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Executive Summary 
 

In October, 2015 Kaspersky released an analysis of a family of malware they dubbed 

“HDRoot” on their Securelist blog. It was an installment in their ongoing series on the 

WINNTI group, known for targeting gaming companies in their APT campaigns. The 

Securelist blog was dismissive of the HDRoot bootkit and called out a number of 

mistakes they claimed the authors made, which brought it to be the focus of their 

ridicule. 

 

The bootkit in question uses two stolen signing certificates and is capable of running 

without problem on any Windows system that was released in the last 16 years, from 

Windows 2000 to Windows 10. The one limitation is that it will only run as an MBR 

bootkit and will not work on systems using UEFI. It contains the ability to install any 

backdoor payload to be launched in the context of a system service when Windows 

starts up on both 32 and 64-bit systems. It also does a fairly good job of concealing 

the actual bootkit code, only failing to remove the backdoor after running it at boot. 

This likely a conscious choice made by the authors to have the backdoor responsible 

for removing itself, and not an oversight. 

 

HDRoot represents a serious commitment in time and effort to develop, and likely 

has been in use or development since at least 2006. The sample analyzed here dates 

to sometime in 2012 or 2013, and is the same sample Kasperky reports to have 

analyzed in their debut post on HDRoot. However, all evidence points to Kaspersky 

doing their analysis with a 2006 sample, criticizing problems in the malware that are 

not actually present. Additionally, they provide no hashes or other information on the 

actual sample they used. 

 

The samples I analyzed in this report are detailed in appendix 1 and hashes are 

provided in appendix 2. They can be found in the following git repo:  

 

https://github.com/williamshowalter/hdroot-bootkit-analysis 

  

https://github.com/williamshowalter/hdroot-bootkit-analysis
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Original Filename:  net.exe 
Produce Name:  Microsoft Windows Operating System 

Product Version:  6.1.7600.16385 
Time Stamp:   2012/08/06 13:12:39 UTC 

Retrieved from malwr [1]. 
 

This report 

My analysis of this HDRoot sample began as an exercise to become more familiar 

with low-level malware and the techniques required for reverse engineering them. I 

had no prior knowledge of the WINNTI group who Kaspersky attributes this malware 

to, nor do I have any other samples beyond those associated with the dropper and 

bootkit analyzed here. The dropper is capable of installing any PE executable as the 

payload for the bootkit, but does not come bundled with any default payloads. As 

such, this report offers no insight into the various payloads used by the authors. For 

information on the other malware associated with the WINNTI group, see Trend Micro 

or Kaspersky’s reports on the group [2] [3]. This report does, however, offer a very 

in-depth look into the technical workings of the HDRoot bootkit and its components.  

 

I also address a number of technical inaccuracies and misrepresentations from 

Kaspersky’s SecureList post of October 2015, “I am HDRoot! Part 1,” which is the 

only research on this sample to be published before my own [4]. Kaspersky’s research 

was very helpful getting started, but I soon discovered that their analysis was not 

actually performed using the sample identified by MD5 in the article and thus could 

not be relied upon. I believe this to be the reason for many of their criticisms for 

HDRoot, which they call “quite conspicuous,” and, “not what you expect from such a 

serious APT actor.” The sample analyzed here is not free of criticisms, but none of 

the problems addressed by Kaspersky appear to be valid on the sample they claim 

to have analyzed. 

 

I also freely acknowledge that the level of detail that this report goes into is 

impractical for almost all incident response purposes, and that this venture was 

largely done for my own education and curiosity. 

Overview 
The malware examined here can be broken into several stages. The 64-bit dropper, 

which was signed with a stolen certificate that has since been revoked, is the first 

component that is executed. The dropper installs the bootkit to the hard drive along 

with a backdoor executable to be run on subsequent boots. The backdoor is supplied 

as a parameter to the dropper and can be any Win32 or Win64 executable.  
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Upon boot, the computer will execute the maliciously installed MBR, which loads a 

subsequent component that I named the “verifier”. It is a single sector block that 

verifies that the rest of the bootkit and the backdoor are intact before running them. 

