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ABSTRACT 

The considerations involved in combining data compression and e r r o r  
control coding in space telemetry a re  analyzed through the use of two per- 
formance measures, D andR, which a re  similar to those measures used by 
Shannon for his Yate distovtion function. The average distortion D is a func- 
tion of the source probability distribution, the overall system transitional 
probability matrix, and a cost matrix which signifies the relative importance 
of different types of data errors .  The rate-ratio R is the reciprocal of the 
overall system compression ratio and includes the data expansion effect of 
additional timing data, identification data, and coding redundancy. 

Different schemes for supplying the timing information in a compressed 
system a re  analyzed and compared. A new timing scheme is developed which 
requires, on the average, fewer time words for a large class of data sources. 
A method is developed for uniquely encoding and decoding an entire sequence 
of time words for compressed data, utilizing the strict  monotonicity of the 
sequence. 

The effects of the following system parameters and properties on the 
overall distortion and rate-ratio a r e  analyzed: the error-control usefulness 
of natural data redundancy, e r r o r s  in time information, the error-control use- 
fulness of time word monotonicity, the probability distribution of the source, 
the bit-error probability of a binary symmetric channel, and the word com- 
pression ratio. 

A rationale for comparing and choosing among three systems- 
uncompressed-uncoded, compressed-uncoded, and compressed-coded-is 
given in terms of the performance measures D and R. 
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DATA COMPRESSION WITH ERROR-CONTROL 
CODING FOR SPACE TELEMETRY * 

bY 
Thomas J. Lynch 

Goddard Space Flight Center 

Chapter I 

INTRODUCTION 

Among the sources of the current interest in the application of data compression techniques to 
space telemetry a r e  increasing data rates, increasing transmission distances, and the need for 
more real-time data relay over ground links. Compression techniques have been used in audio 
(Reference 1) and television (Reference 2) transmission, and in each case the desired result was 
to reduce the bandwidth required to communicate satisfactorily. In the space telemetry situation 
bandwidth reduction and data volume reduction are  both desired. Scientific satellites often have 
lifetimes of a year or  more and can transmit data at rates of 100,000 bits/sec with almost con- 
tinuous coverage from earth tracking and receiving stations (Reference 3). Data compression 
makes it possible to transmit data from more on-board experiments at these high rates by removing 
the redundancy inherent in many experiment outputs. 

The application of compression techniques to space telemetry brings up the question of e r r o r  
control in the entire telemetry system, since much of the redundancy which once aided the experi- 
menter in identifying obvious data e r r o r s  would now be removed by the compression process. 
There is the possibility of putting back redundancy in the form of coding for e r r o r  control, and 
herein lies the basic question: Is data compression worthwhile, since it requires coding, and if it 
is, what a r e  the best combinations of compressors and encoders? To approach this question, one 
must study the tradeoffs between natural redundancy in an uncompressed data system and controlled 
redundancy in a compressed and coded data system; and such a study requires a quantitative meas- 
u re  of performance to apply to each system. The development of this measure, including a study of 
the effect of data compression on the data source and the problem of time encoding and time errors ,  
is the purpose of this report. 

The compression of electrical signals started in 1939 with the invention of the vocoder by 
Dudley (Reference 4). This device divided speech into separate frequency bands on the sending end, 

*In i ts  original form, thispaper was submitted to the University of Maryland in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy in Electrical Engineering. The author wishes to express his appreciation to Professor Alan B. Marcovitz for his 
advice and guidance in this thesis. 

1 



and synthesized the speech on the receiving end by using a corresponding set of frequency bands 
for amplification. This technique has been improved and refined through the years, and is still in 
use (Reference 1). Various level-quantization techniques have been tried in television compressic 
as well as variations on run-length encoding (Reference 2). In both audio and video compression, 
advantage was taken of the peculiar characteristics (typically non-linear) of human hearing and 
vision. 

The application of data compression techniques to telemetry has received noticeable attentior 
in the literature during the past five years (References 5, 6, 7, 8, 9). Some authors have considei 
coding along with the compression-for example, Shannon-Fano (noiseless) types (Reference 5) an 
run length types (Reference 7) of coding-but not for the purpose of e r r o r  control. 

The a rea  of channel encoding and decoding to control e r r o r s  introduced in transmission has 
been well  covered in the literature. But source encoding, other than the Shannon-Fano (Refer- 
ence lo),  Huffman (Reference ll), o r  run-length types, has not been treated as exhaustively as its 
channel counterpart. Shannon's 1960 paper entitled "Coding Theorems for a Discrete Source wit: 
a Fidelity Criterion" (Reference 12), treats the questions of source encoding and channel encoding 
together. In that paper, Shannon looks at the entire communication system from source to recipie 
and considers e r r o r s  or fidelity in such a way as to include the interactions of the source and 
channel. 

The aim of this research is to study the considerations involved in combining error-control 
coding with data compression in a space telemetry system. A measure of performance has to be 
found which is consistent with data compression and coding. 

The statistics of the original data source will  be included in this measure. The requirement 
for more timing information with compressed as compared to uncompressed data will be included 
and various schemes for providing this timing information, particularly in a time-shared telemeti 
system, will be studied and compared. The effect of e r r o r s  in this timing information on the final 
reconstructed data will also be included. In order to compare various combinations of compressic 
and coding to the uncompressed and uncoded case, a measure of the error-control value of un- 
controlled, or  natural, data redundancy must be found. 
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Chapter 11 

THEORETICAL BACKGROUND 

Particular features of some well-established topics will be outlined here for later reference. 
~'hese topics a re  telemetry, data compression, coding, and rate distortion. A great deal has been 
n i t ten  about telemetry and coding, but data compression and rate distortion are still relatively 
ew topics with a correspondingly small  literature. For these reasons, the coverage here in this 
.hapter will be brief, and more discussion of data compression and rate distortion will follow in 
ater sections. 

elemetry 

Telemetry FYom a Communication Standpoint 

For the purposes of the present research, the telemetry system is taken as a time-sampled 
iigital system with a quantization precision set  by a k-bit binary code. The data source is assumed 
o be some analog function of time which is sampled at a constant rate. The digital space-to-ground 
ink can be represented by a binary symmetric channel, wherein the probability of an e r r o r  (0 - 1, 

;round data processing terminal, these digitized samples a re  converted to smooth time curves or  
;re left in digital form for further analysis by digital computer. 

- 0) is p and the probability of correct transmission (0 - 0, 1 - 1) is therefore 1 - p .  At the 

The Time -Mu1 tiplexed Telemetry Sy s tem 

In a time-multiplexed telemetry system, time-shared sampling of a number of different 
:ources is implemented by means of a definite order of intermixed sampling called commutation. 
'he commutator may be mechanical o r  electronic, and its operation may be either inflexible 
according to a predetermined pattern), o r  changeable (according to different patterns, each brought 
nto use by ground command). The output of a commutator is then a sequence of samples from dif- 
erent sources, the pattern of samples repeating in some time period which is typically large in 
tomparison to the time period between samples. 

After the reception of such a time-multiplexed telemetry signal, a necessary operation in 
lrocessing the data is to collect together the samples from the same source out of the time- 
nultiplexed sequence. This decommutation depends for reliable operation upon word-synchronization 
n the multiplexed word sequence. This word-synchronization takes the form of an easily recogniz- 
Lble ffsyncff word that is inserted in the sampling sequence once every period or fractional period 
if the multiplexed sequence. The details of the multiplexed pattern with its included word synchro- 
iization can be illustrated (Figure 1). 

3 



c-- Word Position Number - In Figure 1 the letters A through L signify 
Minor 
Frame 1 2 3 4 5 6 7 8 data sources, such as space experiments, at- 

t (increasing) Number 

G N C  I A I '.'jC. I B 1 C 
2 
3 
4 
5 
6 
7 
8 
1 
2 
3 
4 
5 
6 
7 
a 

A , B , C , D , E , F , G , H ,  I, J,K,L- Sampled Sources 

SYNC ~~~ - Synchronization Word 

titude sensors, spacecraft subsystem param- 
eters  (voltages, currents, temperatures, etc., 
associated with the spacecraft and not individu 
experiments), and an on-board clock. The sub 
commutator count (SCC) word has its lowest 
value at the beginning of the longest repetitive 
cycle in the multiplexed data format, and has 
its highest value at the end of this longest 
cycle, which is called the "main frame." In 
Figure 1, the "main frame" constitutes eight 
rows of the pattern. Each row is called a 
"minor frame," and the synchronization word 
occurs once per minor frame.* Sources A and 
B, occurring twice per minor frame, a re  said 
to be "super-commutated," that is, sampled 
more than once per minor frame. Sources c 

S.C.C. ~ Subcommutator Count and D a r e  sampled once every other minor 
frame, and these a r e  "sub-commutated"- 
sampled less  than once per minor frame. 

Sources E through L a re  also sub-commutated, and since their subcommutation pattern has the 
longest period, this pattern determines the sub-commutator count. 

Figure 1 -A time-multiplexed telemetry pattern. 

As was mentioned above, an on-board clock might constitute one of the sources E through L an 
thereby produce a time readout once per main frame: thus an on-board clock is sometimes re- 
ferred to as a main-frame count. Whether o r  not an on-board clock is included in the format, the 
ground time at the receiving station is recorded along with the received telemetry words, and in 
subsequent data processing this ground time is inserted into the time multiplexed pattern, typicall: 
in place of one or more of the sync words in a main frame, after they have been used to establish 
word synchronization. 

In decommutation and subsequent data processing, it is only necessary to keep track of the 
absolute time as a reference point somewhere within a main frame, and the absolute times of all 
samples can then be obtained by keeping track of their position in the main frame. 

Data Compression 

There are basically two types of data compression (Reference 5): Entropy Reducing (ER) and 
Information Preserving (IP). An entropy-reducing (ER) data compression operation is an iweversi  
operation on the data source which results in an "acceptable" reduction in data fidelity. Examples 

'Actual space telemetry main frames are typically larger than the one shown in Figure 1. A typical range of frame s i zes  is from 16 x If 
128 x 128. In addition, the frame is not always square. 
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of ER data compression are narrow-band filtering, logarithmic amplification, limiting, and statistical 
moment estimation. An information-preserving (IP) data compression operation is one that, when 
applied to the output of a data source, reduces the amount of energy required to transmit character- 
istics of the source, without reducing the fidelity of the source output. These characteristics can 
be reconstructed with a finite allowable error,  and for this reason, this type of data compression 
is often called reversible. The two basic types of information-preserving data compression tech- 
niques for time-sampled data are polynominal curve fitting (Reference 9) and statistical prediction 
(Reference 6 ) .  

Informa tion Preserving Data Compress ion 

The following is a more detailed description of IP compression, particularly the polynomial 
curve-fitting type. This type of IP compression has received recent attention in the literature (Ref- 
erence 9) and has been proposed for use in a space telemetry system (Reference 13). 

An Information-Preserving data compression operation reduces the number of samples that 
need be transmitted in order to reconstruct the original waveform. This can be expressed mathe- 
matically as follows: 

Consider a sampled, quantized data source {x} such that 

where x is quantized, Le. each value of x can take on only one of M, levels. 

Another way of expressing the source to show the importance of sample times is: 

Id = {x., t o ;  XI' t l ;  x 2 ,  t 2 ;  ; x i ,  t i ;  . e . }  

In an uncompressed system, sample times need only be sent occasionally to maintain synchroniza- 
tion. When these samples are put through an Information-Preserving data compressor, some do 
not appear at the output. These samples can be later reinserted into the received data stream ac- 
cording to a reconstruction algorithm that complements the compression algorithm. An important 
problem in an Information-Preserving type of data compression is that not only must sampled values 
be sent,* but indications of times of occurrence of these sampled values must also be sent. 

Po lynominal Predictors 

In this technique the next sample is predicted to lie on an nth order polynomial, as defined by 
(n + 1) previous samples (Reference 9). Mathematically: 

'An examination of the time encoding problem i s  presented in Chapter IV. 
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where 

Lower order polynomials have been of particular interest  in the literature and the so-called 
zero-order polynomial Predictor is being incorporated in some experimental compression systen 
for space telemetry (Reference 13). The zero-order predictor is given by 

a ( t )  = x ( t  - A t )  

In practice a tolerance may be placed around this estimate, creating a window which is equal to, 
o r  a multiple of, the quantization interval. An algorithm for the zero-order predictor would rear 
as follows: ~ 

Zero-Order Predictor Algorithm 

Periodic Sampling Pattern 
I I I I I I I I I I I I  1 1  1 1 1 )  I (  

1. Store and transmit first sample xo anc 
time of occurrence. 

x Data Sample and 
Time Sent 

0 Nothing Sent 
- 

2. Put tolerance A about xo to obtain an 
aperture: 

3. Is next sample within aperture? 

If yes: discard sample and check next 
sample. 

s tore  and transmit sample and 
time of occurrence and repeat 
steps 2 and 3. 

If no: 

This algorithm is illustrated in Figure 2. 

The first-order predictor (Reference 9) i. 
given by 

Figure 2-Zero-order predictor data 
compression operat ion. 
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here 

In the implementation of this first-order predictor, the actual algorithm may take on a number 
- different forms depending upon the definition of xt-, and Axt-, in te rms  of tolerances. If we as- 
Ime that [.,-, t Oxt-,] has a tolerance X placed about it, equal to or greater than the quantization 
vel, then we can state the following. 

