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ABSTRACT 

Modern malware and spyware platforms attack existing antivirus solutions and even Microsoft PatchGuard. 

To protect users and business systems new technologies developed by Intel and AMD CPUs may be 

applied. To deal with the new malware we propose monitoring and controlling access to the memory in real 

time using Intel VT-x with EPT. We have checked this concept by developing MemoryMonRWX, which is 

a bare-metal hypervisor. MemoryMonRWX is able to track and trap all types of memory access: read, 

write, and execute. MemoryMonRWX also has the following competitive advantages: fine-grained analysis, 

support of multi-core CPUs and 64-bit Windows 10. MemoryMonRWX is able to protect critical kernel 

memory areas even when PatchGuard has been disabled by malware. Its main innovative features are as 

follows: guaranteed interception of every memory access, resilience, and low performance degradation.  

Keywords: memory protection; tracking memory access; information leakage; kernel integrity; hypervisor. 

 

1. INTRODUCTION  

Modern malware attacks on Windows machines are 

becoming increasingly sophisticated and extremely 

difficult to detect. Newest integrated security 

mechanisms on the modern Windows 10 x64 such 

as Kernel Mode Code Signing (KMCS) and Kernel 

Patch Protection (KPP) also known as PatchGuard 

are unable to prevent malicious activity.  

Modern malware attacks are ‘surgical’ and infect 

networks of huge organizations even when their 

computers, have never been connected to the 

Internet – 'air-gapped' computers’ (Paganini, 2014). 

Let us consider some recent incidents with the 

following malware: Turla rootkit, which remained 

undiscovered for at least three years and 

ProjectSauron, which has never been stored on a 

disk. 

According to the security response by Symantec, 

Turla trojan which was created by the Waterbug 

hackers group successfully compromised more than 

4,500 computers from 100 countries (Symantec, 

2016). Even the Swiss Federal Department of 

Defense (GovCERT, 2016) was under a cyber-

espionage attack via Turla (Paganini, 2016). This 

malware remained undiscovered for at least three 

years due to its stealth features, which helped to 

overcome both built-in security Windows and anti-

virus signature based mechanisms. The authors of 

Turla rootkit proposed a new method to overcome 

Driver Signature Enforcement. A rootkit loads a 

legitimate signed driver and after that by using its 

vulnerability loads a malware driver. As a result, it 

defeats the Driver Signature Enforcement and 

makes it possible to load any kernel-mode driver 

even without any digital sign (G Data, 2014a; 

Rascagnères, 2016; Baranov, 2014). This malware 

hides its file system and registry activity by 

hooking the corresponding kernel-mode OS 

functions. To do this on a 64-bit system, malware 

bypasses PatchGuard without rebooting, which 

makes Windows kernel vulnerable to any 

manipulations again, such as Direct Kernel-mode 

Object Manipulation (DKOM) and hooking (G 

Data, 2014b).  

AV expert from McAfee has demonstrated the 

ability of KPP-Destroyer utility to defeat 

PatchGuard on modern Windows 8.1 x64, which 

makes Windows kernel vulnerable to common 

well-known rootkit techniques.  This tool has been 

used and improved by hackers (Intel, 2014; 

Rascagneres, 2015).  
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The authors underline that PatchGuard is 

vulnerable to kernel-level attacks because it is 

located in the same environment with rootkits (Yan, 

Luo, Feng, Pan, & Safi, 2015). The TDL4/TDSS 

rootkit family disables PatchGuard by modifying 

the system’s boot loader. 

Another malware platform for cyber espionage was 

identified by Symantec and Kaspersky Lab as 

ProjectSauron and according to their reports this 

malware had eluded security researchers for at least 

five years (Dockrill, 2016). This malware was 

deliberately created to confuse AV experts and to 

prevent its analysis. To achieve this, the indicators 

of compromise or patterns, which are normally 

used by AV experts, were removed. ProjectSauron 

also resides only in the computer memory without 

saving itself to the hard disk drive, which renders 

existing AV techniques pointless (Baranov, 2016).  

According to the paper (Prakash, Venkataramani, 

Yin, & Lin, 2015) “a kernel rootkit, can often 

tamper with kernel memory data, putting the 

trustworthiness of memory analysis under 

question.” These authors state “moreover, while it 

is widely accepted that value manipulation attacks 

pose a threat to memory analysis, its severity has 

not been explored and well understood.”  

These authors proposed improving the DKOM 

attack that targets the OS scheduler. They also 

showed that it cannot be detected by any of the 

existing techniques (Graziano, Flore, Lanzi, & 

Balzarotti, 2016; Graziano, 2016). 

Detection of malicious binaries with digital 

certificates is becoming increasingly difficult. 

Cyber security researchers keep sharing new 

techniques to overcome Windows security 

mechanisms (KMCS) in the recent Black Hat USA 

2016 conference (Nipravsky, 2016). The idea of 

infection of digitally signed files without altering 

hashes was based on inserting a payload code into 

the header attribute certification table. Because 

Windows excludes this field from the hash 

calculations, the file certificate remains valid. 

According to the recent McAfee Labs Threats 

Report (McAfee, 2016) the total number of 

malicious signed binaries increased by 3 million 

during the first 6 months of 2016.  

Experts from Kaspersky Lab have published   the 

newest set of malware tricks, which make it 

difficult to reveal malware (Bartholomew & 

Guerrero-Saade, 2016).  

The authors Jadhav, Vidyarthi, & Hemavathy 

(2016) prove that modern malware are prepared 

thoroughly enough to prevent their detection even 

by high skilled AV experts. Hackers “leave no 

signature, and so they never get caught. This 

happens due to the absence of signature or behavior 

information in the security systems.” At the same 

time, we are able to detect this new unknown 

malware because “in many cases evasive behaviors 

can be used as a signal for evasive malware 

detection.”  

Thus existing protection approaches of computer 

systems are no longer working. Driver Signature 

Enforcement cannot prevent installation of signed 

malware, PatchGuard is not resilient to malware 

counter-measures, modern AV products are unable 

to detect malware even for several years.  

The purpose of this paper is to present the design, 

implementation, and evaluation of a new 

hypervisor-based system that reliably provides 

privacy and integrity of memory data as well as 

giving behavior information on memory access in 

real time. To detect unauthorized memory access, 

we propose a new memory monitor system – 

MemoryMonRWX, which has the capability to 

track all memory accesses. 

Thread model. We will consider the following 

basic scenarios of malware attacks in the kernel-

mode:  

1. Stealing sensitive data, such as crypto keys 

and private users’ data. 

2. Manipulation with memory content, such 

as hooking, unlinking, and patching. 

3. Execution of unknown code fragments. 

Scenario 1. Malware reads the sensitive data from 

memory, such as private users’ data, cryptographic 

key, passwords, hashes, data and code of 3rd party 

drivers.  Recent research papers show the advance 

and importance of this topic. The way of extracting 

crypto keys from BitLocker is presented here 

(White, 2015). Thorough analysis of TrueCrypt 

utility and ways to retrieve user’s crypto keys are 

presented by Baluda et al. (2015). Security analysis 

of BestCrypt was carried out by Souček (2016), the 

data leaks issues has been revealed.  
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Moreover, kernel mode exploits usually read 

Windows kernel internals data, for example 

HalDispatchTable (Cardona, 2017). Hence there is 

a need to manage the access to this data as well. 

Scenario 2. Malware disables PatchGuard and 

illegally modifies the critical parts of system 

memory. Malware hooks functions by tampering 

System Service Descriptor Table (SSDT), hides 

OS-objects, such as process and drivers, by 

unlinking and patching corresponding structures 

from lists Sim & Lee (2016); Li, Wu, & Liu (2016). 

As a result, this involves memory modification of 

no less than 8 bytes for 64-bit OS. Rootkit can 

further protect this unlinked structure by 

overwriting its fields. So, this means no less than 

one-byte data modifications (Haruyama & Suzuki, 

2012).  

Malware can also hijack the kernel control transfers 

by Kernel Object Hooking (KOH), including the 

violation of control-flow integrity. For example, 

changing JZ to JNZ modifies one byte of code 

(Wang & Guo, 2016). 

Scenario 3. Malware deletes or modifies all 

information about itself from the system. As a 

result, there are only executable code fragments in 

the memory, which do not belong to any of the 

registered drivers. This idea was originally 

proposed by Korkin & Nesterow, 2016.  

To process all these scenarios for attackers, we 

propose the following logging scenarios. The 

visualization of malware attacks examples and the 

registered output are in the Figure 1 and Table 1. 

Logging Scenario 1. SyspiciousDriver.sys tries to 

steal sensitive data. To achieve this its code block, 

which is loaded to address ‘SourceAddr1’, reads 

the memory data, which is located on the address 

‘DestinationAddr1’. As a result, the output needs to 

register the following triple:  

‘SourceAddr1 – Read – DestinationAddr1’.  

Logging Scenario 2. The SuspiciousDrv.sys tries 

to hook a system table function. In this situation its 

code block, which is loaded to the address 

‘SourceAddr2’, writes to the memory fragment, 

which is located on the address ‘DestinationAddr2’. 

After this, the output will include the following 

items: ‘SourceAddr2 – Write – DestinationAddr2’. 

Logging Scenario 3. The HiddenDrv.sys hides 

itself by deliberately deleting all related 

information from the system lists. As a result, we 

have only executable code, which is loaded on the 

‘SourceAddr3’ in the kernel-mode memory. In 

order to detect it, the output needs to add the 

following entry: ‘SourceAddr3 – Execute – 

SourceAddr3’. 

 

Table 1 Example of preliminary output for 

revealing malware attacks 

# 
Source 

address 

Access 

Type 

Destination 

address 

1 SourceAddr1 Read DestinationAddr1 

2 SourceAddr2 Write DestinationAddr2 

3 SourceAddr3 
Exe-

cute 
SourceAddr3 

… … … … 
 

Figure 1 Examples of malware attacks in memory and the proposed log of the detection system 
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The following is required for solving the task:  

 for each memory access attempt, we need 

to log the following three items: source 

address, destination address, and type of 

accessing – read, write, or execute;  

 we need to specify two intervals: one for 

the source addresses and one for the 

destination addresses. The accesses from 

only these two intervals will be tracked;  

 the interval of addresses needs to support 

two values – start and finish addresses as 

well as only one value – a fixed virtual 

address;  

 the prototype needs to support the 

modern Windows 10 x64 and multi-core 

CPU. 

For the proposed memory monitoring system, we 

restrict CPU requirements with Nehalem 

microarchitecture (Wikiwand, n.d.), which 

supports both technologies Intel VT-x and Intel 

VT-x with EPT. 

This paper is in four sections. Section 2 focuses 

on the comparative analysis of the existing ways 

for logging memory access. In the first part we 

will analyze methods, which work inside an 

operating system: tracking memory management 

routines and the methods based on replacing page 

fault manager. The second part covers the 

analysis of hypervisor-based methods for tracking 

memory access. We provide a review of other 

recent papers and their ideas. At the end of this 

section we select the possible avenues for further 

development.  

The design of the proposed system 

MemoryMonRWX is presented in the third 

section of this paper. We describe the architecture 

and major components of this system. The details 

of interactions of major components in three 

cases on controlling read, write, and execute 

access are provided. To outline the advantages of 

MemoryMonRWX we present three demos: 

integrity case, confidentiality case, and an 

example of the analysis of real rootkit. We 

evaluate the benchmarks of MemoryMonRWX 

and demonstrate that the degradation of system 

performance is about 10%.  

Section 4 contains the main conclusions and 

further research directions. 

2. BACKGROUND  

In this section related papers are reviewed as well 

as existing prototypes according to the 

requirements previously mentioned. There are 

several hardware based solutions which are able 

to monitor memory access using FPGA 

programmable platform (Morgan et al., 2015; 

Lee, et al., 2013). These approaches are only 

applicable in the laboratory situation, because it is 

hard to distribute and upgrade them; so they will 

be omitted and instead the focus will be on 

software-based methods. 

All software methods for monitoring memory 

access can be divided into two groups:  first those 

based on operating system facilities and second 

those based on hardware virtualization 

technology – otherwise known as OS-based and 

hypervisor-based, correspondingly (Bauman, et 

al., 2015). The classification of these methods is 

presented in Figure 2.  

OS-based methods can be sub-divided into two 

subgroups. The first subgroup monitors memory 

access by tracking calls of memory management 

functions, while the second one applies handling 

page fault exception (#PF) by the Interrupt 

Descriptor Table (IDT) inside the OS. 

