
The 12th ADFSL Conference on Digital Forensics, Security and Law

 1

DETECT KERNEL-MODE ROOTKITS VIA REAL TIME

LOGGING & CONTROLLING MEMORY ACCESS

Satoshi Tanda Igor Korkin

CrowdStrike, Inc Independent Researcher

Vancouver, Canada Moscow, Russia

{tanda.sat, igor.korkin}@gmail.com

ABSTRACT

Modern malware and spyware platforms attack existing antivirus solutions and even Microsoft PatchGuard.

To protect users and business systems new technologies developed by Intel and AMD CPUs may be

applied. To deal with the new malware we propose monitoring and controlling access to the memory in real

time using Intel VT-x with EPT. We have checked this concept by developing MemoryMonRWX, which is

a bare-metal hypervisor. MemoryMonRWX is able to track and trap all types of memory access: read,

write, and execute. MemoryMonRWX also has the following competitive advantages: fine-grained analysis,

support of multi-core CPUs and 64-bit Windows 10. MemoryMonRWX is able to protect critical kernel

memory areas even when PatchGuard has been disabled by malware. Its main innovative features are as

follows: guaranteed interception of every memory access, resilience, and low performance degradation.

Keywords: memory protection; tracking memory access; information leakage; kernel integrity; hypervisor.

1. INTRODUCTION

Modern malware attacks on Windows machines are

becoming increasingly sophisticated and extremely

difficult to detect. Newest integrated security

mechanisms on the modern Windows 10 x64 such

as Kernel Mode Code Signing (KMCS) and Kernel

Patch Protection (KPP) also known as PatchGuard

are unable to prevent malicious activity.

Modern malware attacks are ‘surgical’ and infect

networks of huge organizations even when their

computers, have never been connected to the

Internet – 'air-gapped' computers’ (Paganini, 2014).

Let us consider some recent incidents with the

following malware: Turla rootkit, which remained

undiscovered for at least three years and

ProjectSauron, which has never been stored on a

disk.

According to the security response by Symantec,

Turla trojan which was created by the Waterbug

hackers group successfully compromised more than

4,500 computers from 100 countries (Symantec,

2016). Even the Swiss Federal Department of

Defense (GovCERT, 2016) was under a cyber-

espionage attack via Turla (Paganini, 2016). This

malware remained undiscovered for at least three

years due to its stealth features, which helped to

overcome both built-in security Windows and anti-

virus signature based mechanisms. The authors of

Turla rootkit proposed a new method to overcome

Driver Signature Enforcement. A rootkit loads a

legitimate signed driver and after that by using its

vulnerability loads a malware driver. As a result, it

defeats the Driver Signature Enforcement and

makes it possible to load any kernel-mode driver

even without any digital sign (G Data, 2014a;

Rascagnères, 2016; Baranov, 2014). This malware

hides its file system and registry activity by

hooking the corresponding kernel-mode OS

functions. To do this on a 64-bit system, malware

bypasses PatchGuard without rebooting, which

makes Windows kernel vulnerable to any

manipulations again, such as Direct Kernel-mode

Object Manipulation (DKOM) and hooking (G

Data, 2014b).

AV expert from McAfee has demonstrated the

ability of KPP-Destroyer utility to defeat

PatchGuard on modern Windows 8.1 x64, which

makes Windows kernel vulnerable to common

well-known rootkit techniques. This tool has been

used and improved by hackers (Intel, 2014;

Rascagneres, 2015).

The 12th ADFSL Conference on Digital Forensics, Security and Law

 2

The authors underline that PatchGuard is

vulnerable to kernel-level attacks because it is

located in the same environment with rootkits (Yan,

Luo, Feng, Pan, & Safi, 2015). The TDL4/TDSS

rootkit family disables PatchGuard by modifying

the system’s boot loader.

Another malware platform for cyber espionage was

identified by Symantec and Kaspersky Lab as

ProjectSauron and according to their reports this

malware had eluded security researchers for at least

five years (Dockrill, 2016). This malware was

deliberately created to confuse AV experts and to

prevent its analysis. To achieve this, the indicators

of compromise or patterns, which are normally

used by AV experts, were removed. ProjectSauron

also resides only in the computer memory without

saving itself to the hard disk drive, which renders

existing AV techniques pointless (Baranov, 2016).

According to the paper (Prakash, Venkataramani,

Yin, & Lin, 2015) “a kernel rootkit, can often

tamper with kernel memory data, putting the

trustworthiness of memory analysis under

question.” These authors state “moreover, while it

is widely accepted that value manipulation attacks

pose a threat to memory analysis, its severity has

not been explored and well understood.”

These authors proposed improving the DKOM

attack that targets the OS scheduler. They also

showed that it cannot be detected by any of the

existing techniques (Graziano, Flore, Lanzi, &

Balzarotti, 2016; Graziano, 2016).

Detection of malicious binaries with digital

certificates is becoming increasingly difficult.

Cyber security researchers keep sharing new

techniques to overcome Windows security

mechanisms (KMCS) in the recent Black Hat USA

2016 conference (Nipravsky, 2016). The idea of

infection of digitally signed files without altering

hashes was based on inserting a payload code into

the header attribute certification table. Because

Windows excludes this field from the hash

calculations, the file certificate remains valid.

According to the recent McAfee Labs Threats

Report (McAfee, 2016) the total number of

malicious signed binaries increased by 3 million

during the first 6 months of 2016.

Experts from Kaspersky Lab have published the

newest set of malware tricks, which make it

difficult to reveal malware (Bartholomew &

Guerrero-Saade, 2016).

The authors Jadhav, Vidyarthi, & Hemavathy

(2016) prove that modern malware are prepared

thoroughly enough to prevent their detection even

by high skilled AV experts. Hackers “leave no

signature, and so they never get caught. This

happens due to the absence of signature or behavior

information in the security systems.” At the same

time, we are able to detect this new unknown

malware because “in many cases evasive behaviors

can be used as a signal for evasive malware

detection.”

Thus existing protection approaches of computer

systems are no longer working. Driver Signature

Enforcement cannot prevent installation of signed

malware, PatchGuard is not resilient to malware

counter-measures, modern AV products are unable

to detect malware even for several years.

The purpose of this paper is to present the design,

implementation, and evaluation of a new

hypervisor-based system that reliably provides

privacy and integrity of memory data as well as

giving behavior information on memory access in

real time. To detect unauthorized memory access,

we propose a new memory monitor system –

MemoryMonRWX, which has the capability to

track all memory accesses.

Thread model. We will consider the following

basic scenarios of malware attacks in the kernel-

mode:

1. Stealing sensitive data, such as crypto keys

and private users’ data.

2. Manipulation with memory content, such

as hooking, unlinking, and patching.

3. Execution of unknown code fragments.

Scenario 1. Malware reads the sensitive data from

memory, such as private users’ data, cryptographic

key, passwords, hashes, data and code of 3rd party

drivers. Recent research papers show the advance

and importance of this topic. The way of extracting

crypto keys from BitLocker is presented here

(White, 2015). Thorough analysis of TrueCrypt

utility and ways to retrieve user’s crypto keys are

presented by Baluda et al. (2015). Security analysis

of BestCrypt was carried out by Souček (2016), the

data leaks issues has been revealed.

The 12th ADFSL Conference on Digital Forensics, Security and Law

 3

Moreover, kernel mode exploits usually read

Windows kernel internals data, for example

HalDispatchTable (Cardona, 2017). Hence there is

a need to manage the access to this data as well.

Scenario 2. Malware disables PatchGuard and

illegally modifies the critical parts of system

memory. Malware hooks functions by tampering

System Service Descriptor Table (SSDT), hides

OS-objects, such as process and drivers, by

unlinking and patching corresponding structures

from lists Sim & Lee (2016); Li, Wu, & Liu (2016).

As a result, this involves memory modification of

no less than 8 bytes for 64-bit OS. Rootkit can

further protect this unlinked structure by

overwriting its fields. So, this means no less than

one-byte data modifications (Haruyama & Suzuki,

2012).

Malware can also hijack the kernel control transfers

by Kernel Object Hooking (KOH), including the

violation of control-flow integrity. For example,

changing JZ to JNZ modifies one byte of code

(Wang & Guo, 2016).

Scenario 3. Malware deletes or modifies all

information about itself from the system. As a

result, there are only executable code fragments in

the memory, which do not belong to any of the

registered drivers. This idea was originally

proposed by Korkin & Nesterow, 2016.

To process all these scenarios for attackers, we

propose the following logging scenarios. The

visualization of malware attacks examples and the

registered output are in the Figure 1 and Table 1.

Logging Scenario 1. SyspiciousDriver.sys tries to

steal sensitive data. To achieve this its code block,

which is loaded to address ‘SourceAddr1’, reads

the memory data, which is located on the address

‘DestinationAddr1’. As a result, the output needs to

register the following triple:

‘SourceAddr1 – Read – DestinationAddr1’.

Logging Scenario 2. The SuspiciousDrv.sys tries

to hook a system table function. In this situation its

code block, which is loaded to the address

‘SourceAddr2’, writes to the memory fragment,

which is located on the address ‘DestinationAddr2’.

After this, the output will include the following

items: ‘SourceAddr2 – Write – DestinationAddr2’.

Logging Scenario 3. The HiddenDrv.sys hides

itself by deliberately deleting all related

information from the system lists. As a result, we

have only executable code, which is loaded on the

‘SourceAddr3’ in the kernel-mode memory. In

order to detect it, the output needs to add the

following entry: ‘SourceAddr3 – Execute –

SourceAddr3’.

Table 1 Example of preliminary output for

revealing malware attacks

Source

address

Access

Type

Destination

address

1 SourceAddr1 Read DestinationAddr1

2 SourceAddr2 Write DestinationAddr2

3 SourceAddr3
Exe-

cute
SourceAddr3

… … … …

Figure 1 Examples of malware attacks in memory and the proposed log of the detection system

System Tables

SuspiciousDriver.sys

Sensitive data

HiddenDriver.sys

Execution

SourceAddr1

SourceAddr2

SourceAddr3

DestinationAddr1

DestinationAddr2

The 12th ADFSL Conference on Digital Forensics, Security and Law

 4

The following is required for solving the task:

 for each memory access attempt, we need

to log the following three items: source

address, destination address, and type of

accessing – read, write, or execute;

 we need to specify two intervals: one for

the source addresses and one for the

destination addresses. The accesses from

only these two intervals will be tracked;

 the interval of addresses needs to support

two values – start and finish addresses as

well as only one value – a fixed virtual

address;

 the prototype needs to support the

modern Windows 10 x64 and multi-core

CPU.

For the proposed memory monitoring system, we

restrict CPU requirements with Nehalem

microarchitecture (Wikiwand, n.d.), which

supports both technologies Intel VT-x and Intel

VT-x with EPT.

This paper is in four sections. Section 2 focuses

on the comparative analysis of the existing ways

for logging memory access. In the first part we

will analyze methods, which work inside an

operating system: tracking memory management

routines and the methods based on replacing page

fault manager. The second part covers the

analysis of hypervisor-based methods for tracking

memory access. We provide a review of other

recent papers and their ideas. At the end of this

section we select the possible avenues for further

development.

The design of the proposed system

MemoryMonRWX is presented in the third

section of this paper. We describe the architecture

and major components of this system. The details

of interactions of major components in three

cases on controlling read, write, and execute

access are provided. To outline the advantages of

MemoryMonRWX we present three demos:

integrity case, confidentiality case, and an

example of the analysis of real rootkit. We

evaluate the benchmarks of MemoryMonRWX

and demonstrate that the degradation of system

performance is about 10%.

Section 4 contains the main conclusions and

further research directions.

2. BACKGROUND

In this section related papers are reviewed as well

as existing prototypes according to the

requirements previously mentioned. There are

several hardware based solutions which are able

to monitor memory access using FPGA

programmable platform (Morgan et al., 2015;

Lee, et al., 2013). These approaches are only

applicable in the laboratory situation, because it is

hard to distribute and upgrade them; so they will

be omitted and instead the focus will be on

software-based methods.

All software methods for monitoring memory

access can be divided into two groups: first those

based on operating system facilities and second

those based on hardware virtualization

technology – otherwise known as OS-based and

hypervisor-based, correspondingly (Bauman, et

al., 2015). The classification of these methods is

presented in Figure 2.

OS-based methods can be sub-divided into two

subgroups. The first subgroup monitors memory

access by tracking calls of memory management

functions, while the second one applies handling

page fault exception (#PF) by the Interrupt

Descriptor Table (IDT) inside the OS.