First-Order Predictor Algorithm 

1. Store and transmit first sample x i  and time of occurrence. 

2. Store and transmit second sample x i + , .  

3. Compute x i + ,  - x i .  

4. Add . ( x i + ,  - x i )  to last  transmitted sample value xi+,, giving f = xi+, + n ( x i t l  - x i )  , where 
n = 1 initially. 

5. Place tolerance around j ;  so that an aperture is obtained: 

Periodic Sampling Pattern 

I !  ! ! ! ! l ! l f t ! ! l ! ! l  ! ! ! ! ! I  

6. Is next sample x,+* within aperture? 

If yes: discard sample, replace n by 
n + 1, and repeat Steps 4, 5 and 
6, replacing i by i + 1 in Step 

X Data Sample and Time Sent 

0 Nothing Sent 
6. 0 Data Sample Sent 

If no: repeat steps 1 through 6 above 
c o n s i d e r i n g  x , + *  the "first 
sample,'' that is replacing i by 
i + 2, and letting n = 1. 

This algorithm is illustrated in Figure 3. 
1 the operation of this algorithm, when a 
ample does not fall within the predicted zone 
-qual to the predicted value f the tolerance), 
new prediction line is started using this 

ample and the next sample. It is also possible 
start the new prediction line by using the 

- 

Figure 3-First-order predictor data 
compression operation. 
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last successfully predicted sample and the sample after it-in this case the sample falling outside 
the prediction zone. Schemes have also been proposedJReference 8) whereby a variable tolerance 
is used depending upon the number of redundant samples in a row. 

There is no proven optimum technique among those mentioned above, and results of computer 
simulations (Reference 13) of these algorithms operating on actual telemetry data do not point to a 
general rule for determining the optimum technique. 

Coding 

Coding has been divided into two main categories (Reference 10): source encoding and channel 
encoding. 

Source Encoding 

Source encoding has been aimed mostly at the efficiency of the source-to-channel-input part  
of the communication system. Efficiency has been defined as a ratio: 

HA (x) - -  Efficiency - - 
"A 

iiA is the average number of symbols per message: 

ii, = f n i  pi for a source of M, messages, 
i= 1 

H ( x )  is the entropy of the source in bits, 

A is the number of symbols in the encoding alphabet (in the binary case, A = 2). 

Shannon (Reference 14) has proven the following theorem which defines the most efficient 
coding of a source (from the standpoint of number of transmitted symbols). 

Hoe 
l o g A  - "A logA 

Some source encoding techniques which increase the efficiency defined above are Shannon-Fanr 
Coding (Reference lo), Huffman Coding (Reference ll), Binary Run- Length Coding and Sequence 

Coding. 
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Channel Encoding 

Channel encoding has been used to control the e r ro r  probability in transmission over a given 
hannel in a more efficient manner than simply increasing the average signal power corresponding 
2 each message. 

The Noisy Channel Coding Theorem was stated by Shannon (Reference 14) as follows: 

Let a discrete channel have the capacity C and a discrete source 
the entropy per second H .  If H I C  there exists a coding system such 
that the output of the source can be transmitted over the channel with 
an arbitrarily small  frequency of e r ro r s  (or an arbitrarily small  equiv- 
ocation). If H > c it is possible to encode the source so that the equivoca- 
tion is less  than H - C  + E where E is arbitrarily small. There is no method 
of encoding which gives an equivocation less than H - C. 

The signalling rate then can be close to the channel capacity, and this is the significant par t  
f the theorem: that error-free communication is possible at non-zero, reasonably fast signalling 
ates. 

Some deterministic methods allowing e r ro r  control at useful signalling rates  a re  the Hamming 
:ode (Reference 15), Bose-Chaudhuri Code (References 16, 17), Single Parity Code (Reference 15), 
lerated Code (Reference 18), and the Recurrent Code (Reference 18). All are block codes, as 
7 i l l  be described below, except the Recurrent Code. The Hamming Code will be used as a typical 
rror-control code in following chapters, and a development of its coding and decoding operations 
5 given in Appendix A along with a plot showing its error-control performance under different bit- 
rror probabilities for the binary-symmetric channel. 

The Concept of Distance 

The error-detecting and error-correcting capabilities of a code can be predicted by use of the 
inary distance property (Reference 15) which is simply a measure of the number of bit positions 
iat differ between two code words. 

The number of n-bit code words with minimum distance d (odd) has an upper bound as follows: 

f we assign a certain number k of the n-bit positions to information, we then have a block code, 
ometimes represented by (n ,  k) where n is the total number of bits in the word and k of them are 
miformation bits. Then M, = 2k . 
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In a typical coding problem, we know the number M ,  of messages to encode. We find from 
channel considerations, how many e r r o r s  per word we wish to detect and/or correct. This estab 
lishes the minimum distance dmin, since (Reference 18) 

where ec is the number of e r r o r s  to correct, and e, is the number of additional e r r o r s  that can b: 
detected but not corrected. 

Then the code word length n can be found from the M, inequality. The task of finding ways to 
pick the M, code words from the 2" se t  of possible words has received considerable attention. Wc 
is continuing, particularly in the direction of finding codes which a re  simple to decode. 

Rate Distortion 
The concept of allowable distortion and the maximum signalling rates  (in the telemetry case, 

words per second) that we can ever theoretically obtain over a channel with capacity C (bits per 
second) was formulated by Shannon (Reference 12) in the rate distortion function. 

Shannon used a distortion-measure matrix which gave the cost of making an e r r o r  in the over 
transmission from data source set  M to data user  set  Z .  This matrix can be represented as follow 
for k -bit words: 

z O  

z 1  

z 2  

D(M, Z )  = - 

- 
- 
- 

Z 2 k  

m 
- - m O  m l  m Z " ' " " ' " '  g k  

. ( m o t  z o )  c ( m , ,  z o )  c ( m , ,  z o ) . . * * *  c(mgk9 z o )  

c ( m , ,  .,) ............................. 
c ( m o ,  .,) ........................................... 

21) 

............................... c ( m o ,  z 2 k )  C ( m p k '  ', k )  
- - 

In the usual sense of e r ro r s  and cost, one could consider c ( m i ,  z i )  as the cost of no e r ror ,  and 
typically this would be zero. Each element off the main diagonal in the D(M, Z )  matrix could then 
be made a function of its distance from the main diagonal, or in other words the error in sending 
m i  and receiving z j  instead of z i  . No elements of D(M, Z )  a re  negative in order to have zero aver: 
distortion associated with perfect transmission. 

The average distortion is then given by 
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vhere P(M) is the first-order probability of source M ,  and P(Z/hl) is the transitional probability 
natrix for  the transmission of mi to z j  . To find the maximum usable signalling rate over a 
i.hanne1 of capacity C (bits/sec), Shannon assumed a bit transmission rate equal to C,  and defined: 

C 
Max. Signalling Rate = __ R(D) (words/sec) , 

vhere R(D) is the rate distortion function in (bits/word). The rate distortion function can be thought 
If simply a s  the minimum average number of bits per word that may be used for encoding to trans- 
nit data from a given source with successive words statistically independent* in a system with a 
.;iven distortion measure matrix, with an average distortion not exceeding D. Shannon called R(D) 

.he minimum source rate. More formally, we have the following: 

The Rate Distortion Function 

R(D) is the greatest lower bound of the average mutual information I(M; Z )  between the statis- 
ically independent input M and the output Z of an entire communication system where the distortion 
I is less  than some specified value. The minimization of I(M; Z ) ,  subject to the constraints of a 
5ivenD and 

nay be carried out in principle by variational methods. An example is worked out in Appendix B 
n which R(D) is obtained a s  a function of D for a given source and a given type of distortion measure 
natrix. 

Statistical independence is defined by: P(m;, mi) = p(mi) p ( m i ) .  
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Chapter 111 

EFFECTS OF DATA COMPRESSION ON SOURCES 

In this chapter, the effects of the data compression operation on the data source will be in- 
vestigated. Both Entropy Reducing (ER) and Information Preserving (IP) data compression effects 
will be analyzed. In the particular case of IP data compression, the effect on the time information 
will be introduced. This latter effect will be covered in more detail in Chapter W. 

System Arrangement of Compressors 

When data compression is added to a time-multiplexed telemetry system, the arrangement of 
the various operations can be described by means of a diagram (Figure 4). In this figure, the 
entropy-reducing (ER) data compressors a re  tied directly to the sources they compress, but this 
is not the case for the information-preserving (IP) compression. Since it is expected that more 
than one data source will require a particular IP compression algorithm, sequential switching of 
a number of sources into one IP compressor is included as a basic design concept. Separate tem- 
porary storage is provided in each IP compressor for each source it handles so that predicted 
values may be stored for each source. Also, since buffering must take place in the IP compression 
process, one buffer is shown which receives the output of all IP compressors. As indicated in 
Figure 4, the IP compression occurs after sampling and quantizing, and the timing and the source 

Figure 4-Conceptual diagram of a time-multiplexed telemetry system with ER and IP compression. 
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identification information is loaded into the buffer according to the decisions made by the individual 
IP compressors. Buffer overflow is prevented by feedback from the buffer to the IP compressors 
(References 19, 20). This feedback operation keeps track of buffer fullness and reduces the buffer 
input rate when overflow is imminent. A treatment of the various methods of buffer overflow con- 
t rol  by feedback is beyond the scope of the present work. 

Entropy-Reducing Compression Effects 

In Chapter 11, Entropy Reduction (ER) data compression is defined as an operation that reduces 
the fidelity of the source. In space telemetry, ER data compression normally takes the form of 
highly specialized data conditioning equipment on the spacecraft. There is usually a special ER 
device for each experiment, and sometimes it is difficult to separate the ER device and the experiment. 

Effect of ER on Entropy 

A relevant question at this point is whether o r  not ER compression always reduces the entropy. 
The answer can be developed as follows: If we consider the data source at the input to the ER 
device to have a basic limitation in measurement precision due to source noise and measurement 
hardware design, then w e  can express the input to the ER compressor in te rms  of a discrete source 
with W levels and proceed in the following way: If x is the input, and Y the output of the ER device, 
then 

H(X, Y) = H(X) + H(Y/X) = H(Y) + H(X/Y) 

But if y i  = f (xi) , then H(Y/X) = 0. Also ER compression is irreversible, so H(X/Y) > 0. Then 
H(Y) = H(X) -H(X/Y) . 

So ER compression does in fact cause a reduction in entropy, provided we consider the ER 
source a discrete source, finely partitioned into a finite number of levels. 

Effect of ER on Source Probability Distribution 

As shown in Figure 4, the ER compressor usually operates directly on the data source, before 
sampling and before quantization. As stated in Chapter II, the ER compressor can operate on dif- 
ferent parameters associated with the data source-e.g., amplitude, spectrum, statistical parameters, 
etc. The one characteristic that all these operations have in  common is entropy reduction. 

Unfortunately, the knowledge that the entropy is reduced does not readily point to general ef- 
fects that may be stated with regard to the probability distributions-even for those compressors 
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which operate on the same data parameter o r  characteristic. For example, in the case of the ER 
compressors that operate on the amplitude, it does not follow that there is a deterministic effect 
on the probability distribution given that the entropy is reduced, whereas by contrast there is the 
well-known theorem of Shannon (Reference 14) which states that any change that tends to make the 
probability distribution more uniform results in an increase in entropy. 

For particular cases of ER compressors, the effects on the probability distributions can be 
worked out, and some examples are given in Appendix C fo r  two ER compressors that operate on 
the data amplitude: clipping, and logarithmic amplification. A s  can be seen from these examples, 
the ER operation can have in some cases an appreciable effect on the probability distribution, and 
can result in highly non-uniform distributions. 

Information-Preserving Compression Effects 

Since Information-Preserving (IP) data compression is normally the last operation on the data 
before channel encoding, and since it is normally considered more a part of the telemetry system 
than Entropy-Reduction (ER) data compression, it is of particular interest to study the effect of 
this IP operation when placed into the data flow. One of the significant features of an IP operation 
is that it produces two kinds of output data: "non-redundant" data samples and their sample times. 

In the following development the choice of an IP compressor is discussed and the question of 
a measure of compressibility in the case of IP compression is examined from two standpoints: 
redundancy removal and compressible sequences. This examination leads to a formulation of the 
compression ratio parameter. 

Choice of a Polynomial-Predictor Type Compressor 

As was noted in Chapter II, one of the classes of IP compressors which has  received much 
attention in the development of data compression systems is the polynomial predictor type. The 
choice of different order polynomial predictors has been made generally (References 8, 9, 13) on 
the basis of an examination of waveform structure as a function of time. For data with a highly 
complex waveform structur'e, it is theoretically possible to predict long segments of the waveform 
using a sufficiently high-order polynomial in an adaptive mode of prediction, i f  necessary. How- 
ever, there a r e  two arguments against such an approach in a space telemetry system: first, there 
a r e  normally limits imposed on the sophistication of the on-board data handling system by power, 
weight and equipment reliability considerations; second, if  a waveform has a highly complicated 
structure of interest to some data user, it may be undesirable to compress this waveform in the 
first place, since it may have important small-scale properties which might be lost in the com- 
pression process. For these reasons, the simplicity as well as the efficiency of a compression 
algorithm are important in the space application, and the two algorithms described in Chapter I1 
(zero- and first-order predictors) are of interest from the simplicity standpoint. This leads to 
the questions of what the polynomial-predictor algorithms actually do to the data from a mathe- 
matical standpoint. 
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The Redundancy-Removal Viewpoint 

The polynomial type predictors mentioned above depend on some predictable characteristic 
of the data in order to achieve compression. One can find in the literature (References 5, 8) ref- 
erence to Information-Preserving data compression (as used here) as Redundancy-Removing data 
compression. This latter terminology suggests the following viewpoint. 