The bulk of the bootkit’s work is done by the next component, rkImage. The name 

rkImage actually comes from the interface of the dropper, which explicitly refers to 

it when installing the bootkit. rkImage works by manually reading the file system 

from the disk in order to write the backdoor (the generic term referring to the 

payload) into the filesystem and redirect a Windows system service to launch the 

backdoor.  

 

When rkImage is finished it transfers execution back to the original, non-infected 

MBR and allows Windows to boot normally. The booting system will run the backdoor 

instead of the replaced system service, but will then restore and start the legitimate 

service after the backdoor has ran, hiding the fact it was ever replaced.  

Dropper 
The dropper is designed to disguise itself as the Windows system utility net.exe. The 

properties on the executable attempt to mirror the settings found on a Windows 7 

version of the utility, reporting it to a Microsoft program. When run without 

parameters, HDRoot shows the options menu as if it were net.exe. That is where the 

similarities end, however. 

 

 
Figure 1: Dropper disguising itself as net.exe 

The dropper executable, while masquerading as the Microsoft net command, has 

been signed with a digital certificate belonging to Guangzhou YuanLuo Technology 

Co, Ltd, a firm based in the city of Guangzhou, China who had their signing certificate 

stolen by the WINNTI group. The certificate has since been revoked, and, if the 

signing time and compilation dates on the executable are to be believed, it was signed 

in 2013 almost a year after this version was initially compiled.  
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Figure 2: Dropper's revoked certificate 

When run with any of the legitimate net command parameters or with unrecognized 

parameters, no output is given. The only commands that provide output are the valid 

HDRoot commands programmed by the authors. Kaspersky, by analyzing an older 

sample from 2006, was able to get a “help” output, rather than the “net” output, 

which contained a list of commands for that version. Most of these commands still 

worked on the newer sample. All of the commands were five or less characters in 

length, and even short words like install were abbreviated to “inst”. Since the 

Kaspersky command listing was half a decade older than this sample, and that some 

of the commands from their listing were no longer present, I wrote a simple, and 

very slow, fuzzer to attempt to check all possible commands of five or less characters. 

Given the length of the other commands and that input appears to be case 

insensitive, this appears to be a sensible approach. The code for the fuzzer can be 

found in the supplemental files detailed in appendix 1.1. Screenshots for each 

command can be found in appendix 3.1, as well. No additional commands to the ones 

Kaspersky detailed were found by the fuzzer, and the table below is the known list of 

commands. 
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Command Description 

check Checks for the presence of the bootkit and the integrity if 

present. 

clean Removes the bootkit. 

inst <Backdoor> Installs the bootkit 

info <Backdoor> Shows information about the checksums and requirements 

for an executable if it was installed as the backdoor. 

Table 1: HDRoot dropper commands 

 
Figure 3: inst command output 
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VMProtect 

A notable hindrance to reversing the dropper is that it was packed using VMProtect. 

Unlike most packers, which decompress and then jump to the original executable 

code, VMProtect converts the x86 opcodes into an automatically generated language 

of bytecodes to be interpreted in its own emulator. Attempting to statically analyze 

the sample would prove an arduous task. There have been a few unpacking plugins 

for Ollydbg written for certain versions of VMProtect, but these are generally found 

in forum posts and are not well maintained. I believe this to be the reason Kaspersky 

did the bulk of their analysis with a different sample that was almost, but not quite, 

functionally the same. Not wanting to spend my time tackling VMProtect either, I 

instead used a number of dynamic analysis techniques.  

 
Figure 4: Graph overview of VMProtect's emulator. Not fun. 

DEBUGFILE.sys - A signed kernel driver 

At the time the dropper installs the bootkit, no changes to the filesystem or the 

registry are seen between snapshots taken before and after. I took the approach of 

running the dropper in a continuous loop in a virtual machine, suspending the VM, 

and analyzing the resulting memory image. Performing memory capture from outside 

the VM appeared to be the best option because there were a number of anti-

debugging techniques employed along with the anti-disassembly. Using Volatility, I 

discovered two more PE files that were extracted inside the process, but none of the 

four clear text resources Kaspersky claimed to have extracted from a memory dump, 

providing further proof that they did their analysis on a different sample than is listed 

in their blog post. The two PE files I found were kernel drivers, one 32-bit and one 
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64-bit. The 64-bit driver is signed, as is required by 64-bit versions of Windows, using 

yet another stolen certificate, while the 32-bit driver is not signed. This certificate 

belongs to a South Korean video game company, Neowiz. The certificate, unlike the 

one for the dropper, has yet to be revoked (see Figure 6). 

