overview

Software installation is the one area that varies greatly across the different Unix,

Linux, and BSD systems. Each distribution has its own unique set of software

management utilities. This section provides an overview of these software

management commands for each platform.

Commands covered in this section:

Command Purpose

dpkg Install /remove Debian Linux software packages.

aptitude Automated package manager for Debian Linux-based systems.

rpm Install /remove Red Hat Linux packages.

yum Automated package manager for Red Hat Linux-based systems.

emerge Install/remove Gentoo Linux packages.

pkg_add

pkg_delete
Install/remove BSD packages.

pkg_info Display information about BSD packages.

installp Install software packages on AIX systems.

lslpp List installed software on AIX systems.

pkgadd

pkgrm
Install/remove Solaris packages.

pkginfo List installed packages on Sun Solaris systems.

make Compile and install software from source code.

Glossary of terms used in this section:

APT (Advanced Packaging Tool) A package manager used on Debian

Linux-based systems.

Compile The process of converting source code into a binary/executable file.

Dependency A program or library required in order for another program to

function properly.

Makefile A file used during the compilation of software.

Package A self contained file used for software installation.

Portage Package manager used on Gentoo Linux-based systems.

Repository A source of packages used by a package management program.

RPM (Red Hat Package Manager) A software package format created by

Red Hat, Inc.

dpkg

Purpose: Install/remove Debian Linux software packages.

Usage syntax: dpkg [OPTIONS] [FILE]

dpkg -i apache2_amd64.deb

Preparing to install apache2 (using apache2_amd64.deb).

Unpacking apache2.

Setting up apache2.

Processing triggers for man-db ...

Processing triggers for ufw ...

...

Installing the Apache web server package using dpkg

dpkg is the traditional package manager for Debian Linux-based systems. It can

be found on Debian and Ubuntu as well as a host of other Linux distributions built

on the Debian core.

Using dpkg, you can install or remove programs created specifically for Debian-

based systems. These packages typically have a .deb file extension. The above

example demonstrates using the dpkg command to install a Debian package.

Note

Most Debian-based systems now utilize a program called aptitude to

perform software installation tasks. Directly installing packages using

dpkg is rarely done given that aptitude will automatically

download and install the requested package(s) and all required

dependencies. See page 234 for more information.

Common usage examples:

dpkg -i [PACKAGE] Install the specified package

dpkg -r [PACKAGE] Remove the specified package

dpkg -p [PACKAGE] Remove the specified package and related config files

dpkg -l List all installed packages

aptitude

Purpose: Automated package manager for Debian Linux-based systems.

Usage syntax: aptitude [OPTIONS] [ACTION] [PACKAGE]

aptitude install apache2

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

 apache2-mpm-worker apache2-utils apache2.2-common libapr1 libaprutil1

libpq5

Suggested packages:

 apache2-doc apache2-suexec apache2-suexec-custom

The following NEW packages will be installed:

 apache2 apache2-mpm-worker apache2-utils apache2.2-common libapr1

 libaprutil1 libpq5

0 upgraded, 7 newly installed, 0 to remove and 13 not upgraded.

After this operation, 6382kB of additional disk space will be used.

Do you want to continue [Y/n]? Y

...

Installing the Apache web server with aptitude

aptitude is a front-end for the Debian dpkg package manager. It simplifies

software installation by automatically downloading and installing packages and any

required dependencies. In this example, the aptitude program will

automatically download and install the packages required to run the Apache web

server application.

Note

Software repositories listed in /etc/apt/sources.list are used

to query the package database for available programs and their

download locations.

Common usage examples:

aptitude update Update the package database

aptitude upgrade Install the newest versions of all packages

aptitude dist-upgrade Upgrade the entire distribution

aptitude install [PACKAGE] Install the specified package

aptitude remove [PACKAGE] Remove the specified package

aptitude search [NAME] Search repositories for a package by name

aptitude show [PACKAGE] Display information about a package

aptitude clean Clean the package cache

aptitude --purge-unused Remove unused packages

rpm

Purpose: Install/remove Red Hat Linux packages.

Usage syntax: rpm [OPTIONS] [FILE]

rpm -iv nmap-4.85BETA9-1.i386.rpm

Preparing packages for installation...

nmap-4.85BETA9-1

...