Shannon (Reference 14) has defined redundancy as follows: For M, levels, 

Redundancy = 1 - H ,  

where H is actual source entropy. The actual source entropy is given by: 

where 

When successive samples a r e  statistically independent, 

M, 

H H(X) s i  = - z p ( x i )  logp(xi) 

. - ,  xi ) logP(xiaJLi , X i ] ,  . - . ,  x i  
a a- 1 

and H(X) s i  2 H(X) . 
i =  1 

If we think of an Information-Preserving data compression operation "removing redundancy," 
then the expression for redundancy must be reduced. This can happen only by an increase in the 
entropy, since log M, , the maximum entropy, cannot change (for a given number of levels). Mathe- 
matically: Using x as input, and y as output of the IP compressor: 

Before compression 

After compression 

HY 
1% M, (R)y = (Redundancy)y = 1 

But (R)y < (R)x  ; thus HY > Hx . 
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The entropy increase is actually due to the fact that the dependence between successive samples 
has been decreased in some instances, namely, in those instances where prediction is successful. 
If it were possible to make all samples statistically independent (p(yi, yj j = p(yi) p(yj)) , then 

The maximum compression ratio has been defined in te rms  of redundancy (Reference 5)  as 
follows : 

If we had a source with minimum possible redundancy, 

CR 

which indicates that such a source cou d -e compressed if  p(xi) where not un €orm. However, the 
predictor type of IP compressor makes successive samples more independent, and may o r  may 
not make the probability distribution p(xi) more uniform. The knowledge that IP compression in- 
creases the entropy of the data samples does not lead to a deterministic effect on the probability 
distribution-just as in the case of ER compression, the knowledge of an entropy decrease did not 
help in this regard either. In the case of the predictor-type algorithms, a more suitable formula 
for maximum compression ratio would be 

The Compressible Sequence Viewpoint 

The Shannon-McMillan theorem (References 21, 22) states roughly that for  an ergodic* source 
with entropy H ,  there a re  approximately PH high probability a-sample sequences, each with a 
probability of about YaH, and that the remaining group of sequences, which includes the vast ma- 
jority of possible a-sample sequences, has a low total probability. Mathematically (Reference 22), 

*The ergodic property i s  taken here to mean the following: the frequency of occurrence of a given a-sample sequence in a long temporal 
span of data converges to the probability of the sequence (Reference 21). 
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given arbitrarily small  E > 0 and 6 > 0, it is possible to find an u such that any sequence S among 
the YH highest probability sequences has a probability Ps for which 

and such that the total probability of all other sequences is less than 6. 

If we consider the data to be compressed an ergodic source, we can look at a-sample sequences 
which include those sequences that are compressible by the algorithm in question. From the stand- 
point of compression, we would like u to be large, and also the total number Nc of compressible 
sequences to represent a large number of the high probability sequences. The ideal compressible 
source will then have the following breakdown of u -sample sequence types: 

Total number of sequences = (Md)". 

Total number of high probability sequences 2 2aH . 
Total number of compressible sequences = Nc 2aH. 

Then a formula for the maximum compression ratio could be written as 

This formula resembles the one given above, viz. 

1 m = -  1 - (R) ' 

and now redundancy can be expressed as 

This is a more suitable formula for redundancy in the predictor type of compression operation for 
two reasons: it does not involve the entropy of a uniform probability source, and it is given as the 
percentage of the high-probability sequences which a re  compressible by the particular algorithm 
under consideration. 

Actual Compression Ratio 

In an actual system, the above ideal expressions for compression ratio serve only as upper 
bounds since they do not take into consideration the timing data that must be sent o r  the extra bits 
required for error-control coding. 
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A useful te rm for actual compression ratio is "bit-compression ratio," defined as 

No. of bits to send (uncompressed data) 
= No. of bits to send (same data compressed) * 

This actual compression ratio takes into account all bits required-including data, time, identifi- 
cation and coding. 
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Chapter lV 

THE TIME ENCODING PROBLEM 

In this chapter an essential part  of the IP data compression system will be examined-time 
encoding. Modified versions of the polynomial predictor algorithms described in Chapter 11 which 
require fewer time words a r e  introduced. Three methods of time encoding will be analyzed and 
compared on a noise-free basis. For one method, sequence coding, an encoding and decoding 
algorithm will be developed. The effect of noise on the time information will be covered in 
Chapter V. 

Nature o f  the Problem 

An IP data compression operation normally requires that the time of each non-redundant 
sample be transmitted with the sample value. In an uncompressed system the time information is 
sent periodically, and for the sake of description it may be represented as a monotonically in- 
creasing function of transmission time with periodic, equal discontinuities. In a data compressed 
system, timing information does not have equal discontinuities, but is still monotonically increasing, 

It is significant to note that for the predictors shown in Chapter 11, the time information need 
not be sent with each non-redundant sample. Since non-redundant sample values and time values 
a re  loaded into a buffer they may be read out in any convenient fashion. For example, all sample 
values could be read out and then the time words could follow as a block. In subsequent processing, 
corresponding samples and times could be matched by a simple counting process. Just  as the 
sample values and time words can be read out separately, so also can they be encoded and decoded 

i separately. 

If the data-compressed telemetry system were handling one source, then data values and time 
values would be required for transmission. A system with more than one data source would re- 
quire data values, time values and source identification words for transmission. However, if  the 
sampling of the various sources were time-shared as indicated in Figure 4, then it would be no 
longer necessary to send both source identification and non-redundant sample times. These two 
pieces of information could be provided by merely sending the position of each non-redundant 
sample in the time-shared sampling pattern with respect to a periodic reference position in the 
pattern. This time-shared system is used in the analysis of various time encoding schemes in 
this chapter, and some of the same terms a r e  used here as were used for the time-multiplied 
telemetry pattern described in Chapter II. This consistency of terminology is for convenience-it 
does not mean we a r e  compressing a sequence of multiplexed samples, but that we are compressing 
each source in time according to a time-shared (time-multiplexed) pattern by an arrangement such 
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as the one shown in Figure 4. In this sense, we use the te rm "compressed time-multiplexed 
data." 

It should be pointed out that the time-shared sampling with fixed-length data words and fixed- 
length time words used here has the advantages of simplicity and compatibility with present-day 
space telemetry systems, but it is not the only sampling arrangement that is amenable to data com 
pression. For example, a system with variable sampling rates  for individual sources or groups of 
sources could be used, and this would typically require additional buffering, and variable-length 
identification and time-prefixes to the data words. The concepts and techniques of source encoding 
mentioned in Chapter 11 could be applied to both the identification, and time-prefixes in such a 
system, thereby realizing some additional data compression. 

Modified Predictor Algorithms 

It is possible to modify* the polynomial-predictor algorithms described in Chapter I1 so that 
fewer time words will be required for data reconstruction for certain types of data behavior. In 
no case will these modified algorithms require more time words than those described in Chapter 11 
The following are  the modified algorithms corresponding to the zero- and first-order predictors 
of Chapter II. The operations of these algorithms, particularly on the time words, can be comparei 
to the corresponding ones in Chapter II. 

Modified Zero-Order Predictor Algorithm 

1. Store and transmit first sample x0 and time of occurrence. 

2. Put tolerance about x0 such that an aperture is obtained: 

xo - A < 2 xo + A  

3. Is next sample within aperture? 

If yes: discard sample and check next sample. 

If no: was last sample transmitted? 

If yes: transmit only sample value. 

If no: transmit sample value and time of occurrence. 

This algorithm is illustrated in Figure 5. 

Modified First-Order Predictor Algorithm 

1. Store and transmit first sample xi and time of occurrence. 

2. Store and transmit second sample x i + l .  

*The author is indebted to Prof. Alan B. Marcovitz for suggesting this modification. 
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6. Is next sample within aperture? 

I If yes: discard sample, replace n by 
n + 1, repeat steps 4, 5, and 6, 
replacing i by i + 1 in step 6. 

was last sample transmitted? 

If no: 

If no: 

repeat steps 1 through 6 
above considering x i  + 

Figure 5-Modified zero-order predictor data 
compression operation. 

the "first sample,'' that 
is, replacing i by i + 2 
and letting n = 1. 

Lf yes: follow same procedure as for last sample not transmitted except do not 
send time of occurrence in step 1. 

As can be seen from an examination of Figure 5 the time of the beginning of a run of non- 
redundant samples is sent along with these non-redundant samples under the modified algorithms. 
To reconstruct the data, one merely fills in redundant (as  defined by the order of the algorithm) 
samples after the last non-redundant sample in a run up to the beginning of the next run. However, 
each time word must be identified with the sample value it applies to. 

In the operation of the modified algorithms, then, a flag is required to differentiate a time 
word from a data word, and in the simplest arrangement this could increase the time word length 
as well as the data word length by one binary digit. 

The modified algorithms show the greatest improvement in time word economy over their 
unmodified counterparts when there a re  long runs of non-redundant data samples followed in each 
case by a long run of redundant data samples. The number of time words required by a modified 
algorithm equals that of the corresponding unmodified algorithm when, for example in the case of 
the zero-order predictor, the non-redundant sample runs are just one sample each, so that the 
redundant data sample runs a re  separated by single non-redundant samples. The modified algorithm 
technique can also be applied to a group of time-shared-sampled sources with a known sampling 
pattern, and this will be illustrated in the following section. 
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Three Basic Methods 

As indicated previously, the source identification and timing information is essential for the 
reconstruction of compressed time-multiplexed data. There a r e  various methods and techniques 
of sending and using this information, but most of them can be grouped into the following three 
categories: 

Identification of what is being sent. 

Identification of what is not being sent. 

Sequence identification. 

These three methods are discussed below. 

Identification of Transmitted Words 

In this method each transmitted word or group of transmitted words (for the modified algorithi~ 
is accompanied by an identifier which gives the position of the word in the telemetry minor frame. 
An additional word must be sent to identify the minor frame and this word is the sub-commutator 
count (S.C.C.). The main frame count word is also sent to keep track of the main frames. In ad- 
dition, word synchronization has to be provided for, so a sync word is sent once each minor frame. 
In order to prevent long periods over many main frames, wherein no samples from some super- 
commutated sources would appear, a sample from each source is sent at least once per main fram: 
If there are a words per  minor frame, b minor frames per main frame, and s sources (other than 
sync and subcom count), then 

Number of words in main fraine = ab , 

= 2 b t s  

t 
Minimum number of words - 

required in main frame - t 

s words (includes 
main frame count) 

Since for some sampling patterns it may not be possible to group these required words together, 
thereby saving on time words, it will be assumed below that a time word accompanies each one. 

ab 
Maximum overall compression ratio = 2b+s * 

If we use the term "word compression ratio" (CR), to mean the ratio of the maximum number 
of compressible samples in a main frame to the number qm of these samples left in the main frame 
after compression, then, assuming q, > 0: 

ab - (2b ts) 
q m  (a>, = 
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We can average this over many main frames and obtain 0,. Therefore, an expression for 
- 

the actual average compression ratio* 
(each transmitted word is accompanied by a position word) can be written as 

on a main frame basis for the unmodified algorithms 

where k is the number of bits/word for data, and k, is the number of bits/word for position in 
minor frame. 

In many telemetry systems a = b y  so that we may write for this case: 

Now the number of bits required for position information per transmitted word is related to the 
minor frame length a as follows: 

k, = l o g z a  ( increased  to nearest  i n t e g e r )  

Then 

_ _ .  a 2  

In a given telemetry system, k is usually fixed, so that the above expression relates an actual 
average compression ratio (a),= to a theoretical average compression ratio (CR), for various 
values of main frame size a and number s of compressible sources. 

~ ~ 

For the modified algorithm case where it is not necessary to identify the position of every trans- 
mitted word, but only the position of the beginning of a contiguous sequence of transmitted words in 
the pattern by a time word which contains an extra bit for identification, the above formula is 
modified by a factor K on ( k ,  + 1 ) such that 0 < K 5 1. Also, letting k - k + 1, 

.~ 
* A s  described in Chapter 11, actual average compression ratio is the ratio of the number of binary digits required for the uncompressed 

system to the number of binary digits required for the compressed system. 
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Now K has a maximum value equal to 1 when single transmitted samples alternate with runs of 
non-transmitted samples. Then each transmitted sample must be accompanied by a position in- 
dicator. The value of K never reaches zero since even if all samples from each source were re- 
dundant, the position of the first  sample from each source in the main frame would have to be 
sent (s positions) as well as the position of the synchronization word and sub-commutator count 
words (a positions-assuming one follows the other). Then the minimum value of K would be 
the fractional part  of all transmitted words that corresponds to a + s ,  o r  

a + s  

a 2 - 2 a - s  

(a>, 
2 a + s +  ~ 

K m i n  = 

At this point, it is interesting to examine the factor K as a function of (CR>, . In order to get a 
feel for this function, we assume a source with statistically-independent successive samples. Now 
although this source does not represent the compressible type as explained in Chapter III it gives 
r ise  to a simple model for the K variation with Om.* 

For this source, assume two kinds of samples: non-redundant and redundant. Then, on an 
average basis: 

1 
Probability of a non-redundant sample = = . 

(a>, 

1 
Probability of a redundant sample = 1 - - . 

(a>, 

Now it is necessary to send a time word in the modified algorithm whenever we proceed from a 
redundant data word to a non-redundant data word (see Figure 5). 