 

The use of the kernel drivers is fairly straightforward. Without kernel access there is 

no way for malware to write directly to the physical disk as there are no Windows API 

calls available to userland processes for doing so. The dropper writes out the 

appropriate driver to C:\Windows\system32\Drivers\DEBUGFILE.sys, and then 

creates a service for it. This shows up in the memory image as a handle to the registry 

key HKLM\System\ControlSet001\services\DEBUGFILE. The service runs and the 

driver \Driver\DEBUGFILE is created. DEBUGFILE.sys is also deleted from the disk.  

The driver is used by the dropper to proxy its direct access to the physical disk. A 

number of things are done in this process. The original MBR is backed up and then 

overwritten by the new bootkit MBR, and then weakly encrypted components are 

written to disk. Near the beginning of the disk is the component I’ve named the 

verifier, followed by two identical copies of the original MBR. In another section of 

the disk is the main component of the bootkit, rkImage, followed by the backdoor 

that was installed. 

 
Figure 5: Physical Disk Layout written by DEBUGFILE.sys 

One peculiar thing the malware does is install a second copy of the rkImage and 

backdoor files. This copy is encrypted identically to the first, and positioned such that 

it ends exactly 2063 sectors from the end of the drive. What makes this strange is 

that nothing in the bootkit will ever transfer execution to the second copy, and that 

the second copy is only installed if the drive has at least 30% free space. Kaspersky 

erroneously identified this behavior as only installing if the disk has greater than 30% 

free space, rather than installing a redundant copy of itself. As can be seen in a 

Windows 7 screenshot from the appendix 1.3 files, the bootkit is perfectly capable of 

installing with less than 30% free space. The only guess I make as to the purpose of 

this second copy is for the indented backdoor to be able to identify if one of the copies 

has been modified after it starts. The dropper will also detect a modified copy. 
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Figure 6: DEBUGFILE.sys 

MBR 
For all x86 systems not running UEFI, the boot process starts with the BIOS loading 

the Master Boot Record into memory and jumping to it. By convention, the BIOS 

loads the MBR to the physical memory address of 0x7C00. Another convention that 

many MBRs follow is to copy themselves, a single 0x200 sized sector, to the address 

0x600 and then transfer execution to this location. The HDRoot bootkit is no 

exception. This is partly because the only code it actually changes in the original MBR 

is the jump address and the code jumped to. Most of the original MBR and partition 

table information is intact. 

 

A normal MBR would look at the partition table to find the partition with the boot flag 

set, and then load the volume boot sector of that partition and transfer execution. 

HDRoot’s MBR works similarly by calling interrupt 13 to read two sectors from disk 

into memory at the address 0x7A00 (through 0x7DFF). These are the verifier and the 

original MBR, which now has been loaded into the location where the MBR would have 

originally loaded on a non-infected system. The bootkit does not store these on disk 

in clear text, however. They are written to disk having been XOR’d with the byte 

value 0x76. Appendix 1.2 has a C utility that can be used to decrypt the values. A 

function at offset MBR+0x88 performs these read and decrypt operations, copies the 

partition table from the infected MBR to the original (incase the victim has changed 

any partitions since the bootkit was installed), and then transfers execution to the 

verifier. 
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Figure 7: Address layout of memory loaded before rkImage 

 
Figure 8: Infected MBR code to load, decrypt verifier 
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Verifier 
The job of the verifier is to make sure that the bootkit is intact and that a specific set 

of criteria are met before allowing the bootkit to run. If any of these criteria fail the 

verifier will transfer the boot process to the original MBR, now at 0x7C00, without 

the bootkit executing. This mechanism helps prevent bricking the victim machines in 

the event that one or more of the hidden sectors are corrupted or overwritten.  