Hypervisor-based methods can be divided into

the two subgroups according the technologies,

which they are based on. The first subgroup

leverages hypervisor facilities to handle page

fault exception, the second subgroup applies new

Intel VT-x with Extended Page Tables (EPT)

technology to track memory access. The

proposed MemoryMonRWX system is based on

the EPT technology.

Next all software methods will be analyzed and

we will discover the most reliable and resistant

method.

The 12th ADFSL Conference on Digital Forensics, Security and Law

 5

Figure 2 Classification of methods for monitoring access to memory

2.1. OS-based Methods

In this section we will analyze methods, which

work inside a Windows operation system and do

not require any specific CPU support. Initially the

focus will be on applying tracking memory

management routines to monitor access to the

memory. Next, we will deal with tracking

memory access via marking pages as non-present

and replacing the page fault handler.

2.1.1. Hooking Memory Management Routines

During the lifecycle of a kernel-mode driver

several kernel mode objects or structures will

have been added into the memory. During

driver’s installation the corresponding structures

are added into the system lists (Mayer, 2015);

also a driver can allocate memory for its own

purposes – all these manipulations can be tracked

and used as a source to detect a malicious driver.

One of the ways used to implement hooking

functions is the rewriting of an address of

memory allocation routine and applying

trampoline function.

The idea of monitoring the execution of an

operating system and tracking the newly created

kernel mode objects was proposed by Prakash et

al., (2015). The authors suggested hooking

memory allocation and deallocation routines in

the kernel: ExAllocatePoolWithTag,

ExFreePoolWithTag and MmLoadSystemImage

from ntoskrnl.exe. Their ideas have been tested

on 32-bit Windows XP with Service Pack 3 and

Windows 7.

A similar idea of capturing kernel mode object

allocation and deallocation events to dynamically

identify kernel-mode objects was also proposed

by Rhee et al., (2010). The authors considered

two basic types of malware attack: privilege

escalation using direct memory manipulation and

dynamic kernel mode object hooking. They

emphasize that performance is not a primary

concern for their prototype, which is designed for

use in non-production scenarios such as honeypot

monitoring, etc.

The method of intercepting kernel-mode

functions by using inline hooks in a stable

manner on multi-cores processor systems was

proposed by Milković (2012).

It is also possible to hook kernel-mode functions

by applying well-known techniques of modifying

pointer values onto the System Services

Dispatching Table (Matrosov, Rodionov, &

Bratus, 2016) and using the Stealth Hook

technique and Redirector Stubs to conceal

hooking (Ligh et al., 2014).

All these hooking approaches work well only on

32-bit Windows OSes, while the more popular

64-bit Windows include built-in Kernel Patch

Methods for monitoring access to memory

OS-based

Hypervisor-based

Leverages Intel VT-x with EPT technology

Hooking Memory Management routines

Handling Page-Fault Exceptions by IDT

Handling Page-Fault Exceptions by Hypervisor

Proposed system

The 12th ADFSL Conference on Digital Forensics, Security and Law

 6

Protection or PatchGuard. According to the blog

PatchGuard “is intended to protect critical kernel

structures from being easily modified from

unauthorized entities” (Block, 2015). PatchGuard

also controls the integrity of Windows kernel,

including ntoskrnl.exe (Irfan et al., 2013;

Comodo, 2013).

2.1.2. Handling Page Fault Exceptions by IDT

This method is based on memory mapping on

Intel x86 in protected mode. The idea of

intercepting memory mapping process using IDT

for rootkit purposes was first presented by Sparks

& Butler (2005). Below we will discuss the

details of memory mapping process and how to

apply them to monitor memory access. We will

provide three scenarios of trapping memory

access and also cover with the disadvantages of

this methodology.

The process of memory mapping or memory

paging is explained by Intel (2016) and includes

the following phases. When a memory access to

the page occurs, a CPU starts page table walk to

find the physical address. CPU then checks the

access type by reading corresponding Page Table

Entry (PTE) status bits. If the page is valid

(meaning that its bits are set) and there is no

conflict with the access type, the CPU then

calculates the corresponding physical address of

the page, using the page frame number (PFN)

from this PTE.

This is a frequent scenario. However, the access

violation case is also possible: according to the

Windows source code “the access fault was

detected due to either an access violation, a PTE

with the present bit clear, or a valid PTE with the

dirty bit clear and a write operation” (Microsoft,

n.d.-a). In this situation after checking PTE bits,

the CPU raises a page fault exception (#PF).

Following this the control goes to the page fault

handler code, whose address is located in the

IDT. The example of the source code of the page

fault handler code is presented in the function

nt!KiTrap0E within the file Microsoft (n.d.-b).

This code processes all the required work for

loading memory pages, configuring PTEs and

continue control to the OS.

Sparks and Butler proposed hiding of the memory

page by deliberately marking corresponding PTE

as non-present and also by replacing the page

fault handler code, which helps to differentiate

page view. This method can be applied to

monitoring memory access as well. Figure 3

shows the principles of tracking memory access.

Let us consider the case of secret data protection

from unauthorized access. Secret data is located

on page C. To do this we change the

corresponding page table entry by clearing the

Present bit (P bit). Once an unknown driver

’Drv.sys’, has been loaded on page A and page B,

and tries to read the secret data, CPU starts

memory translation to retrieve the content of page

C. To achieve this CPU reads the Page C PTE

and checks if the result is in conflict with the

access type. In our case we have access violation:

’Drv.sys’ reads a page with zero present bit and

CPU raises a #PF exception. CPU processes this

#PF by passing control to the code of page fault

handler via IDT, which stores a link to its code.

We can then replace the original page fault

handler or its code and add a new processing

algorithm. In the page fault handler code, we can

receive the saved instruction pointer

(SourceAddr), faulting address (DestinationAddr)

and with this information we can realize various

processing algorithms.

We will consider the following three scenarios of

page fault handler code.

Scenario 1. Protecting secret data from being

read. To protect secret data from unauthorized

reading we clear P bit in the secret page PTE.

During reading from this page the #PF (page not

present fault) will be raised and page fault

handler code starts to go (Eranian & Mosberger,

2002). We can update the page fault handler

algorithm to filter this access violation in the

appropriate way using the saved instruction

pointer as SourceAddr and faulting address as

DestinationAddr. As a result, we are able to

return the ‘fake’ page to the caller.

The 12th ADFSL Conference on Digital Forensics, Security and Law

 7

Figure 3 Log and manage access to memory pages by setting corresponding page table entry as non-present

and replacing the page fault handler

Scenario 2. Protecting system data from being

modified. To protect the memory pages from

unauthorized modification, for example by

providing the integrity of the system structures,

we clear Dirty bit (D bit) in the PTE, which will

correspond to the page with the system structures.

During any writing access to this page, CPU will

raise a #PF (dirty-bit fault). Using a similar

pathway from scenario 1 we can update the page

fault handler to process this violation in an

appropriate manner.

Scenario 3. Detecting unauthorized code

execution. Trapping execution appears to be a

more complicated task, because for IA-32

architecture there is no way to distinguish the

execute accesses from read and write. To reveal

execute accesses we use manipulation from

Scenario 1, which is applied, adapting the

proposals of Sparks & Butler (2005). An execute

access is achieved if SourceAddr and

DestinationAddr are equal.

Existing approaches, which mark pages as non-

present and replace the page fault handler can be

analyzed.

The idea to control access to the pages by

trapping page fault exceptions was proposed by

Backes et al. (2014). This group authors

attempted to avoid code reuse attacks, and this

approach prevents programs from reading

executable memory.

Another system (Xu et al., 2015) focuses on

controlled-channel attacks, which extract

sensitive information from the application. This

attack is based on restriction access to the

particular code or the data page by editing the

page table attributes directly. When the

application tries to access one of these pages, a

page fault will occur. When a page fault happens,

the authors system will log the page fault event,

and enable access to the page and remove access

from the previous page. Their system records full

byte-granular page fault traces of both code and

data pages.

The idea of monitoring memory access by page

level tracking is used in the Omnipack kernel

driver to detect when the program has removed

the various layers of packing. Omnipack tracks

written and written-then-executed memory pages.

This system enforces a write-xor-execute policy

(W+X) on the memory pages of the suspicious

program to detect any attempts to execute the

generated code during unpacking. A similar idea

of W+X protection policy is also used in

SecVisor (Seshadri et al., 2007).

The method of process' address space protection

via the mechanism of intercepting each time the

processor asserts the page fault interrupt to signal

The 12th ADFSL Conference on Digital Forensics, Security and Law

 8

the access violation was used in the KLIMAX

(Stefano, Cristiano, & Bruno, 2011).

The SPIDER system by Deng, Zhang, & Xu

(2013) realizes data watch point and enables

monitoring memory to read/write at any address.

These workers underline two limitations of

applying existing techniques based on the page-

level mechanism for trapping execution. First,

every instruction for fetching or data access in the

non-present page will cause a page fault. This

would result in a prohibitively high performance

overhead. Second, the modified page table and

page fault handler could still be detected by

kernel-mode drivers.

However, this method of trapping memory access

by using PTE modification and replacing page

fault handler code has several weaknesses. Sparks

and Butler (2005) have shown that this method

does not support 4 megabyte pages and,

moreover, a replaced page fault handler can be

easily revealed and this can help to detect this

method. Due to the fact that page fault handler

code is an intermediary, memory monitoring will

have a major impact on the system performance.

In addition, there are issues of porting this

method to the CPUs with multiple cores

(Priyadarshi, 2016).

The main disadvantage of OS-based methods are

as follows: they can be easily detected and

disabled by kernel-mode malware. The

hypervisor-based methods are relatively stealthier

and more resilient, but they require a CPU with

hardware virtualization support.

2.2. Hypervisor-based Methods

Methods described in this section require

hardware virtualization processor features, which

are enabled in all modern CPUs. The first method

uses Intel Virtualization Technology (VT-x)

without any specific features. As a result, this

method will work even on the legacy Intel Core 2

CPU. The second method leverages Intel VT-x

with EPT technology, which can be used with 2nd

generation of Intel – family i3, i5, and i7. One of

the recently analyzed papers requires processors

with support from Intel Processor Trace (PT)

technology, which is integrated only in newest

CPUs beginning with 5
th
 generation.

2.2.1. Handling Page-Fault Exceptions by

Hypervisor

This method leverages hardware virtualization

technology into monitoring access to memory by

processing the page fault exception. This method,

like the previous one, modifies the page table

entries or the attributes of the memory pages,

access which should be controlled. Any access to

this page will generate the #PF and cause VM-

exit, which will be handled by the hypervisor, see

Figure 4.

To set up the hypervisor for processing #PF we

need to configure Virtual Machine Control

Structure (VMCS). This can be achieved by

setting the 14th bit in the Exception Bitmap from

VMCS->VM-execution control fields.

Applying this method, the hypervisor is able to

catch both SourceAddr and DestinationAddr

addresses, realizing various security scenarios.

According to the page, which reveals illegal

memory access: a hypervisor gets the address of

the trapped instruction from EIP (Cheng, Ding, &

Deng, 2013). Some recent examples of this

method will be given and finally the drawbacks

of the method will be presented.

Kuniyasu et al. (2014) proposed the DriverGuard

hypervisor to protect industrial infrastructure

systems from Advanced Persistent Threat (APT).

The authors considered, that most of these threats

“are zero-day attacks and signature based security

tools cannot detect these attacks.” Their

hypervisor “prevents malicious write-access to

code region that causes Blue Screen of Death of

Windows, and malicious read- and write- access

to data region which causes information leakage.”

DriverGuard manages PTE and changes the

Present bit (P bit). As a result, all access to the

page causes a page fault, which is hooked by

DriverGuard; it analyzes whether the access

comes from a legitimate code or not. If a

legitimate code accesses the memory,

DriverGuard will apply a new stealth breakpoint

technique using hardware breakpoints in the

single step mode. It enables single step mode by

setting Monitor Trap Flag (MTF) bit in the

VMCS. DriverGuard recognizes the memory

region with sensitive data using “tag” value.

Memory regions which are allocated dynamically

by ExAllocatePoolWithTag with this “tag” value

The 12th ADFSL Conference on Digital Forensics, Security and Law

 9

will be protected. Hackers can reveal this “tag”

value and use the same tag in their malware. The

authors admitted that page fault is slower than

software interrupt and “it will make performance

degradation.”

