

A Universal Windows Bootkit
An Analysis of the MBR bootkit referred to as “HDRoot”

@WillShowalter

williamshowalter@gmail.com

May 2016

Page 1 A Universal Windows Bootkit

Executive Summary

In October, 2015 Kaspersky released an analysis of a family of malware they dubbed

“HDRoot” on their Securelist blog. It was an installment in their ongoing series on the

WINNTI group, known for targeting gaming companies in their APT campaigns. The

Securelist blog was dismissive of the HDRoot bootkit and called out a number of

mistakes they claimed the authors made, which brought it to be the focus of their

ridicule.

The bootkit in question uses two stolen signing certificates and is capable of running

without problem on any Windows system that was released in the last 16 years, from

Windows 2000 to Windows 10. The one limitation is that it will only run as an MBR

bootkit and will not work on systems using UEFI. It contains the ability to install any

backdoor payload to be launched in the context of a system service when Windows

starts up on both 32 and 64-bit systems. It also does a fairly good job of concealing

the actual bootkit code, only failing to remove the backdoor after running it at boot.

This likely a conscious choice made by the authors to have the backdoor responsible

for removing itself, and not an oversight.

HDRoot represents a serious commitment in time and effort to develop, and likely

has been in use or development since at least 2006. The sample analyzed here dates

to sometime in 2012 or 2013, and is the same sample Kasperky reports to have

analyzed in their debut post on HDRoot. However, all evidence points to Kaspersky

doing their analysis with a 2006 sample, criticizing problems in the malware that are

not actually present. Additionally, they provide no hashes or other information on the

actual sample they used.

The samples I analyzed in this report are detailed in appendix 1 and hashes are

provided in appendix 2. They can be found in the following git repo:

https://github.com/williamshowalter/hdroot-bootkit-analysis

https://github.com/williamshowalter/hdroot-bootkit-analysis

Page 2 A Universal Windows Bootkit

Table of Contents

EXECUTIVE SUMMARY ... 1

TABLE OF CONTENTS ... 2

INTRODUCTION .. 2

SAMPLE: .. 2

THIS REPORT .. 3

OVERVIEW .. 3

DROPPER .. 4

VMPROTECT ... 7

DEBUGFILE.SYS - A SIGNED KERNEL DRIVER ... 7

MBR .. 9

VERIFIER .. 11

RKIMAGE ... 11

SCHEDULE SERVICE DLL .. 15

CONCLUSIONS .. 16

REFERENCES ... 17

APPENDIX 1. INDEX OF SUPPLEMENTAL FILE REPOSITORY 18

1.1 BINARY FILES – HDROOT-BOOTKIT-ANALYSIS/BINARIES 18

1.2 CODE FILES – HDROOT-BOOTKIT-ANALYSIS/CODE ... 19

1.3 EVIDENCE FILES – HDROOT-BOOTKIT-ANALYSIS/EVIDENCE 20

1.4 IDA PRO FILES – HDROOT-BOOTKIT-ANALYSIS/IDA PRO 20

APPENDIX 2: SAMPLE HASHES .. 21

MD5 .. 21

SHA1 ... 21

APPENDIX 3: SCREENSHOTS ... 22

DROPPER ... 22

Introduction

Sample:

MD5: 2c85404fe7d1891fd41fcee4c92ad305

SHA1: 4c3171b48d600e6337f1495142c43172d3b01770

SHA256: a9a8dc4ae77b1282f0c8bdebd2643458fc1ceb3145db4e30120dd81676ff9b61

Page 3 A Universal Windows Bootkit

Original Filename: net.exe
Produce Name: Microsoft Windows Operating System

Product Version: 6.1.7600.16385
Time Stamp: 2012/08/06 13:12:39 UTC

Retrieved from malwr [1].

This report

My analysis of this HDRoot sample began as an exercise to become more familiar

with low-level malware and the techniques required for reverse engineering them. I

had no prior knowledge of the WINNTI group who Kaspersky attributes this malware

to, nor do I have any other samples beyond those associated with the dropper and

bootkit analyzed here. The dropper is capable of installing any PE executable as the

payload for the bootkit, but does not come bundled with any default payloads. As

such, this report offers no insight into the various payloads used by the authors. For

information on the other malware associated with the WINNTI group, see Trend Micro

or Kaspersky’s reports on the group [2] [3]. This report does, however, offer a very

in-depth look into the technical workings of the HDRoot bootkit and its components.