Hypervisor-based methods can be divided into 

the two subgroups according the technologies, 

which they are based on. The first subgroup 

leverages hypervisor facilities to handle page 

fault exception, the second subgroup applies new 

Intel VT-x with Extended Page Tables (EPT) 

technology to track memory access. The 

proposed MemoryMonRWX system is based on 

the EPT technology.  

Next all software methods will be analyzed and 

we will discover the most reliable and resistant 

method. 



The 12th ADFSL Conference on Digital Forensics, Security and Law 

 5   

 

 

Figure 2 Classification of methods for monitoring access to memory 

2.1.  OS-based Methods  

In this section we will analyze methods, which 

work inside a Windows operation system and do 

not require any specific CPU support. Initially the 

focus will be on applying tracking memory 

management routines to monitor access to the 

memory. Next, we will deal with tracking 

memory access via marking pages as non-present 

and replacing the page fault handler. 

2.1.1. Hooking Memory Management Routines 

During the lifecycle of a kernel-mode driver 

several kernel mode objects or structures will 

have been added into the memory. During 

driver’s installation the corresponding structures 

are added into the system lists (Mayer, 2015); 

also a driver can allocate memory for its own 

purposes – all these manipulations can be tracked 

and used as a source to detect a malicious driver.  

One of the ways used to implement hooking 

functions is the rewriting of an address of 

memory allocation routine and applying 

trampoline function. 

The idea of monitoring the execution of an 

operating system and tracking the newly created 

kernel mode objects was proposed by Prakash et 

al., (2015). The authors suggested hooking 

memory allocation and deallocation routines in 

the kernel: ExAllocatePoolWithTag, 

ExFreePoolWithTag and MmLoadSystemImage 

from ntoskrnl.exe. Their ideas have been tested 

on 32-bit Windows XP with Service Pack 3 and 

Windows 7.  

A similar idea of capturing kernel mode object 

allocation and deallocation events to dynamically 

identify kernel-mode objects was also proposed 

by Rhee et al., (2010). The authors considered 

two basic types of malware attack: privilege 

escalation using direct memory manipulation and 

dynamic kernel mode object hooking. They 

emphasize that performance is not a primary 

concern for their prototype, which is designed for 

use in non-production scenarios such as honeypot 

monitoring, etc.  

The method of intercepting kernel-mode 

functions by using inline hooks in a stable 

manner on multi-cores processor systems was 

proposed by Milković (2012).  

It is also possible to hook kernel-mode functions 

by applying well-known techniques of modifying 

pointer values onto the System Services 

Dispatching Table (Matrosov, Rodionov, & 

Bratus, 2016) and using the Stealth Hook 

technique and Redirector Stubs to conceal 

hooking (Ligh et al., 2014).  

All these hooking approaches work well only on 

32-bit Windows OSes, while the more popular 

64-bit Windows include built-in Kernel Patch 

Methods for monitoring access to memory

OS-based

Hypervisor-based 

Leverages Intel VT-x with EPT technology

Hooking Memory Management routines

Handling Page-Fault Exceptions by IDT

Handling Page-Fault Exceptions by Hypervisor

Proposed system
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Protection or PatchGuard. According to the blog 

PatchGuard “is intended to protect critical kernel 

structures from being easily modified from 

unauthorized entities” (Block, 2015). PatchGuard 

also controls the integrity of Windows kernel, 

including ntoskrnl.exe (Irfan et al., 2013; 

Comodo, 2013). 

2.1.2. Handling Page Fault Exceptions by IDT  

This method is based on memory mapping on 

Intel x86 in protected mode. The idea of 

intercepting memory mapping process using IDT 

for rootkit purposes was first presented by Sparks 

& Butler (2005). Below we will discuss the 

details of memory mapping process and how to 

apply them to monitor memory access. We will 

provide three scenarios of trapping memory 

access and also cover with the disadvantages of 

this methodology.  

The process of memory mapping or memory 

paging is explained by Intel (2016) and includes 

the following phases. When a memory access to 

the page occurs, a CPU starts page table walk to 

find the physical address. CPU then checks the 

access type by reading corresponding Page Table 

Entry (PTE) status bits. If the page is valid 

(meaning that its bits are set) and there is no 

conflict with the access type, the CPU then 

calculates the corresponding physical address of 

the page, using the page frame number (PFN) 

from this PTE.  

This is a frequent scenario. However, the access 

violation case is also possible: according to the 

Windows source code “the access fault was 

detected due to either an access violation, a PTE 

with the present bit clear, or a valid PTE with the 

dirty bit clear and a write operation” (Microsoft, 

n.d.-a). In this situation after checking PTE bits, 

the CPU raises a page fault exception (#PF). 

Following this the control goes to the page fault 

handler code, whose address is located in the 

IDT. The example of the source code of the page 

fault handler code is presented in the function 

nt!KiTrap0E within the file Microsoft (n.d.-b). 

This code processes all the required work for 

loading memory pages, configuring PTEs and 

continue control to the OS.  

Sparks and Butler proposed hiding of the memory 

page by deliberately marking corresponding PTE 

as non-present and also by replacing the page 

fault handler code, which helps to differentiate 

page view. This method can be applied to 

monitoring memory access as well. Figure 3 

shows the principles of tracking memory access.  

Let us consider the case of secret data protection 

from unauthorized access. Secret data is located 

on page C. To do this we change the 

corresponding page table entry by clearing the 

Present bit (P bit). Once an unknown driver 

’Drv.sys’, has been loaded on page A and page B, 

and tries to read the secret data, CPU starts 

memory translation to retrieve the content of page 

C. To achieve this CPU reads the Page C PTE 

and checks if the result is in conflict with the 

access type. In our case we have access violation: 

’Drv.sys’ reads a page with zero present bit and 

CPU raises a #PF exception. CPU processes this 

#PF by passing control to the code of page fault 

handler via IDT, which stores a link to its code. 

We can then replace the original page fault 

handler or its code and add a new processing 

algorithm. In the page fault handler code, we can 

receive the saved instruction pointer 

(SourceAddr), faulting address (DestinationAddr) 

and with this information we can realize various 

processing algorithms.  

We will consider the following three scenarios of 

page fault handler code. 

Scenario 1. Protecting secret data from being 

read. To protect secret data from unauthorized 

reading we clear P bit in the secret page PTE. 

During reading from this page the #PF (page not 

present fault) will be raised and page fault 

handler code starts to go (Eranian & Mosberger, 

2002). We can update the page fault handler 

algorithm to filter this access violation in the 

appropriate way using the saved instruction 

pointer as SourceAddr and faulting address as 

DestinationAddr. As a result, we are able to 

return the ‘fake’ page to the caller. 
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Figure 3 Log and manage access to memory pages by setting corresponding page table entry as non-present 

and replacing the page fault handler  

 

Scenario 2. Protecting system data from being 

modified. To protect the memory pages from 

unauthorized modification, for example by 

providing the integrity of the system structures, 

we clear Dirty bit (D bit) in the PTE, which will 

correspond to the page with the system structures. 

During any writing access to this page, CPU will 

raise a #PF (dirty-bit fault). Using a similar 

pathway from scenario 1 we can update the page 

fault handler to process this violation in an 

appropriate manner. 

Scenario 3. Detecting unauthorized code 

execution. Trapping execution appears to be a 

more complicated task, because for IA-32 

architecture there is no way to distinguish the 

execute accesses from read and write. To reveal 

execute accesses we use manipulation from 

Scenario 1, which is applied, adapting the 

proposals of Sparks & Butler (2005). An execute 

access is achieved if SourceAddr and 

DestinationAddr are equal.  

Existing approaches, which mark pages as non-

present and replace the page fault handler can be 

analyzed.  

The idea to control access to the pages by 

trapping page fault exceptions was proposed by 

Backes et al. (2014). This group authors 

attempted to avoid code reuse attacks, and this 

approach prevents programs from reading 

executable memory.  

Another system (Xu et al., 2015) focuses on 

controlled-channel attacks, which extract 

sensitive information from the application. This 

attack is based on restriction access to the 

particular code or the data page by editing the 

page table attributes directly. When the 

application tries to access one of these pages, a 

page fault will occur. When a page fault happens, 

the authors system will log the page fault event, 

and enable access to the page and remove access 

from the previous page. Their system records full 

byte-granular page fault traces of both code and 

data pages.  

The idea of monitoring memory access by page 

level tracking is used in the Omnipack kernel 

driver to detect when the program has removed 

the various layers of packing. Omnipack tracks 

written and written-then-executed memory pages. 

This system enforces a write-xor-execute policy 

(W+X) on the memory pages of the suspicious 

program to detect any attempts to execute the 

generated code during unpacking. A similar idea 

of W+X protection policy is also used in 

SecVisor (Seshadri et al., 2007).  

The method of process' address space protection 

via the mechanism of intercepting each time the 

processor asserts the page fault interrupt to signal 
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the access violation was used in the KLIMAX 

(Stefano, Cristiano, & Bruno, 2011).  

The SPIDER system by Deng, Zhang, & Xu 

(2013) realizes data watch point and enables 

monitoring memory to read/write at any address. 

These workers underline two limitations of 

applying existing techniques based on the page-

level mechanism for trapping execution. First, 

every instruction for fetching or data access in the 

non-present page will cause a page fault. This 

would result in a prohibitively high performance 

overhead. Second, the modified page table and 

page fault handler could still be detected by 

kernel-mode drivers.  

However, this method of trapping memory access 

by using PTE modification and replacing page 

fault handler code has several weaknesses. Sparks 

and Butler (2005) have shown that this method 

does not support 4 megabyte pages and, 

moreover, a replaced page fault handler can be 

easily revealed and this can help to detect this 

method. Due to the fact that page fault handler 

code is an intermediary, memory monitoring will 

have a major impact on the system performance. 

In addition, there are issues of porting this 

method to the CPUs with multiple cores 

(Priyadarshi, 2016).  

The main disadvantage of OS-based methods are 

as follows: they can be easily detected and 

disabled by kernel-mode malware. The 

hypervisor-based methods are relatively stealthier 

and more resilient, but they require a CPU with 

hardware virtualization support.  

2.2. Hypervisor-based Methods 

Methods described in this section require 

hardware virtualization processor features, which 

are enabled in all modern CPUs. The first method 

uses Intel Virtualization Technology (VT-x) 

without any specific features. As a result, this 

method will work even on the legacy Intel Core 2 

CPU. The second method leverages Intel VT-x 

with EPT technology, which can be used with 2nd 

generation of Intel – family i3, i5, and i7. One of 

the recently analyzed papers requires processors 

with support from Intel Processor Trace (PT) 

technology, which is integrated only in newest 

CPUs beginning with 5
th
 generation. 

2.2.1. Handling Page-Fault Exceptions by 

Hypervisor 

This method leverages hardware virtualization 

technology into monitoring access to memory by 

processing the page fault exception. This method, 

like the previous one, modifies the page table 

entries or the attributes of the memory pages, 

access which should be controlled. Any access to 

this page will generate the #PF and cause VM-

exit, which will be handled by the hypervisor, see 

Figure 4.  

To set up the hypervisor for processing #PF we 

need to configure Virtual Machine Control 

Structure (VMCS). This can be achieved by 

setting the 14th bit in the Exception Bitmap from 

VMCS->VM-execution control fields.  

Applying this method, the hypervisor is able to 

catch both SourceAddr and DestinationAddr 

addresses, realizing various security scenarios. 

According to the page, which reveals illegal 

memory access: a hypervisor gets the address of 

the trapped instruction from EIP (Cheng, Ding, & 

Deng, 2013). Some recent examples of this 

method will be given and finally the drawbacks 

of the method will be presented.  

Kuniyasu et al. (2014) proposed the DriverGuard 

hypervisor to protect industrial infrastructure 

systems from Advanced Persistent Threat (APT). 

The authors considered, that most of these threats 

“are zero-day attacks and signature based security 

tools cannot detect these attacks.” Their 

hypervisor “prevents malicious write-access to 

code region that causes Blue Screen of Death of 

Windows, and malicious read- and write- access 

to data region which causes information leakage.” 

DriverGuard manages PTE and changes the 

Present bit (P bit). As a result, all access to the 

page causes a page fault, which is hooked by 

DriverGuard; it analyzes whether the access 

comes from a legitimate code or not. If a 

legitimate code accesses the memory, 

DriverGuard will apply a new stealth breakpoint 

technique using hardware breakpoints in the 

single step mode. It enables single step mode by 

setting Monitor Trap Flag (MTF) bit in the 

VMCS. DriverGuard recognizes the memory 

region with sensitive data using “tag” value. 

Memory regions which are allocated dynamically 

by ExAllocatePoolWithTag with this “tag” value 
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will be protected. Hackers can reveal this “tag” 

value and use the same tag in their malware. The 

authors admitted that page fault is slower than 

software interrupt and “it will make performance 

degradation.”  