 

The first criteria in the verifier process is a check for whether the alt key is pressed 

on the keyboard. If the alt key is pressed, the bootkit launch will be aborted. The 

verifier then checks for a value at 0x7A08 (+0x8 from the verifier start address). If 

the value is null, the startup is aborted. This value is the drive identifier of where 

rkImage and the backdoor are stored. This was 0x80 in all the systems I tested on, 

which indicates drive 0. The dropper sets this value, and the subsequent bytes, before 

writing them to disk. This ensures that the bootkit was properly setup during install, 

and allows for the bootkit to be stored on a separate disk from the system disk. Table 

2 shows a breakdown of the rkImage information stored in the verifier.  

 

Address Contents 

0x7A02 0x55AA, not used, signals start of rkImage location data. 

0x7A04 CRC16 value for rkImage+Backdoor.  

0x7A06 Sector count for rkImage+Backdoor. 

0x7A08 Drive number 

0x7A09 Sector where rkImage+Backdoor starts. 

0x7A0D Next 0x55AA value, if present 

… … 

Table 2: rkImage location information in verifier 

The third and final check done by the verifier is computing a CRC16 value on the 

encrypted contents of rkImage and the backdoor (still only encrypted with an XOR 

0x76). It compares the results to the saved CRC, and if they do not match it aborts. 

Otherwise it reads the entire rkImage, but not the backdoor, to 0x10000, and then 

decrypts both. The last step is to copy the size and location information to the start 

of rkImage, so it can locate the backdoor for installing. 

rkImage 
A significant component to reverse engineering the functionality of this bootkit was 

becoming familiar with the mechanics of low-level, pre-OS x86. For anyone looking 

to get into this I would highly recommend the Intermediate Intel x86 videos on 

OpenSecurityTraining.info [5]. Even just following the transition from the verifier to 

rkImage requires some understanding, as the processor is still in 16-bit real mode at 
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this time and a far jump is being performed, crossing a barrier between segments. 

This seems like a trivial thing until you find out that GDB, even operating in 8086 

mode remotely debugging the bootkit running in QEMU, has absolutely zero 

understanding of segment addressing and completely falls apart trying to set 

breakpoints at any address higher than 0xFFFF. In retrospect Bochs might have been 

a better choice for this over QEMU, but not being familiar with it either I struggled 

through with QEMU, learning as I went and performing most my analysis indirectly, 

either statically or dynamically through the clues left behind by the bootkit’s actions.  

 

The first task rkImage sets itself to, like any sane code booting up, is to transfer itself 

from real mode to protected mode, and then to 32-bit mode. In order to enable 

protected mode, the Global Descriptor Table must be setup and loaded. This is 

actually fairly unimportant to the operation of the malware but understanding it 

helped getting the disassembly properly setup in IDA to assist with the process. I will 

not get into the details and the contents of the segment descriptors, but I will state 

that I found the clearest explanations and diagrams in the AMD Architecture 

Programmer’s Manual, Vol 2., for system programming [6]. Something that caused 

confusion was that most diagrams detailing the structure of segment descriptors (the 

entries in the Global Descriptor Table) are for the descriptors in 64-bit mode, since 

the 32-bit descriptors, called legacy segment descriptors in AMD’s documentation, 

have a different structure. The work done reassembling the GDT can be seen in the 

rkImage IDB file in appendix 1.4.  

 

Once setup in a 32-bit environment, rkImage decrypts two sections in itself, the first 

containing a 32-bit DLL, and the second containing a 64-bit DLL. These are used to 

launch the backdoor from a Windows system service upon Windows booting. Each 

DLL has a 4-byte XOR key. The data is stored in rkImage in the format: 4-byte key, 

4-byte length, encrypted PE file contents. The 32-bit DLL and its data are located at 

an offset of 0x4BE0 and the 64-bit values are at 0x6DE8, immediately after the 

previous DLL. These DLLs as packaged contain the registry path to the LanmanServer 

service DLL. The version of rkImage in this sample, installed by the 64-bit dropper, 

overwrites the LanmanServer information with the paths and values for the Schedule 

service. This allows for changing the target service without the need to recompile the 

DLLs embedded in rkImage. Kaspersky's observations that there are a number of 

different services that different samples have targeted supports this. 