Installing the nmap program using the rpm command

rpm is the traditional package manager for Red Hat Linux-based systems. It can be

found on Red Hat Enterprise Linux and Fedora as well as a host of other Linux

distributions built on the Red Hat/Fedora core.

Using rpm you can install or remove programs created specifically for Red Hat

and Fedora-based systems. These packages typically have a .rpm file extension.

The above example demonstrates using the rpm command to install an RPM

package.

Note

Most Red Hat-based systems now utilize a program called yum to

perform software installation tasks. Directly installing packages using

rpm is rarely done given that yum will automatically download and

install the requested package(s) and all required dependencies. See page

236 for more information.

Common usage examples:

rpm -i [PACKAGE] Install the specified package

rpm -U [PACKAGE] Upgrade the specified package

rpm -e [PACKAGE] Remove the specified package

rpm -qa List all installed packages

yum

Purpose: Automated package manager for Red Hat Linux-based systems.

Usage syntax: yum [OPTIONS] [PACKAGE]

yum install nmap

Loaded plugins: refresh-packagekit

Setting up Install Process

Resolving Dependencies

--> Running transaction check

---> Package nmap.i586 2:4.76-4.fc11 set to be updated

--> Finished Dependency Resolution

...

Installing a software package with the yum package manager

yum is a front-end for the Red Hat Linux rpm package manager. It simplifies

software installation by automatically downloading and installing packages and any

required dependencies. In this example, the yum command will automatically

download and install the packages required to run the nmap utility.

Note
Software repositories listed in /etc/yum.conf are used to query the

package database for available packages and their download locations.

Common usage examples:

yum install [PACKAGE] Install the specified package

yum remove [PACKAGE] Remove the specified package

yum update Install the newest versions of all packages

yum upgrade Upgrade the distribution to the latest version

yum list List available and installed packages

yum search [NAME] Search for the specified package by name

emerge

Purpose: Install/remove Gentoo Linux packages.

Usage syntax: emerge [OPTIONS] [PACKAGE]

emerge uptime

Calculating dependencies... done!

>>> Verifying ebuild Manifests...

>>> Emerging (1 of 1) app-vim/uptime-1.3 to /

>>> Downloading 'http://distfiles.gentoo.org/distfiles/uptime-

1.3.tar.bz2'

...

Installing the uptime utility on Gentoo Linux using the emerge program

emerge is a front-end for Gentoo's Portage software manager. It provides

automatic software compilation, installation, and dependency fulfillment similar to

the previously discussed aptitude and yum commands.

Portage is a unique package manager in the fact that it compiles software from

source code. This is different than most other Linux systems which utilize

precompiled binaries when installing software. Compiling software from source

code creates a platform-optimized installation that has been shown to provide

better performance when compared to precompiled packages. Portage's

disadvantage, however, is that it takes much longer to install software for source.

Tip
To learn more about the Portage software manager, see the official

Gentoo documentation online at www.gentoo.org/doc/.

Common usage examples:

emerge [PACKAGE] Install the specified package

emerge -u world Install the newest versions of all packages

emerge -C [PACKAGE] Remove the specified package

emerge -s [PACKAGE] Search for the specified package

emerge --sync Update the portage database

pkg_add / pkg_delete

Purpose: Install/remove BSD packages.

Usage syntax: pkg_add [OPTIONS] [PACKAGE]

pkg_add -r perl

Fetching ftp://ftp.freebsd.org/pub/FreeBSD/ports/i386/packages-7.2-

release/Latest/perl.tbz...

Creating various symlinks in /usr/bin...

 Symlinking /usr/local/bin/perl5.8.9 to /usr/bin/perl

...

Installing a package using the pkg_add command

The pkg_add command installs software packages on BSD systems. In the above

example, pkg_add is used to install a package called Perl. The -r option

instructs pkg_add to retrieve the specified package automatically from the BSD

software repository.

Tip

The pkg_add command uses the default FTP server located at

ftp.freebsd.org. For faster download you can specify an FTP mirror using

the PACKAGEROOT environment variable. For example, typing

export PACKAGEROOT=ftp.ca.freebsd.org would instruct

the pkg_add command to use the specified mirror located in Canada.

A complete list of FTP mirror sites can be found online at

http://mirrorlist.freebsd.org/FBSDsites.php.