Another protection system – MOSKG, which is 

countering kernel rootkits with a secure paging 

mechanism was presented by Yan, Luo, Feng, 

Pan, & Safi (2015e). The primary goal of this 

paper is to prevent rootkits by preserving critical 

kernel mode data from being manipulated by 

DKOM and page mapping attacks. These authors 

underline the main challenges as “the dynamic 

data can be modified legally by the OS or 

illegally by using the rootkits, but we have to 

distinguish the legal operations from the illegal 

ones.” To validate the legitimacy of write 

operation to dynamic data and page mapping 

operations they make use of the shadow page 

tables (SPTs) in the hypervisor to mark the 

machine page, which in turn contains the 

protected data as read only. As a result, 

“whenever an instruction attempts to write the 

marked page, the page fault handler in the 

hypervisor will be called.” They underline the 

limitations of their solution, one of which is “that 

the extent of protection is not sufficient.” The 

next limitation is that “the rootkits may seek out 

other unprotected data to compromise the target 

OS. These attacks might be able to circumvent 

some portions of MOSKG architecture.”  

Wang & Jiang (2010) consider the issue of 

hypervisor integrity protection. They assume 

there is a threat model in which attackers are able 

to exploit software vulnerabilities to overwrite 

any memory data. They focused on the 

hypervisors and that “in current hypervisors (e.g., 

Xen and KVM) and OS kernels (e.g. Windows 

and Linux), their page tables are all writable.” 

Experiments have shown that modification of 

“even one bit in a page table entry could well be 

enough to subvert the entire protection.” The 

authors proposed HyperSafe, a lightweight 

approach, which protects the hypervisor’s code 

and data from being compromised. To provide 

the W+X-based integrity HyperSafe marks the 

page tables as read-only and turns on the Write 

Protect bit (WP) in the register CR0. This bit 

controls the way a hypervisor code interacts with 

the write protection bits. As a result, any write 

attempts to modify them at runtime will be 

trapped by the hypervisor. HyperSafe is able to 

protect only open source hypervisor. The support 

of closed source 3rd party drivers still remains a 

major challenge. 

 

Figure 4 Controlling access to the guest OS virtual memory via marking corresponding page table entry 

as a non-present and handling page fault exceptions by hypervisor 
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Patents exist which also cover memory tracking 

ideas by marking guest kernel page table entries 

as not present and controlling page fault. A patent 

by Dang, Mohinder, & Srivastava (2015) 

proposes a hypervisor’s page fault handler, which 

may conditionally allow or deny access to or 

execution of the appropriate guest kernel pages. 

Using the fact that the assignee of this patent is 

McAfee, Inc. from Santa Clara, California 

(USA), we can infer that this methodology is 

used in the McAfee Antivirus or its internal 

products. In another patent (Traut, Hendel, & 

Vega, 2007) the processing interrupts to maintain 

the modified flags of the page table entries and 

this is a significant source of the slowdown for a 

shadow page table implementation.  

Page fault protection mechanism is used for 

monitoring the access to kernel-mode pages but 

also to user-mode pages. U-HIPE is the prototype 

for user-mode memory protection, which injects a 

page fault in the guest VM (Luțaș, et al., 2016).  

Srivastava & Giffin (2011) explore the idea of 

monitoring untrusted kernel-mode execution by 

separating page tables for data and for drivers. 

This separation forces all control flows spanning 

the kernel-driver interface to induce page faults 

which are then handled by the code in the 

hypervisor and this verifies the legitimacy of the 

control flow. As a result, a hypervisor-based 

system called Gateway was created. This system 

traces the behavior of kernel malware by 

monitoring kernel APIs functions invoked by 

drivers.  

A similar method for processing page faults was 

used in the hypervisor-based system HyperSleuth 

for tracing system calls (Martignoniey al 2010). 

Because all system calls invocations go through a 

common gate, whose address is defined by 

SYSENTER_EIP register, these workers shadow 

the values of this register and the value of the 

shadow copy to the address of a non-existent 

memory location. Afterwards, all system calls 

invocations result in a page fault exception. As a 

result, HyperSleuth traps and saves all system 

calls to the log, which is then transmitted via the 

network to the trusted host.  

Another idea is trapping system calls using a 

virtual machine introspection mechanism (Pfoh, 

et al., 2011). This Nitro system works with the 

following system calls: user defined interruption; 

and SYSCALL / SYSENTER instructions. This 

system is not able to monitor function calls in the 

kernel-mode.  

Azab et al. (2009) present a hypervisor-based 

system that measures the integrity of virtual 

machines – HIMA. The idea of protecting guest 

memory using page access permissions was also 

used in the HIMA. This author’s system applies 

facilities of No eXecute bit (NX bit) of a page 

table entry. If this bit is 1, the page is assumed to 

only retain data. Any instruction execution on this 

page will cause a page fault exception, which will 

be trapped by the hypervisor. Moreover, the 

authors proposed to prevent programs from 

marking executable pages as non-writable, which 

provides trapping of any modification of the 

memory pages.  

This memory trapping method is also used in 

PhD research. Thus Yan (2013) deals with 

malware analysis by virtualization and 

demonstrates that this memory monitoring 

method is not resilient for Denial-of-Service 

(DoS) attack. The problem is that malware can 

induce a large number of page faults exceptions, 

and each of them involves an exit to the 

hypervisor. This exception flood launches a DoS 

attack on the recorded log and renders its further 

analysis difficult.  

As well as this DoS vulnerability this method has 

the following drawbacks: 

 It is not stealthy: the modification of page 

attributes or PTE.flags is visible from a 

guest and can be easily revealed by 

malware;  

 It is not lightweight: each page fault will 

take some time for processing and in real 

time will result in significant 

performance overheads;  

 It does not fully support multi-core CPU: 

since a PTE exists only for a page and is 

shared by all cores, its modification it 

affects other processors' contexts as well. 

In the next section we will present other methods, 

which exclude these drawbacks, but require CPU 

with VT-x and EPT support.  
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2.2.2. Leverages Intel Extended Page Tables 

technology 

This section covers Intel VT-x with Extended 

Page Tables (EPT) technology, which is a new 

feature of hardware virtualization. We present the 

details of how EPT mechanism is working and 

the ways of leveraging EPT for tracking and 

trapping access to the memory. 

New hardware virtualization feature – EPT is 

the source of inspiration for monitoring 

memory access. 

There are two serious drawbacks of Intel VT-x 

technology presented in the previous section. 

Firstly, there is hypervisor performance overhead 

associated with memory management and 

secondly the size of guest physical memory is 

limited by host physical memory. The idea of 

Second Layer Address Translation (SLAT) or 

Two-Dimensional Paging has been designed to 

reduce the memory and power overhead costs 

through hardware optimization of the page table 

management.  

The SLAT technology has been integrated in the 

Intel CPUs since Nehalem microarchitecture in 

the first Core i3, i5, and i7. In Intel terminology 

this technology is ‘Intel VT-x with Extended 

Page Tables (EPT)’. Similar technology has been 

issued by AMD and this is called ‘Nested Page 

Table (NPT)’. In this review the focus is on EPT 

implementation in the Intel CPUs, but the 

findings apply more generally as well.  

We will show how the EPT mechanism works 

and how it can be used for monitoring memory. 

EPT technology helps to virtualize guest physical 

memory and as a result enhances CPU facilities 

using paging data structures also known as ‘EPT 

layout’. The algorithm of the EPT data structures, 

which translates the guest physical address to the 

host physical address, is similar to the familiar 

algorithm of paging structures in the protected 

mode, which translates the guest virtual address 

to the guest physical address. The content and 

organization of EPT paging structures are 

analogous to the paging structure in the protected 

mode or x86-64 page tables. There are however 

several differences between the content of EPT 

and guest paging structures (Grehan, 2014).  

EPT paging structures include the following 

tables: Page Map Level 4 (EPT PML4), Page-

Directory-Pointer Table (EPT PDPT), Page 

Directory (EPT PD), and Page Table (EPT PT), 

as shown in Figure 5. Hypervisor needs to 

allocate memory for all these tables and place   

their content. Using differing configurations of 

EPT structures the hypervisor can provide various 

memory paging scenarios.  

In this paper we will consider a simple scenario 

with ‘memory 1:1 mapping’, which translates 

guest physical address into the same physical 

address (Uty, & Saman, 2016).  

During each memory access inside guest 

operating system (guest OS), initially the guest 

paging data structures are involved. Finally, the 

EPT structures are to convert the received guest 

physical address into the host physical address.  

We can intercept memory access to the page by 

modifying the bits in the corresponding entry in 

the EPT Page table, while the entries in other 

tables EPT PML4, EPT PDPT, and EPT PD have 

their own default values.  

EPT Page Table entry provides bits, which allow 

or disallow access to the corresponding page: 

 bit#0 – “Read Access”, indicates whether 

reads are allowed from the 4-KByte page;  

 bit#1 – “Write Access”, indicates 

whether writes are allowed from the 4-

KByte page;  

 bit#2 – “Execute Access”, shows whether 

instruction fetches are allowed from the 

4-KByte page.  

According to the Intel manual (Intel, 2016) – 

‘Any attempts at disallowed accesses will involve 

EPT violation and will cause VM exits’. 

Hypervisor intercepts each EPT violation (VM 

Exit) and can implement specific algorithms, 

which help to provide cyber security as well as 

hiding malware data in the memory. 
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Figure 5 Controlling access to the guest OS virtual memory via using second layer address translation 

 

 

Hypervisor can log any read and write memory 

access of the malware driver by resetting the first 

two bits of its EPT PT entry. It is able to protect 

the privacy of its memory page content by 

resetting bit#0 of its EPT PT entry and replacing 

the required physical page to another null page 

where the access is disallowed. Hypervisor is also 

able to provide the integrity of memory page by 

resetting bit#1 and trapping each write access to 

the page. Rootkit hypervisor can protect the 

malicious driver from antiviruses and Windows 

built-in security mechanisms such as PatchGuard. 

For example, to protect secret data on Page B 

from reading by Drv.sys, which is loaded on Page 

A we need to modify the bit 0 in EPT PT entry, 

which corresponds to the page B.  

In the next section we review the papers, which 

leverage EPT technology, and also comment on 

their drawbacks. 

Analysis of EPT-based cyber security solutions 

First, the dynamic analysis system – DRAKVUF 

is able to track execution and tackle DKOM 

attacks (Lengyel et al., 2014). The DRAKVUF 

system uses VT-x and EPT technologies and is 

built on Xen hypervisor and the LibVMI library. 

The core technique is based on writing the 

opcode 0xСС at the code location deemed of 

interest. This manipulation is named as 

breakpoint injection and is trapped by the 

DRAKVUF hypervisor. This technique is able to 

automate the execution tracking of the entire OS 

and can trap all kernel functions. The breakpoint 

injection technique is protected by EPT page 

permission and enables an active virtual machine 

introspection. DRAKVUF adopted a novel 

approach to tackle DKOM attacks. To locate 

internal kernel structures DRAKVUF traps kernel 

heap allocations directly by using breakpoint 
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injection for Windows functions, which are 

responsible for allocating memory for structures: 

ExAllocatePoolWithTag and ObCreateObject. 

This system detects the locating of all kernel 

structures by dynamically extracting the return 

address from the stack. Another interesting 

feature of DRAKVUF system is to monitor 

access to the file by tracking access to the 

corresponding _FILE_OBJECTs structure in the 

kernel-mode heap. DRAKVUF marks the page 

on which the structure is allocated as non-

writable using EPT technology. This monitoring 

systems supports only Windows 7 in both 32 and 

64-bit versions (Drakvuf, 2016). 

In a second monitoring system CXPInspector by 

Willems, Hund, & Holz (2012) focuses on the 

analyzing of the state of a virtual machine from 

the outside. This system is based on the concept 

of Currently eXecutable Pages (CXP), which has 

the capability to observe the behavior of a 

program or even a complete OS and has two main 

uses. Firstly, it helps to analyze the behavior of 

kernel-mode malware and, secondly, it provides a 

performance profile of a single program or a 

whole OS. The authors leverage the EPT 

technology by virtualizing the memory 

management unit, and guarantees address space 

separation and hence it no longer requires 

hooking the page fault handler. The authors 

proposed an innovative approach of trapping 

access to the memory pages, which has instead 

been delegated out to the disk. To handle this 

situation CXPInspector injects a page fault into 

the guest OS, and this in turn forces the guest’s 

page fault handler to page-in the required 

memory. It uses a single step mode by setting 

Trap flag (TF) in the EFLAGS register. 

CXPInspector is based exclusively on the use of 

EPT technology for tracing instruction fetches. 