The probability of a time word transmission is given by: 

Prob. (time word) = Prob. (non-redundant/redundant) x Prob. (redundant) , 

or  

1 
Prob. (time word) = (cR,) 11 - &J 

Now K can be defined as 

number of transmitted data samples that need time words 
number of transmitted data samples K =  

'The author is indebted to Prof. Alan B. Marcovitz for suggesting this model and associated analysis. 
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o r  another way, 

probability of a non-redundant sample that needs a time word , 
probability of a non-redundant sample K =  

Identification of Non- Transmitted Words 

In this system, we send along with each transmitted word o r  group of words (for the modified 
algorithm), the count of the number of multiplexed words not transmitted since the previous trans- 
mitted word. 

If we add a word to each transmitted word which signifies the total number of multiplexed 
words not transmitted since the last transmitted word, we would have a time word of length 
[ logz (a - 2)] bits, since at least two words a re  transmitted per minor frame (sync and S.C.C.) and 
if  one followed the other, then the maximum number of non-transmitted words would be obtained, 
equal to a - 2 (assuming there is at least one minor frame with no data samples).* 

W e  can then write formulas for actual average compression ratio similar to those above. For 
the unmodified algorithms, 

For the modified algorithms, 

Sequence Encoding of Timing Information 

The timing information of a single data-compressed source o r  a time-multiplexed group of 
data-compressed sources exhibits an interesting property, namely, strict-monotonicity. This 
property suggests the encoding of sequence of time words o r  multiplexed minor frame position 
words into unique code words. 

*It is a lso  possible to shorten the t ime  word to [log2 (a - 2 )  - 11 if the system is arranged to send a data sample at least once every 
half minor frame. 
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The following description of sequence identification is purposely left general so that it can be 
applied either to the output of a single source with strictly-increasing monotonic time, or to the 
output of a time-multiplexed group of sources with strictly-increasing monotonic minor frame 
position. In order to obtain a measure on the efficiency of this sequence coding we examine a 
monotonic source in the following way. 

For a monotonic source model to describe the timing information, we assume a total of m in- 
tervals between the periodic timing words, which timing words a r e  transmitted whether or not 
compression is taking place. This leaves a maximum of m - 1 data words between periodic time 
words. 

When compression takes place, q of the m - 1 words are left to be transmitted and the problem 
remains of indicating which q words of the m - 1 words are actually being sent. In the single source 
case, the time of each of the q words is the parameter of interest. In the multiplexed source case, 
the identification and time of each of the q words a r e  of interest. But in a fixed format time- 
multiplexed system, the timing information can be obtained from the position of the word in the 
minor frame, and therefore the problem is essentially the same in both cases. The sequence to 
be identified is a strictly-increasing monotonic sequence of numbers from 1 to m - 1. 

Theoretically, there would be a maximum number 

of sequences, and this can be shown as follows. 

The compression operation will  result in the omission of zero o r  more sample times from the 
interval of m sample periods excluding the beginning and end times which a re  always transmitted. 
Then we can state that the number N, of possible time sequences is equal to the total number of 
combinations of m - 1 samples taken 0, 1, 2, - - ., (m - 1) at a time, or 

q = m -  1 

N, = ('"9') * 

q=o 

The above expression for N, is also the expression for the sum of the coefficients in a binomial 
expansion of the form (X t y)" . 

If we let x = 1 and y = 1, then 

2" = T(l) 
g =0 
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In the present case, n = m - 1. Substituting, 

In an actual data compression system, q is known, the number of data words left between 
periodic time words. Then 

increasing sequences 
Total number of strictly- (-. 

since the decision operation of compression is to send o r  not to send a particular source word. 

It is obvious that 
q log2 (m - 1 ) 

m - 1  log* 1"; l )  
Word Compression Ratio = (CR), = -- * q 

The number Nq of sequences is plotted (Refer- 
ence 23) vs. the word compression ratio (a), in 
Figure 6for different values of m - 1 as well as the 
number of bits to encode Nq , given by log2 Nq . The 
number q log (m - 1) of bits to encode all q time 
words is also plotted. 

The matter of actually encoding and decoding 
these sequences can be examined by slightly 
modifying a method developed by Gordon (Ref- 1 0 ~ 5 ~  

erence 24) for non-decreasing monotonic sources. 
In Gordon's method, a path-count matrix is con- 
structed from which a coding matrix is derived, 
which is used for both encoding and decoding. The 
same general procedure is used here. However, 
the resulting matrices a r e  different from those of 
the non-decreasing monotonic source. 

, o ~ o o  

1050 

The various q-length sequences out of m - 1 
elements may be represented as a matrix of 
points as shown in Figure 7a. This figure is 
drawn for  an actual case of m = 9 and q = 6. This 
is obviously not a good example of worthwhile 
compression, but these numbers a r e  used for 

Figure 6-Plots of ("q '), 1092 (" q '), and 

m - 1  for various values of m - 1. q log2 (m - 1) vs. __ 
convenience in illustrating the techniques involved. q 
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STARTY 
( a )  Graphical construction of a path count matrix. 

t t 
path Count 1 9 36 84 126 126 84 36- 

(b)  Path count and coding matrices. 

0 

0 

0 

0 

0 

0- 

Figure 7-Construction of a coding matrix from a 
path-count matrix for a strictly-increasing monotonic 
sequence. 

The first periodic time word is represented by 
the start point, where all paths begin. Likewis: 
the second periodic time word is represented b: 
the end point, where all paths terminate. The 
strictly-increasing monotonicity of the sequenc: 
sets two parallel lines at an angle of 45 degree.- 
passing through the start and end points as 
upper and lower boundaries for the possible pat 
At each point in the matrix, the number of dif-  
ferent paths from the start point up to that poin 
is shown on the figure as apath count. The 
total number of paths can be obtained by adding 
the path counts at the points immediately before 
the end point. In the example in Figure 7a this 
is calculated as 

Nq = 21 + 6 + 1 = 28 = (:) = (mi1) * 

The coding matrix concept as used by Gord 
consisted of encoding each sequence a s  the sum 
of a set of numbers corresponding to each path. 
These numbers were obtained from the coding 
matrix, which was obtained from the path count 
matrix by deleting the leftmost column of the 
latter and adding a row of zeros at the bottom. 

In the present case, this transformation is not useful, but the following transformation does 
give a useful coding matrix: 

Transformation From Path- Count Matrix To Coding Matvix 

Shift over one column to the right in the path-count matrix to obtain the coding matrix. In 
other words, use the second column of the path count matrix as the first column in the coding 
matrix, and so on, until the ( q  + l)th column of the path count matrix becomes the qth column of 
the coding matrix. The row numbering remains the same, except that each row is modified in ac 
cordance with the above column shifting. This transformation is illustrated in Figure 7b for the 
same case of m = 9, q = 6. 

It should be noted that in Figure 7b, the general path count matrix has been written for any 
and any m ,  with extension directions indicated by the arrows. The extension of this matrix is 
carried out by observing the following rules: 

1. The leftmost column has unity elements. 

2. The diagonal rising from the lower left-hand corner has unity elements. 



3. All elements below this diagonal are zero. 

4. If the rows are numbered in an increasing direction from the bottom to the top, and the 
columns from left to right, then the value of the element a i ,  is computed by the formula: 

ai  * J  . - - ai-1. j + ai-1,j-l  

It should also be noted that the coding matrix indicated in Figure 7b would again be limited to 
the boundaries imposed by the two diagonals from the start and end corners. In this case (m = 9, 
q = 6) these a re  the all-zero diagonal below the unity diagonal, and the diagonal just above the unity 
diagonal with elements 2, 3, 4, 5, 6, 7. 

To encode a sequence, draw the path on the coding matrix and add the elements touched by the 
path. This sum provides a unique code word w whose value ranges from 0 to Nq - 1 inclusive. 

To decode a received code wordw , s ta r t  at the element a i , q  in the rightmost column of the 
coding matrix which satisfies the inequality 

NOW a i ,  

and find a i , q - l  such that 
is on the sequence path. To find the next point on the sequence path, use W - ,  = w - a .  1 . q  

Now is on the sequence path. Continue 
this procedure until a point on the path in the 
first column has been found. Then the sequence 
is given by the 'set of values corresponding to 
the row numbers of the elements in the q col- 
umns, starting at the leftmost column. 

This encoding and decoding procedure is 
illustrated in Figure 8 for the case of m = 9, 
q = 6, and a particular sequence. 

Comparison of the Three Methods 

In order  to compare the three methods 
discussed above, we can plot curves of Actual 
Average Compression Ratio us. Theoretical 

21 

15 

IO 

35 

20 IO /o k 

5 

21 

I5 

IO 

. .  
35 35 2i ,/7 

20 15 ' 4  i 

10 /5 1 0 

@' . .  

. 9' . 
I 

I .  . .  
0 0  

I 
; ;  

I 
Code word = 0 + 0 + 1 + 5 + 6 + 7 1 Given: code word = 19 

= 19 
( a )  Encoding. ( b )  Decoding. 

Figure 8-An example of sequence encoding 
and decoding. 
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Average Word Compression Ratio. Consistent formulas (for these parameters) were developed 
for the first two of the three methods, and now it remains to put the third method, sequence identi- 
fication, into a form consistent with the other two. 

We define an average word compression ratio for  the sequence case as 

where 4 is the average number of compressible words transmitted per minor frame, and C is the 
average number of compressible words per minor frame. Then 

- S 
c = a - 2 - 5 7  

and 

or  

Thus we can use 0, or (cR>, interchangeably. For the sequence case, for a square pattern, and 
a sequence word every minor frame, 

Now we may summarize the formulas for plotting as follows. 

a. For Identification of Transmitted Words Method 
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b. For Identification of Non-transmitted Words Method 

c. For Sequence Encoding o r  Identification Method 

, Comparison curves are plotted in  Figure 9 with K equal to three values: maximum (Unity), mini- 
mum, and [ l -  l/(CR),]. 

here as mma/mm .) 
From the curves in Figure 9, the following observations may be made: (Efficiency is used 

Due to the need for always sending particular words in the pattern, 
a larger pattern o r  main frame will be more efficient at useful word 
compression ratios (5 or more). 

Sequence coding is always more efficient than the unmodified algo- 
rithms sending either non-redundant times (method a) o r  redundant 
times (method b). 

As the main frame size increases from 10 X 10 to 100 X 100, the 
non-redundant-time method (a) becomes indistinguishable from the 
redundant-time method (b). 

At small frame size (10 X lo), sequence coding is most efficient. 

As the frame size is increased, the modified algorithms typically 
become as efficient as sequence coding. In the particular case where 
non-redundant samples a r e  grouped together in a sequence of samples 
(k = min. value), the modified algorithms are more efficient than se- 
quence coding. 

Two important factors related to sequence coding that a r e  not evident f rom the curves of Fig- 
ure 9 are the following: 

Sequence coding requires more complex equipment to encode the 
words (typically 100 bits) involved. 

E r ro r s  in a sequence code will have a more catastrophic effect on 
the reconstructed data than e r r o r s  in methods a o r  b. 
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Method a: Identify What i s  Sent 
Method b: Identify What i s  Not Sent 12 
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Figure 9-Comparison of three time encoding methods 
for time multiplexed compressed telemetry patterns. 

In view of these serious limitations of sequence coding, it may be an undesirable time encoding 
method in many systems, despite its relatively high efficiency. 

The modified algorithms do not allow the flexibility of encoding provided by the unmodified 
algorithms since the time words cannot be sent separately in a block. However, the typically higher 
efficiency of the modified algorithms over the unmodified algorithms make them well worth con- 
sidering in a particular system design. 

The effect of e r r o r s  in the time information on the system performance will be covered in 
Chapter V. 



Chapter V 

TR AD EO FF M EASU RES 

In the design of a space telemetry system, the decision to use data compression has to be 
justified by prediction of an overall gain in system performance. In situations where data may have 
little redundancy, or where channel disturbances may require extensive error-control coding of 
compressed data, it may not be feasible to include data compression in the overall design. Since 
data compression of the Information-Preserving type may require error-control coding, it is im- 
portant to make tradeoff analyses among various compressed and coded systems as well as the 
uncompressed and uncoded system. Measures of performance which a r e  consistent with the effects 
of data compression and error-control coding on a space telemetry system a re  needed in order to 
carry out these comparisons. 

In this chapter, two measures of performance a re  developed for the comparison of three system 
types: uncompressed, uncoded; compressed, uncoded; and compressed, coded. The effect of e r r o r s  
in the time information is also considered and worked into the performance measure. 