I also address a number of technical inaccuracies and misrepresentations from

Kaspersky’s SecureList post of October 2015, “I am HDRoot! Part 1,” which is the

only research on this sample to be published before my own [4]. Kaspersky’s research

was very helpful getting started, but I soon discovered that their analysis was not

actually performed using the sample identified by MD5 in the article and thus could

not be relied upon. I believe this to be the reason for many of their criticisms for

HDRoot, which they call “quite conspicuous,” and, “not what you expect from such a

serious APT actor.” The sample analyzed here is not free of criticisms, but none of

the problems addressed by Kaspersky appear to be valid on the sample they claim

to have analyzed.

I also freely acknowledge that the level of detail that this report goes into is

impractical for almost all incident response purposes, and that this venture was

largely done for my own education and curiosity.

Overview
The malware examined here can be broken into several stages. The 64-bit dropper,

which was signed with a stolen certificate that has since been revoked, is the first

component that is executed. The dropper installs the bootkit to the hard drive along

with a backdoor executable to be run on subsequent boots. The backdoor is supplied

as a parameter to the dropper and can be any Win32 or Win64 executable.

Page 4 A Universal Windows Bootkit

Upon boot, the computer will execute the maliciously installed MBR, which loads a

subsequent component that I named the “verifier”. It is a single sector block that

verifies that the rest of the bootkit and the backdoor are intact before running them.

The bulk of the bootkit’s work is done by the next component, rkImage. The name

rkImage actually comes from the interface of the dropper, which explicitly refers to

it when installing the bootkit. rkImage works by manually reading the file system

from the disk in order to write the backdoor (the generic term referring to the

payload) into the filesystem and redirect a Windows system service to launch the

backdoor.

When rkImage is finished it transfers execution back to the original, non-infected

MBR and allows Windows to boot normally. The booting system will run the backdoor

instead of the replaced system service, but will then restore and start the legitimate

service after the backdoor has ran, hiding the fact it was ever replaced.

Dropper
The dropper is designed to disguise itself as the Windows system utility net.exe. The

properties on the executable attempt to mirror the settings found on a Windows 7

version of the utility, reporting it to a Microsoft program. When run without

parameters, HDRoot shows the options menu as if it were net.exe. That is where the

similarities end, however.

Figure 1: Dropper disguising itself as net.exe

The dropper executable, while masquerading as the Microsoft net command, has

been signed with a digital certificate belonging to Guangzhou YuanLuo Technology

Co, Ltd, a firm based in the city of Guangzhou, China who had their signing certificate

stolen by the WINNTI group. The certificate has since been revoked, and, if the

signing time and compilation dates on the executable are to be believed, it was signed

in 2013 almost a year after this version was initially compiled.

Page 5 A Universal Windows Bootkit

Figure 2: Dropper's revoked certificate

When run with any of the legitimate net command parameters or with unrecognized

parameters, no output is given. The only commands that provide output are the valid

HDRoot commands programmed by the authors. Kaspersky, by analyzing an older

sample from 2006, was able to get a “help” output, rather than the “net” output,

which contained a list of commands for that version. Most of these commands still

worked on the newer sample. All of the commands were five or less characters in

length, and even short words like install were abbreviated to “inst”. Since the

Kaspersky command listing was half a decade older than this sample, and that some

of the commands from their listing were no longer present, I wrote a simple, and

very slow, fuzzer to attempt to check all possible commands of five or less characters.

Given the length of the other commands and that input appears to be case

insensitive, this appears to be a sensible approach. The code for the fuzzer can be

found in the supplemental files detailed in appendix 1.1. Screenshots for each

command can be found in appendix 3.1, as well. No additional commands to the ones

Kaspersky detailed were found by the fuzzer, and the table below is the known list of

commands.

Page 6 A Universal Windows Bootkit

Command Description

check Checks for the presence of the bootkit and the integrity if

present.

clean Removes the bootkit.

inst <Backdoor> Installs the bootkit

info <Backdoor> Shows information about the checksums and requirements

for an executable if it was installed as the backdoor.

Table 1: HDRoot dropper commands

Figure 3: inst command output

Page 7 A Universal Windows Bootkit

VMProtect

A notable hindrance to reversing the dropper is that it was packed using VMProtect.

Unlike most packers, which decompress and then jump to the original executable

code, VMProtect converts the x86 opcodes into an automatically generated language

of bytecodes to be interpreted in its own emulator. Attempting to statically analyze

the sample would prove an arduous task. There have been a few unpacking plugins

for Ollydbg written for certain versions of VMProtect, but these are generally found

in forum posts and are not well maintained. I believe this to be the reason Kaspersky

did the bulk of their analysis with a different sample that was almost, but not quite,

functionally the same. Not wanting to spend my time tackling VMProtect either, I

instead used a number of dynamic analysis techniques.