CXPInspector monitors execution code by 

marking certain pages as non-executable. 

CXPInpector enriches generated logs with 

detailed information about the called functions 

and their argument values. The called function 

names are retrieved through the use of debug 

symbol information. The key feature of 

CXPInspector is its ability to record the memory 

addresses from which call/return originated. This 

becomes possible through the use of Intel 

Processor Trace (Intel PT) technology, which has 

been integrated into Intel CPU since their 5th 

generation. CXPInspector is implemented on 

KVM hypervisor, which provides an interface to 

the QEMU toolset for 64 bit machines and 

Windows 7.  

The next paper by Pham et al., (2014) proposed 

the design of a HyperTap, a hypervisor-level 

framework, which monitors a variety of system 

events and states. HyperTap is able to trap 

context switching, syscalls, instruction execution 

and memory accesses. HyperTap can be adapted 

for a wide range of reliability and security (RnS) 

policies. HyperTap protection algorithms are 

based on setting memory protection for the 

allocated Memory Mapped I/O area so that access 

to this area will trigger EPT_VIOLATION 

events. We focus on two main examples of 

applying HyperTap: (1) Hidden RootKit 

Detection (HRKD) and (2) Privilege Escalation 

Detection (PED). In order to detect a hidden user 

process or thread, HyperTap tracks thread 

switches by setting memory access permissions. 

The HRKD sets all memory pages that contain 

TSS structure as write-protected. As a result, each 

thread switch modifies the task state segment 

(TSS) structure, which is then rerouted to the 

hypervisor using EPT_VIOLATION. The 

algorithm of PED is based on the Ninja privilege 

detection systems. PED applies OS-level Ninja’s 

checking rules whilst screening for unauthorized 

access. The idea behind this is to intercept fast 

system calls by using execute-protection on the 

system call entry point so that a guest attempt to 

execute this system call will generate 

EPT_VIOLATION. HyperTap is based on the 

KVM hypervisor and Linux kernel. These 

protection mechanisms have been tested on 

Windows XP, Vista, and 7.  

The idea of applying hypervisors facilities and 

EPT technology for rootkit purposes has been 

reported by Uty & Saman, (2016). These authors 

focus on the invisible inline hooks aimed at the 

modification of the code section. Hypervisor 

maps guest physical address to the host physical 

addresses by using 1:1 mapping. The idea of 

using invisible inline hooks is based on copying 

physical aspects and the original page. This 

memory page copy evades any detection of 

integrity violation. Thus in order to hook the 

Windows internal function the authors inject 
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0xСС (breakpoint, #BP) into the original page, 

while the duplicated page becomes unpatched. 

The memory page with this inline hook therefore 

will have an executable page permission. Any 

read operation to this page will trigger the EPT 

violation and during its processing the hypervisor 

changes the page’s mapping to the shadow one 

with read-write permissions. To speed up the 

authors proposed the use of two slightly different 

EPT structures and then simply switch between 

them. Using the idea of invisible inline hooks, the 

author has realized the keylogger and bypassed 

PatchGuard. In the first case authors hooked the 

KeyboardClassServiceCallBack routine and in 

the second case to hide a process they hooked to 

NtQuerySystemInformation. These hypervisor-

based rootkits facilities have been successfully 

tested on Windows 7 x64 and Windows 8.1 x64.  

We can see that there are the following 

drawbacks of these EPT-based studies: 

 EPT technology operates on page 

granularity level, which is why all these 

studies proposed a page-level control, 

without fine-grained analysis;  

 There is no solution which is able to 

monitor and control all possible memory 

access simultaneously: read, write, and 

execute;  

 All analyzed security solutions are not 

flexible because they are based on huge 

platforms, such as Xen, KVM, QEMU 

etc. 

We can conclude that EPT technology provides a 

huge opportunity to monitor and control access to 

the memory pages, and this can be used as the 

basis for the proposed solution. 

2.3. Conclusion 

The above analysis shows that the existing 

memory monitoring methods have the following 

drawbacks:  

1. Both OS-based methods are vulnerable to 

kernel-mode malware manipulations.  

2. Methods based on handling page fault 

violations via bare-metal hypervisor are 

not lightweight and will not support 

multi-core CPUs properly.  

3. EPT-based methods provide neither a 

fine-grained analysis nor the ability to 

trap all memory access.  

The summary with the comparison analysis of the 

major papers and projects is given in the Table 2, 

where 2nd generation CPU supports VT-x and 

EPT technologies – Nehalem microarchitecture. 

5th generation CPU supports VT-x, EPT, and PT 

technologies – Broadwell microarchitecture. 

In the next section we will present 

MemoryMonRWX, which is said to be free from 

all above mentioned drawbacks. 

  

Table 2 Summary table of memory monitoring projects  

Title, year 
Controlling the type of access 

Supported OS 
Required CPU 

Generation Read Write Execute 

HIMA, 2009 – – + only Linux 2nd 

HyperSleuth, 2010 + – – Windows 7, 8, x64 2nd 

CXPInspector, 2013 – – + Windows 7 x64 5th 

SPIDER, 2013 + + – only Linux 2nd 

DRAKVUF, 2014 – – + Windows 7 x64 2nd 

HyperTap, 2014 – + + Windows XP, Vista, 7 2nd 

MemoryMonRWX, 2017 + + + Windows 7-10 x64 2nd 
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3. DESIGN OF MEMORYMONRWX – THE 

MEMORY MONITOR HYPERVISOR  

In this section we present the main new 

contributions of this paper. This part covers the 

proposed ideas of how to apply EPT technology 

to trap and manage memory access, and also the 

design of a proposed hypervisor-based memory 

monitoring system, which is able to 

simultaneously track all types of memory access: 

read, write, and execute. We have named it the 

MemoryMonRWX system – which stands for 

Memory Monitor of Read, Write, and eXecute 

access.This system registers read and write access 

to the specific range of virtual memory addresses 

as well as revealing executable code on these 

memory pages. This system supports multi-core 

processors and consequently runs itself on each 

core.  

This is the first memory monitoring system which 

can trap even one-byte modification of guest OS, 

while all other solutions work on page granularity 

level. MemoryMonRWX did well when tested on 

the latest Windows 10 14393 x64 system. 

3.1. How to Apply EPT-Technology to Trap 

and Control Memory Access 

Modern malware and spyware rootkits apply the 

following typical techniques to protect 

themselves from being detected: malware can 

read and modify the content of data and code in 

the memory. 

There are two main scenarios. First we can 

monitor memory access from a suspicious driver, 

which is loaded from known addresses range. In 

the second scenario access to the suspicious 

memory addresses is controlled. To cover these 

two cases MemoryMonRWX needs to monitor 

and control access by using source address range 

(SRC range) and destination address range (DST 

range). MemoryMonRWX skips accesses from 

all other ranges (OTH range). In this paper SRC 

range, DST range, and OTH range do not 

intersect and this sum (SRC range + DST range + 

OTH range) is in the entire virtual context. SRC 

range includes virtual addresses, access from 

which will be trapped and DST range includes 

virtual address, access to which will be trapped. 

MemoryMonRWX controls memory access only 

from the SRC range to DST range and skips all 

other accesses. 

To provide such surveillance we apply a new 

Intel VT-x with Extended Page Table (EPT) 

technology, which significantly expands the 

existing bare-metal hypervisor facilities.  Some 

details of EPT technology were given above in 

section 2.2.2. In a nutshell, by applying EPT 

paging structures, EPT technology provides a 

mechanism which can intercept and control 

access to the memory pages. 

Using EPT structures we can implement the 

control of memory access from the SRC range to 

DST range and skip all other accesses, see 

Figure 6 a). Once guest memory is accessed, the 

translation between guest virtual address (GVA) 

to guest physical address (GPA) occurs, as shown 

in arrow (1) in Figure 6 below. After page walk is 

completed, the translation between GPA to host 

physical address (HPA) occurs, as shown in 

arrow (2). We receive HPA during page walk via 

EPT structures, which are used as an 

intermediary. If this memory access is allowed by 

the EPT, PT entry access bits, hypervisor does 

not take control. If this memory access is 

disallowed according to the EPT page table 

access bits, it involves EPT violation and causes 

VM exit, as shown by arrow (3). Now hypervisor 

is able to log and control access to this memory 

page via modification of EPT paging structures, 

see arrow (4). After that control goes to physical 

memory (5) and comes back to the guest, see 

arrows (6), (7), (8). 

Let us consider two main scenarios of using EPT 

structures. Firstly, we set allowing attributes in 

the EPT structures and hypervisor does not trap 

anything, see Figure 6 b). Secondly, to intercept 

each read-access to the guest page we change the 

attributes on the corresponding EPT PT entry, see 

Figure 6 c).  
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a) b) c) 

Figure 6 Algorithm of intercepting memory access using EPT: a) General view;  

b) EPT structures have allowed attributes; c) EPT structures have disallowed attributes 

 

These two scenarios can be combined in the 

following way, which includes 5 steps. We 

control memory access from SRC range by 

resetting execute attributes in the corresponding 

EPT structures. Next we filter all these accesses 

to the DST range by resetting read- write- execute 

attributes in the EPT structures, which correspond 

to DST range. 

Step 1 (Trapping SRC range execution). To 

separate only desired access from all other ones 

we use the following EPT structure as a trap, see 

Figure 7 a). 

This structure helps to intercept only execution 

access from SRC range, while all other accesses 

are skipped. This is an EPT normal view 

structure. In this structure DST range and OTH 

range will not be relevant. As a result, any code 

execution on SRC range involves EPT violation 

and causes VM Exit, and so we move on to 

Step 2. 

Step 2 (VM-Exit, because of execution on 

SRC). To understand what this code is trying to 

achieve, we use the following EPT structure as a 

trap, see Figure 7 b). Actually we can use only 

one EPT structure, but it requires updating each 

time during the change of the EPT pointer.  

With this EPT structure the hypervisor will 

receive a VM Exit only if the code, which has 

been trapped on Step 1, is trying to access the 

DST range. This is in the EPT monitor view 

structure. Now any access to the DST range 

generates a VM Exit again and we move on to 

Step 3.  

Step 3 (VM-Exit, because of access to DST). At 

this point, control goes to the hypervisor again. If 

we need to trap and monitor memory access, we 

log all related information: SCR address, DST 

address, type of access (read/write/execute), byte 

values some of which may have been read or 

overwritten. But if we need to protect sensitive 

data (or code) from being read or prevent 

important data (or code) from being overwritten 

we apply the following 3 procedures: 

1. Change EPT.PFN value of the secret 

page to another one, for example, to the 

null page.  
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2. Allow access to this page by setting 

‘true’ to EPT.DST.read and 

EPT.DST.write.  

3. Set Monitor Trap Flag (MTF). 

Setting this flag enables the system to generate 

VM Exit system after executing each instruction 

(Zhu, 2014). After guest OS reads the replaced 

page and executes just one instruction, the control 

goes to the hypervisor, because of VM Exit, and 

we move on to Step 4. 

Step 4 (VM-Exit, because of MTF). By now we 

will have protected the secret data (or code) from 

being read and tampered with. To get ready to 

intercept a new memory access, we restore the 

configuration by applying the following 3 

procedures: 

1. Restore EPT.PFN value to the original 

one.  

2. Restore permission of EPT.DST.read and 

EPT.DST.write by setting ‘false’ value.  

3. Clear the MTF. 

After that any access to the DST range will 

generate VM-Exit, and we move on to Step 3. 

Any execute access on OTH range will also 

generate VM-Exit, and we move on to Step 5. 

Step 5 (VM-Exit, because of execution on 

OTH). Now we check if this VM Exit address 

belongs to the SRC range. If it does not, it means 

that this code is out of our control and so we do 

not have to control it. So we change EPT back 

from monitor view to normal view in order to be 

ready to trap a new code execution on SRC range, 

we move on to Step 1.  

The interaction between these five steps is 

presented in Table 3 and Figure 8.  

We checked the proposed idea of using EPT to 

control memory access by developing a 

MemoryMonRWX hypervisor, which is 

presented in the next section. 