The pkg_delete command uninstalls software packages on BSD systems. In

the next example, the previously installed Perl package is removed using the

pkg_delete command.

Usage syntax: pkg_delete [PACKAGE]

pkg_delete perl-5.8.9_2

Removing stale symlinks from /usr/bin...

 Removing /usr/bin/perl

 Removing /usr/bin/perl5... Done.

...

Removing a package using the pkg_delete command

Common usage examples:

pkg_add -r [PACKAGE] Download and install the specified package

pkg_delete [PACKAGE] Uninstall the specified package

pkg_info

Purpose: Display information about BSD packages.

Usage syntax: pkg_info [OPTIONS]

pkg_info

bash-4.0.33 The GNU Project's Bourne Again SHell

en-freebsd-doc-20090913 Documentation from the FreeBSD Documentation

Project

gettext-0.17_1 GNU gettext package

libiconv-1.13.1 A character set conversion library

lua-5.1.4 Small, compilable scripting language providing easy

access

nano-2.0.9_1 Nano's ANOther editor, an enhanced free Pico clone

nmap-5.00 Port scanning utility for large networks

pcre-7.9 Perl Compatible Regular Expressions library

perl-5.8.9_3 Practical Extraction and Report Language

pkg-config-0.23_1 A utility to retrieve information about installed

libraries

Displaying information about installed packages using the pkg_info command

The pkg_info command displays information about installed packages on BSD

systems. In the above example, executing pkg_info with no options generates

a simple list of installed programs.

Executing the pkg_info command with the -a option displays detailed

information about the installed packages as displayed in the next example.

pkg_info nmap-5.00 | less

Information for nmap-5.00:

Comment:

Port scanning utility for large networks

Description:

Nmap is a utility for network exploration and security auditing.

...

Using the pkg_info command to display information about a specific package

Common usage examples:

pkg_info Display a simple list of installed packages

pkg_info -a Display a detailed list of installed packages

pkg_info [PACKAGE] Display information about the specified package

installp

Purpose: Install software packages on AIX systems.

Usage syntax: installp [OPTIONS] [PACKAGE]

installp -Y -d /mnt/cdrom httpd.base

...

Installation Summary

Name Level Part Event Result

httpd.base 2.2.6.0 USR APPLY SUCCESS

Installing the Apache http server on AIX

The installp command installs software packages on AIX systems. The above

example demonstrates installing the Apache web server package located on the

install media mounted in /mnt/cdrom.

Note
The -Y option accepts any required license agreements during

installation.

To remote a package, use the -u option as demonstrated in the next example.

installp -u httpd.base

...

Installation Summary

Name Level Part Event Result

--

httpd.base 2.2.6.0 USR DEINSTALL SUCCESS

Removing a package on AIX

Common usage examples:

installp -ld [MEDIA] List packages on the specified media

installp -Yd [PATH] [PACKAGE] Install the specified package

installp -u [PACKAGE] Uninstall the specified package

lslpp

Purpose: List installed software on AIX systems.

Usage syntax: lslpp [OPTIONS] [PACKAGE]

lslpp -L httpd.base

 Fileset Level State Type Description (Uninstaller)

 --

 httpd.base 2.2.6.0 C F Apache Http Server

State codes:

 A -- Applied.

 B -- Broken.

 C -- Committed.

 E -- EFIX Locked.

 O -- Obsolete. (partially migrated to newer version)

 ? -- Inconsistent State...Run lppchk -v.

Type codes:

 F -- Installp Fileset

 P -- Product

 C -- Component

 T -- Feature

 R -- RPM Package

 E -- Interim Fix

Listing an installed package on AIX

The lslpp command lists installed software on AIX systems. The example above

demonstrates using lslpp to list the installation status of the httpd.base

package.

Note Omitting a package name will list all installed software on the system.

Common usage examples:

lslpp -L List all installed packages

lslpp -L [PACKAGE] List the specified install package

pkgadd / pkgrm

Purpose: Install/remove Solaris packages.

Usage syntax: pkgadd [OPTIONS] [PATH]

pkgadd -d /cdrom/sol_10_1009_x86/Solaris_10/Product/

The following packages are available:

...