Figure 4: Graph overview of VMProtect's emulator. Not fun.

DEBUGFILE.sys - A signed kernel driver

At the time the dropper installs the bootkit, no changes to the filesystem or the

registry are seen between snapshots taken before and after. I took the approach of

running the dropper in a continuous loop in a virtual machine, suspending the VM,

and analyzing the resulting memory image. Performing memory capture from outside

the VM appeared to be the best option because there were a number of anti-

debugging techniques employed along with the anti-disassembly. Using Volatility, I

discovered two more PE files that were extracted inside the process, but none of the

four clear text resources Kaspersky claimed to have extracted from a memory dump,

providing further proof that they did their analysis on a different sample than is listed

in their blog post. The two PE files I found were kernel drivers, one 32-bit and one

Page 8 A Universal Windows Bootkit

64-bit. The 64-bit driver is signed, as is required by 64-bit versions of Windows, using

yet another stolen certificate, while the 32-bit driver is not signed. This certificate

belongs to a South Korean video game company, Neowiz. The certificate, unlike the

one for the dropper, has yet to be revoked (see Figure 6).

The use of the kernel drivers is fairly straightforward. Without kernel access there is

no way for malware to write directly to the physical disk as there are no Windows API

calls available to userland processes for doing so. The dropper writes out the

appropriate driver to C:\Windows\system32\Drivers\DEBUGFILE.sys, and then

creates a service for it. This shows up in the memory image as a handle to the registry

key HKLM\System\ControlSet001\services\DEBUGFILE. The service runs and the

driver \Driver\DEBUGFILE is created. DEBUGFILE.sys is also deleted from the disk.

The driver is used by the dropper to proxy its direct access to the physical disk. A

number of things are done in this process. The original MBR is backed up and then

overwritten by the new bootkit MBR, and then weakly encrypted components are

written to disk. Near the beginning of the disk is the component I’ve named the

verifier, followed by two identical copies of the original MBR. In another section of

the disk is the main component of the bootkit, rkImage, followed by the backdoor

that was installed.

Figure 5: Physical Disk Layout written by DEBUGFILE.sys

One peculiar thing the malware does is install a second copy of the rkImage and

backdoor files. This copy is encrypted identically to the first, and positioned such that

it ends exactly 2063 sectors from the end of the drive. What makes this strange is

that nothing in the bootkit will ever transfer execution to the second copy, and that

the second copy is only installed if the drive has at least 30% free space. Kaspersky

erroneously identified this behavior as only installing if the disk has greater than 30%

free space, rather than installing a redundant copy of itself. As can be seen in a

Windows 7 screenshot from the appendix 1.3 files, the bootkit is perfectly capable of

installing with less than 30% free space. The only guess I make as to the purpose of

this second copy is for the indented backdoor to be able to identify if one of the copies

has been modified after it starts. The dropper will also detect a modified copy.

Page 9 A Universal Windows Bootkit

Figure 6: DEBUGFILE.sys

MBR
For all x86 systems not running UEFI, the boot process starts with the BIOS loading

the Master Boot Record into memory and jumping to it. By convention, the BIOS

loads the MBR to the physical memory address of 0x7C00. Another convention that

many MBRs follow is to copy themselves, a single 0x200 sized sector, to the address

0x600 and then transfer execution to this location. The HDRoot bootkit is no

exception. This is partly because the only code it actually changes in the original MBR

is the jump address and the code jumped to. Most of the original MBR and partition

table information is intact.

A normal MBR would look at the partition table to find the partition with the boot flag

set, and then load the volume boot sector of that partition and transfer execution.

HDRoot’s MBR works similarly by calling interrupt 13 to read two sectors from disk

into memory at the address 0x7A00 (through 0x7DFF). These are the verifier and the

original MBR, which now has been loaded into the location where the MBR would have

originally loaded on a non-infected system. The bootkit does not store these on disk

in clear text, however. They are written to disk having been XOR’d with the byte

value 0x76. Appendix 1.2 has a C utility that can be used to decrypt the values. A

function at offset MBR+0x88 performs these read and decrypt operations, copies the

partition table from the infected MBR to the original (incase the victim has changed

any partitions since the bootkit was installed), and then transfers execution to the

verifier.