  

a) b) 

Figure 7 The content of EPT structures: a) EPT normal view, b) EPT monitor view 

Table 3 Summary table of VM-Exit manipulations if access address belongs to SRC range 

Type of Access 
Current Address 

Inside DST Range Outside DST Range 

Read / Write VM-exit & Recorded Nothing 

Execution 
VM-exit & Recorded &  

Switch to Normal View 

VM-exit &  

Switch to Normal View 

 SRC.read = true 
 SRC.write = true
 SRC.exec = false

(any execution access generates VM-Exit)

 DST.read = true
 DST.write = true
 DST.exec = true

 OTH.read = true
 OTH.write = true
 OTH.exec = true

EPT Normal View

 SRC.read = true 
 SRC.write = true
 SRC.exec = true 

 DST.read = false
(any read access generates VM-Exit)

 DST.write = false
(any write access generates VM-Exit)

 DST.exec = false
(any execution access generates VM-Exit)

 OTH.read = true
 OTH.write = true
 OTH.exec = false

(any execution access generates VM-Exit)

EPT Monitor View
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Figure 8 The proposed interaction between EPT views to log and control memory access 

 

3.2. Architecture and Major Components 

We have developed a hardware based hypervisor 

– MemoryMonRWX (Tanda, 2016-a), which 

leverages two Intel technologies: VT-x and Intel 

VT-x with EPT. MemoryMonRWX includes the 

following components: HyperPlatform, Image 

Load Detector, Source/Destination Range 

Manager (Src/Dst Range Manager), Virtual-to-

Physical Map Manager (V2P Map Manager), and 

EPT controller.  

A summary of the way this system works is 

shown in Figure 9. HyperPlatform is the main 

component of this system, which is a bare-metal 

hypervisor or virtual machine monitor (VMM). 

HyperPlatform is a minimal hypervisor, which is 

specifically designed for intercepting a variety of 

events in the guest OS and was firstly presented 

in REcon conference in 2016 (Tanda & Korkin, 

2016).  

After the MemoryMonRWX has been loaded, 

Image Load Detector forms a SRC/DST memory 

range of guest virtual memory addresses. Image 

Load Detector includes both type of ranges: pre-

configured ranges, which include, for example, 

the addresses of critical memory areas and the 

addresses of recently loaded drivers, which are 

added automatically. In this situation, the 

addresses of recently loaded drivers are SRC 

addresses and DST addresses and these are 

critical memory areas. It is possible to specify 

your own set of SRT and DST ranges by 

modifying the code of MemoryMonRWX.  

Src/Dst Range Manager takes requests from the 

Image Load Detector with SRC/DST virtual 

addresses ranges. This manager asks the EPT 

controller to update EPT settings for the stored 

ranges so that VM-Exit occurs when guest OS 

drivers from SRC ranges attempt to access any of 

the DST ranges.  

V2P Map Manager maintains the mapping of 

virtual (VA) to physical addresses (PA). This 

manager takes requests for addition VAes from 

both SRC and DST ranges and stores them along 

with their corresponding PAes. Once any of 

following events occurs, HyperPlatform, requests 

V2P Map Manager to check whether any pair of 

VA:PA needs to be refreshed: translation 

Lookaside Buffer (TLB) flush; completion of #PF 

occurs due to access to the non-present page. 

init

Step 5

EPT normal view

EPT monitor view

EPT monitor view with

 Replaced EPT.DST.PFN

 EPT.DST.read=true
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Step 1

EPT pointer

VMCS
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TLB flush indicates that any of previously valid 

VA:PA mapping via the page table entry has been 

changed, as for example, when the VA page is 

paged-out. The latter indicates that a new VA:PA 

mapping has just been established, for example, 

in case of paged-in page. V2P Map Manager will 

update the pair of VA:PA mapping in both cases.  

EPT controller manipulates the guest OS 

behavior during the access to/from the configured 

memory regions. EPT controller is responsible 

for initializing and updating the EPT Paging Data 

Structures, handling EPT violation, and recording 

memory access. First, EPT controller accepts 

requests for updating the EPT setting from 

Src/Dst Range Manager for SRC and DST 

ranges. Second, EPT controller updates EPT 

Paging Data. Structures of a given range to 

trigger VM-Exit when this range is accessed. 

Third, EPT controller is notified by 

HyperPlatform, when VM-Exit has occurred via 

the mechanism of EPT violation. EPT controller 

checks whether the access should be logged by 

asking if the accessed VA is inside the DST 

ranges and the current code counter, for example, 

if the value of RIP register, is within the SRC 

range.  

MemoryMonRWX provides fine-grained analysis 

by intercepting an access to the memory page. 

The logging process is only done when an EPT 

violation has occurred only on the configured 

address range. We do not log the accesses 

attempts to the EPT controlled pages, which do 

not belong to the configured ranges of memory 

addresses. 

 

Figure 9 Architecture and Major Components of MemoryMonRWX 
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MemoryMonRWX traps access to the configured 

SRC and DST address ranges using two EPT 

paging structures: EPT normal view and EPT 

monitor view, see Figure 9. Note that each 

processor has those two structures so that multi-

core systems can be supported. The normal view 

is used for the default state and the monitoring 

view is used when a guest is inside an SRC range. 

Details about the configuration and interaction 

between EPT normal view and EPT monitor view 

are given above in Section 3.1. 

During processing MemoryMonRWX saves its 

log into the file C:\Windows\MemoryMon.log.  

An example of this log is present in Figure 10 a). 

The first line indicates that a virtual address 

FFFFFA800194A468 is executed and its 

potential return address is FFFFF80002AD8C1C. 

Since execution of a non-image region is not 

always triggered by the CALL instruction, a 

reported return address can be wrong. For 

instance, the last line reports return address 

0000000000000004. The return address is 

calculated in the following way. This address is 

the content of a memory address, specified by 

RSP at the point of EPT violation, 

ReturnAddr=*RSP. Actually, we do not know, 

execution on which this particular instruction has 

been trapped. To reveal the precise call stack we 

are planning to leverage the Intel Processor Trace 

(PT) mechanism. 

To resolve symbol names in this log, a user-mode 

parser has been developed (Tanda, 2016-b). An 

example of a result log is presented in 

Figure 10 b).  

MemoryMonRWX offers good compatibility 

with the all major Windows platforms. For 

instance, MemoryMonRWX supports and can 

monitor Windows 7, 8.1 and 10 on both x86 and 

x64 architectures with more than one core. 

To ensure simplicity of its extension by 

researchers, MemoryMonRWX is designed to be 

small. As shown in Figure 11, it is made up of 

less than 12,000 lines of code, which is less than 

3% of Xen, for example. Also, it can be compiled 

on Visual Studio without requiring any assistance 

from 3rd party libraries. MemoryMonRWX can be 

debugged with WinDbg just like a common 

Windows driver. Moreover, for rapid 

development, C++ and STL can be used if 

preferred. 

We can conclude that the proposed 

MemoryMonRWX system has the following 

competitive advantages. First, it traps any 

accesses – read, write, and execute even to as 

little as one byte in the memory. It occurs due to 

leveraging EPT technology, which provides only 

page granularity level, and further processing, 

which reveals access even to one byte. Second, it 

supports multi-core processors via activating the 

VMX mode on each core. Finally, this system 

supports the newest Windows 10 14393 x64. 

Also, MemoryMonRWX can function as the 

basis for other cybersecurity solutions, for 

example, to monitor the activities of Device 

Driver Interfaces – DDIMon (Tanda, 2016-c), to 

detect unauthorized elevation of privilege – 

EoPMon (Tanda, 2016-d) as well as providing a 

mechanism to research and deactivate the 

PatchGuard – GuardMon (Tanda, 2016-e; Tanda, 

2016-f, and Tanda, 2016-g). 

 
a) 

 
b) 

Figure 10 Fragments of MemoryMonRWX log: a) raw data b) parsed data with resolved symbols names 
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Figure 11 Comparison in lines of code of hypervisor projects,  

MemoryMonRWX is made up of less than 12,000 lines of code, which is less than 3% of Xen 

 

3.3. Three Demos of MemoryMonRWX 

This sections covers three demonstrations of 

applying the MemoryMonRWX system. In the 

first example MemoryMonRWX stops the 

activity of a privilege escalation kernel mode 

exploit by detecting writing and causing BSOD. 

The second case demonstrates the read protection 

ability of MemoryMonRWX to prevent 

PatchGuard from being disabled. The final case 

deals with applying MemoryMonRWX to detect 

a suspicious code execution using Turla rootkit as 

an example. 

3.3.1. Integrity Case – MemoryMonRWX 

Prevents Modifications of Code & Data 

Typical kernel-mode rootkits hook functions 

through rewriting a code and unlink their 

structures by DKOM. The main scheme of these 

attacks is shown in Figure 12. These attacks are 

also known as Semantic Value Manipulation 

(SVM) attacks. These can mislead security tools 

by manipulating data values directly in the kernel 

data structures. Similar attacks are proposed by 

Prakash, et al., (2015). 

The proposed MemoryMonRWE is able to detect 

and prevent such attacks. As an example we 

consider the CVE-2014-0816 kernel mode exploit 

(Tanda, 2016-h), which modifies its value in the 

HalDispatchTable[1]. To do it we predefined 

ranges in MemoryMonRWE; set address of 

HalDispatchTable[1] as a destination address. As 

a result, after loading the exploit 

MemoryMonRWE traps this modification and 

this is then able to stop the guest OS which 

prevents further exploitation. The video 

demonstration of this case is shown in Tanda 

(2016-i). 

MemoryMonRWX can also be used to guarantee 

the integrity of critical kernel-mode sections, 

system lists, as well as the integrity of configured 

ranges to protect proprietary programs and their 

data. In this case MemoryMonRWX plays the 

role of future HyperGuard (Hyper Guard), which 

will probably replace the existing and vulnerable 

PatchGuard system (Ionescu, 2015; Chauhan, 

2016). 

3.3.2. Confidentiality Case – 

MemoryMonRWX Prevents Reading Data 

Memory content includes much sensitive 

information: keystrokes, passwords, their hashes, 

private cryptographic keys, and even the 

fragments of decrypted data. Various rootkits 

attacks focus on kernel-level memory disclosure. 

The scheme of these attacks is given in Figure 13. 

A description of the attacks of crypto key 

disclosure in the OpenSSH, Nginx server, and 

CryptoLoop is considered in Liu et al., (2015). A 

memory-based keylogger, which intercepts 

keystrokes by reading the content of 

DEVICE_EXTENSION of the kbdhid.sys driver, 

has been proposed by Ladakis et al., (2013). 
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Figure 12 Code and data modifications attacks in the kernel-mode memory 

 

 

Figure 13 Spyware driver reads and steals sensitive data 

 

To demonstrate that MemoryMonRWX has the 

ability to prevent read-access to sensitive data in 

the memory we use another kernel-mode exploit 

“Disarms PatchGuard (DisPG)”, as has been 

proposed by Tanda (2016-j). One of the 

components of DisPG reads the value from 

nt!PoolBigPageTableSize, which stores the 

address of the big page pool table Sylve, et al., 

(2016). To prevent such unauthorized reading we 

predefined the MemoryMonRWX destination 

range using the address of 

nt!PoolBigPageTableSize and also changed the 

logic of intercepting in the following way: Thus 

any unauthorized reading access attempts to this 

memory content will be redirected to a fake zero 

page. As a result, DisPG reads the replaced fake 

zero value and fails to disable PatchGuard. Video 

demonstration of this case is loaded in (Tanda, 

2016-k).  

Thus MemoryMonRWE prevents any 

unauthorized reading access of the sensitive data. 

3.3.3. Real World Case – Applying 

MemoryMonRWX to Analyze Turla Rootkit 

Another rootkit technique moves malware 

executable code outside the driver section. As a 

result, kernel memory includes unknown pages 

with an executable code.  

MemoryMonRWX is able to reveal such 

executable code as well as providing facilities to 

analyze it with the help of a disassembler. To 

demonstrate these facilities, we use Turla rootkit 

(also known as Uroburos rootkit).  

We tested MemoryMonRWX on the 64bit 

version of Windows 7 against the Turla rootkit 

and confirmed that MemoryMonRWX is able to 

detect execution of non-paged pool and that the 

executed region contained unpacked rootkit code 

(Tanda, 2016-l). 

RootkitDriver.sys
System Service Descriptor Table

ZwClose

ZwReadFile

ZwCreateKey

......Hook

List with drivers information

Unlink

PatchGuard has 

been disabled

SpywareDriver.sys Sensitive data

Crypto Keys

Passwords

Read

Credentials

Steal



The 12th ADFSL Conference on Digital Forensics, Security and Law 

 23   

 

3.4. Benchmarks 

Performance measurement was conducted on the 

64bit version of Windows 10 running on a 

Macbook Air with Intel Core i7-4650U, 8GB 

RAM and SSD flash storage. In this experiment, 

we executed Novabench (Novabench, n.d.) and 

PCMark8 Home (PCMark8, n.d.) on the system 

with and without MemoryMonRWX. Compared 

overhead in ratio is shown in Figure 14. We can 

measure how much the system performance 

changed in comparison to 0%, which indicates 

the system operating without those hypervisor 

tools.  