 

The backdoor executable is then loaded into memory and decrypted with the 0x76 

XOR operation. At the end of this preparation work of loading, decrypting, and 

copying data, rkImage calls a function that I mark in my disassembly as being named 

DETERMINE_VERSION_NT_32_64_BIT. This is the function that determines what 

Windows version is installed, what malicious DLL to use, and where to install it. Since 
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the malware will attempt to boot in any Windows version from Windows 2000 to 

Windows 10, there is a considerable nest of switch and if statements happening here. 

It first checks whether there is a “\winnt” directory, which is present in Windows 

2000, and if "\winnt" is not found it will check in “\windows\system32\kernel32.dll”. 

The check for kernel32.dll prevents the bootkit from continuing install on Windows 

98 and lower systems, as kernel32.dll was stored in "\windows\system\kernel32.dll". 

If kernel32.dll is found it will check for “\users” and “\documents and settings” to 

determine if it is XP/2003, or Vista or newer. If it is not able to locate any of these, 

it fails out of the switch statement and no bootkit is installed. 

 

If the directory selected was not “\winnt”, it will check for “\windows\syswow64” and 

set a variable indicating if the system is 64-bit. This is used later when choosing 

which DLL to install (which means it is even 64-bit Windows XP / Server 2003 

compatible). Then for each of the three operating system categories it will write the 

backdoor to %TEMP%\Explorer.exe (wherever %TEMP% is located for that version 

of Windows), and iterate through a list of files. If the file is present it will copy the 

appropriate DLL into the beginning of the file, overwriting the contents already there. 

The files to be overwritten in question are shown in Table 3, and appear to be carefully 

selected to cause the least potential problems, with all but one of them being for 

different architectures than the running host. 

 

Windows Version Path 

Windows 2000 \winnt\help\access.hlp 

Windows 2000 \winnt\system\OLESVR.DLL 

Windows XP or 2003 \windows\twain.dll 

Windows XP or 2003 \windows\system\OLESVR.DLL 

Windows Vista/2008 + \windows\syswow64\C_932.NLS 

Windows Vista/2008 + \windows\system\OLESVR.DLL 

Windows Vista/2008 + \windows\syswow64\kmddsp.tsp 

Windows Vista/2008 + \windows\syswow64\Irclass.dll 

Table 3:  Service DLL Paths by OS, in order attempted 

Windows 2000 will attempt to first overwrite the access.hlp file, which, if anyone has 

not already disabled the help popups, may cause errors. Similarly, the 16-bit 

OLESVR.DLL file is overwritten if access.hlp does not exist. This will only cause issues 

if it is used by a 16-bit application, as 32-bit applications will be using the 

system32\OLESVR32.DLL file. Windows XP will attempt to overwrite the 16-bit 

version of the twain.dll library for scanners (even using old scanners, twain32.dll 

should be used), and then the 16-bit OLESVR.DLL if the twain.dll is not found.  
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In 64-bit Windows Vista and newer systems, the default target is C_932.NLS, which 

is a 32-bit National Language Support file for the Japanese language [7]. This 

assumes that authors did not plan on infecting targets running 32-bit applications in 

Japanese, as this would cause issues. The only file that will be tried for 32-bit 

Windows Vista and newer is the same 16-bit OLESVR.DLL. This will only cause issues 

for applications run in 16-bit compatibility/emulation mode, as they are not natively 

supported by Vista and newer, and is therefore unlikely to affect most targets. The 

other two potential target files, which are also unlikely to be used, are both 16-bit 

DLLs found in the syswow64 (32-bit compatibility) directory. They are actually only 

labeled as compatible with Windows Server 2003 and earlier operating systems on 

MSDN, but are for some reason still included in the syswow64 directory. Kmddsp.tsp 

is a “kernel mode device driver” for “telephony service provider” network drivers, and 

IRClass.dll is an Infrared Class Coinstaller [8]. Neither should ever be used on a 64-

bit system and therefore won’t cause any issues if overwritten. 

 

Once the DLL has been written to the appropriate file, the registry is patched to 

overwrite the Schedule service’s DLL path with the path to the overwritten file. This 

should be approximately: 

HKLM\SYSTEM\CurrentControlSet\Services\Schedule\Parameters\ServiceDLL. 