Page 10 A Universal Windows Bootkit

Figure 7: Address layout of memory loaded before rkImage

Figure 8: Infected MBR code to load, decrypt verifier

Page 11 A Universal Windows Bootkit

Verifier
The job of the verifier is to make sure that the bootkit is intact and that a specific set

of criteria are met before allowing the bootkit to run. If any of these criteria fail the

verifier will transfer the boot process to the original MBR, now at 0x7C00, without

the bootkit executing. This mechanism helps prevent bricking the victim machines in

the event that one or more of the hidden sectors are corrupted or overwritten.

The first criteria in the verifier process is a check for whether the alt key is pressed

on the keyboard. If the alt key is pressed, the bootkit launch will be aborted. The

verifier then checks for a value at 0x7A08 (+0x8 from the verifier start address). If

the value is null, the startup is aborted. This value is the drive identifier of where

rkImage and the backdoor are stored. This was 0x80 in all the systems I tested on,

which indicates drive 0. The dropper sets this value, and the subsequent bytes, before

writing them to disk. This ensures that the bootkit was properly setup during install,

and allows for the bootkit to be stored on a separate disk from the system disk. Table

2 shows a breakdown of the rkImage information stored in the verifier.

Address Contents

0x7A02 0x55AA, not used, signals start of rkImage location data.

0x7A04 CRC16 value for rkImage+Backdoor.

0x7A06 Sector count for rkImage+Backdoor.

0x7A08 Drive number

0x7A09 Sector where rkImage+Backdoor starts.

0x7A0D Next 0x55AA value, if present

… …

Table 2: rkImage location information in verifier

The third and final check done by the verifier is computing a CRC16 value on the

encrypted contents of rkImage and the backdoor (still only encrypted with an XOR

0x76). It compares the results to the saved CRC, and if they do not match it aborts.

Otherwise it reads the entire rkImage, but not the backdoor, to 0x10000, and then

decrypts both. The last step is to copy the size and location information to the start

of rkImage, so it can locate the backdoor for installing.

rkImage
A significant component to reverse engineering the functionality of this bootkit was

becoming familiar with the mechanics of low-level, pre-OS x86. For anyone looking

to get into this I would highly recommend the Intermediate Intel x86 videos on

OpenSecurityTraining.info [5]. Even just following the transition from the verifier to

rkImage requires some understanding, as the processor is still in 16-bit real mode at

Page 12 A Universal Windows Bootkit

this time and a far jump is being performed, crossing a barrier between segments.

This seems like a trivial thing until you find out that GDB, even operating in 8086

mode remotely debugging the bootkit running in QEMU, has absolutely zero

understanding of segment addressing and completely falls apart trying to set

breakpoints at any address higher than 0xFFFF. In retrospect Bochs might have been

a better choice for this over QEMU, but not being familiar with it either I struggled

through with QEMU, learning as I went and performing most my analysis indirectly,

either statically or dynamically through the clues left behind by the bootkit’s actions.

The first task rkImage sets itself to, like any sane code booting up, is to transfer itself

from real mode to protected mode, and then to 32-bit mode. In order to enable

protected mode, the Global Descriptor Table must be setup and loaded. This is

actually fairly unimportant to the operation of the malware but understanding it

helped getting the disassembly properly setup in IDA to assist with the process. I will

not get into the details and the contents of the segment descriptors, but I will state

that I found the clearest explanations and diagrams in the AMD Architecture

Programmer’s Manual, Vol 2., for system programming [6]. Something that caused

confusion was that most diagrams detailing the structure of segment descriptors (the

entries in the Global Descriptor Table) are for the descriptors in 64-bit mode, since

the 32-bit descriptors, called legacy segment descriptors in AMD’s documentation,

have a different structure. The work done reassembling the GDT can be seen in the

rkImage IDB file in appendix 1.4.

Once setup in a 32-bit environment, rkImage decrypts two sections in itself, the first

containing a 32-bit DLL, and the second containing a 64-bit DLL. These are used to

launch the backdoor from a Windows system service upon Windows booting. Each

DLL has a 4-byte XOR key. The data is stored in rkImage in the format: 4-byte key,

4-byte length, encrypted PE file contents. The 32-bit DLL and its data are located at

an offset of 0x4BE0 and the 64-bit values are at 0x6DE8, immediately after the

previous DLL. These DLLs as packaged contain the registry path to the LanmanServer

service DLL. The version of rkImage in this sample, installed by the 64-bit dropper,

overwrites the LanmanServer information with the paths and values for the Schedule

service. This allows for changing the target service without the need to recompile the

DLLs embedded in rkImage. Kaspersky's observations that there are a number of

different services that different samples have targeted supports this.