The results showed that performance degradation 

kept to less than 10% in all tests except the 

Novabench Graphics Tests. We surmise that the 

reason for the higher overhead on this test is 

caused by frequent TLB flush led by active 

memory access, yet this has not been investigated 

so far. Users should experience much less 

overheads during their routine work: opening and 

saving documents or surfing the Internet. 

 

 

 

4. CONCLUSIONS & FUTURE WORK 

In this paper we have achieved the following 

results:  

1) We are able to reveal and prevent 

malicious activity by logging and 

controlling read-, write, and execute- 

memory access in a real time mode.  

2) We developed a MemoryMonRWX 

hypervisor to ensure the integrity and 

confidentiality of both code and data. 

This system helps to detect kernel-mode 

malware, even if this malware applies 

popular OS-based prevention techniques. 

3) MemoryMonRWX can be used to 

monitor access to the memory for a 

variety of different purposes: driver 

tracking, reverse engineering, detection 

of unknown malware, verification and 

protection of proprietary software.  

4) We demonstrate that MemoryMonRWX 

can be used in practice, the evaluation of 

its benchmarks shows that its degradation 

is quite small.  

5) MemoryMonRWX is a tiny open-source 

project which can be easily used by 

students and post-graduate students 

during their research activity. 

With regard to future work we would like to 

suggest the following ideas  

 

Figure 14 MemoryMonRWX overhead  

0% indicates the system without hypervisor, 100% – full system overload 
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4.1. Hypervisor-based Warden Controls Access 

to The Memory 

We propose an idea of how to improve PatchGuard 

facilities and make it more resilient. We propose an 

idea for hypervisor-based warden (HyperWarden) 

which is not vulnerable to all kernel-mode malware 

manipulations, because it runs in a more privileged 

mode. Existing PatchGuard provides integrity for 

Windows kernel code and detects unlinking attacks 

on the structures from process and drivers lists 

(Ionescu, 2015). It does not protect the integrity of 

the full content of these structures in the memory 

(Ch40zz, 2015) as well as not providing any 

mechanisms to protect memory of the 3rd party 

drivers from being tampered with. 

HyperWarden will exclude all these drawbacks. It 

will provide flexible protection for all data in the 

memory using MemoryMonRWX as its basis. By 

dynamic configuration of SRC/DST ranges and 

allowed types of memory access we can guarantee 

the data and code security. HyperWarden will avoid 

any modification of critical Windows code and 

multiple structures in the memory. It will allow 

modification and read critical Windows data only 

through the Windows kernel code. To protect the 

integrity and confidentiality of the code and data of 

the third part drivers HyperWarden will provide 

API to configure regions of memory, which need 

be protected. HyperWarden will support functions 

to activate/deactivate memory protection as well as 

adding\deleting protected memory areas for each 

driver. As a result, HyperWarden helps to provide 

complex memory security: protect integrity for OS 

critical areas as well as integrity and confidentiality 

of users for the configured memory areas. 

4.2. Protection of Cloud Computing Systems 

One of the possible scenarios of large scale 

application of MemoryMonRWX is to protect 

Cloud Computing Systems from being tampered by 

exploits and malware (Murakami, 2014). Private 

Cloud Computing Systems such as Amazon, 

Google, and Microsoft provide their clients with 

common services, whose behaviors are little 

altered. For each specific Software as a Service 

(SaaS) we can generate various behavior signatures, 

which correspond to typical operations with 

memory, and in this way avoid the leakage of 

users’ data. 

4.3. Visualize Memory Access 

Another suggestion is to visualize registered 

memory access using various techniques. The idea 

is to create a Dynamic Memory Map, 

demonstrating which driver or code has access to 

specific data in the memory. It may also monitor 

the frequency, amount of accessed data, and the 

content of memory. The first step is to draw a Static 

Memory Map with loaded drivers together with the 

allocated data using rectangles. It will look like a 

typical memory dump. The second step is to trap 

the access from each driver to the memory and then 

draw the corresponding arrow between the two 

blocks. The third step is to continue updating the 

picture and as a result this will show the Dynamic 

Memory Map. For first step we can use various 

data visualization techniques (ISOVIS, n.d.) and for 

the second step we can apply ideas from Rgat roject 

(Catlin, 2016). 

4.4. Apply Raspberry Pi to Acquire Physical 

Memory Dump & Detect Hidden Software 

We propose an idea of using modern IoT platforms 

such as a Raspberry Pi for the protection of 

computers and incident response. The idea is to 

expand the opportunities of CaptureGUARD by 

WindowsSCOPE (WindowsSCOPE, n.d.), which is 

only able to acquire the physical memory dump, 

and so significantly decrease the price of a new 

hardware platform.  

First of all, we can use Raspberry Pi to acquire the 

dump of physical memory using the ExpressCard 

slot for PC and Thunderbolt interface for Mac. A 

tecnhique of dumping memory by FPGA on a 

PCMCIA card or ExpressCard slot was proposed 

by Aumaitre, and Devine, (2010). We are planning 

to apply an Inception software tool, which exploits 

PCI-based DMA. This tool can attack over 

FireWire, Thunderbolt, ExpressCard, PC Card and 

any other PCI/PCIe interfaces (Maartmann-Moe, 

n.d). After dumping we can use Raspberry Pi 

facilities to process this memory dump using Rekall 

Memory Forensic or Volatility Frameworks. We 

can also update detection software using a wireless 

connection, that is built-in to Raspberry Pi. This 

detection platform will also be resilient to malware 

attacks, because users do not work on it. 
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4.5. Implantable Medical Devices as a Target of 

Cyber Attacks 

Another idea is to protect wireless Implantable 

Medical Devices (IMD) from being hijacked using 

remote control. The livelihood and welfare of 

patients ultimately depends on the precise work of 

these devices. Their work can be breached remotely 

by an intruder through using a wireless connection 

and thus can result in human losses. We propose 

the following action plan to protect IMD and make 

forensic investigation easier. We can maintain 

confidentiality, integrity, and authenticity of data 

by applying lightweight cryptography to a secure 

channel. We will suggest an intrusion detection 

system (IDS) to protect IMD from DoS attacks by 

disabling its input dispatcher temporarily (Darji & 

Trivedi 2013). IDS will protect battery IMD from 

being drained. We will describe the event logging 

system which is able to perform the forensic 

analysis in case of an incident occurring. Finally, 

we are planning to verify embedded software to 

reveal the vast majority of vulnerabilities.  

As the first step, we will create an analogue of 

OneTouch Ping Glucose Management System & 

Insulin Pump by J&J, which was attacked recently 

(Finkle, 2016). We will apply Contiki OS for 

programming TI MSP430 microcontroller, which is 

used in these pumps. We demonstrate the 

vulnerability of this radio channel by unauthorized 

control and access to this pump. We will develop a 

complex cyber-security system, which will protect 

this IMD from being tampered with remotely, or 

from stealing data and draining the IMD battery by 

wireless DoS attacks. 

5. ACKNOWLEDGEMENTS  

We thank the anonymous reviewers for their 

constructive feedback to this work. 

We wish to express our gratitude to Ashlyn King, 

an intern at Russian Flagship Center, University of 

Wisconsin–Madison, Madison, Wisconsin, US for 

her comments on the manuscript and equally 

helpful advice. Her voluntary contribution in 

reviewing this paper significantly improved its 

quality and timeliness.  

We would like to thank Sarah Krueger, a teacher of 

English, Kenosha, Wisconsin, US for her time and 

effort in checking a preliminary version of this 

paper.  

We would also like to thank Ben Stein, teacher of 

English, Kings Education, London, UK for his 

invaluable corrections of the paper.  

6. REFERENCES 

[1] Aumaitre, D., & Devine, C. (2010). Subverting 

Windows 7 x64 Kernel with DMA attacks. In: 

HITBSecConf. Amsterdam. Retrieved from 

http://esec-

lab.sogeti.com/static/publications/10-

hitbamsterdam-dmaattacks.pdf 

[2] Azab, A., Ning, P., Sezer, E., & Zhang. X. 

(2009, December 07 - 11). HIMA: A 

Hypervisor-Based Integrity Measurement 

Agent. In Proceedings of the Annual Computer 

Security Applications Conference (ACSAC 

'09). IEEE Computer Society, Washington, 

DC, USA, 461-470. 

http://dx.doi.org/10.1109/ACSAC.2009.50 

[3] Backes, M., Holz, T., Kollenda, B., Koppe, P., 

Nürnberger, S., & Pewny, J. (2014). You Can 

Run but You Can't Read: Preventing 

Disclosure Exploits in Executable Code. In 

Proceedings of the 2014 ACM SIGSAC 

Conference on Computer and Communications 

Security (CCS '14). ACM, New York, NY, 

USA, 1342-1353. 

http://dx.doi.org/10.1145/2660267.2660378 

[4] Baluda, M., Fuchs, A., Holzinger, P., Nguyen, 

L., Othmane, L., Poller, A. (2015, November 

16). Security Analysis of TrueCrypt. Federal 

Office for Information Security (BSI). 

Retrieved from 

https://www.bsi.bund.de/SharedDocs/Downloa

ds/EN/BSI/Publications/Studies/Truecrypt/Tru

ecrypt.pdf?__blob=publicationFile&v=2 

[5] Baranov, A. (2014, March 12). Uroburos: the 

snake rootkit. Retrieved from 

http://artemonsecurity.com/uroburos.pdf 

[6] Baranov, A. (2016, October). Remsec driver 

analysis. Retrieved from 

http://artemonsecurity.blogspot.ru/2016/10/re

msec-driver-analysis.html 

[7] Bartholomew, B., & Guerrero-Saade, J. (2016, 

October 5-7). Wave your false flags! 

Deception tactics muddying attribution in 

targeted attacks. Virus Bulletin International 

Conference (VB2016). USA, CO, Denver. 



The 12th ADFSL Conference on Digital Forensics, Security and Law 

 26   

 

Retrieved from 

https://securelist.com/files/2016/10/Bartholom

ew-GuerreroSaade-VB2016.pdf 

[8] Bauman, E., Ayoade, G., Lin, Z. (2015, 

September). A Survey on Hypervisor-Based 

Monitoring: Approaches, Applications, and 

Evolutions. Journal ACM Computing Surveys 

(CSUR), 48(1), pp. 10:1-10:33. New York, 

NY, USA. http://dx.doi.org/10.1145/2775111 

[9] Block, F. (2015, December 13). Investigating 

Memory Analysis Tools – SSDT Hooking via 

Pointer Replacement. Retrieved from 

https://insinuator.net/2015/12/investigating-

memory-analysis-tools-ssdt-hooking-via-

pointer-replacement/  

[10] Cardona, S. (2017, January 17). Hacking 

Training Windows Kernel Exploitation. 

Retrieved from http://www.hacking-

training.com/download/WKE.pdf 

[11] Catlin, N. (2016). An instruction trace 

visualisation tool for dynamic program 

analysis. Retrieved from 

https://github.com/ncatlin/rgat 

[12] Ch40zz. (2015). PspCidTable and Patchguard 

on x64. Rohitab. Retrieved from 

http://www.rohitab.com/discuss/topic/41909-

pspcidtable-and-patchguard-on-

x64/?p=10101659 

[13] Chauhan, S. (2016, August 25). Windows 10 

Virtualization-Based Security. Data Driven 

Software Security. HITB GSEC Conference. 

Singapore. Retrieved from 

http://gsec.hitb.org/materials/sg2016/COMMS

EC%20D1%20-%20Sweety%20Chauhan%20-

%20Data%20Driven%20Software%20Security

.pdf 

[14] Cheng, Y., Ding, X., & Deng, R. (2013, 

September). DriverGuard: Virtualization-

Based Fine-Grained Protection on I/O Flows. 

ACM Transactions on Information and System 

Security (TISSEC), 16(2), 

http://dx.doi.org/10.1145/2505123 

[15] Comodo. (2013). New Patch Guard is 

dangerous for W8 security. Retrieved from 

https://forums.comodo.com/general-

discussion-off-topic-anything-and-everything-

b1.0/-t95225.0.html 

[16] Dang, A., Mohinder, P., & Srivastava, V. 

(2015, March 3). System and Method for 

Kernel Rootkit Protection in a Hypervisor 

Environment. U.S. Patent No 8,973,144 B2 

[17] Darji, M. & Trivedi, B. (2013, April). IMD-

IDS a specification based Intrusion Detection 

system for Wireless IMDs. International 

Journal of Applied Information Systems 

(IJAIS). 5(6). 

http://dx.doi.org/10.5120/ijais13-450926 

[18] Deng, Z., Zhang, X., & Xu, D. (2013). 