Measures Based on the Rate Distortion Concept 

The rate distortionfunction of Shannon (Reference 12) is the basis for the measures of per- 
formance developed in this Chapter. In Chapter 11, it was pointed out that the rate distortion func- 
tion is the minimum mutual information between the input and the output of an entire communica- 
tion system subject to the constraint that the average distortion be less than some specified value. 
For a given distortion measure matrix D(M, Z )  , a given source probability distribution P(M) for 
statistically independent words, and a given maximum value of average distortion D ,  the minimiza- 
tion of the mutual information can lead to a specification of the P(Z/M) matrix over the entire 
system-from data source set M to data user set Z .  However, this minimization can be carr ied 
out explicitly only for certain types of distortion measures and source probabilities (Reference 12)- 
such as the example worked out in Appendix B. Even in cases  where the P(Z/M) matrix may be 
explicitly found for the rate distortion function, the channel characteristics determined by such a 
P(Z/M) matrix may not resemble those of any known channel model, such as the binary-symmetric 
channel. Channels with P(Z/M) matrices other than the one corresponding to the rate distortion 
function will produce a source rate (bits per word) larger  than the rate distortion value. For this 
reason then, the rate distortion function can be considered a lower bound for the average bits per  
word given a value of average distortion. This bound also applies to IP compression where we 
approach statistically independent successive words. * 

*Successive words could never be statistically independent for a zero-order predictor since on the output of this predictor P(yi ,  y i )  = 0, 
but P ( y i )  # 0 in general. 
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The average distortion D used in the rate distortion function involves parameters pertaining to 
the source P(M), the channel P(Z/M) ,  and the eventual importance of each data point D(M, Z) in the 
following way: 

D = P(M) P(Z/M)D(M,  Z)  . 
M .  Z 

These properties make the average distortion a useful measure of performance in comparing 
telemetry systems with various combinations of compression and coding. Likewise, a companion 
measure, the rate katio R in bits per uncompressed bits is useful in these system comparisons. 
This measure is the reciprocal of the overall compression ratio and corresponds to the source rate. 

Rate-Ratios and Distortions for Three Systems 

The concept of source rate and distortion as used by Shannon in his rate distortion function 
can be used to obtain measures of performance of systems with different combinations of com- 
pression and coding. Three systems will be considered: uncompressed, uncoded (VU); compressed, 
uncoded (CU); and compressed, coded (CC). 

The source rate was used by Shannon as the number of bits per transmitted word. For a fixed 
information rate, this definition is consistent since larger values of source rate correspond to 
higher bit rates. 
Now the three rate-ratios can be written down in terms of bits per uncompressed bits as: 

For comparison purposes, the UU rate ratio, RUu will be normalized to unity. 

where 
K~ is a factor greater than unity which accounts for data expansion due to error-control coding. 
From the above definitions, then 

is the actual average main frame compression ratio as developed in Chapter N, and 

Now the relationship between RUu and Rcc is a critical part  of the tradeoff analysis. If Rcc > RuU , we 
have a system with overall data expansion rather than compression. For each case of Rcc < Ruu , the 
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question must be asked: "Are the final reductions in rate-ratio and distortion worth the compres- 
sion and coding required to achieve them?" 

The distortion that will be used in the tradeoff analysis here is the average distortion used by 
Shannon: 

where P(M) is the first-order probability of source M ,  P( Z/M) is the system transitional probability 
matrix for the transmission of word m i  to word z j ,  and D(M, Z) is the distortion measure matrix 
a s  defined in Chapter II. For consistency in comparison, the same D(M, Z)  matrix will be used for  
all three systems. In order to distinguish, in the following development, between the effects of data 
and time e r r o r s  onD , the effect of time e r ro r s  will be omitted in the beginning and introduced in 
the next section. The development of the average distortions Duu , Dcu and Dcc proceeds a s  follows. 

The Uncompressed- Uncoded System 

The expression for Duu is given by 

M . Z  

The first-order probability P(M),, is that of the sampled and quantized uncompressed source. The 
transitional probability P( z/M)uu is the conditional probability of the datu useY obtaining sample 
level z j  given that sample levelm, was sent. The reason the data user  is specified here is the 
fact that only he can utilize a priori  knowledge about, along with inherent redundancy in, the un- 
compressed data for the purpose of e r ro r  control. This is an important consideration in tradeoff 
comparisons between an uncompressed, uncoded system and a compressed, coded system. In order 
to quantitatively include this error-control ability on the part  of the data user, we arrange the 
P(Z/M)uu matrix to take account of this ability. One such arrangement is as follows. If the data 
user  can detect large e r r o r s  in the data, then the elements in P(Z/M)uu corresponding to these 
e r r o r s  can be set equal to zero. Now, the other elements of P(Z/M),,,, have to be suitably modified 
so as to insure 

c Z 

Since P(Z/M)uu is a square matrix of order 
elements in the upper-right and lower-left 

2k, the above modification corresponds to setting all 
regions equal to zero. 

I 
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If we think of starting with a P(Z/M) matrix whose elements are simply the word probabilities 
over a binary symmetric channel, then we can calculate all elements of this P(Z/M) and obtain 
P(Z/M)uu by setting the above corner regions equal to zero and then adding to the remaining elemen 
in each column the total probability removed from that column. If we assume that the data user 
performs e r r o r  correction as well as e r r o r  detection, then we add the total probability removed 
from each column to the main diagonal element in that column. Now the relative ability of a data 
user to perform e r ro r  detection or  correction can be represented by the size of the corners of 
P(Z/M)uu that are set  to zero. For example, for a 3-bit, 8-level system, the P(Z/M) matrix cor- 
responding to transmission over a binary-symmetric channel has the form: 

000 

001 

010 

00 1 010 011 100 101 110 111 000 

43 q2  P qz P qPz q2 P 9p2 wz P3 

q z p  q3 w2 q2 P wz q2 P P3 qP2 

q 2 p  qP2 q3 q2  P w2 P3 q2  P wz 

q2 P P3 wz q2 P q3 w2 qz P 

110 I w2 *z P3 qz P qPz q2 P w2 q3 q2 P 
I 

111 I p3 w2 w2 qz P wz qz P q2 P q3 

q = 1 - P ,  

where p is the probability of a bit error .  For a data user  who can covvect e r r o r s  greater than 
4 levels, we can construct the P(z/M)uu matrix as follows: 
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where 

PI = 2 d  + p 3  I 

P2 = 9p2 + p 3  1 

and 

The Compressed- Uncoded System 

Now for D c u  we have the expression: 

where (cR>, is the average word compression ratio defined in Chapter JY. DcU has the factor (cR>, 
because on the average, an e r ro r  in a compressed data word causes (m), words to be in e r ror  in 
the reconstructed data. Now P(M)cU i s  the first-order probability of the compressed data. 

- 

The matrix P(Z/M)cu is the word probability of the entire system, but in this case, the data 
user  has little or no redundancy left in the compressed data o r  the timing data for use in e r ro r  
control. Therefore, P(Z/M)cu can be written simply a s  the word probability imposed by the channel. 
For a 3-bit word system over a binary symmetric channel, P(Z/M)=,, would appear exactly as the 
[P(z/M)] shown above. 

The Compressed-Coded System 

The third distortion D c c  is given by: 

Again, the factor 0, accounts for the fact that a word in e r ro r  in compressed, decoded data causes, on 
the average, (cR>, words to be in e r ro r  in the final reconstructed data. The compressed, uncoded data is 
the source for this channel encoding, and thus P(M)," is used. Now the system transition probability 
matrix P(z/M)cc has to take into account the error-control properties of the code. 

The error-correction process will provide a situation in which three things can happen to an 
n-bit transmitted word, assuming an ( n ,  k) block code with k information bits: 

1. No e r ro r s  are introduced and the word is properly decoded. 
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2. The number of e r r o r s  is equal to or  less than t ,  and the t-error-correcting code decodes 
the k-bit words properly. 

3. The number of e r r o r s  is greater than t ,  and an original k-bit word is decoded into some 
other k -bit word. 

As is shown in Appendix A, we can compute the probability of the first two alternatives above for  
a Binary Symmetric Channel as: 

Probabili ty of Correct Decoding = Pc = q" + z(y) q"-jpJ 

j =  1 

The probability of the third alternative is then given by: 

Probabi l i ty  of Incorrect Decoding = 1 - q" - L(7) q"-jpJ . 
j = 1  

When a k-bit word is improperly decoded into some other k-bit word, some number of e r r o r s  
greater than the t-error-correcting capacity of the code changes bits in either the information o r  
check sections of the code word o r  in both of these sections. For each particular code, one could 
examine the effect of all possible e r r o r  patterns corresponding to more than t e r ro r s  and com- 
pute the probability of a given word z being decoded when word mi ( i  # j ) was originally encoded. 
The number of cases  one would have to examine would be equal to 

2 k  2 (?) . 
i=t+l  

For a (13,9) Hamming code (t = l), for  example this number would be 

or  approximately 4.6 X lo6 cases. For the purposes of tradeoff analysis, wherein codes of different 
lengths and different error-correcting capabilities may be compared, it is reasonable to make an 
approximation and assign equal transition probabilities to the incorrectly decoded word pairs. 
This probability is given by: 
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Then the P(Z/M)cc matrix is constructed by using the following values for elements: 

Each main diagonal element = Pc , 

1 - P c  

2k - 1 
Every other element = __ * 

An interesting verification of the usual statement that "controlled redundancy is better than 
uncontrolled redundancy" can be obtained by comparing P(z/M)uu and P(Z/M)cc.  The truncation of 
P(Z/M)cu to form P(Z/M)uu eliminates elements of high and low probability values, whereas a single- 
error-correcting code, for example, eliminates elements of equal and relatively high probability 
values [(I -p>"- '  PI, to form P ( Z / M ) ~ = .  

The distortion measure matrix D(M, Z) used in all three D expressions assigns a relative cost 

One distortion measure that can be used is the absolute difference 
to word e r rors .  In general, each element of the D(M, 2) matrix may be any function of the dis- 
similarity between mi and zj . 
between mi and z j ,  or  

c(m,z> = ( z j  - m i (  

Another measure that is widely used in evaluating systems is the squared difference, or 

c(m,z> = ( z j  -mi)' . 

Before any realistic comparisons can be made, the additional distortion caused by timing e r ro r s  
must be accounted for. 

Effect  of Time Errors on Distortion 

The effect of e r r o r s  in the time information will be represented as an additional average dis- 
tortion defined as: 

where P(Z/M) is the system transitional word probability of z being received given that m i  was 
sent, which probability is due to time e r r o r s  alone. 

For the purpose of comparing distortions caused by time er rors ,  the uncompressed, uncoded 
system will be considered free of distortion due to time er rors ,  or P(Z/M),,,. = [I1 . This assump- 
tion is made since in an uncompressed system, the telemetry word sequence has a known pattern 
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(as described in Chapter 11) with synchronization words and frame counts included. With such a 
timing structure, most time errors can be at least detected, if not also corrected in many cases. 

For the compressed-uncoded (CU) and compressed-coded (CC) systems, we consider e r ro r s  
in the time words using the model of a binary-symmetric channel. In both the CU case and the CC 
case e r ro r  detection is possible because the time words form a strictly-increasing monotonic 
sequence. This built-in e r r o r  detection feature can be described as follows. 

Consider a sequence of time words from an unmodified polynomial-predictor type of IP data 
compressor as described in Chapter II. In this system each time word corresponds to a particular 
non-redundant data sample. The sequence can be shown pictorially as: 

T,t,t,t,t,t, t, T, , 

where T, and T, are the absolute time words sent periodically so that T, - T, is a constant, and t , , 
t,, etc. a r e  the t imes of the non-redundant data samples in the time interval T, to T,, all measured 
from T,. Now, let u s  assume that an e r r o r  in transmission causes one of the incremental time 
words to be changed to an erroneous value in the range 0 to T, - T, . Assuming error-free trans- 
mission of the absolute time words, there a r e  three different cases to examine. 

Case I :  t, is changed to a value t e  where t,-, < t e  < t,,,. In this case no e r r o r  detection is 
possible. 

Case 2: t, is changed to a value t e  where a) tk+, 5 t e  < tkc2, or b) tk-, < tel tk-,. Now in both a 
and b a time word is out of order, but there is also an ambiguity as to which time word is in error .  
In a, t, or tk+, could be in error .  In b, either t, or  tk-, could be in error .  So e r r o r  detection 
with an ambiguity over two time words is possible. 

Case 3: t, is changed to a value t c  where a) tk+p 5 te, or b) t e  5 tk-,. Now in both a and b a time 
word is out of order, but in each situation there is no ambiguity as to which time word is in error .  
The out-of-order time word is in error .  SO e r ro r  detection is possible in this case. 

We can generalize from the above three cases and say that unambiguous e r r o r  detection is 
possible when the e r ro r  changes the time word to a value equal to o r  greater than, or equal to or  
less than, two time words greater than, o r  less  than, respectively, the original word. If we put 
this on an average basis, the average detectable e r ro r  is then equal to twice the average adjacent 
incremental time word difference or 

T, -T, 
Average Detectable Time Error = 2(cR>, (7) in seconds , 

where m is the number of sample time intervals in T, - T, . 
A time-word transitional probability matrix can be constructed to give the conditional proba- 

bility of time word t r  being received, given that time word t was sent. If there a re  m - 1 possible 
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incremental time words in T, - T,, then each time word can be binary coded into k, bits, where k, is an 
integer and k, 2 logz ( m  - 1). Now, since on the average all e r r o r s  equal to o r  greater than two average in- 
cremental time differences may be detected, the [. (t r/t .)] matrix is corner-truncated in a manner 
similar to the way P(Z/M)uu was obtained, and all elements corresponding to a vertical distance 

a re  set  to zero. Now in order 
to satisfy 
from the main diagonal equal to or  greater than 2 ( q ,  

we use the convention of adding the total probability removed from each column by the truncation 
process to the main diagonal element of the column. This corresponds on the average to changing an 
unambiguously-detected erroneous time word to a value midway between its neighbors, o r  (tk+, f tk-,)/2. 

Now we examine the individual cases of CU and CC. 