Another protection system – MOSKG, which is

countering kernel rootkits with a secure paging

mechanism was presented by Yan, Luo, Feng,

Pan, & Safi (2015e). The primary goal of this

paper is to prevent rootkits by preserving critical

kernel mode data from being manipulated by

DKOM and page mapping attacks. These authors

underline the main challenges as “the dynamic

data can be modified legally by the OS or

illegally by using the rootkits, but we have to

distinguish the legal operations from the illegal

ones.” To validate the legitimacy of write

operation to dynamic data and page mapping

operations they make use of the shadow page

tables (SPTs) in the hypervisor to mark the

machine page, which in turn contains the

protected data as read only. As a result,

“whenever an instruction attempts to write the

marked page, the page fault handler in the

hypervisor will be called.” They underline the

limitations of their solution, one of which is “that

the extent of protection is not sufficient.” The

next limitation is that “the rootkits may seek out

other unprotected data to compromise the target

OS. These attacks might be able to circumvent

some portions of MOSKG architecture.”

Wang & Jiang (2010) consider the issue of

hypervisor integrity protection. They assume

there is a threat model in which attackers are able

to exploit software vulnerabilities to overwrite

any memory data. They focused on the

hypervisors and that “in current hypervisors (e.g.,

Xen and KVM) and OS kernels (e.g. Windows

and Linux), their page tables are all writable.”

Experiments have shown that modification of

“even one bit in a page table entry could well be

enough to subvert the entire protection.” The

authors proposed HyperSafe, a lightweight

approach, which protects the hypervisor’s code

and data from being compromised. To provide

the W+X-based integrity HyperSafe marks the

page tables as read-only and turns on the Write

Protect bit (WP) in the register CR0. This bit

controls the way a hypervisor code interacts with

the write protection bits. As a result, any write

attempts to modify them at runtime will be

trapped by the hypervisor. HyperSafe is able to

protect only open source hypervisor. The support

of closed source 3rd party drivers still remains a

major challenge.

Figure 4 Controlling access to the guest OS virtual memory via marking corresponding page table entry

as a non-present and handling page fault exceptions by hypervisor

Paging Data Structures
PageA

PageB

PageC

Drv.sys
Read

PTE for PageA

Page Table

1 1

PTE for PageB 1 1

PTE for PageC 1 0

...

PageC

 D P

Bits

Virtual memory

Physical memory

PageFault

(#PF)

Hypervisor

Dispatcher

VM exit

Secret
data

The 12th ADFSL Conference on Digital Forensics, Security and Law

 10

Patents exist which also cover memory tracking

ideas by marking guest kernel page table entries

as not present and controlling page fault. A patent

by Dang, Mohinder, & Srivastava (2015)

proposes a hypervisor’s page fault handler, which

may conditionally allow or deny access to or

execution of the appropriate guest kernel pages.

Using the fact that the assignee of this patent is

McAfee, Inc. from Santa Clara, California

(USA), we can infer that this methodology is

used in the McAfee Antivirus or its internal

products. In another patent (Traut, Hendel, &

Vega, 2007) the processing interrupts to maintain

the modified flags of the page table entries and

this is a significant source of the slowdown for a

shadow page table implementation.

Page fault protection mechanism is used for

monitoring the access to kernel-mode pages but

also to user-mode pages. U-HIPE is the prototype

for user-mode memory protection, which injects a

page fault in the guest VM (Luțaș, et al., 2016).

Srivastava & Giffin (2011) explore the idea of

monitoring untrusted kernel-mode execution by

separating page tables for data and for drivers.

This separation forces all control flows spanning

the kernel-driver interface to induce page faults

which are then handled by the code in the

hypervisor and this verifies the legitimacy of the

control flow. As a result, a hypervisor-based

system called Gateway was created. This system

traces the behavior of kernel malware by

monitoring kernel APIs functions invoked by

drivers.

A similar method for processing page faults was

used in the hypervisor-based system HyperSleuth

for tracing system calls (Martignoniey al 2010).

Because all system calls invocations go through a

common gate, whose address is defined by

SYSENTER_EIP register, these workers shadow

the values of this register and the value of the

shadow copy to the address of a non-existent

memory location. Afterwards, all system calls

invocations result in a page fault exception. As a

result, HyperSleuth traps and saves all system

calls to the log, which is then transmitted via the

network to the trusted host.

Another idea is trapping system calls using a

virtual machine introspection mechanism (Pfoh,

et al., 2011). This Nitro system works with the

following system calls: user defined interruption;

and SYSCALL / SYSENTER instructions. This

system is not able to monitor function calls in the

kernel-mode.

Azab et al. (2009) present a hypervisor-based

system that measures the integrity of virtual

machines – HIMA. The idea of protecting guest

memory using page access permissions was also

used in the HIMA. This author’s system applies

facilities of No eXecute bit (NX bit) of a page

table entry. If this bit is 1, the page is assumed to

only retain data. Any instruction execution on this

page will cause a page fault exception, which will

be trapped by the hypervisor. Moreover, the

authors proposed to prevent programs from

marking executable pages as non-writable, which

provides trapping of any modification of the

memory pages.

This memory trapping method is also used in

PhD research. Thus Yan (2013) deals with

malware analysis by virtualization and

demonstrates that this memory monitoring

method is not resilient for Denial-of-Service

(DoS) attack. The problem is that malware can

induce a large number of page faults exceptions,

and each of them involves an exit to the

hypervisor. This exception flood launches a DoS

attack on the recorded log and renders its further

analysis difficult.

As well as this DoS vulnerability this method has

the following drawbacks:

 It is not stealthy: the modification of page

attributes or PTE.flags is visible from a

guest and can be easily revealed by

malware;

 It is not lightweight: each page fault will

take some time for processing and in real

time will result in significant

performance overheads;

 It does not fully support multi-core CPU:

since a PTE exists only for a page and is

shared by all cores, its modification it

affects other processors' contexts as well.

In the next section we will present other methods,

which exclude these drawbacks, but require CPU

with VT-x and EPT support.

The 12th ADFSL Conference on Digital Forensics, Security and Law

 11

2.2.2. Leverages Intel Extended Page Tables

technology

This section covers Intel VT-x with Extended

Page Tables (EPT) technology, which is a new

feature of hardware virtualization. We present the

details of how EPT mechanism is working and

the ways of leveraging EPT for tracking and

trapping access to the memory.

New hardware virtualization feature – EPT is

the source of inspiration for monitoring

memory access.

There are two serious drawbacks of Intel VT-x

technology presented in the previous section.

Firstly, there is hypervisor performance overhead

associated with memory management and

secondly the size of guest physical memory is

limited by host physical memory. The idea of

Second Layer Address Translation (SLAT) or

Two-Dimensional Paging has been designed to

reduce the memory and power overhead costs

through hardware optimization of the page table

management.

The SLAT technology has been integrated in the

Intel CPUs since Nehalem microarchitecture in

the first Core i3, i5, and i7. In Intel terminology

this technology is ‘Intel VT-x with Extended

Page Tables (EPT)’. Similar technology has been

issued by AMD and this is called ‘Nested Page

Table (NPT)’. In this review the focus is on EPT

implementation in the Intel CPUs, but the

findings apply more generally as well.

We will show how the EPT mechanism works

and how it can be used for monitoring memory.

EPT technology helps to virtualize guest physical

memory and as a result enhances CPU facilities

using paging data structures also known as ‘EPT

layout’. The algorithm of the EPT data structures,

which translates the guest physical address to the

host physical address, is similar to the familiar

algorithm of paging structures in the protected

mode, which translates the guest virtual address

to the guest physical address. The content and

organization of EPT paging structures are

analogous to the paging structure in the protected

mode or x86-64 page tables. There are however

several differences between the content of EPT

and guest paging structures (Grehan, 2014).

EPT paging structures include the following

tables: Page Map Level 4 (EPT PML4), Page-

Directory-Pointer Table (EPT PDPT), Page

Directory (EPT PD), and Page Table (EPT PT),

as shown in Figure 5. Hypervisor needs to

allocate memory for all these tables and place

their content. Using differing configurations of

EPT structures the hypervisor can provide various

memory paging scenarios.

In this paper we will consider a simple scenario

with ‘memory 1:1 mapping’, which translates

guest physical address into the same physical

address (Uty, & Saman, 2016).

During each memory access inside guest

operating system (guest OS), initially the guest

paging data structures are involved. Finally, the

EPT structures are to convert the received guest

physical address into the host physical address.

We can intercept memory access to the page by

modifying the bits in the corresponding entry in

the EPT Page table, while the entries in other

tables EPT PML4, EPT PDPT, and EPT PD have

their own default values.

EPT Page Table entry provides bits, which allow

or disallow access to the corresponding page:

 bit#0 – “Read Access”, indicates whether

reads are allowed from the 4-KByte page;

 bit#1 – “Write Access”, indicates

whether writes are allowed from the 4-

KByte page;

 bit#2 – “Execute Access”, shows whether

instruction fetches are allowed from the

4-KByte page.

According to the Intel manual (Intel, 2016) –

‘Any attempts at disallowed accesses will involve

EPT violation and will cause VM exits’.

Hypervisor intercepts each EPT violation (VM

Exit) and can implement specific algorithms,

which help to provide cyber security as well as

hiding malware data in the memory.

The 12th ADFSL Conference on Digital Forensics, Security and Law

 12

Figure 5 Controlling access to the guest OS virtual memory via using second layer address translation

Hypervisor can log any read and write memory

access of the malware driver by resetting the first

two bits of its EPT PT entry. It is able to protect

the privacy of its memory page content by

resetting bit#0 of its EPT PT entry and replacing

the required physical page to another null page

where the access is disallowed. Hypervisor is also

able to provide the integrity of memory page by

resetting bit#1 and trapping each write access to

the page. Rootkit hypervisor can protect the

malicious driver from antiviruses and Windows

built-in security mechanisms such as PatchGuard.

For example, to protect secret data on Page B

from reading by Drv.sys, which is loaded on Page

A we need to modify the bit 0 in EPT PT entry,

which corresponds to the page B.

In the next section we review the papers, which

leverage EPT technology, and also comment on

their drawbacks.

Analysis of EPT-based cyber security solutions

First, the dynamic analysis system – DRAKVUF

is able to track execution and tackle DKOM

attacks (Lengyel et al., 2014). The DRAKVUF

system uses VT-x and EPT technologies and is

built on Xen hypervisor and the LibVMI library.

The core technique is based on writing the

opcode 0xСС at the code location deemed of

interest. This manipulation is named as

breakpoint injection and is trapped by the

DRAKVUF hypervisor. This technique is able to

automate the execution tracking of the entire OS

and can trap all kernel functions. The breakpoint

injection technique is protected by EPT page

permission and enables an active virtual machine

introspection. DRAKVUF adopted a novel

approach to tackle DKOM attacks. To locate

internal kernel structures DRAKVUF traps kernel

heap allocations directly by using breakpoint

CR3

Guest Paging Data Structures

Guest Physical Address

Drv.sys
PageA

PageB

VMCS

EPT pointer

Host Physical Address

OS in VMX-non root mode

Hypervisor in VMX root mode

Hypervisor dispatcher

controls access

Host Physical Address

Page Table

Page Directory

PDPT

PML4 Table

EPT Page Table

EPT PD

EPT PDPT

EPT PML4 Table

Guest Virtual Address

EPT Paging Data Structures

PTE for PageB 1 0

EPT
Violation

Secret
data

The 12th ADFSL Conference on Digital Forensics, Security and Law

 13

injection for Windows functions, which are

responsible for allocating memory for structures:

ExAllocatePoolWithTag and ObCreateObject.

This system detects the locating of all kernel

structures by dynamically extracting the return

address from the stack. Another interesting

feature of DRAKVUF system is to monitor

access to the file by tracking access to the

corresponding _FILE_OBJECTs structure in the

kernel-mode heap. DRAKVUF marks the page

on which the structure is allocated as non-

writable using EPT technology. This monitoring

systems supports only Windows 7 in both 32 and

64-bit versions (Drakvuf, 2016).

In a second monitoring system CXPInspector by

Willems, Hund, & Holz (2012) focuses on the

analyzing of the state of a virtual machine from

the outside. This system is based on the concept

of Currently eXecutable Pages (CXP), which has

the capability to observe the behavior of a

program or even a complete OS and has two main

uses. Firstly, it helps to analyze the behavior of

kernel-mode malware and, secondly, it provides a

performance profile of a single program or a

whole OS. The authors leverage the EPT

technology by virtualizing the memory

management unit, and guarantees address space

separation and hence it no longer requires

hooking the page fault handler. The authors

proposed an innovative approach of trapping

access to the memory pages, which has instead

been delegated out to the disk. To handle this

situation CXPInspector injects a page fault into

the guest OS, and this in turn forces the guest’s

page fault handler to page-in the required

memory. It uses a single step mode by setting

Trap flag (TF) in the EFLAGS register.