SPIDER: stealthy binary program 

instrumentation and debugging via hardware 

virtualization. In Proceedings of the 29th 

Annual Computer Security Applications 

Conference (ACSAC '13). ACM, New York, 

NY, USA, 289-298. 

http://dx.doi.org/10.1145/2523649.2523675 

[19] Dockrill, P. (2016, August 12). Scientists just 

found an advanced form of malware that's 

been hiding for at least 5 years. ScienceAlert. 

Retrieved from 

http://www.sciencealert.com/scientists-just-

found-an-advanced-form-of-malware-that-s-

been-hiding-for-at-least-5-years 

[20] Drakvuf. (2016). Black-box Binary Analysis 

System. Retrieved from https://drakvuf.com/ 

[21] Eranian, S., & Mosberger, D. (2002). Chapter 

4.5 Page Fault Handling. Virtual Memory in 

the IA-64 Linux Kernel. Retrieve from 

http://www.informit.com/articles/article.aspx?

p=29961&seqNum=5 

[22] Finkle, J. (2016, October 4). J&J warns 

diabetic patients: Insulin pump vulnerable to 

hacking. Reuters. Retrieved from 

http://www.reuters.com/article/us-johnson-

johnson-cyber-insulin-pumps-e-

idUSKCN12411L 

[23] G Data. (2014a, March 7). Uroburos – Deeper 

travel into kernel protection mitigation. G Data 

SecurityLabs. Retrieved from 

https://blog.gdatasoftware.com/2014/03/23966

-uroburos-deeper-travel-into-kernel-protection-

mitigation 

[24] G Data. (2014b, February). Uroburos Highly 

complex espionage software with Russian 

roots. G Data SecurityLabs. Retrieved from 

https://public.gdatasoftware.com/Web/Content

/INT/Blog/2014/02_2014/documents/GData_U

roburos_RedPaper_EN_v1.pdf 

[25] GovCERT. (2016, May 23). Technical Report 

about the Espionage Case at RUAG. Technical 

Report, Retrieved from 

https://www.melani.admin.ch/dam/melani/en/d

okumente/2016/technical%20report%20ruag.p

https://insinuator.net/2015/12/investigating-memory-analysis-tools-ssdt-hooking-via-pointer-replacement/
https://insinuator.net/2015/12/investigating-memory-analysis-tools-ssdt-hooking-via-pointer-replacement/
https://insinuator.net/2015/12/investigating-memory-analysis-tools-ssdt-hooking-via-pointer-replacement/


The 12th ADFSL Conference on Digital Forensics, Security and Law 

 27   

 

df.download.pdf/Report_Ruag-Espionage-

Case.pdf 

[26] Graziano, M. (2016, October 19). Make 

DKOM Attacks Great Again. HackInBo 

conference. Bologna, Italy, Retrieved from 

https://www.hackinbo.it/slides/1478701060_m

ake-DKOM-attacks-great-again.pdf 

[27] Graziano, M., Flore, L., Lanzi, A., & 

Balzarotti, D. (2016, July 07 – 08). Subverting 

Operating System Properties Through 

Evolutionary DKOM Attacks. In Proceedings 

of the 13th International Conference on 

Detection of Intrusions and Malware, and 

Vulnerability Assessment - (DIMVA 2016), 

Vol. 9721. Springer-Verlag New York, New 

York, NY, USA, 3-24. 

http://dx.doi.org/10.1007/978-3-319-40667-

1_1 

[28] Grehan, P. (2014, March 13-16). Differences 

between x86 64 and EPT PTEs. Nested Paging 

in Bhyve. Presented at the AsiaBSDCon. 

Retrieved from 

https://people.freebsd.org/~neel/bhyve/bhyve_

nested_paging.pdf  

[29] Haruyama, T., Suzuki, H. (2012). One-Byte 

Modification for Breaking Memory Forensic 

Analysis. Retrieved from 

http://media.blackhat.com/bh-eu-

12/Haruyama/bh-eu-12-

HaruyamaMemory_Forensic-Slides.pdf 

[30] Intel. (2014, June 29). Malicious Utility Can 

Defeat Windows PatchGuard. Intel Security. 

Retrieved from 

https://securingtomorrow.mcafee.com/mcafee-

labs/malicious-utility-can-defeat-windows-

patchguard/ 

[31] Intel. (2016, September). Chapter 28 VMX 

Support for Address Translation. Intel® 64 and 

IA-32 Architectures Developer's Manual: Vol. 

3C. Order Number: 326019-060US 

[32] Intel. (2016, September). Intel® 64 and IA-32 

Architectures Developer's Manual: Vol. 3A 

Chapter 4 Paging. Order Number: 253668-

060US. 

[33] Ionescu, A. (2015, June 22). What are Little 

PatchGuards Made Of? Retrieved from 

http://www.alex-ionescu.com/?p=290 

[34] Ionescu, A. (2015, October 13). HyperGuard. 

It's official. Retrieved from 

https://twitter.com/aionescu/status/654011301

438427136 

[35] Irfan, A., Golden, R., Zoranic, A., & Roussev, 

V. (2013, November 13-15). Integrity 

Checking of Function Pointers in Kernel Pools 

via Virtual Machine Introspection. In 

Proceedings Information Security: 16th 

International Conference (ISC), pp.3-19. 

Dallas, Texas, http://dx.doi.org/10.1007/978-3-

319-27659-5_1 

[36] ISOVIS (n.d.). Text Visualization Browser. 

Retrieved from http://textvis.lnu.se 

[37] Jadhav, A., Vidyarthi, D., & Hemavathy, M. 

(2016, March 11-13). Evolution of Evasive 

Malwares: A Survey. International Conference 

on Computational Techniques in Information 

and Communication Technologies (ICCTICT). 

http://dx.doi.org/10.1109/ICCTICT.2016.7514

657 

[38] Korkin, I., & Nesterow I. (2016, May 24-26). 

Acceleration of Statistical Detection of Zero-

day Malware in the Memory Dump Using 

CUDA-enabled GPU Hardware. Paper 

presented at the Proceedings of the 11th annual 

Conference on Digital Forensics, Security and 

Law (CDFSL), Embry-Riddle Aeronautical 

University, Daytona Beach, Florida, USA, pp. 

47-82 

[39] Kuniyasu, S., Toshiki, Y., Kazukuni, K., & 

Toshiaki, I. (2014, August 27-29). Kernel 

Memory Protection by an Insertable 

Hypervisor Which Has VM Introspection and 

Stealth Breakpoints. Advances in Information 

and Computer Security: 9th International 

Workshop on Security, IWSEC, Hirosaki, 

Japan, 48-61, http://dx.doi.org/10.1007/978-3-

319-09843-2_4 

[40] Ladakis, E., Koromilas, L., Vasiliadis, G., 

Polychronakis, M., & Ioannidis, S. (2013).You 

Can Type, but You Can’t Hide: A Stealthy 

GPU-based Keylogger. Proceedings of the 6th 

European Workshop on System Security 

(EuroSec). Prague, Czech Republic. Retrieved 

from 

http://www.cs.columbia.edu/~mikepo/papers/g

pukeylogger.eurosec13.pdf 

[41] Lee, H., Moon, H., Jang, D., Kim, K., Lee, J., 

Paek, Y., & Kang, B. (2013). KI-Mon: A 

Hardware-assisted Event-triggered Monitoring 

Platform for Mutable Kernel Object. Presented 

as part of the 22nd USENIX Security 

Symposium (USENIX Security 13). pp. 511-

526.  



The 12th ADFSL Conference on Digital Forensics, Security and Law 

 28   

 

[42] Lengyel, T., Zentific, S., Payne, B., Webster, 

G., Vogl, S., & Kiayias, A. (2014, December 

08 - 12). Scalability, fidelity and stealth in the 

DRAKVUF dynamic malware analysis 

system. In Proceedings of the 30th Annual 

Computer Security Applications Conference 

(ACSAC '14). New Orleans, Louisiana, USA, 

386-395. 

http://dx.doi.org/10.1145/2664243.2664252 

[43] Li, W., Wu, D., & Liu, P. (2016, August). 

iCruiser: Protecting Kernel Link-Based Data 

Structures with Secure Canary. 2016 IEEE 

International Conference on Software Quality, 

Reliability and Security Companion (QRS-C), 

Vienna, Austria, pp. 31-38. 

http://dx.doi.org/10.1109/QRS-C.2016.9 

[44] Ligh MH., Case, A., Levy, J., & Walters, A. 

(2014). Stealthy Hooks. The Art of Memory 

Forensics: Detecting malware and threats in 

Windows, Linux, and Mac Memory. 384-386. 

1st edition. Wiley. Indianapolis, IN, USA. 

[45] Liu, Y., Zhou, T., Chen, K., Chen, H., & Xia, 

Y. (2015, October 12-16). Thwarting Memory 

Disclosure with Efficient Hypervisor-enforced 

Intra-domain Isolation. In Proceedings of the 

22nd ACM SIGSAC Conference on Computer 

and Communications Security (CCS). Denver, 

Colorado, USA, 1607-

1619.https://doi.org/10.1145/2810103.2813690 

[46] Luțaș, A., Coleșa, A., Lukács, S., Luțaș, D. 

(2016, February). U-HIPE: hypervisor-based 

protection of user-mode processes in 

Windows. Journal of Computer Virology and 

Hacking Techniques. 12(1). 23-36. 

http://dx.doi.org/10.1007/s11416-015-0237-z 

[47] Maartmann-Moe, C. (n.d.). Inception. 

Retrieved from 

http://www.breaknenter.org/projects/inception 

[48] Martignoni, L., Fattori, A., Paleari, R., & 

Cavallaro, L. (2010, September 15-17). Live 

and trustworthy forensic analysis of 

commodity production systems. In 

Proceedings of the 13th International 

Conference on Recent Advances in Intrusion 

Detection (RAID). Ottawa, Ontario, Canada, 

297-316, http://dx.doi.org/10.1007/978-3-642-

15512-3_16 

[49] Matrosov, A., Rodionov, E., & Bratus, S. 

(2016). Rootkits and Bootkits. Reversing 

Modern Malware and Next Generation 

Threats. ISBN: 978-1-59327-716-1. 304 pp. 

No Starch Press. 

[50] Mayer, E. (2015, October 6). Bringing the 

DKOM rootkit explained in Hoglund/Butler 

book up to Win7 64-bit API. Retrieved from 

https://www.linkedin.com/pulse/bringing-

dkom-rootkit-explained-hoglundbutler-book-

up-eric-mayer  

[51] McAfee. (2016, September). Threats Report. 

McAfee Labs. Retrieved from 

http://www.mcafee.com/us/resources/reports/r

p-quarterly-threats-sep-2016.pdf 

[52] Microsoft. (n.d.-a). MmAccessFault function. 

Windows Research Kernel Source Code. 

Retrieved from 

http://gate.upm.ro/os/LABs/Windows_OS_Inte

rnals_Curriculum_Resource_Kit-

ACADEMIC/WindowsResearchKernel-

WRK/WRK-v1.2/base/ntos/mm/mmfault.c 

[53] Microsoft. (n.d.-b). Handle page fault function. 

Windows Research Kernel Source Code. 

Retrieved from 

http://gate.upm.ro/os/LABs/Windows_OS_Inte

rnals_Curriculum_Resource_Kit-

ACADEMIC/WindowsResearchKernel-

WRK/WRK-v1.2/base/ntos/ke/i386/trap.asm 

[54] Milkovic, L. (2012). Defeating Windows 

memory forensics. Retrieved from 

http://events.ccc.de/congress/2012/Fahrplan/ev

ents/5301.en.html 

[55] Morgan, B., Alata, E., Nicomette, V., 

Kâaniche, M., & Averlant, G. (2015, 

November 18-20). Design and Implementation 

of a Hardware Assisted. Security Architecture 

for Software Integrity Monitoring. IEEE 21st 

Pacific Rim International Symposium 

Dependable Computing (PRDC), pp. 189-198, 

http://dx.doi.org/10.1109/PRDC.2015.46 

[56] Murakami, K. (2014, March 24). A Hypervisor 

for Protecting Information of Public Cloud's 

User on Memory and on Storage from 

Malicious Operators. Master of Engineering. 

University of Tokyo. Retrieved from 

http://repository.dl.itc.u-

tokyo.ac.jp/dspace/bitstream/2261/56471/1/48

126454.pdf 

[57] Nipravsky, T. (2016, August). Certificate 

Bypass: Hiding and Executing Malware from a 

Digitally Signed Executable. Blackhat USA. 