 91 SUNWapch2d Apache Web Server V2 Documentation

 (i386) 11.10.0,REV=2005.01.08.01.09

 92 SUNWapch2r Apache Web Server V2 (root)

 (i386) 11.10.0,REV=2005.01.08.01.09

 93 SUNWapch2u Apache Web Server V2 (usr)

 (i386) 11.10.0,REV=2005.01.08.01.09

 94 SUNWapchS Source for the Apache httpd server

 (i386) 11.10.0,REV=2005.01.08.01.09

...

Select package(s) you wish to process (or 'all' to process

all packages). (default: all) [?,??,q]: 92

...

Installation of <SUNWapch2r> was successful.

Installing a software package on Solaris

The pkgadd command installs software packages on Solaris systems. The

example above demonstrates using pkgadd to install packages from the Solaris

installation media.

The pkgrm command removes packages on Solaris systems. The next example

demonstrates removing a package using pkgrm.

Usage syntax: pkgrm [OPTIONS] [PACKAGE]

pkgrm SUNWapch2r

The following package is currently installed:

 SUNWapch2r Apache Web Server V2 (root)

 (i386) 11.10.0,REV=2005.01.08.01.09

Do you want to remove this package? [y,n,?,q]

...

Removal of <SUNWapch2r> was successful.

Removing a package on Solaris

Common usage examples:

pkgadd -d [PATH] Install packages from the specified location

pkgrm [PACKAGE] Remove the specified package

pkginfo

Purpose: List installed packages on Sun Solaris systems.

Usage syntax: pkginfo [OPTIONS] [PACKAGE]

pkginfo | more

system BRCMbnx Broadcom NetXtreme II Gigabit Ethernet

system CADP160 Adaptec Ultra160 SCSI Host Adapter Driver

system HPFC Agilent Fibre Channel HBA Driver

system NCRos86r NCR Platform Support, OS Functionality

system NVDAgraphics NVIDIA Graphics System Software

system NVDAgraphicsr NVIDIA Graphics System Device Driver

system SK98sol SysKonnect SK-NET Gigabit Ethernet Adapter

system SKfp SysKonnect PCI-FDDI Host Adapter

system SUNW1251f Russian 1251 fonts

system SUNW1394 Sun IEEE1394 Framework

system SUNW1394h Sun IEEE1394 Framework Header Files

system SUNWGlib GLIB - Library of useful routines for C

system SUNWGtkr GTK - The GIMP Toolkit (Root)

system SUNWGtku GTK - The GIMP Toolkit (Usr)

GNOME2 SUNWPython The Python interpreter, libraries and

...

Listing installed packages on Solaris systems

The pkginfo command lists installed packages on Solaris systems. Executing

pkginfo with no options lists all installed packages as demonstrated in the

above example. Specifying a package name will list the package as shown in the

next example.

pkginfo SUNWapch2r

system SUNWapch2r Apache Web Server V2 (root)

Displaying a specific package using pkginfo

Common usage examples:

pkginfo List all installed software packages

pkginfo [PACKAGE] List the specified software package

make

Purpose: Compile and install software from source code.

Usage syntax: make [OPTIONS] [FILE]

ls -l Makefile

-r--r--r-- 1 nick nick 1636 2007-08-10 13:48 Makefile

make && make install

*** stopping make sense ***

make[1]: Entering directory '/home/nick/Desktop/chkrootkit-0.48'

gcc -DHAVE_LASTLOG_H -o chklastlog chklastlog.c

chklastlog.c: In function ‘main':

chklastlog.c:167: warning: format ‘%ld' expects type ‘long int', but

option 3 has type ‘int'

chklastlog.c:167: warning: format ‘%ld' expects type ‘long int', but

option 4 has type ‘uid_t'

gcc -DHAVE_LASTLOG_H -o chkwtmp chkwtmp.c

...

Manually compiling software from source code using make

The make command compiles and installs programs from source code. Source

code compatible with the make command is distributed with what is known as a

Makefile. The Makefile is a script used to build and install the source code

using the make command.

In the above example, the make and make install commands are

combined to build the source code of a program and install it.

Note

Most users will never have to compile software from source since major

distributions provide prebuilt packages for nearly every program

available. Additionally, Linux tools such as yum, apt, and emerge

greatly simplify software installation and dependency fulfillment.