For the compressed-uncoded system (CU) we assume that no error-control coding of the time 
information takes place. Then b(t Jt .)] takes the form exactly as described above where we 
truncate a matrix for the BSC. Now in order to translate p ( t r / t s ) ]  into an equivalent [p(Z/M),] 

for the data values we consider a two-value probability matrix: one value for correct transmission, 
the other value fo r  incorrect transmission. Then, averaging P ( t r  = t , )  , 

and 

For the compressed-coded (CC) system, we assume that the time words will have e r ro r -  
control coding. Then, since the decoding operation will normally take place before the gross error-  
detection described above, we construct the matrix [P (t r/t s )] in the following way. First, let each 
element correspond to the word probabilities over a binary symmetric channel. Then make the 
main diagonal terms correspond to the probability of correct decoding. For a ( n t ,  kt) t-error- 
correcting block code, 

Pc = Prob. of correct  decoding = qnt + z(n;) q"-j pJ 

j = l  
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Make all other elements equal to (1 
add the removed probability to the main diagonal. This corresponds to an addition of 

- 1). Now, truncate the matrix as in the CU case and 

for the first column, etc. Then, as in  the case of CU, 

and 

M .  2 

The above analysis has been for the unmodified algorithms described in Chapter 11. As dis- 
cussed in Chapter IV, there are also the modified algorithms and the sequence coding methods of 
time encoding. For the present purpose of obtaining a quantitative measure of distortion due to 
time errors ,  the sequence coding method will not be considered since, as was pointed out in Chap- 
ter IV, the greater overall effect of e r ro r s  in its code plus its greater inherent hardware com- 
plexity render it undesirable in most cases. 

Now, e r ro r s  in the modified algorithm codes will produce an equal o r  greater distortion than 
in the case of the unmodified algorithms. Following the notation of Chapter IV, when K = 1, the 
distortions due to code e r ro r s  in the modified and unmodified algorithms a re  the same. As K 

decreases and the non-redundant samples a re  less equally spaced throughout the data stream, the 
distortion corresponding to the modified algorithm becomes larger than that of the unmodified 
algorithm. In the limit, when K reaches its minimum value and all non-redundant samples in the 
absolute time interval T, -T, are contiguous, then a time e r ro r  in the single time word at the 
beginning of the non-redundant block could make all (m - 1) samples in e r r o r  in the T, - T, interval. 
In this case, we would multiply the summations in the D, expressions by (m - 1) instead of 0,. 
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Chapter VI 

USE OF THE TRADEOFF MEASURES 

In this chapter, the use of the measures of rate-ratio and distortion developed in the previous 
chapter will be described and the effect of some system parameters on these measures will be 
examined. A logical procedure for choosing various systems through the use of these measures 
will be given. The effect of the channel on the distortion will be examined using the binary sym- 
metric channel model. Tradeoffs between distortion and rate-ratio will be examined as functions 
of the compression ratio. The effect of the source probability distribution on the distortion will be 
examined, and finally a graphic representation of the various tradeoffs will be given. 

Throughout this chapter, the same three systems a s  used in the previous chapter will be used 
with the indicated abbreviations in subscripts, etc. : uncompressed-uncoded (VU); compressed- 
uncoded (CU); and compressed-coded (CC). 

A Rationale for Choosing a System 

In order to compare space telemetry systems with different combinations of compression and 
coding, the following quantities are calculated for each system: 

For UU: Ruu = 1 Dsuu = Duu ' 

For CC: Rcc DSCC = Dcc + D t c c  ' 

Where D s  stands for the system distortion due to data e r ro r s  and time errors .  . 

Then for each data source, the maximum allowable average distortion Dmax is obtained from 
the data user  for a given distortion measure D(M, z). The various distortions and rate-ratios a r e  then 
compared, with the following criterion in mind: An acceptable system is one whose distortion is 
less than D m B x  and whose rate-ratio is smaller than Ruu . 

The procedure of comparing R'S and D's and choosing systems can best be described by the 
use of a flow chart  (Figure 10) where the assumption has been made that: 
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USE CU YES YES 

USE UU 

YES 

USE CC 

Figure 10-Flow chart of rationale for making system decisions among UU, CU, and CC. 
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The above inequalities are based on three conditions: first, error-control coding reduces distortion; 
second, use of inherent redundancy in uncompressed data to control e r ro r s  also reduces distortion; 
and third, e r r o r s  in compressed data are expanded in reconstructed data. 

As indicated in Figure 10, the D(M, Z )  matrix and the maximum allowable average distortion 
Dmax are obtained-typically from the experimenter. The underlying philosophy of the succeeding 
tests is to find the simplest system that will achieve an appreciable reduction in rate-ratio and yet 
not exceed the specified maximum average distortion. 

Now the choices shown in the flow chart  can be explained in order (top to bottom). The first 
test  determines if the CU system will be the choice. If the CU distortion is less  than Dmax and an 
appreciable reduction in rate-ratio is achieved, then the CU system i s  chosen. If the reduction in rate- 
ratio is not appreciable and the UU system meets the Dmax requirement, then the UU system i s  
chosen, which means there is no compression or  coding in the system. If CU does not meet the 
Dmax requirement, it may be possible to code and have the CC system meet this requirement and 
yet realize an appreciable reduction in rate-ratio. In this latter case the CC system is chosen. 
However, i f  the coding does not achieve the rate-ratio reduction desired, and the UU system still 
meets the D m a x  requirement, then the UU system is chosen. Also the UU system i s  chosen if the 
coding does not meet the D m a x  requirement. As can be seen from the flow chart, the above tes ts  
and choices are made under the condition that the UU system meets the D m s x  requirement and be- 
cause of this, we always fall back on the UU system when the other systems fail either the rate- 
ratio or distortion test. 

Now, under the condition that the UU system does not meet the D m a x  requirement, then the 
CC system is Cvied. If the CC system does not meet the D m a x  requirement under these conditions, 
then none of the three systems (VU, CU, and CC) can be chosen. 

The flow chart  shows that there a re  three ways of coming to a choice of system UU, two ways 
to system CC, one way to system CU, and finally one way to none of them. In the last case none 
of the three systems meets the distortion requirements, and a new comparison must be made with 
an improved P(Z/M) or  increased D m a x .  An improvement in the P ( Z / u )  of all three systems can be 
obtained by a channel improvement, and an improvement in P(Z/M)cc  can be obtained by a code that 
corrects more e r rors .  

One may look at the above procedure as a joint minimization of R andD within given bounds, 
and this concept will be graphically illustrated below. 

Effect of the Channel - An Example 

The average distortion measures developed in  the previous chapter involved a P( Z/M) matrix 
which was determined by a number of factors. In the case of a binary-symmetric channel model, 
a function of the bit-error probability constitutes each element of p ( Z / M ) .  In the case of the 
uncompressed-uncoded (VU) system, the P(Z/M) matrix is modified to take into account the ability 
of the data user  to spot e r r o r s  using the inherent data redundancy. In the case of the 
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compressed-coded (CC) system, the P(Z/M) matrix is formed in accordance with the number of 
errors the code corrects. The following example illustrates the effect of the channel. 

Now in order to show the effect of just the channel on the average distortion, we plot the ratio 
of average distortion to word compression ratio. We also plot the average distortion in the UU 
system for no error-control on the part  of the data user. A uniform source probability distribution 
is used throughout for the plots, and the coding is as follows: for data, a (6,3) Hamming single- 

10 

1 

10-1 

10 -2  

10-3 

10-4 

 IO-^ 

BIT ERROR PROBABILITY ( p)’  BIT ERROR PROBABILITY ( p )  

Figure 11 -Ratios of distortion to word compression 
ratio for different values of  p over a BSC. 

error-correcting code for 3-bit data informa- 
tion word; and for time, a (7,4) Hamming single- 
error-correcting code for a 4-bit time 
information word. 

The compression-ratio-normalized aver- 
age distortions due to data errors ,  DC,,,hXm and 
D,,/E,, as well as those due to time errors ,  
D , , , / E ,  and D t , , / 6 ,  , are plotted in Figure l la.  
An interesting characteristic of these plots is 
that in both the CU and CC systems, the nor- 
malized distortion due to time e r r o r s  is within 
the same order of magnitude as the norma- 
lized distortion due to data errors .  The total 
normalized distortions for the CU and CC 
systems as well as the distortion for the 
UU system a r e  plotted in Figure l l b .  It 
can be seen from these plots that the rela- 
tive improvement in performance (less nor- 
malized distortion) achieved by coding depends 
on the channel e r ro r  probability, with less 
improvement at larger bit-error probabilities. 
By contrast, the relative degradation in per- 
formance due to compression D,,,/=, is in- 
dependent of the channel bit-error probability. 

The normalized values of Dtcu and D t c c  shown in Figure 11 involve, respectively, P(Z/M),~,, 
and P(Z/M) t C C  matrices that were computed for a word compression ratio of 2.5. Higher values of 
word compression ratio would increase the normalized values of D t c u  and D t c c  in Figure 11. More 
will be said about this particular effect of the word compression ratio in the next section. 

Effect of the Compression Ratio 

Since the expressions for  average distortion fo r  the compressed-uncoded (CU) and compressed- 
coded (CC) systems a r e  both functions of the word compression ratio sm, the specification of a 
maximum allowable distortion sets an upper bound on Em. On the other hand, the rate-ratio R ,  in 
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bits per uncompressed bits, is a function of 
the reciprocal of the actual average compres- 
sion ratio E,, which in turn is a function of 
am. (See Figure 9 for a plot of a,, vs. Em 
for a typical system.) So the requirement of a 
worthwhile reduction in rate-ratio sets a lower 
bound on s,. There are situations in which 
these upper and lower bounds will form a re- 
gion of acceptable values of E, .  However, in 
those cases where the upper bound falls below 
the lower bound, no value of E, is acceptable, 
and the system in question, either CU or  CC, 
will not meet the D and R specifications. This 
concept of an acceptable range of values of 
word compression ratio, rather than the idea 
that high word compression ratio is always de- 
sirable, is an important outcome of the ap- 
plication of distortion and rate-ratio meas- 
ures  to a data-compressed system. Examples 
of different situations involving acceptable 
ranges of values of the word compression 
ratio are shown by the plots in Figure 12. 

- 

The curvature of the DSCU and Dscc lines 
in Figure 12 comes about because of the double 
effect of the word compression ratio Em in 
the expressions for D , ~ ~  and Dtcc . As was 
shown in Chapter V, the computations of both 

( a )  Both CU and CC meet specifications. 

H CE, 
WORD COMPRESSION RATIO (G,) 

( b )  On ly  CC meets specifications. 

z, 
WORD COMPRESSION RATIO (E,,,) 

Neither CU nor CC meets specifications. ( c )  

Figure 12-Effect of D and R specifications on the 
range of choice of the word compression ratio. 

Dtcu and D t c c  involve a corner truncation of a matrix P ( t r / t , )  in accordance with the error-control 
property inherent in the strict  monotonicity of the time words. The amount of truncation depends 
upon the word compression ratio, viz. the higher the compression ratio, the less  truncation. This 
relationship is a linearly decreasing one for each column of P (t =/t s )  . For example, in the first column 
of P ( t , / t , ) c u ,  the number of elements set  to zero by the truncation is m - 1 - 2(E,). The sum of 
the probabilities of the truncated elements in each column is added to the main diagonal element of 

P ( t , / t , ) , ,  . The main diagonal elements P(Z = M ) t c u  of the resulting P(Z/M)t,u matrix a r e  set 
equal to the average of the main diagonal elements of P (t Jt s)  cu , and all off-diagonal elements of 
P(Z/M),cu are set  equal to the same fractional part of l - P ( z = ~ ) , ,  . So a, finally affects the 
P(z/M),,, matrix in a linear way. When we compute 
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(CR,)* will appear in the calculation, but with an increasing effect on Dtcu.  The same description 
applies to Dtcc . 

Effect of the Source Probability Distribution 

In the computation of average distortion for the systems UU, CU and CC, the probability dis- 
tribution of the source in question P(M) enters as a weighting on a summation as follows: 

- 
(where in the UU case, CR, = 1) 

Now, when the M set  and z set a r e  identical sets  of data levels (which is the usual case in space 
telemetry) we can note symmetrical characteristics in the expression 

as a function of M. Consider the M set  to be made up of two ranges of levels for a k-bit data word: 

Lower range of levels: ( 0 )  to  ( 2k-1 - 1 )  

Upper range of levels: ( P I )  to ( 2 k  - I) 

Now P ( Z , % ) = ~  has symmetry around its two diagonals since it is just the transitional word proba- 
bility of a binary-symmetric channel. The matrix P ( Z / M ) u u  also has symmetry around its two 
diagonals since it was obtained by setting a symmetrical set of diagonals parallel to the main 
diagonal in P(Z/M), ,  equal to zero, and then adding sums of deleted column elements to the main diag- 
onal. P(z/M)= 

same fractional part  of the probability of incorrect decoding and all main diagonal terms are equal. 
Finally D(M, Z) has two-diagonal symmetry since each element is the same function of the dis- 
crepancy between m i  and z . 

also has two-diagonal symmetry since all off-diagonal terms were set equal to the 

Then the product of any one of the above P ( Z / M )  matrices and the D(M, Z )  matrix will result 
in another matrix with symmetry about the two diagonals. Now this two-diagonal symmetry gives 
r ise  to symmetry between the upper and lower level ranges for the sums 
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For the binary symmetric channel model and 
the absolute difference distortion measure 
c(m, z )  = 1 z j  - m i  I , the sums 

have a symmetrical concave upward shape as 
a function of data level. With this general 
shape in mind, we can examine the effect of 
various P(M) distributions on the final value of 
average distortion. 