The backdoor executable is then loaded into memory and decrypted with the 0x76

XOR operation. At the end of this preparation work of loading, decrypting, and

copying data, rkImage calls a function that I mark in my disassembly as being named

DETERMINE_VERSION_NT_32_64_BIT. This is the function that determines what

Windows version is installed, what malicious DLL to use, and where to install it. Since

Page 13 A Universal Windows Bootkit

the malware will attempt to boot in any Windows version from Windows 2000 to

Windows 10, there is a considerable nest of switch and if statements happening here.

It first checks whether there is a “\winnt” directory, which is present in Windows

2000, and if "\winnt" is not found it will check in “\windows\system32\kernel32.dll”.

The check for kernel32.dll prevents the bootkit from continuing install on Windows

98 and lower systems, as kernel32.dll was stored in "\windows\system\kernel32.dll".

If kernel32.dll is found it will check for “\users” and “\documents and settings” to

determine if it is XP/2003, or Vista or newer. If it is not able to locate any of these,

it fails out of the switch statement and no bootkit is installed.

If the directory selected was not “\winnt”, it will check for “\windows\syswow64” and

set a variable indicating if the system is 64-bit. This is used later when choosing

which DLL to install (which means it is even 64-bit Windows XP / Server 2003

compatible). Then for each of the three operating system categories it will write the

backdoor to %TEMP%\Explorer.exe (wherever %TEMP% is located for that version

of Windows), and iterate through a list of files. If the file is present it will copy the

appropriate DLL into the beginning of the file, overwriting the contents already there.

The files to be overwritten in question are shown in Table 3, and appear to be carefully

selected to cause the least potential problems, with all but one of them being for

different architectures than the running host.

Windows Version Path

Windows 2000 \winnt\help\access.hlp

Windows 2000 \winnt\system\OLESVR.DLL

Windows XP or 2003 \windows\twain.dll

Windows XP or 2003 \windows\system\OLESVR.DLL

Windows Vista/2008 + \windows\syswow64\C_932.NLS

Windows Vista/2008 + \windows\system\OLESVR.DLL

Windows Vista/2008 + \windows\syswow64\kmddsp.tsp

Windows Vista/2008 + \windows\syswow64\Irclass.dll

Table 3: Service DLL Paths by OS, in order attempted

Windows 2000 will attempt to first overwrite the access.hlp file, which, if anyone has

not already disabled the help popups, may cause errors. Similarly, the 16-bit

OLESVR.DLL file is overwritten if access.hlp does not exist. This will only cause issues

if it is used by a 16-bit application, as 32-bit applications will be using the

system32\OLESVR32.DLL file. Windows XP will attempt to overwrite the 16-bit

version of the twain.dll library for scanners (even using old scanners, twain32.dll

should be used), and then the 16-bit OLESVR.DLL if the twain.dll is not found.

Page 14 A Universal Windows Bootkit

In 64-bit Windows Vista and newer systems, the default target is C_932.NLS, which

is a 32-bit National Language Support file for the Japanese language [7]. This

assumes that authors did not plan on infecting targets running 32-bit applications in

Japanese, as this would cause issues. The only file that will be tried for 32-bit

Windows Vista and newer is the same 16-bit OLESVR.DLL. This will only cause issues

for applications run in 16-bit compatibility/emulation mode, as they are not natively

supported by Vista and newer, and is therefore unlikely to affect most targets. The

other two potential target files, which are also unlikely to be used, are both 16-bit

DLLs found in the syswow64 (32-bit compatibility) directory. They are actually only

labeled as compatible with Windows Server 2003 and earlier operating systems on

MSDN, but are for some reason still included in the syswow64 directory. Kmddsp.tsp

is a “kernel mode device driver” for “telephony service provider” network drivers, and

IRClass.dll is an Infrared Class Coinstaller [8]. Neither should ever be used on a 64-

bit system and therefore won’t cause any issues if overwritten.

Once the DLL has been written to the appropriate file, the registry is patched to

overwrite the Schedule service’s DLL path with the path to the overwritten file. This

should be approximately:

HKLM\SYSTEM\CurrentControlSet\Services\Schedule\Parameters\ServiceDLL.

rkImage will then return to 16-bit real mode, handing execution back to the original

MBR at 0x7C00, allowing the boot process to continue and Windows to load. It is

worth noting that since Windows NT also used the C:\WINNT directory, it will match

the first section of the bootkit which chooses the files to write the DLL into. However,

since Windows did not introduce the svchost.exe process until Windows 2000,

services did not have a Parameters sub-key or a ServiceDLL value in Windows NT.