CXPInspector is based exclusively on the use of

EPT technology for tracing instruction fetches.

CXPInspector monitors execution code by

marking certain pages as non-executable.

CXPInpector enriches generated logs with

detailed information about the called functions

and their argument values. The called function

names are retrieved through the use of debug

symbol information. The key feature of

CXPInspector is its ability to record the memory

addresses from which call/return originated. This

becomes possible through the use of Intel

Processor Trace (Intel PT) technology, which has

been integrated into Intel CPU since their 5th

generation. CXPInspector is implemented on

KVM hypervisor, which provides an interface to

the QEMU toolset for 64 bit machines and

Windows 7.

The next paper by Pham et al., (2014) proposed

the design of a HyperTap, a hypervisor-level

framework, which monitors a variety of system

events and states. HyperTap is able to trap

context switching, syscalls, instruction execution

and memory accesses. HyperTap can be adapted

for a wide range of reliability and security (RnS)

policies. HyperTap protection algorithms are

based on setting memory protection for the

allocated Memory Mapped I/O area so that access

to this area will trigger EPT_VIOLATION

events. We focus on two main examples of

applying HyperTap: (1) Hidden RootKit

Detection (HRKD) and (2) Privilege Escalation

Detection (PED). In order to detect a hidden user

process or thread, HyperTap tracks thread

switches by setting memory access permissions.

The HRKD sets all memory pages that contain

TSS structure as write-protected. As a result, each

thread switch modifies the task state segment

(TSS) structure, which is then rerouted to the

hypervisor using EPT_VIOLATION. The

algorithm of PED is based on the Ninja privilege

detection systems. PED applies OS-level Ninja’s

checking rules whilst screening for unauthorized

access. The idea behind this is to intercept fast

system calls by using execute-protection on the

system call entry point so that a guest attempt to

execute this system call will generate

EPT_VIOLATION. HyperTap is based on the

KVM hypervisor and Linux kernel. These

protection mechanisms have been tested on

Windows XP, Vista, and 7.

The idea of applying hypervisors facilities and

EPT technology for rootkit purposes has been

reported by Uty & Saman, (2016). These authors

focus on the invisible inline hooks aimed at the

modification of the code section. Hypervisor

maps guest physical address to the host physical

addresses by using 1:1 mapping. The idea of

using invisible inline hooks is based on copying

physical aspects and the original page. This

memory page copy evades any detection of

integrity violation. Thus in order to hook the

Windows internal function the authors inject

The 12th ADFSL Conference on Digital Forensics, Security and Law

 14

0xСС (breakpoint, #BP) into the original page,

while the duplicated page becomes unpatched.

The memory page with this inline hook therefore

will have an executable page permission. Any

read operation to this page will trigger the EPT

violation and during its processing the hypervisor

changes the page’s mapping to the shadow one

with read-write permissions. To speed up the

authors proposed the use of two slightly different

EPT structures and then simply switch between

them. Using the idea of invisible inline hooks, the

author has realized the keylogger and bypassed

PatchGuard. In the first case authors hooked the

KeyboardClassServiceCallBack routine and in

the second case to hide a process they hooked to

NtQuerySystemInformation. These hypervisor-

based rootkits facilities have been successfully

tested on Windows 7 x64 and Windows 8.1 x64.

We can see that there are the following

drawbacks of these EPT-based studies:

 EPT technology operates on page

granularity level, which is why all these

studies proposed a page-level control,

without fine-grained analysis;

 There is no solution which is able to

monitor and control all possible memory

access simultaneously: read, write, and

execute;

 All analyzed security solutions are not

flexible because they are based on huge

platforms, such as Xen, KVM, QEMU

etc.

We can conclude that EPT technology provides a

huge opportunity to monitor and control access to

the memory pages, and this can be used as the

basis for the proposed solution.

2.3. Conclusion

The above analysis shows that the existing

memory monitoring methods have the following

drawbacks:

1. Both OS-based methods are vulnerable to

kernel-mode malware manipulations.

2. Methods based on handling page fault

violations via bare-metal hypervisor are

not lightweight and will not support

multi-core CPUs properly.

3. EPT-based methods provide neither a

fine-grained analysis nor the ability to

trap all memory access.

The summary with the comparison analysis of the

major papers and projects is given in the Table 2,

where 2nd generation CPU supports VT-x and

EPT technologies – Nehalem microarchitecture.

5th generation CPU supports VT-x, EPT, and PT

technologies – Broadwell microarchitecture.

In the next section we will present

MemoryMonRWX, which is said to be free from

all above mentioned drawbacks.

Table 2 Summary table of memory monitoring projects

Title, year
Controlling the type of access

Supported OS
Required CPU

Generation Read Write Execute

HIMA, 2009 – – + only Linux 2nd

HyperSleuth, 2010 + – – Windows 7, 8, x64 2nd

CXPInspector, 2013 – – + Windows 7 x64 5th

SPIDER, 2013 + + – only Linux 2nd

DRAKVUF, 2014 – – + Windows 7 x64 2nd

HyperTap, 2014 – + + Windows XP, Vista, 7 2nd

MemoryMonRWX, 2017 + + + Windows 7-10 x64 2nd

The 12th ADFSL Conference on Digital Forensics, Security and Law

 15

3. DESIGN OF MEMORYMONRWX – THE

MEMORY MONITOR HYPERVISOR

In this section we present the main new

contributions of this paper. This part covers the

proposed ideas of how to apply EPT technology

to trap and manage memory access, and also the

design of a proposed hypervisor-based memory

monitoring system, which is able to

simultaneously track all types of memory access:

read, write, and execute. We have named it the

MemoryMonRWX system – which stands for

Memory Monitor of Read, Write, and eXecute

access.This system registers read and write access

to the specific range of virtual memory addresses

as well as revealing executable code on these

memory pages. This system supports multi-core

processors and consequently runs itself on each

core.

This is the first memory monitoring system which

can trap even one-byte modification of guest OS,

while all other solutions work on page granularity

level. MemoryMonRWX did well when tested on

the latest Windows 10 14393 x64 system.

3.1. How to Apply EPT-Technology to Trap

and Control Memory Access

Modern malware and spyware rootkits apply the

following typical techniques to protect

themselves from being detected: malware can

read and modify the content of data and code in

the memory.

There are two main scenarios. First we can

monitor memory access from a suspicious driver,

which is loaded from known addresses range. In

the second scenario access to the suspicious

memory addresses is controlled. To cover these

two cases MemoryMonRWX needs to monitor

and control access by using source address range

(SRC range) and destination address range (DST

range). MemoryMonRWX skips accesses from

all other ranges (OTH range). In this paper SRC

range, DST range, and OTH range do not

intersect and this sum (SRC range + DST range +

OTH range) is in the entire virtual context. SRC

range includes virtual addresses, access from

which will be trapped and DST range includes

virtual address, access to which will be trapped.

MemoryMonRWX controls memory access only

from the SRC range to DST range and skips all

other accesses.

To provide such surveillance we apply a new

Intel VT-x with Extended Page Table (EPT)

technology, which significantly expands the

existing bare-metal hypervisor facilities. Some

details of EPT technology were given above in

section 2.2.2. In a nutshell, by applying EPT

paging structures, EPT technology provides a

mechanism which can intercept and control

access to the memory pages.

Using EPT structures we can implement the

control of memory access from the SRC range to

DST range and skip all other accesses, see

Figure 6 a). Once guest memory is accessed, the

translation between guest virtual address (GVA)

to guest physical address (GPA) occurs, as shown

in arrow (1) in Figure 6 below. After page walk is

completed, the translation between GPA to host

physical address (HPA) occurs, as shown in

arrow (2). We receive HPA during page walk via

EPT structures, which are used as an

intermediary. If this memory access is allowed by

the EPT, PT entry access bits, hypervisor does

not take control. If this memory access is

disallowed according to the EPT page table

access bits, it involves EPT violation and causes

VM exit, as shown by arrow (3). Now hypervisor

is able to log and control access to this memory

page via modification of EPT paging structures,

see arrow (4). After that control goes to physical

memory (5) and comes back to the guest, see

arrows (6), (7), (8).

Let us consider two main scenarios of using EPT

structures. Firstly, we set allowing attributes in

the EPT structures and hypervisor does not trap

anything, see Figure 6 b). Secondly, to intercept

each read-access to the guest page we change the

attributes on the corresponding EPT PT entry, see

Figure 6 c).

The 12th ADFSL Conference on Digital Forensics, Security and Law

 16

a) b) c)

Figure 6 Algorithm of intercepting memory access using EPT: a) General view;

b) EPT structures have allowed attributes; c) EPT structures have disallowed attributes

These two scenarios can be combined in the

following way, which includes 5 steps. We

control memory access from SRC range by

resetting execute attributes in the corresponding

EPT structures. Next we filter all these accesses

to the DST range by resetting read- write- execute

attributes in the EPT structures, which correspond

to DST range.

Step 1 (Trapping SRC range execution). To

separate only desired access from all other ones

we use the following EPT structure as a trap, see

Figure 7 a).

This structure helps to intercept only execution

access from SRC range, while all other accesses

are skipped. This is an EPT normal view

structure. In this structure DST range and OTH

range will not be relevant. As a result, any code

execution on SRC range involves EPT violation

and causes VM Exit, and so we move on to

Step 2.

Step 2 (VM-Exit, because of execution on

SRC). To understand what this code is trying to

achieve, we use the following EPT structure as a

trap, see Figure 7 b). Actually we can use only

one EPT structure, but it requires updating each

time during the change of the EPT pointer.

With this EPT structure the hypervisor will

receive a VM Exit only if the code, which has

been trapped on Step 1, is trying to access the

DST range. This is in the EPT monitor view

structure. Now any access to the DST range

generates a VM Exit again and we move on to

Step 3.

Step 3 (VM-Exit, because of access to DST). At

this point, control goes to the hypervisor again. If

we need to trap and monitor memory access, we

log all related information: SCR address, DST

address, type of access (read/write/execute), byte

values some of which may have been read or

overwritten. But if we need to protect sensitive

data (or code) from being read or prevent

important data (or code) from being overwritten

we apply the following 3 procedures:

1. Change EPT.PFN value of the secret

page to another one, for example, to the

null page.

Memory access

to the guest OS

Page walk via

guest pages

Page walk via

EPT pages

Physical Memory

Bare-metal

hypervisor

8 1

3

4

56

27

6 1

A

B

C

5 2

4 3

8 1

A

B

C

7 2

6 5

Hyp3
4

The 12th ADFSL Conference on Digital Forensics, Security and Law

 17

2. Allow access to this page by setting

‘true’ to EPT.DST.read and

EPT.DST.write.

3. Set Monitor Trap Flag (MTF).

Setting this flag enables the system to generate

VM Exit system after executing each instruction

(Zhu, 2014). After guest OS reads the replaced

page and executes just one instruction, the control

goes to the hypervisor, because of VM Exit, and

we move on to Step 4.

Step 4 (VM-Exit, because of MTF). By now we

will have protected the secret data (or code) from

being read and tampered with. To get ready to

intercept a new memory access, we restore the

configuration by applying the following 3

procedures:

1. Restore EPT.PFN value to the original

one.

2. Restore permission of EPT.DST.read and

EPT.DST.write by setting ‘false’ value.

3. Clear the MTF.

After that any access to the DST range will

generate VM-Exit, and we move on to Step 3.

Any execute access on OTH range will also

generate VM-Exit, and we move on to Step 5.

Step 5 (VM-Exit, because of execution on

OTH). Now we check if this VM Exit address

belongs to the SRC range. If it does not, it means

that this code is out of our control and so we do

not have to control it. So we change EPT back

from monitor view to normal view in order to be

ready to trap a new code execution on SRC range,

we move on to Step 1.

The interaction between these five steps is

presented in Table 3 and Figure 8.