For the parameters indicated therein, the 
values of D / E ,  a r e  plotted* in Figure 13 for 
three different symmetrical shapes of P(M) : 
concave upward, concave downward and uni- 
form. It is to be noted that the uniform case 
also covers the cases where the P(M) distri- 
bution consists of uniform halves (P(M)lower 
and P(M)upper).  Since 

k = 3  

n = 6  

nt  = 7 

m, = 2 . 5  

p = 0.01 

SOURCE 
PROBABILITY 

b 
9 

C 

Figure 13-Ratios of distortion to word compression 
ratio for three different source probability distributions. 

any one of these distributions can be made equivalent to the uniform distribution (as far a s  D is 
concerned) by merely folding the distribution about the center of the data level range, adding the 
two P(M) values and computing D as: 

The equivalence to the uniform case is obvious since 

Figure 13 shows relatively small  differences between the D's for  the three P(M) distributions. 
As would be expected, the concave upward P(M) distribution gives the largest value of D because of 

*With the simpliking assumption that P(z/M)uu = P(z/u)cu 
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the concave upward shape of the sum 

In order to examine the effect of differently shaped P(M)'s on D as the word length k increases, 
we can say the following: Basically there a r e  two types of sums 

involved in D by nature of the structure of P(Z/M) . (The matrix D(M, Z)  is the same for all sums.) 
One type has all main diagonal elements of P(Z/M) equal to one probability, and all off-main- 
diagonal elements equal to a different probability. The distortions involved with this type of sum 
are Dc, ,  D t c c  and D t c u .  The second type has many elements in the matrix P(Z/M) with the property 
of symmetry about both diagonals. This type includes Duu and D c u  . 

For the first type above, the concave upward shape is determined by the sums of the columns 
of D(M, Z )  since the main'diagonal terms of P(Z/M) a r e  multiplied by the zeros of the main diagonal 
terms of D(M, Z). This leaves the off-diagonal element value of P(Z/M) multiplied by each non-zero 
element of D(M, Z) .  Lf we consider a k -bit data word, then there is an even number of data levels 
in M ,  and we can examine one half of the range since there is symmetry in 

as a function of M .  For the difference distortion measure of c ( m ,  Z )  = 1 z j  - m i  I , the end columns of 
D(M, Z )  a r e  each a single arithmetic progression starting with zero and ending with 2k - 1. The 
middle two columns of D(M, Z)  a r e  each made up of two arithmetic progressions, one going from 
zero to 2k-1 - 1, the other going from one to 2k-1. We can compute the ratio of the sum of an end 
column to the sum of a middle column as follows: 

Using the arithmetic progression sum formula: 

N o .  of t e r m s  
2 ~- ( f i r s t  t e r m  + l a s t  t e r m )  S u m  of t e r m s  = 

For the end column above: 
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For the middle column: 

( 1 +  2k-1) . 

Then the ratio of the sums of the end and middle columns is 

2k - 1 -- . End Sum ~ ~ _ _ _  - 
M i d d l e  S u m  - 2k- 1 

As  k becomes infinite, 

2 k - 1  - 
l i m  - l i m  
k -m k -m 

So the concave shape does not grow more exaggerated as the data word length increases. For the 
eight-level case used for the plots of Figure 13, the ratio corresponding to that given above is 

7 - End Sum 
M i d d l x m / k = 3  = 4 = 1 . 7 5  ' 

Thus the results shown in Figure 13 for D c c  , Dtcc  and Dtcu are  meaningful for cases where the data 
word is longer than 3 bits. 

Similarly, for the difference distortion measure of c ( m ,  Z )  = ( z j  - m i ) 2  we can calculate a 
similar limit a s  above. In this case the end columns of D(M, Z )  a r e  each sequences of squared 
integers starting with zero and ending with (zk  - 1)'  . The middle two columns of D(M, Z )  a re  each 
made up of two sequences of squared integers, one going from zero to ( Zk-'  - 1)'  , the other going 
from one to ( z ~ - ' )  * . 

Using the formula for the sum of squared integers with highest integer n: 

n(n + 1 )  (2n + 1 )  
6 

, sum = 

For the end column: n = 2k - 1, 

(2k - 1 )  (2k) (2k+' - 1 )  
6 S u m  = 

- 2k-1 - 1 For each middle column: n 1  = 2k-1  9 "2 - 
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Then the ratio of the bums of the end and middle columns is: 

(1- T )  1 ( 2 -  -) 1 
End Sum - 2 k  

Middle Sum - 

As k becomes infinite 

End Sum 
lim Middle Sum = . k - m  

For the eight-level system with c(m, Z )  = ( z j  - mi) * , the ratio corresponding to that given above is 

For the D~~ and D~~ sums, actual calculations show that the 3-bit cases produce sums 

which a r e  not as concave as those for Dcc, Dtcc and DtcU. This "flattening out" effect can be ex- 
plained by the fact that here the weighting imposed by P(z/M) on each D(M, Z) is a fluctuating, rather 
than a smoothly varying, function of Z. It is to be expected that the same effect will hold as k is 
increased since P(Z/M)uu and P(Z/M)cu will still contain elements that a re  word probabilities over a 
binary symmetric channel, and the values of these elements will fluctuate over any row or  column, 
with the sum in each case equal to unity. 

The conclusion to be drawn from the above analysis is that the shape of the source probability 
distribution, either P(M)uu or P(M)cu , does not have a critical effect on the average distortion. 

Graphical Representation of Tradeoffs - An Example 

In the process of choosing compression and coding schemes for space telemetry, one can 
portray the tradeoffs between data compression efficiency and data reliability by means of a rate- 
ratio and distortion diagram similar to that used by Shannon fo r  the rate distortion function (Ref- 
erence 12). In this diagram, we plot the values of R and DS for the three systems UU, CU and CC, 
for different values of bit-error probability p ,  over a binary symmetric channel. We connect the 
points corresponding to one value of p by straight lines with arrows showing the progression from 
system UU to system CU and finally to system CC. The maximum allowable distortion, as well as 
the desired overall rate-ratio, can be conveniently drawn on this diagram. Therefore, on one 
diagram, we can see the possible choices and the relative advantages or  disadvantages of these 
choices in the system design. 

52 



Such a diagram is shown in Figure 14 for the example described therein. The distortions for 
the UU system with different amounts of e r r o r  correction by the data user utilizing the natural 
redundancy in the data are shown in this figure. The compression ratios a re  calculated in the 
following way: 

In order to plot the R's and D's for the three types of systems for different channels we can 
make Rcc = 1 and proceed as follows: 

Rcc = 1 , 

n + n t  
Kc = ~ k + k , '  

then 

0 . 9  '.O t 
U 

0.7 

> 0.5 
Note, 4 

0.1 

e>2 means correct errors > 2 data levels 
e>4 means correct errors > 4 data levels 
n .  c .  means correct no errors 

(C.R.) ,  = 11.3 p = 0.001 p = 0.01 p = 0.1 

(C.R.),,,a = 1.855 

I I I I I I I 
1 0 - ~  10-2 lo- '  1 10 102 

0 I 
1 0 - ~  

AVERAGE DISTORTION ( D )  

Figure 14-Distortion comparisons for a source with 3-bit data words, 4-bit 
time words, compressed and coded with (6,3) and (7,4) codes respectively, with 
R,, = R,, = 1. 

53 

I 



For the present example, we compute the relation between 
(consider time method a , unmodified) 

and (cR>, from Chapter IV: 

~ a' 

(W, 

(Wma = 
a2 - 2a - s)( 1 + k  log'') 

2 a + s +  ~ 

Let a = 16, s = 8, andk = 3. 

Rearranging, 

Now 

= Kc = 7 = 1.855 , 

__ (a), = 1 1 . 3  . 

This means that we must attain an average word compression ratio of 11.3 in order to make the 
compressed-coded rate-ratio the same as the uncompressed-uncoded rate-ratio. Plots of R and D 

using the above numbers are shown in Figure 14. 

This example was  chosen purposely to show the effect of compression and coding on the distortion 
only-leaving the rate-ratiounchanged from the UU system rate-ratio. Now as can be seen fromthe 
figure, as the channel improves (lower p),  greater reductions in distortion can be obtained. It is inter- 
esting to note that for this particular example under poor channel conditions, coding does not accomplish 
muchdistortionreduction. At p = 0.1, DSUU < Dscc, and at p = 0.01, we still have DSUu < D s c c .  Only at 
p = 0.001 does the coding start to provide lower distortions than those obtained by using the 
natural redundancy in the data. 

Two cases of the use of natural redundancy a re  shown in Figure 14. In the first case, it is 
assumed that absolute e r r o r s  greater than 4 data levels can be detected and corrected in accord- 
ance with the matrix truncation procedure described in Chapter V. In the second case, absolute 
e r r o r s  greater than 2 levels are assumed to be detected and corrected. The resulting distortions 
for these cases can be compared to the case of no e r r o r  detection or correction in the uncompressed 
uncoded case also shown in Figure 14. 
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In order to obtain both distortion reduction and rate-ratio reduction for the example in Fig- 
Ire 14 one would increase the time between periodic time words, thus increasing the effective main 
rame size and thereby improving the relationship between Ems and E, (Figure 9). 
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Chapter VII 

CONCLUSIONS 

The aim of this research was to study the considerations involved in the combination of data 
compression and error-control coding in a space telemetry system. 

The overall conclusions a r e  that it is possible to quantitatively compare various combinations 
of compression and coding on the basis of compression ratio and data reliability, and that it is not 
always true that the replacement of natural data redundancy with coded redundancy results in 
improved system performance. 

The rate-ratio R and average distortion D ,  based on parameters used by Shannon in his rate 
distortion function, were found to constitute a useful measure of performance. The particular 
advantage of this R and D measure is that it simultaneously accounts for a variety of system param- 
eters  and conditions which a r e  sometimes treated separately in systems comparisons. Some of 
the system parameters of particular interest here were e r r o r  control by inherent data redundancy, 
e r r o r  control by a t -error-correcting code, effect of data source probability distribution, time- 
encoding cost in terms of the compression ratio, the effect of e r r o r s  in the compressed-data time 
information on the final reconstructed data, and the relative costs of e r r o r s  in space telemetry 
systems. The present research examined the above parameters in three systems: uncompressed- 
uncoded, compressed-uncoded and compressed-coded. It was shown that the R and D measure could 
provide the relative tradeoffs between data compression and overall data distortion for different 
channel e r r o r  probabilities and different source probability distributions. In the process of studying 
the interactions of the above parameters in the tradeoff analysis, some interesting related results 
were obtained as follows. 

The error-control ability of a data use r  using natural data redundancy can be approximated by 
a simple modification of the overall telemetry system transition probability matrix; this modifica- 
tion allows a comparison to the error-control ability of a t -error-correcting code. 

For a given system, the performance measures developed here can graphically portray 
the superiority of natural redundancy over coded redundancy for e r ro r  control as the channel 
degrades. 

Although it is not possible to use the facts that the entropy is decreased in ER compression 
and increased in IP compression to predict the effect of compression on the source probability 
distribution, the effect of this distribution is not critical in the average distortion performance 
measure when used with an absolute e r r o r  criterion. 
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A new time encoding scheme for  compressed data is developed here which generally is more 
efficient than the more standard methods, and for some types of data behavior is more efficient 
than sequence encoding. 

An unambiguous encoding and decoding method for sequence-coding the time information of 
the compressed data is developed here which takes advantage of the strict monotonicity of the time 
information. 

The usual expression for maximum compression ratio is found to be unsuited to the polynomial- 
predictor class of IP compressors, and a new expression for  CR is developed using the concept of 
compressible sequences from an ergodic information source. 

The dual requirements of a maximum allowable distortion and a minimum overall compression 
ratio can place bounds on the word compression ratio, and in some cases  these requirements can 
be shown to be incompatible. 

The distortion effect of e r r o r s  in the time information for a compressed system can be formu- 
lated including the error-control property of monotonicity in the time words. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland, July 11, 1966 
125-22-01-17-5 1 
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Appendix A 

Coding Matrices and Error Probabilities 
for the Hamming(l3,9) Code 

Code Characteristics 

Since many PCM satellite telemetry systems use 9-bit data words, it is useful to examine a 
lasic e r r o r  control code for this size word. The Hamming codet is a well-known linear code* 
hat can be used for single-error correction, and it provides for a useful numerical comparison of 
ypical coded to uncoded satellite telemetry systems. 

It should be noted that for the code chosen, we have as many quantized levels available (2 ’) as 
n the uncoded case. To correct a single e r r o r  in a binary-symmetric channel, the check digits 
nust be sufficient in number to check one of n + 1 happenings: if  an e r ro r  has occurred, and if so  
II which of the n positions. If the n digits are made up of k information digits and n - k check digits, 
hen 

b‘or the case of the code chosen, 

16, 1 3 + 1 .  2 13-9 

Coding Matrices 

Let us take a (13,9) Hamming code and start by writing its parity-check matrix simply as 

1 0 1 0 1 0 1 0 1 0 1 0 1 

0 1 1 0 0 1 1 0 0 1 1 0 0 

0 0 0 1 1 1 1 0 0 0 0 1 1 

0 0 0 0 0 0 0 1 1 1 1 1 1 

:The notation for coding operations used in this appendix i s  awidely used one, but s o m e  symbols inadvertently overlap with some 

‘Hamming, R. W., “Error-Detecting and Error-Correcting Codes,” B e l l  Sys. Tech. J. 29, 147-160, 1950. 
‘Peterson, W. W., “Error-Correcting Codes,” Cambridge: MIT Press ,  1961. 

already used in the above chapters. All symbols used in this appendix are defined here. 
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Reordering: 

I 

I 

= P .  
0 

I i 1 [ 0 0 0 1 1 1 1 1 j O  0 0 

1 0 1 1 0 1 0 1 / 1  0 0 

0 1 1 0 1 1 0 o i o  1 0 

1 1 1 0 0 0 1 1 1 0  0 1 

We consider the encoding operation as a matrix multiplication as follows: 

[yl = [ H ' l  [ X I  , 

where x is the uncoded word, y is the coded word, and H' is the encoding matrix. 