Retrieved from 

https://www.blackhat.com/docs/us-



The 12th ADFSL Conference on Digital Forensics, Security and Law 

 29   

 

16/materials/us-16-Nipravsky-Certificate-

Bypass-Hiding-And-Executing-Malware-

From-A-Digitally-Signed-Executable-wp.pdf 

[58] Novabench. (n.d.). Computer Benchmark 

Software. Retrieved from 

https://novabench.com 

[59] Paganini, P. (2014, March 3). Uroburos 

rootkit, is it part of Russian Cyber weapon 

programme? Security Affairs. Retrieved from 

http://securityaffairs.co/wordpress/22700/mal

ware/uroburos-rootkit-part-russian-

cyberweapon-programme.htm 

[60] Paganini, P. (2016, May 6). The Swiss 

Defense Department was recently victim of a 

cyber-attack; the offensive has come after a 

presentation on cyber espionage to the FIS. 

Security Affairs. Retrieved from 

http://securityaffairs.co/wordpress/47059/cybe

r-crime/swiss-defense-department-cyber-

attack.html 

[61] PCMark8. (n.d.). The Complete Benchmark 

For Windows. Retrieved from 

https://www.futuremark.com/benchmarks/pcm

ark8 

[62] Pfoh, J., Schneider, C., & Eckert, C. (2011, 

November 8-10). Nitro: hardware-based 

system call tracing for virtual machines. In 

Proceedings of the 6th International conference 

on Advances in information and computer 

security (IWSEC'11), Tokyo, Japan, 96-112, 

http://dx.doi.org/10.1007/978-3-642-25141-

2_7 

[63] Pham, C., Estrada, Z., Cao, P., Kalbarczyk, Z., 

& Iyer, R. (2014, June 23-26). Reliability and 

Security Monitoring of Virtual Machines 

Using Hardware Architectural Invariants. In 

Proceedings of the 44th Annual IEEE/IFIP 

International Conference on Dependable 

Systems and Networks (DSN). IEEE 

Computer Society, Washington, DC, USA, 13-

24. http://dx.doi.org/10.1109/DSN.2014.19 

[64] Prakash, A., Venkataramani, E., Yin, H., & 

Lin, Z. (2015, October 31). On the 

Trustworthiness of Memory Analysis - An 

Empirical Study from the Perspective of 

Binary Execution, IEEE Transactions on 

Dependable and Secure Computing (TDSC), 

12(5), 1545-5971, 

http://dx.doi.org/10.1109/TDSC.2014.2366464 

[65] Priyadarshi, A. (2016). How does the kernel 

translate virtual addresses when it's not found 

in the page table? Stack Overflow Community. 

Retrieved from 

http://stackoverflow.com/questions/37965451/

how-does-the-kernel-translate-virtual-

addresses-when-its-not-found-in-the-page 

[66] Rascagneres, P. (2015, May). Tools used by 

the Uroburos actors. GDATA SecurityLabs. 

NorthSec Applied Security Event. Montreal, 

Canada, Retrieved from 

https://www.nsec.io/wp-

content/uploads/2015/05/uroburos-actors-

tools-1.1.pdf 

[67] Rascagnères, P. (2016, March 23-24). 

Windows systems & code signing protection. 

Poster presented at the SyScan360, Singapore. 

Retrieved from 

https://www.syscan360.org/slides/2016_SG_P

aul_Rascagneres_Windows_systems_and_cod

e_signing_protection.pdf 

[68] Rhee, J., Riley, R., Xu, D., & Jiang, X. (2010, 

September 15-17). Kernel Malware Analysis 

with Un-tampered and Temporal Views of 

Dynamic Kernel Memory. In Proceedings of 

the 13th International Conference on Recent 

Advances in Intrusion Detection (RAID), pp 

178-197. Ottawa, Ontario, Canada. 

http://dx.doi.org/10.1007/978-3-642-15512-

3_10 

[69] Seshadri, A., Luk, M., Qu, M., & Perrig, A. 

(2007). SecVisor: a tiny hypervisor to provide 

lifetime kernel code integrity for commodity 

OSes. SIGOPS Oper. Syst. Rev. 41, 6 (October 

2007), 335-350. 

http://dx.doi.org/10.1145/1323293.1294294  

[70] Sim, Y.J., Lee, Y.H. (2016). Malware is in the 

Memory.  Hacks in Taiwan Conference 

(HITCON) Taipei, Taiwan. Retrieved from 

https://hitcon.org/2016/CMT/slide/day1-r2-b-

1.pdf 

[71] Souček, J. (2016, February 2). Security 

Analysis of BestCrypt. Master’s Thesis. Czech 

Technical University In Prague Faculty Of 

Information Technology. Retrieved from 

https://dspace.cvut.cz/bitstream/handle/10467/

65118/F8-DP-2016-Soucek-Jakub-

thesis.pdf?sequence=-1 

[72] Sparks, S., & Butler, J. (2005). Shadow 

Walker - Raising The Bar For Rootkit 

Detection Last. BlackHat. Retrieved from 

http://www.blackhat.com/presentations/bh-jp-

05/bh-jp-05-sparks-butler.pdf  



The 12th ADFSL Conference on Digital Forensics, Security and Law 

 30   

 

[73] Srivastava, A., & Giffin, J. (2011, February 7). 

Efficient Monitoring of Untrusted Kernel-

Mode Execution. In NDSS, Retrieved from 

www.internetsociety.org/sites/default/files/sriv

.pdf 

[74] Stefano, O., Cristiano, G., & Bruno, C. (2011, 

September 20-21). KLIMAX: Profiling 

Memory Write Patterns to Detect Keystroke-

Harvesting Malware. In Proceedings of the 

14th International Symposium on Recent 

Advances in Intrusion Detection (RAID), 81-

100. Berlin, Heidelberg. 

http://dx.doi.org/10.1007/978-3-642-23644-

0_5 

[75] Sylve, J., Marziale, V., Richard, G. (2016, 

March 29). Pool tag quick scanning for 

windows memory analysis. In Proceedings of 

the Third Annual Digital Forensics Research 

Conference (DFRWS) Europe. Volume 16, 

Supplement, pp. S25-S32, 

http://dx.doi.org/10.1016/j.diin.2016.01.005. 

[76] Symantec Corp. (2016, January 14). The 

Waterbug attack group. Security Response. 

Retrieved from 

https://www.symantec.com/content/en/us/enter

prise/media/security_response/whitepapers/wat

erbug-attack-group.pdf 

[77] Tanda, S. (2016-a). Memory Monitor of Read, 

Write, and execute access. Retrieved from 

https://github.com/tandasat/MemoryMon/tree/r

we_cdfs 

[78] Tanda, S. (2016-b). User-mode program 

parsing logs created by HyperPlatform. 

Retrieved from 

https://github.com/tandasat/MemoryMon/tree/r

we_cdfs  

[79] Tanda, S. (2016-c). Monitor Device Driver 

Interfaces (DDIMon). Retrieved from 

https://github.com/tandasat/DdiMon 

[80] Tanda, S. (2016-d). Elevation of privilege 

detector (EoPMon). Retrieved from 

https://github.com/tandasat/EoPMon 

[81] Tanda, S. (2016-e). GuardMon: Monitoring 

and Controlling PatchGuard [Video file]. 

Retrieved from 

https://www.youtube.com/watch?v=PUcBtd0f

ZeA 

[82] Tanda, S. (2016-f). Hypervisor based tool for 

monitoring system register accesses. Retrieved 

from https://github.com/tandasat/GuardMon  

[83] Tanda, S. (2016-g). Some Tips to Analyze 

PatchGuard. Retrieved from http://standa-

note.blogspot.ru/2015/10/some-tips-to-

analyze-patchguard.html  

[84] Tanda, S. (2016-h). An exploit for CVE-2014-

0816s. Retrieved from 

https://github.com/tandasat/CVE-2014-0816  

[85] Tanda, S. (2016-i). MemoryMonRWX: Write 

Protect [Video file]. Retrieved from 

https://www.youtube.com/watch?v=XgLNwR

wz16c 

[86] Tanda, S. (2016-j). Proof-of-concept code 

disables PatchGuard (DisPG). Retrieved from 

https://github.com/tandasat/PgResarch/tree/ma

ster/DisPG 

[87] Tanda, S. (2016-k). MemoryMonRWX: Read 

Protect [Video file]. Retrieved from 

https://www.youtube.com/watch?v=DGo7gdk

WSrA 

[88] Tanda, S. (2016-l). MemoryMon: Analyzing 

Turla Rootkit [Video file]. Retrieved from 

https://www.youtube.com/watch?v=O5_ocsplr

fA 

[89] Tanda S., & Korkin, I. (2016, June 17-19). 

Monitoring & controlling kernel-mode events 

by HyperPlatform. Paper presented at the 

REcon conference, Montreal, Canada. 

Retrieved from 

recon.cx/2016/talks/Monitoring-and-

controlling-kernel-mode-events-by-

HyperPlatform.html 

[90] Traut, E., Hendel, M., & Vega, R. (2007, 

November 20). Enhanced Shadow Page Table 

Algorithms. U.S. Patent No 7,299,337 B2 

[91] Uty, & Saman. (2016). How to hide a hook: A 

hypervisor for rootkits. Phrack Magazine. 0x0f 

(0x45), Retrieved from 

http://phrack.org/issues/69/15.html#article 

[92] Wang, X., Guo, X.R. (2016). NumChecker: A 

System Approach for Kernel Rootkit Detection 

and Identification. Black Hat Asia. Retrieved 

from https://www.blackhat.com/docs/asia-

16/materials/asia-16-Guo-NumChecker-A-

System-Approach-For-Kernel-Rootkit-

Detection-And-Identification.pdf  

[93] Wang, Z., & Jiang, X. (2010, May 16-19). 

HyperSafe: A Lightweight Approach to 

Provide Lifetime Hypervisor Control-Flow 

Integrity. In Proceedings of the 2010 IEEE 

Symposium on Security and Privacy (SP '10). 

IEEE Computer Society, Washington, DC, 

https://recon.cx/2016/talks/Monitoring-and-controlling-kernel-mode-events-by-HyperPlatform.html
https://recon.cx/2016/talks/Monitoring-and-controlling-kernel-mode-events-by-HyperPlatform.html
https://recon.cx/2016/talks/Monitoring-and-controlling-kernel-mode-events-by-HyperPlatform.html


The 12th ADFSL Conference on Digital Forensics, Security and Law 

 31   

 

USA, 380-395. 

http://dx.doi.org/10.1109/SP.2010.30 

[94] White, T. (2015, November 20). Extracting 

BitLocker keys with Volatility (PoC). 

Retrieved from 

https://tribalchicken.io/extracting-bitlocker-

keys-with-volatility-part-1-poc/ 

[95] Wikiwand. (n.d.). Intel Core. Retrieved from 

https://www.wikiwand.com/en/Intel_Core 

[96] Willems, C., Hund, R., & Holz, T. (2012, 

November 26). CXPInspector: Hypervisor-

Based, Hardware-Assisted System Monitoring. 

Technical Report TR-HGI-2012-002. Ruhr-

Universit¨at Bochum. Retrieved from 

https://www.ei.rub.de/media/emma/veroeffentl

ichungen/2012/11/26/TR-HGI-2012-002.pdf  

[97] WindowsSCOPE. (n.d.). CaptureGUARD 

Gateway – Access to Locked Computers. 

Retrieved from 

http://www.windowsscope.com/product/captur

eguard-gateway-access-to-locked-computers 

[98] Xu, Y., Cui, W., & Peinado, M. (2015). 

Controlled-Channel Attacks: Deterministic 

Side Channels for Untrusted Operating 

Systems. In Proceedings of the 2015 IEEE 

Symposium on Security and Privacy (SP '15). 

IEEE Computer Society, Washington, DC, 

USA, 640-656. 

DOI=http://dx.doi.org/10.1109/SP.2015.45 

[99] Yan, G., Luo, S., Feng, F., Pan, L. & Safi, Q. 

(2015 December). MOSKG: countering kernel 

rootkits with a secure paging mechanism. 

Journal Security and Communication 

Networks. 8(18). 3580-3591, John Wiley & 

Sons, Inc. New York, NY, USA, 

http://dx.doi.org/10.1002/sec.1282 

[100] Yan, L. (2013, May). Transparent and 

Precise Malware Analysis Using 

Virtualization: From Theory to Practice. 

Thesis Doctor of Philosophy, Syracuse 

University. Retrieved from 

http://surface.syr.edu/eecs_etd/332  

[101] Zhu, B. (2014, November 6). Monitor Trap 

Flag (MTF) Usage in EPT-based Guest 

Physical Memory Monitoring. Retrieved from 

http://hypervsir.blogspot.ru/2014/11/monitor-

trap-flag-mtf-usage-in-ept.html 