 

rkImage will then return to 16-bit real mode, handing execution back to the original 

MBR at 0x7C00, allowing the boot process to continue and Windows to load. It is 

worth noting that since Windows NT also used the C:\WINNT directory, it will match 

the first section of the bootkit which chooses the files to write the DLL into. However, 

since Windows did not introduce the svchost.exe process until Windows 2000, 

services did not have a Parameters sub-key or a ServiceDLL value in Windows NT. 

As such, if installed on Windows NT the bootkit wouldn't be able to locate the registry 

key for editing, and would fail out of the installation process. Additionally, it is likely 

that 32-bit versions of the dropper would not allow the install to a Windows 2000 

system. 

 



Page 15  A Universal Windows Bootkit 

 
Figure 9: Diagram showing the out-of-OS boot process. 

Schedule service DLL 
The final component of the bootkit, responsible for running the backdoor within 

Windows, is the DLL that replaced the Schedule service’s DLL. The bootkit did not 

change the rest of the registry key, so it will be loaded into a svchost.exe executable. 

The Schedule service is part of the NetworkService group, so the DLL will be loaded 

into the svchost.exe containing the other services for the group, and a new thread 

will be spawned to run the ServiceMain for that DLL. Additionally, as happens every 

time a DLL is loaded, the DLL’s entry point (DLLMain, in this case) is called by the 

Windows loader in another thread. 

 

The HDRoot authors chose to use the DLLMain function to start the backdoor process 

and ServiceMain to revert the service registry entry back to the original path. The 

DLLMain thread creates another thread running the function I identified in my 

disassembly as SpawnBackdoorThread. That thread creates a process running the 

backdoor, which rkImage saved to %TEMP%\Explorer.exe. It then sets a global 

variable in the DLL to signal that it successfully launched the backdoor, and suspends 

itself before continuing. 
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Simultaneously the ServiceMain thread reverts the registry, and waits for the 

backdoor to start, sleeping and periodically checking for the flag to be set. After the 

flag is set it resumes the SpawnBackdoor thread, and then exits. In turn, the 

SpawnBackdoor thread unloads the DLL from memory and then exits itself. 

 
Figure 10: Flow of the malicious Schedule service 

This has the effect of both threads exiting and the DLL unloading at almost the exact 

same time, guaranteeing that the service manager will have to restart the service, 

causing the legitimate service DLL to be loaded and run from the patched registry 

entry. In all my tests of this sample, not once did the real Windows service ever fail 

to start after running the bootkit. This is completely contrary to Kaspersky’s claim 

that the bootkit breaks the service and that all the victims must just not have cared 

or noticed that the service failed to start. 

Conclusions 
My analysis of the HDRoot malware shows Kaspersky’s claims that this bootkit was 

written sloppily is patently wrong. It also leads me to no other conclusion than that 

they did their entire analysis with and presented research on a ten-year-old sample, 

passing it off as a sample from 2012 that had been in modern use. It also shows that 

the authors, who have been designated as the WINNTI group, have been around for 

a significant period of time, dating back to at least 2006 if Kaspersky’s sample is to 

be believed.  
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The one stage of the attack in which the bootkit did not make good use of hiding 

techniques was in covering its tracks for the service and backdoor executables. Both 

the modified file hosting the DLL (C:\Windows\syswow64\C_932.NLS in most my 

tests) and the backdoor in %TEMP%\Explorer.exe were left intact on the file system. 

However, it is likely that a sophisticated backdoor run by the bootkit would know to 

remove these two pieces of evidence after starting itself, and it may just have been 

a choice of segregation of duties made by the authors. 

 

Another criticism that can be made is the extremely weak use of encryption. The XOR 

cipher is little more than obfuscation and was trivial to figure out even just looking 

at the encrypted sectors on the disk. It can be argued, however, that since the entire 

contents of the bootkit is code that will be decrypted before it can be run, there is 

little point in hiding it from anything but simple scans, as it could just be captured 

from memory by analysts. To that end, the simple cipher serves its purpose of not 

matching the signatures for executables or of a boot sector while on disk.  