As such, if installed on Windows NT the bootkit wouldn't be able to locate the registry

key for editing, and would fail out of the installation process. Additionally, it is likely

that 32-bit versions of the dropper would not allow the install to a Windows 2000

system.

Page 15 A Universal Windows Bootkit

Figure 9: Diagram showing the out-of-OS boot process.

Schedule service DLL
The final component of the bootkit, responsible for running the backdoor within

Windows, is the DLL that replaced the Schedule service’s DLL. The bootkit did not

change the rest of the registry key, so it will be loaded into a svchost.exe executable.

The Schedule service is part of the NetworkService group, so the DLL will be loaded

into the svchost.exe containing the other services for the group, and a new thread

will be spawned to run the ServiceMain for that DLL. Additionally, as happens every

time a DLL is loaded, the DLL’s entry point (DLLMain, in this case) is called by the

Windows loader in another thread.

The HDRoot authors chose to use the DLLMain function to start the backdoor process

and ServiceMain to revert the service registry entry back to the original path. The

DLLMain thread creates another thread running the function I identified in my

disassembly as SpawnBackdoorThread. That thread creates a process running the

backdoor, which rkImage saved to %TEMP%\Explorer.exe. It then sets a global

variable in the DLL to signal that it successfully launched the backdoor, and suspends

itself before continuing.

Page 16 A Universal Windows Bootkit

Simultaneously the ServiceMain thread reverts the registry, and waits for the

backdoor to start, sleeping and periodically checking for the flag to be set. After the

flag is set it resumes the SpawnBackdoor thread, and then exits. In turn, the

SpawnBackdoor thread unloads the DLL from memory and then exits itself.

Figure 10: Flow of the malicious Schedule service

This has the effect of both threads exiting and the DLL unloading at almost the exact

same time, guaranteeing that the service manager will have to restart the service,

causing the legitimate service DLL to be loaded and run from the patched registry

entry. In all my tests of this sample, not once did the real Windows service ever fail

to start after running the bootkit. This is completely contrary to Kaspersky’s claim

that the bootkit breaks the service and that all the victims must just not have cared

or noticed that the service failed to start.

Conclusions
My analysis of the HDRoot malware shows Kaspersky’s claims that this bootkit was

written sloppily is patently wrong. It also leads me to no other conclusion than that

they did their entire analysis with and presented research on a ten-year-old sample,

passing it off as a sample from 2012 that had been in modern use. It also shows that

the authors, who have been designated as the WINNTI group, have been around for

a significant period of time, dating back to at least 2006 if Kaspersky’s sample is to

be believed.

Page 17 A Universal Windows Bootkit

The one stage of the attack in which the bootkit did not make good use of hiding

techniques was in covering its tracks for the service and backdoor executables. Both

the modified file hosting the DLL (C:\Windows\syswow64\C_932.NLS in most my

tests) and the backdoor in %TEMP%\Explorer.exe were left intact on the file system.

However, it is likely that a sophisticated backdoor run by the bootkit would know to

remove these two pieces of evidence after starting itself, and it may just have been

a choice of segregation of duties made by the authors.

Another criticism that can be made is the extremely weak use of encryption. The XOR

cipher is little more than obfuscation and was trivial to figure out even just looking

at the encrypted sectors on the disk. It can be argued, however, that since the entire

contents of the bootkit is code that will be decrypted before it can be run, there is

little point in hiding it from anything but simple scans, as it could just be captured

from memory by analysts. To that end, the simple cipher serves its purpose of not

matching the signatures for executables or of a boot sector while on disk.

Overall I was impressed with the level of detail that went into making this malware

which is capable of installing itself on any Windows version, 32 or 64-bit, dating back

to Windows 2000, with the exception of newer installs using UEFI. The lack of UEFI

support is unlikely to be an issue when targeting server systems, however, especially

with virtualization on the rise - very few virtual environments are virtualizing UEFI in

their guests. The small touches, such as anticipating that the drive may have been

repartitioned, are particularly impressive. Clearly significant thought and work went

into the creation of this bootkit, and it is a mistake to dismiss it as amateur. While

different versions of the dropper are geared toward different targets (the observed

sample here targets the Schedule service on 64-bit systems), the overall framework

is very flexible. The choices made in the dropper or when compiling the dropper are

able to be tuned toward the target, choosing a service compatible with that version

of Windows. This makes narrowing down the traits of the bootkit from which services

they target to be very difficult, as it is trivial for the authors to change their target.