Common usage examples:

make Compile source code

make install Install compiled source code

Section 15:

System Administration Utilities

Overview

This section coverers two very helpful system administration utilities for

commercial Unix systems:

 SMIT: System Management Interface Tool for AIX

 SAM: System Administration Manager for HP-UX

SMIT and SAM are menu-driven applications that can be used to simplify complex

administration tasks such as managing hardware, software, users/groups, etc.

While every task that can be performed in SMIT or SAM can be executed on the

command line, running the same task within these utilities is generally much easier

and faster. They also provide an added layer of protection from mistakes by

ensuring that the requested task is executed with the correct parameters.

Commands covered in this section:

Command Purpose

sam HP-UX System Administration Manager

smit AIX System Management Interface Tool

sam

Purpose: Menu-driven system administration utility for HP-UX systems.

Usage syntax: sam

sam

┌ === System Administration Manager (HP-UX) (1) ┐

│File View Options Actions Help │

│ Press CTRL-K for keyboard help. │

│SAM Areas │

│──│

│ Source Area │

│┌───┐ │

││ SAM Accounts for Users and Groups -> ^ │

││ SAM Auditing and Security -> │ │

││ SAM Backup and Recovery -> │ │

││ SAM Clusters -> │ │

││ SAM Disks and File Systems -> │ │

││ SAM Display -> │ │

││ SAM Kernel Configuration -> │ │

││ SAM Networking and Communications -> │ │

││ SAM Performance Monitors -> │ │

││ SAM Peripheral Devices -> │ │

││ SAM Printers and Plotters -> │ │

││ SAM Process Management -> │ │

││ SAM Routine Tasks -> │ │

││ SAM Run SAM on Remote Systems v │

│└───┘ │

└──┘

Screenshot of the HP-UX System Administration Manager

sam is a menu-driven administration utility for HP-UX systems. It can be used to

manage all aspects of an HP-UX system.

The above example displays a screen shot of the main menu in sam. Within sam,

the arrow keys are used to navigate the menus and the Enter key is used to select

items. Pressing the Tab key activates the menu bar at the top of the screen allowing

access to additional features.

Common usage examples:

sam Start the HP-UX system administration manager

smit

Purpose: Menu-driven system administration utility for IBM AIX systems.

Usage syntax: smit

smit

 System Management

Move cursor to desired item and press Enter.

[TOP]

 Software Installation and Maintenance

 Software License Management

 Devices

 System Storage Management (Physical & Logical Storage)

 Security & Users

 Communications Applications and Services

 Workload Partition Administration

 Print Spooling

 Advanced Accounting

 Problem Determination

 Performance & Resource Scheduling

 System Environments

 Processes & Subsystems

 Applications

 Installation Assistant

[MORE...3]

F1=Help F2=Refresh F3=Cancel F8=Image

F9=Shell F10=Exit Enter=Do

Screenshot of the IBM AIX System Management Interface Tool

smit is a menu-driven administration utility for IBM AIX systems. It can be used

to manage all aspects of an AIX system.

The above example displays a screen shot of the main menu in smit. Within

smit, the arrow keys are used to navigate the menus and the Enter key is used to

select items. Function keys (i.e., F1, F2, etc.) provide additional options within

smit and are defined at the bottom of each screen.

Common usage examples:

smit Start the AIX system management interface tool

Appendix A:
Bash Shortcut Keys

Download and print this list at www.dontfearthecommandline.com

Key(s) Function

CTRL + C Terminate current program

CTRL + Z Suspend current program

CTRL + D Exit the current shell

Tab Command/file auto-completion

Home Go to the beginning of the command line

End Go to the end of the command line

CTRL + L Clear the screen

Backspace Deletes text behind the cursor

ATL + Backspace Delete entire word behind the cursor

Delete Delete text in front of the cursor

CTRL + R Search command history

Up Arrow Cycle backward through command history

Down Arrow Cycle forward through command history

Left Arrow Move the cursor left one character

Right Arrow Move the cursor right one character

ALT + B Move the cursor back one word

ALT + F Move the cursor forward one word

CTRL + U Cut all text before the cursor

CTRL + K Cut all text after the cursor

ALT + D Cut the currently selected word

CTRL + Y Paste previously cut text

CTRL + _
(Underscore)

Undo changes typed on the command line

CTRL + T
Transpose the previous two characters on the command

line

ALT + T Transpose the previous two words on the command line

ATL + L Convert word to lowercase

ATL + U Convert word to uppercase