The decoding operation can be represented as follows: 

[wl  = [HI [ z ]  , 

where z is the input to the decoder, w is the decoded word, and H is the decoding matrix. 

The matrix H '  is related to the parity-check matrix as follows: 

r 1 

where 

P = [Al  ~ A,] . 

In the above example, A, is an identity matrix. In general, A, will be lower triangular and 
therefore can be transformed to an identity matrix by elementary row operations. 

The input to the decoder is 

where e is the error-word pattern. Then 

or  

w = H z ,  

w = H H ' x + H e .  
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One requirement of the encoding and decoding scheme is to make the output of the decoder 
identical to the input of the encoder when e = 0. Or, 

H H ’ X  = x , 

H H ’ =  I .  

Now, let u s  assume t&t 

and 

in keeping with the separable* code requirements. Then F 

leaving 

A,B, + A, = 0 , 

A,B,  = - A ,  , 

B, = - [A;’ A,] 

Normally A, is given, but since A, B, is indeterminate f rom above, we may say  that B, is unspecified. 
This lack of restriction on B, provides more flexibility in the decoder design. 

In the example we are treating, A, = I ,  so that B, = - A, = A,. Let us  choose B, = I also. Then 

for this example, 

H = H ’ ,  

*A separable code is one in which the k information digits are grouped together, separate from the group of n - k check digits. 
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where H '  is given by the following matrix: 

- 
1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

1 1 0 1 1 0 

1 0 1 1 0 1 

0 1 1 1 0 0 

0 0 0 0 1 1 

_- - - - - - - - - - - - - - - - - - - - - - - 

- 

0 0 O ~ O  0 0 0 

0 0 0 1 0  0 0 0 

0 0 0 1 0  0 0 0 

0 0 0 1 0  0 0 0 

0 0 0 1 0  0 0 0 

0 0 0 1 0  0 0 0 

1 0 0 1 0  0 0 0 

0 0 1 ) O  0 0 0 

1 0 1 1 1  0 0 0 

1 0 0 1 0  1 0 0 

1 1 1 1 0  0 0 1 

I 

I 

I 

I 

0 1 0 1 0  0 0 0 
I 

I 

- - - - - - - - - - - - - - - - - - - - - - - - - - _ _  - - - - 
I 

I 

0 1 0 
1 1 0  I 

0 1 

- 

Error Bobabilities 

For the single error-correcting code, we say that we have a decoding e r r o r  when the number 
of bits in e r r o r  going into the decoder is greater than 1, or  when the weight* of the vector e > 1. 

By comparison, in the uncoded case, a decoding e r r o r  is caused by one or more bits in e r ro r ,  or 
when the weight of e 0 .  

For the binary symmetric channel, the probability of a bit e r r o r  is P and the probability of 
no bit e r r o r  is 1 - p .  Then, the probability of no e r r o r s  in a n-bit word through the BSC (Binary 
Symmetric Channel) is 

p(no e r r o r s )  = ( 1  - p ) "  , 

and the probability of one or more e r r o r s  is 

Vu = p ( 1  or more e r r o r s )  = 1 - ( 1  - p ) "  

The probability of one e r r o r  is 

*Weight is taken here to-mean the number of 'ones' in the binary vector word. 
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and the probability of more than one e r r o r  is 1 

p(more than 1 error) 
lo-' 

= p(1 or more errors) -p(1 error) , - 
> 
v 

or  

Vc = p(more than 1 error) 

2 10-2 
B 
n 

D 

V 
,- 1 0 - ~  

Z 10-4 
g Now we can compare the coded (Vc) toun-  - 

coded (Vu) performance of the BSC for different 
values of p with the (13,9) code and the straight 
9-bit code. Mathematically, the probability of 
incorrect decoding becomes unity as P approaches 
unity for both the coded and uncoded case. How- 
ever, if  we have a priori  knowledge of p, and if P 
is in the range 0.5 < p < 1, we can change the de- 
coding scheme so that an 0 is decoded as a 1 and 

c 
2 
LL 

10-6 

10-7 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

I I I I I I I 
a 1 as an 0. With this scheme, the probability of 1 0 - ~  1 0 - ~  io-' 1 

incorrect decoding decreases as p -  1. Both the 
mathematical and modified decoding e r r o r  Prob- 
ability expressions are plotted in Figure A l .  

BIT ERROR PROBABILITY ( p)  

Figure A1 -Comparison of a 9-bit binarycode to a (13,9) 
Hamming code over a binary symmetric channel. 
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Appendix B 

Example of the Minimization 
of a Rate Distortion Function 

In his paper,* Shannon outlined a method for finding the rate distortion function R(D) for a 
uniform discrete source and a special class of distortion-measure matrices. This method is de- 
scribed below and two particular distortion measure matrices which are members of the above 
class are used to  con-ipute and plot R(D) vs. D curves. 

The minimization of R(D) subject to the constraints: (1) a given D ,  and (2) 

proceeds as follows: 

We assume P(M) = l / M d ,  and 

M z 

We also assume that the rows and columns of [D(M, Z)] are permutations of the same set of D(M, Z )  

values (a total of M, values) and that all ( M ,  Z )  pairs having the same D(M, Z )  value are assigned a 
P(Z/M) equal to the average of the p ( Z / M ) ’ s  for all of them. We are thereby assuming a symmetric 
channel. Call this average conditional probability P,. This averaging is part  of the minimizing 

*Shannon, C. E., “Coding Theorems for Discrete Sources with a Fidelity Criterion,” In: “Information and Decision Processes,” 
(Robert E. Macho1 ed.) pp. 93-126, New York: McGraw-Hill, 1960. 
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process on R(D) since it increases* H(M/Z) . Under these conditions, 

But 

Also, from the assumed probability assignment, 

P(Z)  P(Z/M)P(M) = P(Z/M) 
M M 

But 

Then 

1 
P(Z) = - = P(M) , 

Md 

P(M/Z) = P(Z/M) = P, , 

And 

Minimizing R(D) by the method of Lagrangian multipliers, we set up the expression 

‘Shannon, C .  E., “Coding Theorems for Discrete Sources with a FideIity Criterion,” In: “Information and Decision Processes,” 
(Robert E. Machol, ed.) pp. 93-126, New York: McGraw-Hill, 1960. 
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I 

By the above relations: 

where D(M, Z )  has been replaced by D(Z) since the assumed transitional probability matrix arrange- 
ment defines a D(M, Z )  for each P, .  For R(D) to reach a minimum, dU/dP, = 0 ,  and differentiating 
each term in U separately (letting log, e =. h 

logMd) = 0 , 

Then 

or 

x ( h + l o g P , )  + Z p D ( Z )  + cp = 0 , 
2 2 z 

We examine the solution to the above equation when all bracketed terms are zero, or: 

( h + l o g P , )  + p D ( Z ) + p  = 0 . 
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Solving for P,: 

Since /L is a variable multiplier, let 

For the constraint 

C P Z  = 1 ,  
z 

let 

Then 

Substitute this expression for Pz in D and R(D): 
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z 
= logM, + P, log P, f log F - ( log F) 

= log M, f Pz (log P, - log F )  + l o g F  , c Z 

= log M, - log 2-pD(') - p P, D ( Z )  , 
Z Z 

For a given data source characterized by a set  of equal probabilities P(M), and a distortion 
measure matrix which is square and in which each row and column is a permutation of the same 
set  of numbers, we have found a formula for the minimum source rate R(D) (in bits/word) that will  
insure the average distortion to be less than o r  equal to some value D. In effect, for each value of 
D we compute a different set  of minimizing transitional probabilities Pz and then solve for R(D). 
In such a way we can plot the curve of R(D) vs. D. The parameter p fixes the value of D, and some 
limits a r e  of interest. Since the M se t  is identical to the Z set: when p = 0 ,  

D(Z) ; R(D) = 0 ; 
D = D,ax Md 

and when P -  m ,  

D - Dmin ; R(D) - logMd . 
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Consider the following distortion measure matrices for an 8-level system: 

2 

3 

4 4  
[D,(M, Z>] = 

1 2 3 4  5 6 7 

2 1 0 1 2 3 4  3 

3 2 1 0 1 2 3 4  

3 2 1 0 1 2 3 

1 2 3 4  3 2 1 " 1 " ,  1 0 1 2 3 4 3 2  

5 

6 

7 

3 4  3 2 1 0 1 2 

2 3 4 3 2 1 0 1 

1 2 3 4 3 2 1 0 

0 1 2 3 4 5 6 7 

16/7 16/7 16/7 16/7 16/7 16/7 16/7 

0 16/7 16/7 16/7 16/7 16/7 16/7 

16/7 0 16/7 16/7 16/7 16/7 16/7 

16/7 16/7 0 16/7 161'7 16/7 16/7 

16/7 16/7 16/7 0 16/7 16/7 16/7 

16/7 16/7 16/7 16/7 0 16/7 16/7 16/7 

16/7 16/7 16/7 161'7 16/7 16/7 0 16/7 

16/7 16/7 16/7 16/7 16/7 16/7 16/7 0 

[D& z,] = 

Figure B1 -Rate distortion functions, R(D), for a uniform probability, 
8-level source with D(M, Z)'s as shown. 
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Now these matrices satisfy the above requirement of permutable row and column elements, 
and they both give r i se  to the same value of Dmax = 2. For each D(M, Z) matrix we compute D and 
R(D) for values of the dummy variable p and plot these rate distortion functions as shown in 
Figure B1. 
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Appendix C 

P ( X )  
In this case we have a very typical space data 

-: xpe r ience -that of limiting, whether intentional or 
1 

inintentional. In either case, we can express two- 
eve1 limiting as: 

Examples of  Entropy Reducing Compression 
Effects on First-Order Probability 

I 
I I 

I 

I I 
I 1 

---- I 

I I 

The following examples use two kinds of non-linear data transformations that are typical in 
zpace telemetry: limiting, and logarithmic amplification. 

P ( Y )  

x 3  - x2 
x, - X,' 

y2 - Y I  

x < x l ;  x > x 4 .  P(X) = 0 , 

I s  shown in Figure C1, after the limiting at levels 
xz and x3 (where x2  > x1 ; x3 < x4 ) takes place, the 

! 1 
I I 
I I 

I I 
I 

rhe effect of this non-linear transformation on the 
mobability density function of the data, x ,  is shown 
n Figure C1. The original probability density is 
-7ectangular and can be expressed as: 

I I  I I 
X I  x z  x 3  x 4  X 

x 2  - X I  

--wo features: a rectangular shape within the limit F~~~~~ c1 -Entropy reducer two-level 
evels, and an impulse shape at each limiting level. l imiter on a uniform probability densityfunction. 
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Mathematically, 

Example 2: Non-Uniform Density: Two- 
Level Limiter 

Consider a source with probability density 
p(x) given as follows: 

x1 < x < xg 
1 

P(X) = 4(x3  - x l ) .  

x 3 < x < x 4 .  
1 

p(x) = 
2 (x4 - x3) ' 

p(x) = - 1 x4 < x < X 6  
4 ( X 6  - x4) 

and a two-level limiter, y = f ( x ) .  Both p(x)  

and f ( x )  are shown in Figure C2. 

- " x ' x 2 .  Y Y1 = kX2 ' 

p ( x )  I 

y = k x ,  x 2  < x < x 5 .  

1 The resulting probability density function of Y ,  

p(y) is given by: 

Figure C2-Entropy reducer operation: two-level I imiter 
on a particular non-uniform probability density function. 
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x6 - x S  
P(Y> = 4 ( X 6  -x4)Po(Y 7 4 )  ’ y = y4 

This function is also shown in Figure C2. 

Example 3: Logarithmic Amplification 

This transformation, although it has a math- 
ematical inverse, qualifies as an ER compression 
operation since in a typical space application it 
reduces fidelity, and cannot be reversed toobtain xz - 
the same precision as that of the originalsource. 
We may express this transformation simply as - 3 3  

x1 1 xz I 
I I 

X 1 ( X 5 X 2 .  I I 
I I 
I I 
I I 
I I I 

y = l o g x  , 

y = 0 ,  x < x l ;  x > x 2 .  

I 
I 
I 
I 
I 

XZ 

In order to determine the effect of this transfor- 
mation on a uniform probability-density source, 
we proceed in the usual way. 

The probability that x lies in ( x o ,  xo + dx) must 
equal the probability that Y lies in ( y o ,  yo  + dy) ,  

or 

or  

In our case 
Y ! 

Figure C3-Entropy reducer operation: logarithmic trans- 
formation on a uniform probability density function. 
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then 

or 

A sketch of this resulting probability density function is shown in Figure C3. 
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