We checked the proposed idea of using EPT to

control memory access by developing a

MemoryMonRWX hypervisor, which is

presented in the next section.

a) b)

Figure 7 The content of EPT structures: a) EPT normal view, b) EPT monitor view

Table 3 Summary table of VM-Exit manipulations if access address belongs to SRC range

Type of Access
Current Address

Inside DST Range Outside DST Range

Read / Write VM-exit & Recorded Nothing

Execution
VM-exit & Recorded &

Switch to Normal View

VM-exit &

Switch to Normal View

 SRC.read = true
 SRC.write = true
 SRC.exec = false

(any execution access generates VM-Exit)

 DST.read = true
 DST.write = true
 DST.exec = true

 OTH.read = true
 OTH.write = true
 OTH.exec = true

EPT Normal View

 SRC.read = true
 SRC.write = true
 SRC.exec = true

 DST.read = false
(any read access generates VM-Exit)

 DST.write = false
(any write access generates VM-Exit)

 DST.exec = false
(any execution access generates VM-Exit)

 OTH.read = true
 OTH.write = true
 OTH.exec = false

(any execution access generates VM-Exit)

EPT Monitor View

The 12th ADFSL Conference on Digital Forensics, Security and Law

 18

Figure 8 The proposed interaction between EPT views to log and control memory access

3.2. Architecture and Major Components

We have developed a hardware based hypervisor

– MemoryMonRWX (Tanda, 2016-a), which

leverages two Intel technologies: VT-x and Intel

VT-x with EPT. MemoryMonRWX includes the

following components: HyperPlatform, Image

Load Detector, Source/Destination Range

Manager (Src/Dst Range Manager), Virtual-to-

Physical Map Manager (V2P Map Manager), and

EPT controller.

A summary of the way this system works is

shown in Figure 9. HyperPlatform is the main

component of this system, which is a bare-metal

hypervisor or virtual machine monitor (VMM).

HyperPlatform is a minimal hypervisor, which is

specifically designed for intercepting a variety of

events in the guest OS and was firstly presented

in REcon conference in 2016 (Tanda & Korkin,

2016).

After the MemoryMonRWX has been loaded,

Image Load Detector forms a SRC/DST memory

range of guest virtual memory addresses. Image

Load Detector includes both type of ranges: pre-

configured ranges, which include, for example,

the addresses of critical memory areas and the

addresses of recently loaded drivers, which are

added automatically. In this situation, the

addresses of recently loaded drivers are SRC

addresses and DST addresses and these are

critical memory areas. It is possible to specify

your own set of SRT and DST ranges by

modifying the code of MemoryMonRWX.

Src/Dst Range Manager takes requests from the

Image Load Detector with SRC/DST virtual

addresses ranges. This manager asks the EPT

controller to update EPT settings for the stored

ranges so that VM-Exit occurs when guest OS

drivers from SRC ranges attempt to access any of

the DST ranges.

V2P Map Manager maintains the mapping of

virtual (VA) to physical addresses (PA). This

manager takes requests for addition VAes from

both SRC and DST ranges and stores them along

with their corresponding PAes. Once any of

following events occurs, HyperPlatform, requests

V2P Map Manager to check whether any pair of

VA:PA needs to be refreshed: translation

Lookaside Buffer (TLB) flush; completion of #PF

occurs due to access to the non-present page.

init

Step 5

EPT normal view

EPT monitor view

EPT monitor view with

 Replaced EPT.DST.PFN

 EPT.DST.read=true

EPT.DST.write=true

 MTF=true

Step 4Step 3

Step 2

Step 1

EPT pointer

VMCS

. . .

The 12th ADFSL Conference on Digital Forensics, Security and Law

 19

TLB flush indicates that any of previously valid

VA:PA mapping via the page table entry has been

changed, as for example, when the VA page is

paged-out. The latter indicates that a new VA:PA

mapping has just been established, for example,

in case of paged-in page. V2P Map Manager will

update the pair of VA:PA mapping in both cases.

EPT controller manipulates the guest OS

behavior during the access to/from the configured

memory regions. EPT controller is responsible

for initializing and updating the EPT Paging Data

Structures, handling EPT violation, and recording

memory access. First, EPT controller accepts

requests for updating the EPT setting from

Src/Dst Range Manager for SRC and DST

ranges. Second, EPT controller updates EPT

Paging Data. Structures of a given range to

trigger VM-Exit when this range is accessed.

Third, EPT controller is notified by

HyperPlatform, when VM-Exit has occurred via

the mechanism of EPT violation. EPT controller

checks whether the access should be logged by

asking if the accessed VA is inside the DST

ranges and the current code counter, for example,

if the value of RIP register, is within the SRC

range.

MemoryMonRWX provides fine-grained analysis

by intercepting an access to the memory page.

The logging process is only done when an EPT

violation has occurred only on the configured

address range. We do not log the accesses

attempts to the EPT controlled pages, which do

not belong to the configured ranges of memory

addresses.

Figure 9 Architecture and Major Components of MemoryMonRWX

HyperPlatform

(bare-metal hypervisor)

Source/Destination

Range Manager

EPT

controller

V2P Map

Manager

MemoryMonRWX

EPT Normal View EPT Monitor View

EPT Paging Data Structures

Host Physical Address

Guest Physical Address
OS in VMX-non root mode

VMX root mode

DST Range

Drv.sys

Read\Write or Execute

Secret
data

SRC Range

Image Load

Detector

The 12th ADFSL Conference on Digital Forensics, Security and Law

 20

MemoryMonRWX traps access to the configured

SRC and DST address ranges using two EPT

paging structures: EPT normal view and EPT

monitor view, see Figure 9. Note that each

processor has those two structures so that multi-

core systems can be supported. The normal view

is used for the default state and the monitoring

view is used when a guest is inside an SRC range.

Details about the configuration and interaction

between EPT normal view and EPT monitor view

are given above in Section 3.1.

During processing MemoryMonRWX saves its

log into the file C:\Windows\MemoryMon.log.

An example of this log is present in Figure 10 a).

The first line indicates that a virtual address

FFFFFA800194A468 is executed and its

potential return address is FFFFF80002AD8C1C.

Since execution of a non-image region is not

always triggered by the CALL instruction, a

reported return address can be wrong. For

instance, the last line reports return address

0000000000000004. The return address is

calculated in the following way. This address is

the content of a memory address, specified by

RSP at the point of EPT violation,

ReturnAddr=*RSP. Actually, we do not know,

execution on which this particular instruction has

been trapped. To reveal the precise call stack we

are planning to leverage the Intel Processor Trace

(PT) mechanism.

To resolve symbol names in this log, a user-mode

parser has been developed (Tanda, 2016-b). An

example of a result log is presented in

Figure 10 b).

MemoryMonRWX offers good compatibility

with the all major Windows platforms. For

instance, MemoryMonRWX supports and can

monitor Windows 7, 8.1 and 10 on both x86 and

x64 architectures with more than one core.

To ensure simplicity of its extension by

researchers, MemoryMonRWX is designed to be

small. As shown in Figure 11, it is made up of

less than 12,000 lines of code, which is less than

3% of Xen, for example. Also, it can be compiled

on Visual Studio without requiring any assistance

from 3rd party libraries. MemoryMonRWX can be

debugged with WinDbg just like a common

Windows driver. Moreover, for rapid

development, C++ and STL can be used if

preferred.

We can conclude that the proposed

MemoryMonRWX system has the following

competitive advantages. First, it traps any

accesses – read, write, and execute even to as

little as one byte in the memory. It occurs due to

leveraging EPT technology, which provides only

page granularity level, and further processing,

which reveals access even to one byte. Second, it

supports multi-core processors via activating the

VMX mode on each core. Finally, this system

supports the newest Windows 10 14393 x64.

Also, MemoryMonRWX can function as the

basis for other cybersecurity solutions, for

example, to monitor the activities of Device

Driver Interfaces – DDIMon (Tanda, 2016-c), to

detect unauthorized elevation of privilege –

EoPMon (Tanda, 2016-d) as well as providing a

mechanism to research and deactivate the

PatchGuard – GuardMon (Tanda, 2016-e; Tanda,

2016-f, and Tanda, 2016-g).

a)

b)

Figure 10 Fragments of MemoryMonRWX log: a) raw data b) parsed data with resolved symbols names

The 12th ADFSL Conference on Digital Forensics, Security and Law

 21

Figure 11 Comparison in lines of code of hypervisor projects,

MemoryMonRWX is made up of less than 12,000 lines of code, which is less than 3% of Xen

3.3. Three Demos of MemoryMonRWX

This sections covers three demonstrations of

applying the MemoryMonRWX system. In the

first example MemoryMonRWX stops the

activity of a privilege escalation kernel mode

exploit by detecting writing and causing BSOD.

The second case demonstrates the read protection

ability of MemoryMonRWX to prevent

PatchGuard from being disabled. The final case

deals with applying MemoryMonRWX to detect

a suspicious code execution using Turla rootkit as

an example.

3.3.1. Integrity Case – MemoryMonRWX

Prevents Modifications of Code & Data

Typical kernel-mode rootkits hook functions

through rewriting a code and unlink their

structures by DKOM. The main scheme of these

attacks is shown in Figure 12. These attacks are

also known as Semantic Value Manipulation

(SVM) attacks. These can mislead security tools

by manipulating data values directly in the kernel

data structures. Similar attacks are proposed by

Prakash, et al., (2015).

The proposed MemoryMonRWE is able to detect

and prevent such attacks. As an example we

consider the CVE-2014-0816 kernel mode exploit

(Tanda, 2016-h), which modifies its value in the

HalDispatchTable[1]. To do it we predefined

ranges in MemoryMonRWE; set address of

HalDispatchTable[1] as a destination address. As

a result, after loading the exploit

MemoryMonRWE traps this modification and

this is then able to stop the guest OS which

prevents further exploitation. The video

demonstration of this case is shown in Tanda

(2016-i).

MemoryMonRWX can also be used to guarantee

the integrity of critical kernel-mode sections,

system lists, as well as the integrity of configured

ranges to protect proprietary programs and their

data. In this case MemoryMonRWX plays the

role of future HyperGuard (Hyper Guard), which

will probably replace the existing and vulnerable

PatchGuard system (Ionescu, 2015; Chauhan,

2016).

3.3.2. Confidentiality Case –

MemoryMonRWX Prevents Reading Data

Memory content includes much sensitive

information: keystrokes, passwords, their hashes,

private cryptographic keys, and even the

fragments of decrypted data. Various rootkits

attacks focus on kernel-level memory disclosure.

The scheme of these attacks is given in Figure 13.

A description of the attacks of crypto key

disclosure in the OpenSSH, Nginx server, and

CryptoLoop is considered in Liu et al., (2015). A

memory-based keylogger, which intercepts

keystrokes by reading the content of

DEVICE_EXTENSION of the kbdhid.sys driver,

has been proposed by Ladakis et al., (2013).

0.012 0.32

3.1

6.1

0

1

2

3

4

5

6

MemoryMonRWX Xen QEMU VirtualBox

Li
n

es
 o

f
co

d
e,

 m
ill

io
n

s

The 12th ADFSL Conference on Digital Forensics, Security and Law

 22

Figure 12 Code and data modifications attacks in the kernel-mode memory

Figure 13 Spyware driver reads and steals sensitive data

To demonstrate that MemoryMonRWX has the

ability to prevent read-access to sensitive data in

the memory we use another kernel-mode exploit

“Disarms PatchGuard (DisPG)”, as has been

proposed by Tanda (2016-j). One of the

components of DisPG reads the value from

nt!PoolBigPageTableSize, which stores the

address of the big page pool table Sylve, et al.,

(2016). To prevent such unauthorized reading we

predefined the MemoryMonRWX destination

range using the address of

nt!PoolBigPageTableSize and also changed the

logic of intercepting in the following way: Thus

any unauthorized reading access attempts to this

memory content will be redirected to a fake zero

page. As a result, DisPG reads the replaced fake

zero value and fails to disable PatchGuard. Video

demonstration of this case is loaded in (Tanda,

2016-k).

Thus MemoryMonRWE prevents any

unauthorized reading access of the sensitive data.

3.3.3. Real World Case – Applying

MemoryMonRWX to Analyze Turla Rootkit

Another rootkit technique moves malware

executable code outside the driver section. As a

result, kernel memory includes unknown pages

with an executable code.

MemoryMonRWX is able to reveal such

executable code as well as providing facilities to

analyze it with the help of a disassembler. To

demonstrate these facilities, we use Turla rootkit

(also known as Uroburos rootkit).

We tested MemoryMonRWX on the 64bit

version of Windows 7 against the Turla rootkit

and confirmed that MemoryMonRWX is able to

detect execution of non-paged pool and that the

executed region contained unpacked rootkit code

(Tanda, 2016-l).