 

Overall I was impressed with the level of detail that went into making this malware 

which is capable of installing itself on any Windows version, 32 or 64-bit, dating back 

to Windows 2000, with the exception of newer installs using UEFI. The lack of UEFI 

support is unlikely to be an issue when targeting server systems, however, especially 

with virtualization on the rise - very few virtual environments are virtualizing UEFI in 

their guests. The small touches, such as anticipating that the drive may have been 

repartitioned, are particularly impressive. Clearly significant thought and work went 

into the creation of this bootkit, and it is a mistake to dismiss it as amateur. While 

different versions of the dropper are geared toward different targets (the observed 

sample here targets the Schedule service on 64-bit systems), the overall framework 

is very flexible. The choices made in the dropper or when compiling the dropper are 

able to be tuned toward the target, choosing a service compatible with that version 

of Windows. This makes narrowing down the traits of the bootkit from which services 

they target to be very difficult, as it is trivial for the authors to change their target. 
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Appendix 1. Index of Supplemental File Repository 
Files are available at: 

https://github.com/williamshowalter/hdroot-bootkit-analysis 

 

1.1 Binary Files – hdroot-bootkit-analysis/binaries 

File Description 

C_932.NLS  64-bit bootkit service DLL sample, as 

installed 

driver32.sys.bin 32-bit kernel driver used by the dropper to 

write directly to the physical disk. 

driver64.sys.bin 64-bit signed kernel driver used by the 

dropper to write directly to the physical 

disk. 

dropper64.bin 64-bit dropper sample that installs bootkit 

mbr-clean.bin MBR before modification, for comparison. 

mbr-inst.bin MBR that has been modified after install. 

pe1_decrypted.bin 32-bit bootkit service DLL sample, 

extracted and decrypted from decrypted 

rkimage 

pe1_encrypted_b61e1dcf.bin 32-bit bootkit service DLL sample, 

extracted in original form from decrypted 

rkimage. XOR key is 0xb64e1dcf. 

https://github.com/williamshowalter/hdroot-bootkit-analysis
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pe2_decrypted.bin 64-bit bootkit service DLL sample, 

extracted and decrypted from decrypted 

rkimage 

pe2_encrypted_b61e8d81.bin 64-bit bootkit service DLL sample, 

extracted in original form from decrypted 

rkimage. XOR key is 0xb64e8d81. 

rkimage_decrypted.bin rkImage sample, extracted from harddrive 

and decrypted. 

rkimage_encrypted.bin rkImage sample, extracted from harddrive 

and decrypted. 

rkimage_backdoor_decrypted.bin rkImage sample with example backdoor, 

extracted from harddrive and decrypted. 

rkimage_backdoor_encrypted.bin rkImage sample with example backdoor, 

extracted from harddrive. Obfuscated with 

0x76 byte-XOR.  

verifier_win7_decrypted.bin verifier sample, containing the verifier 

sector followed by two copies of the original 

mbr sector. 

verifier_win7_encrypted.bin Verifier sample, containing the verifier 

sector followed by two copies of the original 

mbr sector. Obfuscated with 0x76 byte-

XOR.  

verifier_win10_decrypted.bin verifier sample, containing the verifier 

sector followed by two copies of the original 

mbr sector. 

verifier_win10_encrypted.bin Verifier sample, containing the verifier 

sector followed by two copies of the original 

mbr sector. Obfuscated with 0x76 byte-

XOR.  

 

1.2 Code Files – hdroot-bootkit-analysis/code 

File Description 

convert.c C utility to decrypt verifier and rkimage samples. 

dll_decryptor.c C utility to decrypt service DLL samples with 4-byte XOR keys. 

fuzzer.py Simple python fuzzer to discover commands to dropper64.bin 

proof.cpp C++ program to install as backdoor. Writes C:\proof.txt as 

evidence that bootkit ran successfully. 
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1.3 Evidence Files – hdroot-bootkit-analysis/evidence 

File Description 

crc_error.PNG Error message shown by check command when 

secondary bootkit image is modified after install.  

driver64_certificate.PNG Screenshot of the stolen certificate used by the 64-

bit kernel driver. 

driver64_valid.PNG Screenshot showing that the certificate on the 

kernel driver has not been revoked. 

dropper64_certificate.PNG Screenshot of the stolen certificate used by the 64-

bit dropper. 