References

[1] "malwr," [Online]. Available:

https://malwr.com/analysis/NGFiNDBmMWNmYjM0NDVmZWIxNTg5OWFkMDUw

YmIzNTQ/.

[2] E. A. II, "Backdoor Built With Aheadlib Used in Targeted Attacks?," Trend Micro,

[Online]. Available: http://blog.trendmicro.com/trendlabs-security-

intelligence/backdoor-built-with-aheadlib-used-in-targeted-attacks/.

Page 18 A Universal Windows Bootkit

[3] Securelist, "WINNTI: More than just a game," [Online]. Available:

https://securelist.com/analysis/internal-threats-reports/37029/winnti-more-

than-just-a-game/.

[4] Securelist, "I am HDRoot Part 1," [Online]. Available:

https://securelist.com/analysis/publications/72275/i-am-hdroot-part-1/.

[5] X. Kovah, "Intermediate Intel x86," [Online]. Available:

http://opensecuritytraining.info/IntermediateX86.html.

[6] AMD, "AMD64 Architecture Programmer's Manual, Volume 2," [Online].

Available:

http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf.

[7] Microsoft, "National Language Support (NLS) API Reference," [Online].

Available: https://www.microsoft.com/resources/msdn/goglobal/default.mspx.

[8] Microsoft, "Kernel-Mode Device Driver TSP," [Online]. Available:

https://msdn.microsoft.com/en-us/library/ms725209(v=vs.85).aspx.

Appendix 1. Index of Supplemental File Repository
Files are available at:

https://github.com/williamshowalter/hdroot-bootkit-analysis

1.1 Binary Files – hdroot-bootkit-analysis/binaries

File Description

C_932.NLS 64-bit bootkit service DLL sample, as

installed

driver32.sys.bin 32-bit kernel driver used by the dropper to

write directly to the physical disk.

driver64.sys.bin 64-bit signed kernel driver used by the

dropper to write directly to the physical

disk.

dropper64.bin 64-bit dropper sample that installs bootkit

mbr-clean.bin MBR before modification, for comparison.

mbr-inst.bin MBR that has been modified after install.

pe1_decrypted.bin 32-bit bootkit service DLL sample,

extracted and decrypted from decrypted

rkimage

pe1_encrypted_b61e1dcf.bin 32-bit bootkit service DLL sample,

extracted in original form from decrypted

rkimage. XOR key is 0xb64e1dcf.

https://github.com/williamshowalter/hdroot-bootkit-analysis

Page 19 A Universal Windows Bootkit

pe2_decrypted.bin 64-bit bootkit service DLL sample,

extracted and decrypted from decrypted

rkimage

pe2_encrypted_b61e8d81.bin 64-bit bootkit service DLL sample,

extracted in original form from decrypted

rkimage. XOR key is 0xb64e8d81.

rkimage_decrypted.bin rkImage sample, extracted from harddrive

and decrypted.

rkimage_encrypted.bin rkImage sample, extracted from harddrive

and decrypted.

rkimage_backdoor_decrypted.bin rkImage sample with example backdoor,

extracted from harddrive and decrypted.

rkimage_backdoor_encrypted.bin rkImage sample with example backdoor,

extracted from harddrive. Obfuscated with

0x76 byte-XOR.

verifier_win7_decrypted.bin verifier sample, containing the verifier

sector followed by two copies of the original

mbr sector.

verifier_win7_encrypted.bin Verifier sample, containing the verifier

sector followed by two copies of the original

mbr sector. Obfuscated with 0x76 byte-

XOR.

verifier_win10_decrypted.bin verifier sample, containing the verifier

sector followed by two copies of the original

mbr sector.

verifier_win10_encrypted.bin Verifier sample, containing the verifier

sector followed by two copies of the original

mbr sector. Obfuscated with 0x76 byte-

XOR.

1.2 Code Files – hdroot-bootkit-analysis/code

File Description

convert.c C utility to decrypt verifier and rkimage samples.

dll_decryptor.c C utility to decrypt service DLL samples with 4-byte XOR keys.

fuzzer.py Simple python fuzzer to discover commands to dropper64.bin

proof.cpp C++ program to install as backdoor. Writes C:\proof.txt as

evidence that bootkit ran successfully.