RootkitDriver.sys
System Service Descriptor Table

ZwClose

ZwReadFile

ZwCreateKey

......Hook

List with drivers information

Unlink

PatchGuard has

been disabled

SpywareDriver.sys Sensitive data

Crypto Keys

Passwords

Read

Credentials

Steal

The 12th ADFSL Conference on Digital Forensics, Security and Law

 23

3.4. Benchmarks

Performance measurement was conducted on the

64bit version of Windows 10 running on a

Macbook Air with Intel Core i7-4650U, 8GB

RAM and SSD flash storage. In this experiment,

we executed Novabench (Novabench, n.d.) and

PCMark8 Home (PCMark8, n.d.) on the system

with and without MemoryMonRWX. Compared

overhead in ratio is shown in Figure 14. We can

measure how much the system performance

changed in comparison to 0%, which indicates

the system operating without those hypervisor

tools.

The results showed that performance degradation

kept to less than 10% in all tests except the

Novabench Graphics Tests. We surmise that the

reason for the higher overhead on this test is

caused by frequent TLB flush led by active

memory access, yet this has not been investigated

so far. Users should experience much less

overheads during their routine work: opening and

saving documents or surfing the Internet.

4. CONCLUSIONS & FUTURE WORK

In this paper we have achieved the following

results:

1) We are able to reveal and prevent

malicious activity by logging and

controlling read-, write, and execute-

memory access in a real time mode.

2) We developed a MemoryMonRWX

hypervisor to ensure the integrity and

confidentiality of both code and data.

This system helps to detect kernel-mode

malware, even if this malware applies

popular OS-based prevention techniques.

3) MemoryMonRWX can be used to

monitor access to the memory for a

variety of different purposes: driver

tracking, reverse engineering, detection

of unknown malware, verification and

protection of proprietary software.

4) We demonstrate that MemoryMonRWX

can be used in practice, the evaluation of

its benchmarks shows that its degradation

is quite small.

5) MemoryMonRWX is a tiny open-source

project which can be easily used by

students and post-graduate students

during their research activity.

With regard to future work we would like to

suggest the following ideas

Figure 14 MemoryMonRWX overhead

0% indicates the system without hypervisor, 100% – full system overload

5% 5% 2%

18%

7%

0%

25%

50%

75%

100%

PCMark8
Home

Novabench
RAM Speed

Novabench
CPU Tests

Novabench
Graphics

Tests

Novabench
Drive Write

Speed

The 12th ADFSL Conference on Digital Forensics, Security and Law

 24

4.1. Hypervisor-based Warden Controls Access

to The Memory

We propose an idea of how to improve PatchGuard

facilities and make it more resilient. We propose an

idea for hypervisor-based warden (HyperWarden)

which is not vulnerable to all kernel-mode malware

manipulations, because it runs in a more privileged

mode. Existing PatchGuard provides integrity for

Windows kernel code and detects unlinking attacks

on the structures from process and drivers lists

(Ionescu, 2015). It does not protect the integrity of

the full content of these structures in the memory

(Ch40zz, 2015) as well as not providing any

mechanisms to protect memory of the 3rd party

drivers from being tampered with.

HyperWarden will exclude all these drawbacks. It

will provide flexible protection for all data in the

memory using MemoryMonRWX as its basis. By

dynamic configuration of SRC/DST ranges and

allowed types of memory access we can guarantee

the data and code security. HyperWarden will avoid

any modification of critical Windows code and

multiple structures in the memory. It will allow

modification and read critical Windows data only

through the Windows kernel code. To protect the

integrity and confidentiality of the code and data of

the third part drivers HyperWarden will provide

API to configure regions of memory, which need

be protected. HyperWarden will support functions

to activate/deactivate memory protection as well as

adding\deleting protected memory areas for each

driver. As a result, HyperWarden helps to provide

complex memory security: protect integrity for OS

critical areas as well as integrity and confidentiality

of users for the configured memory areas.

4.2. Protection of Cloud Computing Systems

One of the possible scenarios of large scale

application of MemoryMonRWX is to protect

Cloud Computing Systems from being tampered by

exploits and malware (Murakami, 2014). Private

Cloud Computing Systems such as Amazon,

Google, and Microsoft provide their clients with

common services, whose behaviors are little

altered. For each specific Software as a Service

(SaaS) we can generate various behavior signatures,

which correspond to typical operations with

memory, and in this way avoid the leakage of

users’ data.

4.3. Visualize Memory Access

Another suggestion is to visualize registered

memory access using various techniques. The idea

is to create a Dynamic Memory Map,

demonstrating which driver or code has access to

specific data in the memory. It may also monitor

the frequency, amount of accessed data, and the

content of memory. The first step is to draw a Static

Memory Map with loaded drivers together with the

allocated data using rectangles. It will look like a

typical memory dump. The second step is to trap

the access from each driver to the memory and then

draw the corresponding arrow between the two

blocks. The third step is to continue updating the

picture and as a result this will show the Dynamic

Memory Map. For first step we can use various

data visualization techniques (ISOVIS, n.d.) and for

the second step we can apply ideas from Rgat roject

(Catlin, 2016).

4.4. Apply Raspberry Pi to Acquire Physical

Memory Dump & Detect Hidden Software

We propose an idea of using modern IoT platforms

such as a Raspberry Pi for the protection of

computers and incident response. The idea is to

expand the opportunities of CaptureGUARD by

WindowsSCOPE (WindowsSCOPE, n.d.), which is

only able to acquire the physical memory dump,

and so significantly decrease the price of a new

hardware platform.

First of all, we can use Raspberry Pi to acquire the

dump of physical memory using the ExpressCard

slot for PC and Thunderbolt interface for Mac. A

tecnhique of dumping memory by FPGA on a

PCMCIA card or ExpressCard slot was proposed

by Aumaitre, and Devine, (2010). We are planning

to apply an Inception software tool, which exploits

PCI-based DMA. This tool can attack over

FireWire, Thunderbolt, ExpressCard, PC Card and

any other PCI/PCIe interfaces (Maartmann-Moe,

n.d). After dumping we can use Raspberry Pi

facilities to process this memory dump using Rekall

Memory Forensic or Volatility Frameworks. We

can also update detection software using a wireless

connection, that is built-in to Raspberry Pi. This

detection platform will also be resilient to malware

attacks, because users do not work on it.

The 12th ADFSL Conference on Digital Forensics, Security and Law

 25

4.5. Implantable Medical Devices as a Target of

Cyber Attacks

Another idea is to protect wireless Implantable

Medical Devices (IMD) from being hijacked using

remote control. The livelihood and welfare of

patients ultimately depends on the precise work of

these devices. Their work can be breached remotely

by an intruder through using a wireless connection

and thus can result in human losses. We propose

the following action plan to protect IMD and make

forensic investigation easier. We can maintain

confidentiality, integrity, and authenticity of data

by applying lightweight cryptography to a secure

channel. We will suggest an intrusion detection

system (IDS) to protect IMD from DoS attacks by

disabling its input dispatcher temporarily (Darji &

Trivedi 2013). IDS will protect battery IMD from

being drained. We will describe the event logging

system which is able to perform the forensic

analysis in case of an incident occurring. Finally,

we are planning to verify embedded software to

reveal the vast majority of vulnerabilities.

As the first step, we will create an analogue of

OneTouch Ping Glucose Management System &

Insulin Pump by J&J, which was attacked recently

(Finkle, 2016). We will apply Contiki OS for

programming TI MSP430 microcontroller, which is

used in these pumps. We demonstrate the

vulnerability of this radio channel by unauthorized

control and access to this pump. We will develop a

complex cyber-security system, which will protect

this IMD from being tampered with remotely, or

from stealing data and draining the IMD battery by

wireless DoS attacks.

5. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their

constructive feedback to this work.

We wish to express our gratitude to Ashlyn King,

an intern at Russian Flagship Center, University of

Wisconsin–Madison, Madison, Wisconsin, US for

her comments on the manuscript and equally

helpful advice. Her voluntary contribution in

reviewing this paper significantly improved its

quality and timeliness.

We would like to thank Sarah Krueger, a teacher of

English, Kenosha, Wisconsin, US for her time and

effort in checking a preliminary version of this

paper.

We would also like to thank Ben Stein, teacher of

English, Kings Education, London, UK for his

invaluable corrections of the paper.

6. REFERENCES

[1] Aumaitre, D., & Devine, C. (2010). Subverting

Windows 7 x64 Kernel with DMA attacks. In:

HITBSecConf. Amsterdam. Retrieved from

http://esec-

lab.sogeti.com/static/publications/10-

hitbamsterdam-dmaattacks.pdf

[2] Azab, A., Ning, P., Sezer, E., & Zhang. X.

(2009, December 07 - 11). HIMA: A

Hypervisor-Based Integrity Measurement

Agent. In Proceedings of the Annual Computer

Security Applications Conference (ACSAC

'09). IEEE Computer Society, Washington,

DC, USA, 461-470.

http://dx.doi.org/10.1109/ACSAC.2009.50

[3] Backes, M., Holz, T., Kollenda, B., Koppe, P.,

Nürnberger, S., & Pewny, J. (2014). You Can

Run but You Can't Read: Preventing

Disclosure Exploits in Executable Code. In

Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications

Security (CCS '14). ACM, New York, NY,

USA, 1342-1353.

http://dx.doi.org/10.1145/2660267.2660378

[4] Baluda, M., Fuchs, A., Holzinger, P., Nguyen,

L., Othmane, L., Poller, A. (2015, November

16). Security Analysis of TrueCrypt. Federal

Office for Information Security (BSI).

Retrieved from

https://www.bsi.bund.de/SharedDocs/Downloa

ds/EN/BSI/Publications/Studies/Truecrypt/Tru

ecrypt.pdf?__blob=publicationFile&v=2

[5] Baranov, A. (2014, March 12). Uroburos: the

snake rootkit. Retrieved from

http://artemonsecurity.com/uroburos.pdf

[6] Baranov, A. (2016, October). Remsec driver

analysis. Retrieved from

http://artemonsecurity.blogspot.ru/2016/10/re

msec-driver-analysis.html

[7] Bartholomew, B., & Guerrero-Saade, J. (2016,

October 5-7). Wave your false flags!

Deception tactics muddying attribution in

targeted attacks. Virus Bulletin International

Conference (VB2016). USA, CO, Denver.

The 12th ADFSL Conference on Digital Forensics, Security and Law

 26

Retrieved from

https://securelist.com/files/2016/10/Bartholom

ew-GuerreroSaade-VB2016.pdf

[8] Bauman, E., Ayoade, G., Lin, Z. (2015,

September). A Survey on Hypervisor-Based

Monitoring: Approaches, Applications, and

Evolutions. Journal ACM Computing Surveys

(CSUR), 48(1), pp. 10:1-10:33. New York,

NY, USA. http://dx.doi.org/10.1145/2775111

[9] Block, F. (2015, December 13). Investigating

Memory Analysis Tools – SSDT Hooking via

Pointer Replacement. Retrieved from

https://insinuator.net/2015/12/investigating-

memory-analysis-tools-ssdt-hooking-via-

pointer-replacement/

[10] Cardona, S. (2017, January 17). Hacking

Training Windows Kernel Exploitation.

Retrieved from http://www.hacking-

training.com/download/WKE.pdf

[11] Catlin, N. (2016). An instruction trace

visualisation tool for dynamic program

analysis. Retrieved from

https://github.com/ncatlin/rgat

[12] Ch40zz. (2015). PspCidTable and Patchguard

on x64. Rohitab. Retrieved from

http://www.rohitab.com/discuss/topic/41909-

pspcidtable-and-patchguard-on-

x64/?p=10101659

[13] Chauhan, S. (2016, August 25). Windows 10

Virtualization-Based Security. Data Driven

Software Security. HITB GSEC Conference.

Singapore. Retrieved from

http://gsec.hitb.org/materials/sg2016/COMMS

EC%20D1%20-%20Sweety%20Chauhan%20-

%20Data%20Driven%20Software%20Security

.pdf

[14] Cheng, Y., Ding, X., & Deng, R. (2013,

September). DriverGuard: Virtualization-

Based Fine-Grained Protection on I/O Flows.

ACM Transactions on Information and System

Security (TISSEC), 16(2),

http://dx.doi.org/10.1145/2505123

[15] Comodo. (2013). New Patch Guard is

dangerous for W8 security. Retrieved from

https://forums.comodo.com/general-

discussion-off-topic-anything-and-everything-

b1.0/-t95225.0.html

[16] Dang, A., Mohinder, P., & Srivastava, V.