dropper64_revoked.PNG Screenshot showing that the certificate on the 

dropper has been revoked. 

hashes_after.txt Hashes taken of files after the bootkit has run on a 

Windows 7 virtual machine. 

hashes_before.txt Hashes taken of files before the bootkit has run on 

a Windows 7 virtual machine. 

hashes_win10.txt Hashes of the first and second rkImage locations 

on a Windows 10 virtual machine with > 30% free 

space. 

install_win10.PNG Screenshot of installing a backdoor on Windows 10. 

install_win10_cmd.PNG Screenshot of installing cmd.exe as the backdoor. 

install_win7.PNG Screenshot of installing a backdoor on Windows 7 

with low disk space. 

installer_cmd.txt The text output of installing a backdoor on 

Windows 10. 

Neowiz.p7b Extracted certificate used in the 64-bit kernel 

driver. 

reg_service_after.txt Registry after boot, with timestamps showing it 

was written to, even if the values didn’t change. 

reg_service_before.txt Registry before rebooting, with timestamps. 

vol_modules.txt Volatility output snippet from listing modules that 

shows the kernel driver. 

vol_reg_debugfile.txt Volatility output that shows a registry key for the 

DEBUGFILE service used by the kernel driver. 

 

1.4 Ida Pro Files – hdroot-bootkit-analysis/ida pro 

File Description 

driver32.sys.idb Ida Pro file for the 32-bit kernel driver. Functionally 

same as the 64-bit driver. 
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driver64.sys.idb Ida Pro file for the 64-bit kernel driver. Functionally 

same as the 32-bit driver. 

dropper64.i64 Ida Pro file for the dropper sample. Largely not 

reversed, as the static sample is packed with 

VMProtect. 

mbr_infected.idb Ida Pro file for the bootkit MBR. Disassembly is 16-bit. 

pe1_decrypted.idb Ida Pro file for the 32-bit service DLL. Functionally 

same as the 64-bit DLL. 

pe2_decrypted.i64 Ida Pro file for the 64-bit service DLL. Functionally 

same as the 32-bit DLL.  

rkimage_decrypted.idb Ida Pro file for rkImage. Contains real mode (16-bit) 

and protected mode (32-bit) segments. Also has 

undefined data at the end because the sample 

disassembled was mistakenly longer than the 

rkimage+bootkit length.  

verifier_decrypted.idb Ida Pro file for the verifier. Contains verifier and original 

MBR. Disassembly is 16-bit. 

 

Appendix 2: Sample Hashes 
 

MD5 
2c85404fe7d1891fd41fcee4c92ad305   dropper64.bin 

4dc2fc6ad7d9ed9fcf13d914660764cd   driver32.sys.bin 

8062cbccb2895fb9215b3423cdefa396   driver64.sys.bin 

c7fee0e094ee43f22882fb141c089cea   pe1_decrypted.bin 

d0cb0eb5588eb3b14c9b9a3fa7551c28   pe2_decrypted.bin 

76e1e42988befbf13b4f934604206250   rkimage_encrypted.bin 

613fd19d0abc3d018ead52afabd59fec   rkimage_decrypted.bin 

287fac6f4dac57253ac0061be1508f9d   C_932.NLS.bin 

 

SHA1 
4c3171b48d600e6337f1495142c43172d3b01770   dropper64.bin 

7ff22bd8667ce23e7db8c759bd03c15fb7226c76   driver32.sys.bin 

268dd909933c187d2798b5815674d70b930b498e   driver64.sys.bin 

24a80cd100274e2c39180741aa688a4e73282552   pe1_decrypted.bin 

5d6c1a3c2d827c714b764b1c5a3e7370ed737986   pe2_decrypted.bin 

aaf677acc05ae94f98f836fb44fd672a4b2d90db   rkimage_encrypted.bin 

3c22ef94a737484e2f708393dcbabdfdb9d6cfbc   rkimage_decrypted.bin 

88912b5227145d3a715ae6eeebd5935c89955721   C_932.NLS.bin 
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Appendix 3: Screenshots 
 

Dropper 

 

 
Figure 11: Dropper's certificate 
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Figure 12: Check before inst 

 
Figure 13: Check after inst 

 
Figure 14: Info for backdoor 