Page 20 A Universal Windows Bootkit

1.3 Evidence Files – hdroot-bootkit-analysis/evidence

File Description

crc_error.PNG Error message shown by check command when

secondary bootkit image is modified after install.

driver64_certificate.PNG Screenshot of the stolen certificate used by the 64-

bit kernel driver.

driver64_valid.PNG Screenshot showing that the certificate on the

kernel driver has not been revoked.

dropper64_certificate.PNG Screenshot of the stolen certificate used by the 64-

bit dropper.

dropper64_revoked.PNG Screenshot showing that the certificate on the

dropper has been revoked.

hashes_after.txt Hashes taken of files after the bootkit has run on a

Windows 7 virtual machine.

hashes_before.txt Hashes taken of files before the bootkit has run on

a Windows 7 virtual machine.

hashes_win10.txt Hashes of the first and second rkImage locations

on a Windows 10 virtual machine with > 30% free

space.

install_win10.PNG Screenshot of installing a backdoor on Windows 10.

install_win10_cmd.PNG Screenshot of installing cmd.exe as the backdoor.

install_win7.PNG Screenshot of installing a backdoor on Windows 7

with low disk space.

installer_cmd.txt The text output of installing a backdoor on

Windows 10.

Neowiz.p7b Extracted certificate used in the 64-bit kernel

driver.

reg_service_after.txt Registry after boot, with timestamps showing it

was written to, even if the values didn’t change.

reg_service_before.txt Registry before rebooting, with timestamps.

vol_modules.txt Volatility output snippet from listing modules that

shows the kernel driver.

vol_reg_debugfile.txt Volatility output that shows a registry key for the

DEBUGFILE service used by the kernel driver.

1.4 Ida Pro Files – hdroot-bootkit-analysis/ida pro

File Description

driver32.sys.idb Ida Pro file for the 32-bit kernel driver. Functionally

same as the 64-bit driver.

Page 21 A Universal Windows Bootkit

driver64.sys.idb Ida Pro file for the 64-bit kernel driver. Functionally

same as the 32-bit driver.

dropper64.i64 Ida Pro file for the dropper sample. Largely not

reversed, as the static sample is packed with

VMProtect.

mbr_infected.idb Ida Pro file for the bootkit MBR. Disassembly is 16-bit.

pe1_decrypted.idb Ida Pro file for the 32-bit service DLL. Functionally

same as the 64-bit DLL.

pe2_decrypted.i64 Ida Pro file for the 64-bit service DLL. Functionally

same as the 32-bit DLL.

rkimage_decrypted.idb Ida Pro file for rkImage. Contains real mode (16-bit)

and protected mode (32-bit) segments. Also has

undefined data at the end because the sample

disassembled was mistakenly longer than the

rkimage+bootkit length.

verifier_decrypted.idb Ida Pro file for the verifier. Contains verifier and original

MBR. Disassembly is 16-bit.

Appendix 2: Sample Hashes

MD5
2c85404fe7d1891fd41fcee4c92ad305 dropper64.bin

4dc2fc6ad7d9ed9fcf13d914660764cd driver32.sys.bin

8062cbccb2895fb9215b3423cdefa396 driver64.sys.bin

c7fee0e094ee43f22882fb141c089cea pe1_decrypted.bin

d0cb0eb5588eb3b14c9b9a3fa7551c28 pe2_decrypted.bin

76e1e42988befbf13b4f934604206250 rkimage_encrypted.bin

613fd19d0abc3d018ead52afabd59fec rkimage_decrypted.bin

287fac6f4dac57253ac0061be1508f9d C_932.NLS.bin

SHA1
4c3171b48d600e6337f1495142c43172d3b01770 dropper64.bin

7ff22bd8667ce23e7db8c759bd03c15fb7226c76 driver32.sys.bin

268dd909933c187d2798b5815674d70b930b498e driver64.sys.bin

24a80cd100274e2c39180741aa688a4e73282552 pe1_decrypted.bin

5d6c1a3c2d827c714b764b1c5a3e7370ed737986 pe2_decrypted.bin

aaf677acc05ae94f98f836fb44fd672a4b2d90db rkimage_encrypted.bin

3c22ef94a737484e2f708393dcbabdfdb9d6cfbc rkimage_decrypted.bin

88912b5227145d3a715ae6eeebd5935c89955721 C_932.NLS.bin

Page 22 A Universal Windows Bootkit

Appendix 3: Screenshots

Dropper

Figure 11: Dropper's certificate

Page 23 A Universal Windows Bootkit

Figure 12: Check before inst

Figure 13: Check after inst

Figure 14: Info for backdoor