(2015, March 3). System and Method for

Kernel Rootkit Protection in a Hypervisor

Environment. U.S. Patent No 8,973,144 B2

[17] Darji, M. & Trivedi, B. (2013, April). IMD-

IDS a specification based Intrusion Detection

system for Wireless IMDs. International

Journal of Applied Information Systems

(IJAIS). 5(6).

http://dx.doi.org/10.5120/ijais13-450926

[18] Deng, Z., Zhang, X., & Xu, D. (2013).

SPIDER: stealthy binary program

instrumentation and debugging via hardware

virtualization. In Proceedings of the 29th

Annual Computer Security Applications

Conference (ACSAC '13). ACM, New York,

NY, USA, 289-298.

http://dx.doi.org/10.1145/2523649.2523675

[19] Dockrill, P. (2016, August 12). Scientists just

found an advanced form of malware that's

been hiding for at least 5 years. ScienceAlert.

Retrieved from

http://www.sciencealert.com/scientists-just-

found-an-advanced-form-of-malware-that-s-

been-hiding-for-at-least-5-years

[20] Drakvuf. (2016). Black-box Binary Analysis

System. Retrieved from https://drakvuf.com/

[21] Eranian, S., & Mosberger, D. (2002). Chapter

4.5 Page Fault Handling. Virtual Memory in

the IA-64 Linux Kernel. Retrieve from

http://www.informit.com/articles/article.aspx?

p=29961&seqNum=5

[22] Finkle, J. (2016, October 4). J&J warns

diabetic patients: Insulin pump vulnerable to

hacking. Reuters. Retrieved from

http://www.reuters.com/article/us-johnson-

johnson-cyber-insulin-pumps-e-

idUSKCN12411L

[23] G Data. (2014a, March 7). Uroburos – Deeper

travel into kernel protection mitigation. G Data

SecurityLabs. Retrieved from

https://blog.gdatasoftware.com/2014/03/23966

-uroburos-deeper-travel-into-kernel-protection-

mitigation

[24] G Data. (2014b, February). Uroburos Highly

complex espionage software with Russian

roots. G Data SecurityLabs. Retrieved from

https://public.gdatasoftware.com/Web/Content

/INT/Blog/2014/02_2014/documents/GData_U

roburos_RedPaper_EN_v1.pdf

[25] GovCERT. (2016, May 23). Technical Report

about the Espionage Case at RUAG. Technical

Report, Retrieved from

https://www.melani.admin.ch/dam/melani/en/d

okumente/2016/technical%20report%20ruag.p

https://insinuator.net/2015/12/investigating-memory-analysis-tools-ssdt-hooking-via-pointer-replacement/
https://insinuator.net/2015/12/investigating-memory-analysis-tools-ssdt-hooking-via-pointer-replacement/
https://insinuator.net/2015/12/investigating-memory-analysis-tools-ssdt-hooking-via-pointer-replacement/

The 12th ADFSL Conference on Digital Forensics, Security and Law

 27

df.download.pdf/Report_Ruag-Espionage-

Case.pdf

[26] Graziano, M. (2016, October 19). Make

DKOM Attacks Great Again. HackInBo

conference. Bologna, Italy, Retrieved from

https://www.hackinbo.it/slides/1478701060_m

ake-DKOM-attacks-great-again.pdf

[27] Graziano, M., Flore, L., Lanzi, A., &

Balzarotti, D. (2016, July 07 – 08). Subverting

Operating System Properties Through

Evolutionary DKOM Attacks. In Proceedings

of the 13th International Conference on

Detection of Intrusions and Malware, and

Vulnerability Assessment - (DIMVA 2016),

Vol. 9721. Springer-Verlag New York, New

York, NY, USA, 3-24.

http://dx.doi.org/10.1007/978-3-319-40667-

1_1

[28] Grehan, P. (2014, March 13-16). Differences

between x86 64 and EPT PTEs. Nested Paging

in Bhyve. Presented at the AsiaBSDCon.

Retrieved from

https://people.freebsd.org/~neel/bhyve/bhyve_

nested_paging.pdf

[29] Haruyama, T., Suzuki, H. (2012). One-Byte

Modification for Breaking Memory Forensic

Analysis. Retrieved from

http://media.blackhat.com/bh-eu-

12/Haruyama/bh-eu-12-

HaruyamaMemory_Forensic-Slides.pdf

[30] Intel. (2014, June 29). Malicious Utility Can

Defeat Windows PatchGuard. Intel Security.

Retrieved from

https://securingtomorrow.mcafee.com/mcafee-

labs/malicious-utility-can-defeat-windows-

patchguard/

[31] Intel. (2016, September). Chapter 28 VMX

Support for Address Translation. Intel® 64 and

IA-32 Architectures Developer's Manual: Vol.

3C. Order Number: 326019-060US

[32] Intel. (2016, September). Intel® 64 and IA-32

Architectures Developer's Manual: Vol. 3A

Chapter 4 Paging. Order Number: 253668-

060US.

[33] Ionescu, A. (2015, June 22). What are Little

PatchGuards Made Of? Retrieved from

http://www.alex-ionescu.com/?p=290

[34] Ionescu, A. (2015, October 13). HyperGuard.

It's official. Retrieved from

https://twitter.com/aionescu/status/654011301

438427136

[35] Irfan, A., Golden, R., Zoranic, A., & Roussev,

V. (2013, November 13-15). Integrity

Checking of Function Pointers in Kernel Pools

via Virtual Machine Introspection. In

Proceedings Information Security: 16th

International Conference (ISC), pp.3-19.

Dallas, Texas, http://dx.doi.org/10.1007/978-3-

319-27659-5_1

[36] ISOVIS (n.d.). Text Visualization Browser.

Retrieved from http://textvis.lnu.se

[37] Jadhav, A., Vidyarthi, D., & Hemavathy, M.

(2016, March 11-13). Evolution of Evasive

Malwares: A Survey. International Conference

on Computational Techniques in Information

and Communication Technologies (ICCTICT).

http://dx.doi.org/10.1109/ICCTICT.2016.7514

657

[38] Korkin, I., & Nesterow I. (2016, May 24-26).

Acceleration of Statistical Detection of Zero-

day Malware in the Memory Dump Using

CUDA-enabled GPU Hardware. Paper

presented at the Proceedings of the 11th annual

Conference on Digital Forensics, Security and

Law (CDFSL), Embry-Riddle Aeronautical

University, Daytona Beach, Florida, USA, pp.

47-82

[39] Kuniyasu, S., Toshiki, Y., Kazukuni, K., &

Toshiaki, I. (2014, August 27-29). Kernel

Memory Protection by an Insertable

Hypervisor Which Has VM Introspection and

Stealth Breakpoints. Advances in Information

and Computer Security: 9th International

Workshop on Security, IWSEC, Hirosaki,

Japan, 48-61, http://dx.doi.org/10.1007/978-3-

319-09843-2_4

[40] Ladakis, E., Koromilas, L., Vasiliadis, G.,

Polychronakis, M., & Ioannidis, S. (2013).You

Can Type, but You Can’t Hide: A Stealthy

GPU-based Keylogger. Proceedings of the 6th

European Workshop on System Security

(EuroSec). Prague, Czech Republic. Retrieved

from

http://www.cs.columbia.edu/~mikepo/papers/g

pukeylogger.eurosec13.pdf

[41] Lee, H., Moon, H., Jang, D., Kim, K., Lee, J.,

Paek, Y., & Kang, B. (2013). KI-Mon: A

Hardware-assisted Event-triggered Monitoring

Platform for Mutable Kernel Object. Presented

as part of the 22nd USENIX Security

Symposium (USENIX Security 13). pp. 511-

526.

The 12th ADFSL Conference on Digital Forensics, Security and Law

 28

[42] Lengyel, T., Zentific, S., Payne, B., Webster,

G., Vogl, S., & Kiayias, A. (2014, December

08 - 12). Scalability, fidelity and stealth in the

DRAKVUF dynamic malware analysis

system. In Proceedings of the 30th Annual

Computer Security Applications Conference

(ACSAC '14). New Orleans, Louisiana, USA,

386-395.

http://dx.doi.org/10.1145/2664243.2664252

[43] Li, W., Wu, D., & Liu, P. (2016, August).

iCruiser: Protecting Kernel Link-Based Data

Structures with Secure Canary. 2016 IEEE

International Conference on Software Quality,

Reliability and Security Companion (QRS-C),

Vienna, Austria, pp. 31-38.

http://dx.doi.org/10.1109/QRS-C.2016.9

[44] Ligh MH., Case, A., Levy, J., & Walters, A.

(2014). Stealthy Hooks. The Art of Memory

Forensics: Detecting malware and threats in

Windows, Linux, and Mac Memory. 384-386.

1st edition. Wiley. Indianapolis, IN, USA.

[45] Liu, Y., Zhou, T., Chen, K., Chen, H., & Xia,

Y. (2015, October 12-16). Thwarting Memory

Disclosure with Efficient Hypervisor-enforced

Intra-domain Isolation. In Proceedings of the

22nd ACM SIGSAC Conference on Computer

and Communications Security (CCS). Denver,

Colorado, USA, 1607-

1619.https://doi.org/10.1145/2810103.2813690

[46] Luțaș, A., Coleșa, A., Lukács, S., Luțaș, D.

(2016, February). U-HIPE: hypervisor-based

protection of user-mode processes in

Windows. Journal of Computer Virology and

Hacking Techniques. 12(1). 23-36.

http://dx.doi.org/10.1007/s11416-015-0237-z

[47] Maartmann-Moe, C. (n.d.). Inception.

Retrieved from

http://www.breaknenter.org/projects/inception

[48] Martignoni, L., Fattori, A., Paleari, R., &

Cavallaro, L. (2010, September 15-17). Live

and trustworthy forensic analysis of

commodity production systems. In

Proceedings of the 13th International

Conference on Recent Advances in Intrusion

Detection (RAID). Ottawa, Ontario, Canada,

297-316, http://dx.doi.org/10.1007/978-3-642-

15512-3_16

[49] Matrosov, A., Rodionov, E., & Bratus, S.

(2016). Rootkits and Bootkits. Reversing

Modern Malware and Next Generation

Threats. ISBN: 978-1-59327-716-1. 304 pp.

No Starch Press.

[50] Mayer, E. (2015, October 6). Bringing the

DKOM rootkit explained in Hoglund/Butler

book up to Win7 64-bit API. Retrieved from

https://www.linkedin.com/pulse/bringing-

dkom-rootkit-explained-hoglundbutler-book-

up-eric-mayer

[51] McAfee. (2016, September). Threats Report.

McAfee Labs. Retrieved from

http://www.mcafee.com/us/resources/reports/r

p-quarterly-threats-sep-2016.pdf

[52] Microsoft. (n.d.-a). MmAccessFault function.

Windows Research Kernel Source Code.

Retrieved from

http://gate.upm.ro/os/LABs/Windows_OS_Inte

rnals_Curriculum_Resource_Kit-

ACADEMIC/WindowsResearchKernel-

WRK/WRK-v1.2/base/ntos/mm/mmfault.c

[53] Microsoft. (n.d.-b). Handle page fault function.

Windows Research Kernel Source Code.

Retrieved from

http://gate.upm.ro/os/LABs/Windows_OS_Inte

rnals_Curriculum_Resource_Kit-

ACADEMIC/WindowsResearchKernel-

WRK/WRK-v1.2/base/ntos/ke/i386/trap.asm

[54] Milkovic, L. (2012). Defeating Windows

memory forensics. Retrieved from

http://events.ccc.de/congress/2012/Fahrplan/ev

ents/5301.en.html

[55] Morgan, B., Alata, E., Nicomette, V.,

Kâaniche, M., & Averlant, G. (2015,

November 18-20). Design and Implementation

of a Hardware Assisted. Security Architecture

for Software Integrity Monitoring. IEEE 21st

Pacific Rim International Symposium

Dependable Computing (PRDC), pp. 189-198,

http://dx.doi.org/10.1109/PRDC.2015.46

[56] Murakami, K. (2014, March 24). A Hypervisor

for Protecting Information of Public Cloud's

User on Memory and on Storage from

Malicious Operators. Master of Engineering.

University of Tokyo. Retrieved from

http://repository.dl.itc.u-

tokyo.ac.jp/dspace/bitstream/2261/56471/1/48

126454.pdf

[57] Nipravsky, T. (2016, August). Certificate

Bypass: Hiding and Executing Malware from a

Digitally Signed Executable. Blackhat USA.

Retrieved from

https://www.blackhat.com/docs/us-

The 12th ADFSL Conference on Digital Forensics, Security and Law

 29

16/materials/us-16-Nipravsky-Certificate-

Bypass-Hiding-And-Executing-Malware-

From-A-Digitally-Signed-Executable-wp.pdf

[58] Novabench. (n.d.). Computer Benchmark

Software. Retrieved from

https://novabench.com

[59] Paganini, P. (2014, March 3). Uroburos

rootkit, is it part of Russian Cyber weapon

programme? Security Affairs. Retrieved from

http://securityaffairs.co/wordpress/22700/mal

ware/uroburos-rootkit-part-russian-

cyberweapon-programme.htm

[60] Paganini, P. (2016, May 6). The Swiss

Defense Department was recently victim of a

cyber-attack; the offensive has come after a

presentation on cyber espionage to the FIS.

Security Affairs. Retrieved from

http://securityaffairs.co/wordpress/47059/cybe

r-crime/swiss-defense-department-cyber-

attack.html

[61] PCMark8. (n.d.). The Complete Benchmark

For Windows. Retrieved from

https://www.futuremark.com/benchmarks/pcm

ark8

[62] Pfoh, J., Schneider, C., & Eckert, C. (2011,

November 8-10). Nitro: hardware-based

system call tracing for virtual machines. In

Proceedings of the 6th International conference

on Advances in information and computer

security (IWSEC'11), Tokyo, Japan, 96-112,

http://dx.doi.org/10.1007/978-3-642-25141-

2_7

[63] Pham, C., Estrada, Z., Cao, P., Kalbarczyk, Z.,

& Iyer, R. (2014, June 23-26). Reliability and

Security Monitoring of Virtual Machines

Using Hardware Architectural Invariants. In

Proceedings of the 44th Annual IEEE/IFIP

International Conference on Dependable

Systems and Networks (DSN). IEEE

Computer Society, Washington, DC, USA, 13-

24. http://dx.doi.org/10.1109/DSN.2014.19

[64] Prakash, A., Venkataramani, E., Yin, H., &

Lin, Z. (2015, October 31). On the

Trustworthiness of Memory Analysis - An

Empirical Study from the Perspective of

Binary Execution, IEEE Transactions on

Dependable and Secure Computing (TDSC),

12(5), 1545-5971,

http://dx.doi.org/10.1109/TDSC.2014.2366464

[65] Priyadarshi, A. (2016). How does the kernel

translate virtual addresses when it's not found

in the page table? Stack Overflow Community.

Retrieved from

http://stackoverflow.com/questions/37965451/

how-does-the-kernel-translate-virtual-

addresses-when-its-not-found-in-the-page

[66] Rascagneres, P. (2015, May). Tools used by

the Uroburos actors. GDATA SecurityLabs.

NorthSec Applied Security Event. Montreal,

Canada, Retrieved from

https://www.nsec.io/wp-

content/uploads/2015/05/uroburos-actors-

tools-1.1.pdf

[67] Rascagnères, P. (2016, March 23-24).

Windows systems & code signing protection.

Poster presented at the SyScan360, Singapore.

Retrieved from

https://www.syscan360.org/slides/2016_SG_P

aul_Rascagneres_Windows_systems_and_cod

e_signing_protection.pdf

[68] Rhee, J., Riley, R., Xu, D., & Jiang, X. (2010,

September 15-17). Kernel Malware Analysis

with Un-tampered and Temporal Views of

Dynamic Kernel Memory. In Proceedings of

the 13th International Conference on Recent

Advances in Intrusion Detection (RAID), pp

178-197. Ottawa, Ontario, Canada.

http://dx.doi.org/10.1007/978-3-642-15512-

3_10

[69] Seshadri, A., Luk, M., Qu, M., & Perrig, A.

(2007). SecVisor: a tiny hypervisor to provide

lifetime kernel code integrity for commodity

OSes. SIGOPS Oper. Syst. Rev. 41, 6 (October

2007), 335-350.

http://dx.doi.org/10.1145/1323293.1294294

[70] Sim, Y.J., Lee, Y.H. (2016). Malware is in the

Memory. Hacks in Taiwan Conference

(HITCON) Taipei, Taiwan. Retrieved from

https://hitcon.org/2016/CMT/slide/day1-r2-b-

1.pdf

[71] Souček, J. (2016, February 2). Security

Analysis of BestCrypt. Master’s Thesis. Czech

Technical University In Prague Faculty Of

Information Technology. Retrieved from

https://dspace.cvut.cz/bitstream/handle/10467/

65118/F8-DP-2016-Soucek-Jakub-

thesis.pdf?sequence=-1

[72] Sparks, S., & Butler, J. (2005). Shadow

Walker - Raising The Bar For Rootkit

Detection Last. BlackHat. Retrieved from

http://www.blackhat.com/presentations/bh-jp-

05/bh-jp-05-sparks-butler.pdf

The 12th ADFSL Conference on Digital Forensics, Security and Law

 30

[73] Srivastava, A., & Giffin, J. (2011, February 7).

Efficient Monitoring of Untrusted Kernel-

Mode Execution. In NDSS, Retrieved from

www.internetsociety.org/sites/default/files/sriv

.pdf

[74] Stefano, O., Cristiano, G., & Bruno, C. (2011,

September 20-21). KLIMAX: Profiling

Memory Write Patterns to Detect Keystroke-

Harvesting Malware. In Proceedings of the

14th International Symposium on Recent

Advances in Intrusion Detection (RAID), 81-

100. Berlin, Heidelberg.

http://dx.doi.org/10.1007/978-3-642-23644-

0_5

[75] Sylve, J., Marziale, V., Richard, G. (2016,

March 29). Pool tag quick scanning for

windows memory analysis. In Proceedings of

the Third Annual Digital Forensics Research

Conference (DFRWS) Europe. Volume 16,

Supplement, pp. S25-S32,

http://dx.doi.org/10.1016/j.diin.2016.01.005.

[76] Symantec Corp. (2016, January 14). The

Waterbug attack group. Security Response.

Retrieved from

https://www.symantec.com/content/en/us/enter

prise/media/security_response/whitepapers/wat

erbug-attack-group.pdf

[77] Tanda, S. (2016-a). Memory Monitor of Read,

Write, and execute access. Retrieved from

https://github.com/tandasat/MemoryMon/tree/r

we_cdfs

[78] Tanda, S. (2016-b). User-mode program

parsing logs created by HyperPlatform.

Retrieved from

https://github.com/tandasat/MemoryMon/tree/r

we_cdfs

[79] Tanda, S. (2016-c). Monitor Device Driver

Interfaces (DDIMon). Retrieved from

https://github.com/tandasat/DdiMon

[80] Tanda, S. (2016-d). Elevation of privilege

detector (EoPMon). Retrieved from

https://github.com/tandasat/EoPMon

[81] Tanda, S. (2016-e). GuardMon: Monitoring

and Controlling PatchGuard [Video file].

Retrieved from

https://www.youtube.com/watch?v=PUcBtd0f

ZeA

[82] Tanda, S. (2016-f). Hypervisor based tool for

monitoring system register accesses. Retrieved

from https://github.com/tandasat/GuardMon

[83] Tanda, S. (2016-g). Some Tips to Analyze

PatchGuard. Retrieved from http://standa-

note.blogspot.ru/2015/10/some-tips-to-

analyze-patchguard.html

[84] Tanda, S. (2016-h). An exploit for CVE-2014-

0816s. Retrieved from

https://github.com/tandasat/CVE-2014-0816

[85] Tanda, S. (2016-i). MemoryMonRWX: Write

Protect [Video file]. Retrieved from

https://www.youtube.com/watch?v=XgLNwR

wz16c

[86] Tanda, S. (2016-j). Proof-of-concept code

disables PatchGuard (DisPG). Retrieved from

https://github.com/tandasat/PgResarch/tree/ma

ster/DisPG

[87] Tanda, S. (2016-k). MemoryMonRWX: Read

Protect [Video file]. Retrieved from

https://www.youtube.com/watch?v=DGo7gdk

WSrA

[88] Tanda, S. (2016-l). MemoryMon: Analyzing

Turla Rootkit [Video file]. Retrieved from

https://www.youtube.com/watch?v=O5_ocsplr

fA

[89] Tanda S., & Korkin, I. (2016, June 17-19).

Monitoring & controlling kernel-mode events

by HyperPlatform. Paper presented at the

REcon conference, Montreal, Canada.

Retrieved from

recon.cx/2016/talks/Monitoring-and-

controlling-kernel-mode-events-by-

HyperPlatform.html

[90] Traut, E., Hendel, M., & Vega, R. (2007,

November 20). Enhanced Shadow Page Table

Algorithms. U.S. Patent No 7,299,337 B2

[91] Uty, & Saman. (2016). How to hide a hook: A

hypervisor for rootkits. Phrack Magazine. 0x0f

(0x45), Retrieved from

http://phrack.org/issues/69/15.html#article

[92] Wang, X., Guo, X.R. (2016). NumChecker: A

System Approach for Kernel Rootkit Detection

and Identification. Black Hat Asia. Retrieved

from https://www.blackhat.com/docs/asia-

16/materials/asia-16-Guo-NumChecker-A-

System-Approach-For-Kernel-Rootkit-

Detection-And-Identification.pdf

[93] Wang, Z., & Jiang, X. (2010, May 16-19).

HyperSafe: A Lightweight Approach to

Provide Lifetime Hypervisor Control-Flow

Integrity. In Proceedings of the 2010 IEEE

Symposium on Security and Privacy (SP '10).

IEEE Computer Society, Washington, DC,

https://recon.cx/2016/talks/Monitoring-and-controlling-kernel-mode-events-by-HyperPlatform.html
https://recon.cx/2016/talks/Monitoring-and-controlling-kernel-mode-events-by-HyperPlatform.html
https://recon.cx/2016/talks/Monitoring-and-controlling-kernel-mode-events-by-HyperPlatform.html

The 12th ADFSL Conference on Digital Forensics, Security and Law

 31

USA, 380-395.

http://dx.doi.org/10.1109/SP.2010.30

[94] White, T. (2015, November 20). Extracting

BitLocker keys with Volatility (PoC).

Retrieved from

https://tribalchicken.io/extracting-bitlocker-

keys-with-volatility-part-1-poc/

[95] Wikiwand. (n.d.). Intel Core. Retrieved from

https://www.wikiwand.com/en/Intel_Core

[96] Willems, C., Hund, R., & Holz, T. (2012,

November 26). CXPInspector: Hypervisor-

Based, Hardware-Assisted System Monitoring.

Technical Report TR-HGI-2012-002. Ruhr-

Universit¨at Bochum. Retrieved from

https://www.ei.rub.de/media/emma/veroeffentl

ichungen/2012/11/26/TR-HGI-2012-002.pdf

[97] WindowsSCOPE. (n.d.). CaptureGUARD

Gateway – Access to Locked Computers.

Retrieved from

http://www.windowsscope.com/product/captur

eguard-gateway-access-to-locked-computers

[98] Xu, Y., Cui, W., & Peinado, M. (2015).

Controlled-Channel Attacks: Deterministic

Side Channels for Untrusted Operating

Systems. In Proceedings of the 2015 IEEE

Symposium on Security and Privacy (SP '15).

IEEE Computer Society, Washington, DC,

USA, 640-656.

DOI=http://dx.doi.org/10.1109/SP.2015.45

[99] Yan, G., Luo, S., Feng, F., Pan, L. & Safi, Q.

(2015 December). MOSKG: countering kernel

rootkits with a secure paging mechanism.

Journal Security and Communication

Networks. 8(18). 3580-3591, John Wiley &

Sons, Inc. New York, NY, USA,

http://dx.doi.org/10.1002/sec.1282

[100] Yan, L. (2013, May). Transparent and

Precise Malware Analysis Using

Virtualization: From Theory to Practice.

Thesis Doctor of Philosophy, Syracuse

University. Retrieved from

http://surface.syr.edu/eecs_etd/332

[101] Zhu, B. (2014, November 6). Monitor Trap

Flag (MTF) Usage in EPT-based Guest

Physical Memory Monitoring. Retrieved from

http://hypervsir.blogspot.ru/2014/11/monitor-

trap-flag-mtf-usage-in-ept.html

